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Abstract

We review state-of-the-art nonadiabatic molecular dynamics methods, with fo-
cus on the comparison of two general strategies: the “direct” one, in which the
potential energy surfaces (PES) and the couplings between electronic states are
computed during the integration of the dynamics equations; and the “PES-
fitting” one, whereby the PES’s and couplings are preliminarily computed and
represented as functions of the nuclear coordinates. Both quantum wavepacket
dynamics (QWD) and classical trajectory approaches are considered, but we
concentrate on methods for which the direct strategy is viable: among the
QWD ones, we focus on those based on traveling basis functions. We present
several topics in which recent progress has been made: quantum decoherence
corrections in trajectory methods, the use of quasi-diabatic representations, the
sampling of initial conditions, the inclusion of field-molecule interactions and
of spin-orbit couplings in the dynamics. Concerning the electronic structure
calculations, we discuss the use of ab initio, density functional and semiem-
pirical methods, and their combination with Molecular Mechanics (QM/MM
approaches). Within the semiempirical framework, we provide a concise but
updated description of our own method, based on configuration interaction
with floating occupation molecular orbitals (FOMO-CI). We discuss the ability
of different approaches to provide observables directly comparable with exper-
imental results and to simulate a variety of photochemical and photophysical
processes. In the concluding remarks we stress how the border between direct
and PES-fitting methods is not so sharp, and we briefly discuss recent trends
that go beyond this traditional distinction.
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1 Introduction.

The experimental investigation of the mechanism of chemical reactions and
other dynamical processes at molecular level yields rather indirect data, that
need a non trivial chain of inferences to be interpreted. The problem is even
more complicated when two or more electronic states are involved, with tran-
sitions among them, which is typical of photochemical reactions and of charge
or energy transfer processes. Steady state experimental techniques provide
correlations between reactant and product molecular structures, state popu-
lations and vectorial quantities such as fragment velocities, angular momenta
or absorbed/emitted photon polarizations [1–3]. Transient spectroscopies with
pico- or femtosecond resolution can in principle pinpoint any phase of a dy-
namical process, but once more the raw data are the object of interpretation
and often of controversy [4–6]. The photoisomerization of azobenzene is an
example of a relatively simple reaction, for which different mechanisms have
been proposed during at least 30 years, in spite of the wealth of experimental
and computational data that have been made available (see Cusati et al [7]
and refs. therein).

The calculation of potential energy surfaces (PES) and of other molecular prop-
erties, such as charge distributions and electrostatic potentials, is extremely
helpful to devise, select and discard reaction mechanisms. In thermal reactions
it is normally sufficient to compare the activation free energies associated with
different transition states to determine the preferred pathway. In photochem-
istry and in other cases where more energy is available for the motion of the
nuclei, as in combustion reactions, the accessible nuclear phase space volume
is much larger. As a consequence, the determination of minimum energy path-
ways and critical points, such as optimized conical intersections (CoIn) [8–14],
in many cases does not provide an unambiguous indication of the reaction
mechanism. Moreover, when the excited state lifetimes are very short (few
picoseconds or less), the internal vibrational energy redistribution (IVR) does
not reach completion, therefore one cannot assume a statistical behavior based
on a microcanonical distribution. A fortiori, thermal equilibration is not war-
ranted, even in condensed phase where the energy transfer from an excited
chromophore has a typical time scale of ten picoseconds [15]. As a conse-
quence, the wavepacket dynamics depends on the specific initial conditions
and, in some degree, on the details of the excitation process, such as the wave-
length, duration and monochromaticity of the light pulse.

For these reasons, in photochemistry and in other fields where radiationless
electronic transitions are important, the mere exploration of the PES often
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provides no more than a hypothetical rationalization of the experimental ob-
servations. Only the results of simulations of the molecular dynamics can be
directly compared to spectroscopic transients or reactant/product correlated
measurements. As discussed above, when the process of interest is fast the
dynamical approach is particularly appropriate, and is computationally viable
because its burden normally grows with the simulation time. However, in
supramolecular systems and in condensed phase one is often confronted with
the overlapping time scales of different processes [15], from ultrafast geometri-
cal relaxation and nonadiabatic dynamics (< 1 ps) to IVR and energy trans-
fers between chromophores and to the environment, from hot ground state
processes [16, 17] to collective rearrangements [18–20]. Efficient methods that
would allow to extend the simulation time scales are therefore actively sought
for.

In this review paper we discuss the principles and computational strategies
of direct methods in the field of nonadiabatic molecular dynamics, and we
compare them with the more traditional approaches based on the preliminary
determination of the potential energy surfaces and other electronic quantities.
In this context the word “direct” is a synonym of “on the fly”, and means
that the electronic problem is solved by quantum chemistry methods at every
time step of the molecular dynamics. By contrast, the standard approach
that was the norm till about 10 years ago and is still in use, consists of three
steps: (i) the determination of the relevant regions of the PES’s and of the
couplings between electronic states for a (possibly large) number of molecular
geometries; (ii) the fitting or interpolation of such quantities as functions of the
nuclear coordinates; (iii) the simulation of the dynamics, that makes use of the
information about the electronic structure determined and processed in the two
preliminary steps. We shall indicate this strategy with the shorthand “PES-
fitting”. The direct methods allow to bypass steps (i) and (ii), which can be two
serious bottlenecks because of theoretical and computational reasons. They
have been used in ground state molecular dynamics since the pioneering work of
Leforestier [21]. The introduction of the Car-Parrinello method [22–25] fueled
a rapid increase in the popularity of direct methods, especially in condensed
phases and wherever accurate force fields are difficult to devise.

The direct strategy can be applied to classical trajectory methods but also to
quantum dynamics with traveling localized basis functions, therefore in this
review paper we shall concentrate on these approaches. In the next section we
shall examine the methods and algorithms for nonadiabatic dynamics and we
shall highlight the strong and weak points of the direct and PES-fitting strate-
gies. The rather blurred border between the two approaches will be focused in
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section 3, where we shall discuss the electronic structure methods in use for ex-
cited states and their applicability to direct dynamics. In particular, we shall
provide a unified description of the semiempirical method we proposed almost
15 years ago [26,27], that has undergone improvements and variants described
in several papers over the years [28–37]. In section 4 we shall stress the impor-
tance of computing observables to be compared with the experimental results,
but also mechanistic descriptors to support the qualitative understanding of
the dynamic processes. In the same section, a non-exhaustive list of recent
applications will be supplied.

2 Quantum wavepackets and classical trajec-

tories.

2.1 Molecular quantum dynamics.

In quantum wavepacket dynamics (QWD), a non-stationary state can be writ-
ten in terms of a set of electronic wavefunctions ϕk and of nuclear wavepackets
χk, as

Ψ(q,Q, t) =
∑

k

ϕk(q;Q) χk(Q, t) (1)

Here q and Q are the electronic and nuclear coordinates, respectively. The
ϕk(q;Q) wavefunctions depend parametrically on the nuclear positions and
are taken to be an orthonormal set, i.e. 〈ϕk |ϕl 〉 = δkl. On the contrary, the
square norm of each nuclear wavepacket χk(Q, t), i.e. the population Pk of the
associated state |ϕk〉, depends on time and varies between 0 and 1 (

∑

k Pk = 1).
Here and in the following we shall use Dirac’s notation for the integration over
the electronic coordinates only. The time-dependent Schrödinger equation
(TDSE)

ih̄
∂Ψ

∂t
= Ĥ Ψ(q,Q, t) (2)

then takes the form

ih̄
∂χk

∂t
=

(

T̂nuc +H
(el)
kk −

∑

r

h̄2

2mr

T
(r)
kk

)

χk(Q, t)+ (3)

+
∑

l( 6=k)

[

H
(el)
kl −

∑

r

h̄2

2mr

(

2G
(r)
kl

∂

∂Qr

+ T
(r)
kl

)]

χl(Q, t)
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This expression is obtained under the assumption that the Qr are fixed or-
thogonal coordinates and the mr the corresponding reduced masses. In the
particular case of Cartesian coordinates, the mr are simply the nuclear masses.
T̂nuc is the nuclear kinetic energy operator and

H
(el)
kl (Q) =

〈

ϕk

∣

∣

∣Ĥel

∣

∣

∣ϕl

〉

(4)

is a matrix element of the electronic Hamiltonian Ĥel = Ĥ−T̂nuc. G(r)
kl and T

(r)
kl

are the “dynamic” or “derivative” nonadiabatic couplings (DNAC), originated
by the application of the T̂nuc operator to the electronic wavefunctions:

G
(r)
kl (Q) =

〈

ϕk

∣

∣

∣

∣

∣

∂

∂Qr

∣

∣

∣

∣

∣

ϕl

〉

(5)

and

T
(r)
kl (Q) =

〈

ϕk

∣

∣

∣

∣

∣

∂2

∂Q2
r

∣

∣

∣

∣

∣

ϕl

〉

(6)

We note that, provided the ϕk are real functions, the diagonal matrix elements
G

(r)
kk vanish. The two terms in the rhs of eq. (3) can be called the “wavepacket

propagation” and the “coupling” term, respectively. The nuclear motion de-
pends mainly on the first term, that contains the potential energy function
H

(el)
kk (Q), i.e. the PES of state k, along with the small corrections due to the

second derivative matrix elements T
(r)
kk (Q) (normally neglected). The radia-

tionless transitions, i.e. the transfers of population between electronic states,
are due to the coupling term, that anyway also affects the shape and displace-
ment of the wavepackets. This term in general contains both the electronic
matrix elements H

(el)
kl (Q) and the DNAC’s G

(r)
kl (Q) and T

(r)
kl (Q) but can be

simplified by choosing either the adiabatic or a diabatic representation (see

section 2.4): in the first case, which is more common, the PES H
(el)
kk (Q) is an

eigenvalue of the electronic Hamiltonian and the off-diagonal matrix elements
H

(el)
kl (Q) vanish. To solve the TDSE, one must choose a representation of the

χk(Q, t) wavepackets, either on a grid or by expansion on a suitable basis set,
in order to discretize the differential equation (3). Then, a numerical inte-
gration scheme is applied, to propagate the solution by successive time steps
∆t up to the duration TS of the physical process to be simulated (see again
subsection 2.4).

In order to propagate the molecular wavefunction one must know the H(el)(Q),
G(r)(Q) and T(r)(Q) matrices at least in the region of the nuclear coor-
dinate space where the values of the χk(Q, t) wavepackets are not negligi-
ble, which is a manifestation of the non-local nature of quantum mechanics.
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This fundamental fact has a direct bearing on the implementation of QWD
computational methods, and in principle would forbid the application of the
on the fly strategy. Consider for instance the Multi-Configurational Time-
Dependent Hartree method (MCTDH), one of the most successful approaches
to QWD [38–40]. The gist of MCTDH is to expand the wavepackets on a basis
of multi-dimensional “configurations” ΦI :

χk(Q, t) =
∑

I

AI,k(t)ΦI(Q, t) (7)

A configuration is a product of “single particle functions” (SPF), each depend-
ing on a single nuclear coordinate:

ΦI(Q, t) =
∏

r

ξI,r(Qr, t) (8)

In turn, each SPF ξI,r(Qr, t) can be expanded on a fixed basis set of one-
dimensional functions. The time-dependence of χk(Q, t) is then carried by the
AI,k coefficients and by those of the SPF expansions. Two configurations differ
because of the SPFs they are built with, and can represent alternative dynam-
ical processes, for instance the evolution towards specific reaction channels. If
the PES’s are expressed as sums of products of single coordinate factors the
necessary multidimensional integrals can be computed very efficiently; while
this mathematical form is sufficiently general for many applications, using it
definitely implies a PES-fitting approach, well described in a recent paper by
Meyer [40].

However, if a wavepacket is sufficiently localized, i.e. is not spread or frac-
tioned on very different regions of the PES, its dynamics can be approxi-
mated in terms of local quantities, such as the lowest order derivatives of the
potential (see for instance the discussion of Ehrenfest theorem in Tannor’s
textbook [6]). Moreover, if the potential is bound and its anharmonicity is
not too large, the wavepacket remains localized while it oscillates many times
around the equilibrium position, and several interesting dynamical properties
can be easily predicted, as shown by Heller and coworkers [41–44]. Their pi-
oneering work is at the root of methods for nonadiabatic QWD, based on
the expansion of the wavepackets on localized traveling basis functions of
gaussian shape. Two such methods, the Full Multiple Spawning (FMS) by
Mart́ınez and coworkers [45–54] and the variational Multiconfiguration Gaus-
sian wavepacket method (vMCG) by Worth and coworkers [55–60], or its vari-
ant G-MCTDH [61], can be presented using the MCTDH formalism outlined
above. In both approaches an SPF is a complex gaussian function with a
fixed width but with time-dependent central values QI,r(t) and P I,r(t) of the
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coordinate and of the associated momentum:

ξI,r =
(

2αr

π

)1/4

exp[−αI,r(Qr −QI,r)
2 + iP I,r(Qr −QI,r)/h̄] (9)

This is a very effective way to avoid the expansion in a fixed basis set, that be-
comes very expensive for large amplitude motions, such as bond dissociations.
A configuration, usually called a basis function in FMS, is then a product of
gaussians that peaks at QI(t), the vector collecting the gaussian centers for all
coordinates, with the central momentum vector PI(t).

In FMS the basis function centers QI(t) and momenta PI(t) describe classical
trajectories, governed by Newton’s equations, as gaussian wavepackets would
do in a harmonic potential. A calculation is normally started with one or
several basis functions and more are added when necessary to represent the
time-dependent wavefunction. More specifically, at each time step, for any
basis function traveling on a given PES the effective couplings with other
electronic states are computed and if one is found larger than a given threshold,
one or more new basis functions are spawn on the appropriate PES. Besides
electronic transitions, also tunneling requires to spawn new functions where
Newton’s equations would never allow the existing ones to travel: an ad hoc
procedure has been proposed [48]. An optimal spawning algorithm has been
introduced [52] in order to improve the computational accuracy obtained with
a given dimension of the basis set. With the same aim, a set of optimal width
parameters α for the most common atoms have been determined [54]. Once the
basis set of configurations ΦI has been defined, the time-dependent variational
principle (TDVP) [62]

〈

δΨ

∣

∣

∣

∣

∣

ih̄
∂

∂t
− Ĥ

∣

∣

∣

∣

∣

Ψ

〉

= 0 (10)

is applied to determine the AI,k(t) coefficients. To this aim, one needs the ma-
trix elements of the wavepacket propagation and coupling terms contained in
eq. (3). While the kinetic energy matrix elements between gaussian functions
are given by simple analytical formulas, the PES’s and the couplings require
a numerical integration.

The on the fly version of FMS, most often called AIMS (“ab initio multi-
ple spawning”), resorts to a further approximation besides the truncation of
the basis set and the numerical propagation of the time-dependent solution.
In fact, the integrals are computed by a saddle-point approximation. For
instance, considering the matrix elements of the potential H

(el)
kk (Q), the first-
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order approximation is
〈

ΦI

∣

∣

∣H
(el)
kk

∣

∣

∣ΦJ

〉

≃ 〈ΦI |ΦJ 〉 H(el)
kk (QIJ) (11)

and the second-order one is

〈

ΦI

∣

∣

∣H
(el)
kk

∣

∣

∣ΦJ

〉

≃ 〈ΦI |ΦJ 〉 H(el)
kk (QIJ)+

∑

r

〈

ΦI

∣

∣

∣Qr −QIJr

∣

∣

∣ΦJ

〉





∂H
(el)
kk

∂Qr





Q=QIJ

(12)

Here QIJ is the centroid of the product ΦI(Q)ΦJ(Q). Using the second-order
approximation for the PES and the first-order one for the couplings, at each
time step one has to compute the PES and its gradient at each basis func-
tion center QI and at all the centroids QIJ of ΦI ,ΦJ pairs traveling on the
same PES, and the coupling at the centroids of ΦI ,ΦJ pairs on different PES’s
(notice that the gradients at the QI geometries are also needed to propagate
the Newtonian trajectories). In discussing the computational burden of direct
dynamics methods, we shall assume that it is essentially due to the electronic
structure calculations, although in some cases the contribution of the solution
of the propagation equations is not negligible. In principle, the computing time
with M basis functions would then be equivalent to M(M + 1)/2 electronic
structure calculations per time step. However, when two basis functions are far
apart and their overlap is very small, their matrix elements can be neglected,
at least according to the saddle-point approximation. Since this situation is
likely to occur more often the larger is M , the increase in computational time
can be closer to linear than to quadratic in M . On the other hand, since the
number of basis functions increases in time because of the spawning, the total
cost increases more than linearly with the simulation time TS. It is worth not-
ing that this feature is not peculiar of FMS/AIMS, but is rather connected to
the intrinsic behavior of molecular quantum wavepackets. A wavepacket ini-
tially localized in a limited region of a PES, at later times tends to occupy an
increasing fraction of the energetically accessible volume in the nuclear config-
uration space. Electronic transitions add a further dimension to the spreading
of wavepackets. As a consequence, a fixed basis set or grid representation that
would yield accurate (“converged”) results for a given simulation time TS, may
turn out inadequate at longer times; the same may occur with a fixed number
of traveling basis functions, as in vMCG.

The vMCG method differs from FMS/AIMS mainly because the basis func-
tions move according to the TDVP, eq. (10), instead of following Newtonian
trajectories. Besides the AI,k coefficients (as in FMS/AIMS), the TDVP can
be applied to the gaussian basis function parameters. An attempt to treat in
this way the width parameters αI,r showed that it is not worth to deal with
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the associated numerical difficulties [55], so in practice the gaussian widths are
kept fixed as in FMS/AIMS. The gaussian centers QI follow instead “quan-
tum” trajectories determined by the appropriate form of eq. 10, so at each
time-step the basis functions are optimally displaced where they are needed
to describe the evolving wavefunction. In this way, QI can also reach classi-
cally forbidden regions. The optimal adaptation of the vMCG basis functions
dispenses with enlarging the configuration basis during the calculation, so the
number of basis functions is kept fixed (no spawning). Notice however that
the step by step optimal motion of the basis functions does not mean that
their positions will be optimal at all times or in a time-averaged sense, even
discounting the obvious dependence on the initial positions (see Tannor [6],
section 9.6).

Another feature that differentiates vMCG from FMS/AIMS is the use of a
diabatic representation for the electronic states and of the local harmonic ap-
proximation for the H(el) matrix, i.e. an expansion of H(el)(Q) up to second
order around the center QI of each gaussian basis function. So, the adiabatic
energies along with the associated gradients and Hessian matrices are com-
puted only at the QI geometries and then transformed to the diabatic basis

(see section 2.4) to evaluate the matrix elements
〈

ΦI

∣

∣

∣H
(el)
kl

∣

∣

∣ΦJ

〉

. The com-
putational cost per time-step is then proportional to the dimension M of the
basis, but this simple scaling property is not sufficient to compare the effi-
ciencies of vMCG and FMS/AIMS. In fact, other factors affect the computing
times: in vMCG the Hessian is required, which is more expensive than the gra-
dient; the authors claim that with vMCG one needs a smaller number of basis
functions to approximate the exact solution with a given accuracy, thanks to
their optimal positioning [58]; on the other hand, the simplest AIMS calcula-
tions start with one basis function and M is increased only when necessary to
describe nonadiabatic transitions, so AIMS can be faster (but less accurate)
than vMCG in the short time range.

The Multiconfigurational Ehrenfest (MCE) method put forward by Shalashilin
[63, 64] is similar to vMCG, but the basis functions travel according to the
mean-field ansatz (see next section). The corresponding equations are simpler
and of faster solution than the time-dependent variational ones, but the gaus-
sian basis functions are however able to reach classically forbidden regions of
the PES’s without ad hoc provisions as in FMS. MCE can also work in the
direct way, by using saddle-point formulas as in FMS or simpler approxima-
tions [65, 66]. A formal reduction of the G-MCTDH method to the classical
Ehrenfest limit is discussed by Römer and Burghardt [67]. Ronto and Sha-
lashilin recently published an interesting comparison of MCE with a technically
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improved version of vMCG [68].

2.2 Nonadiabatic classical trajectories.

Classical trajectories lend themselves very easily to the direct computational
strategy, which is applied to ground state simulations since a long time [21,
22]. Pioneering work in nonadiabatic dynamics dates back to almost 20 years
ago [69–72]. One electronic structure calculation is needed at each time-step,
so the computational burden is simply proportional to the number of steps
NS = TS/∆t. Since normally a swarm of many trajectories is run, one must
multiply by the number of trajectories NT . Independent trajectories can be
simultaneously launched on many processors, so parallel computing is trivially
and very effectively exploited.

The most widely used methods are based on the assumption that the system
can be described as a set of nuclei moving according to a classical trajectory
Q(t), while the electronic wavefunction evolves according to the TDSE:

ih̄
∂ψel

∂t
= Ĥel ψel(q,Q, t) (13)

Classical trajectories can also be used as a tool to approximate quantum dy-
namics as in the path-integral [73–76] or Bohmian [77–79] approaches. Such
methods have been seldom conjugated with a direct strategy, probably because
of the very large number of trajectories to be computed and/or the difficulty to
manage many coordinates [79]. Among the exceptions we quote the simulation
of excess electrons in liquids, treated as a one-electron problem [76], and the
study of H+H2 collisions [78].

Here we shall only consider the electronic TDSE ansatz, that can be realized
in different ways. As in QWD, we expand the electronic wavefunction on the
ϕk basis:

ψel(q,Q, t) =
∑

k

Ck(t)ϕk(q;Q) (14)

ψel depends on time through both the Ck(t) coefficients and the Q(t) nuclear
coordinates. The TDSE (13) then becomes

Ċk(t) = −
∑

l

Cl(t)
(

i

h̄
H

(el)
kl + Q̇tGkl

)

= (15)
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= −
∑

l

Cl(t)

(

i

h̄
H

(el)
kl +

〈

ϕk

∣

∣

∣

∣

∣

d

dt

∣

∣

∣

∣

∣

ϕl

〉)

Here Gkl is the vector of the DNAC’s G
(r)
kl between the k and l states. Pk(t) =

|Ck|2 is the state probability of state ϕk. As in QWD, the electronic transitions

are caused by the electronic couplings H
(el)
kl and/or by the dynamic ones, that

can be also put in the form of matrix elements of the time derivative operator.
When the ϕk are adiabatic states, i.e. eigenstates of Ĥel with eigenvalues Uk,
the H(el) matrix is diagonal: H

(el)
kl = Ukδkl (see section 2.4).

In eqs. (13-15) the nuclear trajectory Q(t) is taken for granted, and there
are two main variants of the method depending on how the nuclear motion is
coupled with the time evolution of the electronic wavefunction. The Ehrenfest
or “mean-field” ansatz [80–88] is embodied by the following expression of the
electronic energy, i.e. the potential energy driving the nuclear motion:

V (Q) =
〈

ψel(t)
∣

∣

∣Ĥel

∣

∣

∣ψel(t)
〉

=
∑

k,l

C∗
k(t)Cl(t)H

(el)
kl (16)

By imposing the energy conservation one obtains the forces acting on the
nuclei. The force component for the r-th coordinate is

Fr = −
∑

k,l

C∗
kCl

∂H
(el)
kl

∂Qr

− 2
∑

k,l,k′
ℜ(C∗

kCl) G
(r)
k′lH

(el)
kk′ (17)

We see that the force has two terms: one is due to the space-derivative of the
state-averaged potential, the other to its time-derivative. The latter is only
important when the dynamic coupling between two states k and l is large,
and is directed as the Gkl vector. The off-diagonal (k 6= l) contributions
to the mean-field force (17) are analogous to the coupling term of eq. (3)
that affects the wavepacket propagation in QWD. However, as the nuclear
motion is represented by one phase space point for all the electronic states,
the mean-field trajectory can be dramatically at variance with the behavior of
the wavepackets if the latter move far apart from each other. This will happen
every time the respective PES’s have very different slopes, and is one aspect
of the quantum decoherence phenomenon [87]. To take care of this problem
one may alter the coefficients Ck and the state probabilities Pk with respect to
those obtained by integrating eqs. (15), so that the wavefunction ψ collapses
gradually or stepwise to the most populated ϕk state in the weak coupling
regions [89–93]. In this way the nuclear motion is ultimately driven by one
PES, as in the case of a single wavepacket χk.

A more drastic departure from the mean-field model is represented by the
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surface hopping (SH) philosophy [31, 84–88, 94–115]. Here the nuclei always

move on the PES of a given state k (the “current” state), so V (Q) = H
(el)
kk (Q),

but the system can make transitions (“hops”) to other states according to the
time-dependent probabilities Pl. When and to which state to hop is chosen
by a stochastic algorithm, of which several versions exist. The most widely
used is Tully’s “fewest switches” (FSSH) [100], which is devised to distribute
the trajectories among the electronic states in agreement with the computed
state probabilities, by performing a minimum number of hops. According to
eq. (15), the time-derivative of Pk can be put in the form

Ṗk =
∑

l( 6=k)

(PlBl→k − PkBk→l) (18)

Assuming the matrix elements H
(el)
kl and 〈ϕk |d/dt|ϕl〉 are real, the transition

rate Bk→l is

Bk→l =
max {0, Bkl}

Pk

Bl→k =
max {0,−Bkl}

Pl

(19)

with

Bkl = 2ℜ(C∗
kCl)

〈

ϕk

∣

∣

∣

∣

∣

d

dt

∣

∣

∣

∣

∣

ϕl

〉

− 2

h̄
ℑ(C∗

kCl)H
(el)
kl (20)

In FSSH the probability to hop from the current state k to l is

Tk→l =

∫ t+∆t
t PkBk→ldt

Pk(t)
(21)

We see that hops are performed only when there is a positive Bk→l transi-
tion rate, with a frequency proportional to Bk→l, which realizes the physical
requirement of “fewest switches”. Calling Πl the fraction of trajectories on
state l, and 〈Pl〉 the state probability averaged over all trajectories, it can be
shown that FSSH yields Πl = 〈Pl〉 at any time, if the probabilities Pl(t) for a
single trajectory do not depend on the number and timing of hops [31]. This
is approximately true when a trajectory is not much affected by the PES on
which it is running, for instance in very energetic collisions or fast photodis-
sociations. In general, however, changing the current PES also changes the
course of the trajectory and the transition probabilities, so Πl and 〈Pl〉 may
differ considerably, especially when a strong coupling region is crossed several
times, or for any other reason a Bkl transition rate oscillates in time between
positive and negative values [31]. This drawback is intimately connected to
the quantum decoherence issue. Under this respect the surface hopping trajec-
tories behave better than the mean-field ones, but the TDSE still incorporates
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the assumption that one phase space point represents the nuclear dynamics
for all electronic states. An analysis of this issue and of other minor flaws of
SH has been presented by Subotnik and coworkers on the basis of semiclassical
quantum Liouville theory [110]. Quantum decoherence corrections in the spirit
outlined above have been proposed also in the SH framework, and greatly im-
prove the consistency between the Πl and 〈Pl〉 populations [31,32,37,112,113].
Energy conservation is usually enforced in SH by compensating the change
of the potential energy due to a hop with an opposite change in the kinetic
energy [105, 106]. This way, the total energy is constant for each trajectory,
but we note that mimicking the behavior of quantum wavepackets would only
require energy conservation for the whole swarm.

Nonadiabatic trajectory treatments of model and real systems have been com-
pared with accurate or approximate QWD calculations [31,32,37,108,116–127].
Surface hopping usually yields results in at least semi-quantitative agreement
with QWD, when the simulation is not focused on specific quantum effects con-
cerning the nuclear dynamics. Trends in lifetimes, quantum yields and energy
disposal are correctly reproduced. The quantization of molecular vibrations is
unavoidably disregarded by trajectory methods, but the vibrational frequen-
cies are easily recognized by Fourier or related analysis methods. In specific
problems, an important issue is the “leaking” of zero-point energy (ZPE), i.e.
the fact that the energy belonging to some vibrational modes can fall below
their ZPE’s and be used to travel along other modes up to transition states,
dissociation limits or CoIn’s that would otherwise be inaccessible. Some of
the envisaged corrections [128, 129] consist in discarding the trajectories that
violate the ZPE constraints when computing statistical averages, or in alter-
ing the trajectories to avoid the ZPE forbidden regions of the nuclear phase
space [130, 131]. The latter approach has been also applied to nonadiabatic
dynamics [132]. With such methods the computational cost of direct dynamics
increases, because local normal modes must be determined along a trajectory.
More drastic ways to reduce the ZPE leak are to freeze the vibrational modes
that contribute most to the problem, or to correct the PES’s for the ZPE
of non reactive modes [133, 134]. Acting on the initial conditions is another
option, as we shall see in the next section. Tunneling is also missing in nona-
diabatic trajectory methods, but ad hoc corrections could be introduced as in
ground state dynamics [135,136]. While vibrational quantization, ZPE leaking
and tunneling are important issues in ground state dynamics as well as in the
excited states, the geometric phase [137–139], being connected to the presence
of a conical intersection, is a specifically multistate quantum effect that is not
taken into account by independent trajectory approaches [117,118].
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In general, the agreement of nonadiabatic trajectory results with QWD im-
proves when quantum decoherence corrections are applied [31,32,37,124,125].
The evaluation of quantum decoherence effects in principle requires to calculate
independent trajectories on different PES’s [32], as the localized wavepacket
methods do. In direct trajectory methods this would considerably increase the
computational burden, because at each time step one would solve the elec-
tronic structure problem at several geometries instead of one. Therefore, all
the proposed decoherence methods avoid the determination of multiple trajec-
tories by resorting to different approximations [31, 32, 37, 89–93, 112], even in
formulations based on the explicit identification of representative points with
localized wavepackets (ODC, overlap-based decoherence) [32, 36, 37].

2.3 Initial conditions and electronic excitation.

The issue of initial conditions (IC) in simulations of excited state dynamics
presents rather different problems in QWD and in trajectory methods. In gen-
eral, the molecular process of interest may start from a well defined quantum
state or from a statistical mixture, either of microcanonical or of canonical
type. For instance, one may simulate state selective photochemistry in iso-
lated molecules, starting with a single metastable excited vibronic state that
undergoes IVR and/or radiationless electronic transitions. However, if IVR is
the fastest process, it may be bypassed by using IC’s that describe the result-
ing microcanonical distribution of vibrational states. If instead temperature
effects are relevant in a photochemical process, one will need to combine the
canonical distribution for the ground electronic state with a modelization of
the excitation process.

In QWD, a single initial quantum state can be adequately described by the nor-
mal mode or better approximations. In many cases, a simple Franck-Condon
excitation [120] or variants thereof [140] are assumed, i.e. the vibrational
wavepacket is transferred without modification from the ground electronic
state to the excited one before starting the propagation. The field-molecule
coupling can also be explicitely taken into account to describe photon absorp-
tion and emission, as in MCTDH optimal control studies [141]. With a fixed
basis set, the description of the initial state is a lesser problem with respect to
the solution of the TDSE. The same is true for vMCG [55], because at t = 0
all the traveling basis functions are clustered in the region spanned by χ(Q, 0),
which is then expanded in this basis with sufficient accuracy. One can simi-
larly start an FMS calculation with a sufficient number of basis functions, so
as to represent adequately the initial χ(Q, 0) [45]. In direct AIMS simulations,
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however, one may prefer not to give up the important advantage of starting
the calculation with one basis function, and to increase the dimension of the
basis only when needed through the spawning procedure; then, the same basis
functions that would be chosen to expand the initial wavepacket χ(Q, 0) are
propagated one by one; of course in this way the coupling between the basis
functions is neglected and AIMS gets one step closer to trajectory methods [45].
If a statistical, rather than quantum mechanical, distribution of IC’s is sought
for, the centroids of the basis functions (positions and momenta) will be sam-
pled according to the given distribution, just as with classical trajectories [116]
(see below).

Methods based on classical nuclear dynamics usually require to run a swarm
of trajectories with different IC’s, no matter what physical process is dealt
with. In particular, surface hopping (but not mean-field) methods need large
numbers of trajectories because of the stochastic nature of the model. Even
when the time evolution starts with a single, well identified, quantum state,
mimicking the wavepacket motion by classical dynamics requires to sample
the IC’s from the quantum mechanical (QM) distributions ρQ(Q) and ρP (P)
of positions and momenta. Assuming as the starting point of a nuclear trajec-
tory just the QM averages of positions and momenta is quite erroneous, as one
can clearly see by considering a symmetric molecule, in which case all antisym-
metric modes would be inactive (barring the possibility of numerical errors in
the trajectory integration). This makes apparent that the zero point motion
and the ZPE must be taken into account to some extent also in trajectory
simulations.

In 1932 Wigner [142, 143] showed that the quantum mechanical averages of
Q and P dependent quantities can be obtained in a classical framework by
using a suitably defined pseudo-distribution ρW (Q,P), later called the Wigner
distribution. For a single pair of conjugated variables we have

ρW (Q,P ) =
1

2πh̄

∫ +∞

−∞
χ(Q−X/2)χ∗(Q+X/2) eiPX/h̄dX (22)

ρW (Q,P ) is consistent with the ρQ(Q) and ρP (P ) distributions, i.e. it reduces
to ρQ(Q) when integrated over P and vice versa. Simple formulas are obtained
for the harmonic oscillator eigenfunctions and for many coordinates one can
resort to the normal mode treatment [144]. The general anharmonic case
and the thermal distribution on the vibrational states can also be treated,
although with a non negligible increase of the computational burden [145].
Wigner’s ρW (Q,P) is often used to sample IC’s in trajectory calculations.
Two important disadvantages must be considered. One is that ρW (Q,P ) is not
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guaranteed to be positive, and is indeed negative in certain Q,P regions for the
excited states of an harmonic oscillator (v > 0). In the spirit of Wigner’s theory
one should use ρW (Q,P) as a weight in averaging the results of trajectory
calculations [146, 147], but the existence of trajectories that contribute with
negative weights to a given observable (for instance a quantum yield or a
cross section) worsens the convergence to a statistically stable result. As a
consequence, more trajectories would be needed to obtain the same accuracy,
which is a severe drawback when using a direct strategy. Another possibility is
to modify the Wigner function to make it everywhere positive, by relaxing the
constraint of consistency with the ρQ(Q) and ρP (P) distributions, as proposed
by Husimi [148]. A practical way to sample the IC’s according to Husimi’s
function ρH(Q,P) in surface hopping simulations has been discussed by Kube
et al [147]. As an alternative, one can abandon Wigner’s theory and use the
product distribution ρQP (Q,P) = ρQ(Q)ρP (P), which means the Q’s and
P’s are sampled independently [149]. Notice that, for the harmonic oscillator
ground state, which is the most commonly assumed initial state, ρW (Q,P)
coincides with ρQP (Q,P).

Another important problem concerns the vibrational energy and is shared by
all the sampling procedures of the nuclear phase space based on the quantum
distributions we have examined so far. Both the Wigner function ρW (Q,P)

and the product ρQP (Q,P) yield an average classical energy
〈

E(cl)
〉

that equals

the quantum mechanical eigenenergy E(QM). However, a broad distribution
of E(cl) energies is obtained: for instance, in the case of a single harmonic os-
cillator with frequency ω and quantum number v = 0, the energy probability
density is (2/h̄ω)exp(−2E(cl)/h̄ω). As a consequence, each trajectory starts
with a different E(cl), which may lead to unphysical results when the available
energy is a crucial parameter, for instance when it determines the accessibility
of a transition state or a CoIn. A solution to this problem is offered by a
combination of the microcanonical “orthant” sampling [150] with the wanted
distribution (ρW , ρH or ρQP ). Sun and Hase [144] apply the orthant algorithm
to sample in a uniform way the normal mode coordinates Q and momenta
P with the constraint E(cl) = E(QM); then, each generated point (Q,P) is
subjected to von Neumann’s rejection procedure, using the ρW (Q,P) distri-
bution. Because of the energy constraint, the sampled (Q,P) points do not
conform exactly to ρW , but they approximate it the more closely the larger
is the number of internal coordinates (with six or more coordinates the ap-
proximation is quite good). With a variant of this procedure one can also
sample the phase space in the neighborhood of a CoIn [151]. While a single
vibrational state or a microcanonical distribution can be satisfactorily sampled
by the Wigner+orthant combination, it is harder to conciliate the quantum
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distribution of coordinates and momenta with a sharply determined energy
level for a given normal mode. This may be a problem in simulating processes
where IVR is the crucial step, as in vibrational predissociation [152] or when
energy transfer to a specific mode is required to approach a CoIn. Further
modifications of the sampling of IC’s can be introduced to mitigate the ZPE
leak problem, for instance by reducing the initial energy of high frequency
modes that contribute most to this problem [153].

When the thermal distribution of the initial vibrational states must be taken
into account, in principle a separate simulation could be run for each state.
In such cases, however, QWD is advantageously replaced by density matrix
based methods (see for instance Berkelbach et al [154]), that exceed the scope
of this paper. Temperature effects are important in the presence of low fre-
quency modes, that are almost ubiquitous in large molecules or supramolecular
systems. As a consequence, the normal mode approximation usually applied
to represent the initial wavepacket is often inadequate because of large anhar-
monicities. Moreover, the large displacements that are typical of low frequency
modes are incompatible with the normal coordinate approximation and may
lead to unrealistic geometries due to mode mixing. As a consequence, when
sampling the QM distributions the slow modes require a special treatment (see
for instance the case of methyl rotation in acetone [155]). On the other hand,
the classical representation of nuclear dynamics most of the times is sufficiently
realistic for slow modes. The trajectory IC’s for a canonical distribution can
be obtained by Monte Carlo sampling or by a ground state molecular dynam-
ics with an adequate thermostat [156–158] (see our treatment of azobenzene
photoisomerization in solution for an example [7]).

Even in the case of single state or microcanonical IC’s, the energy issue is
somewhat less problematic when the dynamics is triggered by the absorption
of light with a broad spectrum, as with ultrashort pulses, because then a cer-
tain spread of initial energies is inherent to the physical process. Of course,
the modeling of optical excitation in trajectory simulations cannot be as rigor-
ous as in QWD, a major issue being quantum decoherence [37]. A pioneering
attempt to introduce the field-molecule interaction in direct nonadiabatic tra-
jectory calculations is the SERID method (Semiclassical Electron-Radiation-
Ion Dynamics), proposed by Allen and coworkers [159–162]. SERID adopts a
mean-field description of the nuclear motion and the vector potential coupling
between molecule and radiation (the same choices are shared by Takatsuka
and coworkers [163,164]). The dynamics starts in the ground state and a light
pulse of arbitrary shape and strength populates the excited state(s). The total
lack of decoherence of the mean-field ansatz constitutes a severe drawback of
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SERID. In fact, the nuclear trajectory is driven by an average potential that
depends on the state populations. This introduces an unphysical dependence
of the excited state dynamics on the parameters of the radiation field. For in-
stance, with a small excitation probability the molecule would remain trapped
near the initial ground state minimum, whereas in QWD a wavepacket in an
excited PES would move downhill however small the associated state popula-
tion.

Recent work on nonadiabatic trajectories with field-molecule coupling has priv-
ileged surface hopping [165–167], most notably within two implementations
called FISH [168–174] (Field Induced Surface Hopping) and SHARC [175–178]
(Surface Hopping in the Adiabatic Representation including arbitrary Cou-
plings). Even in the SH framework, quantum decoherence is a critical issue
when mixing field-induced and nonadiabatic transitions. In fact, after a light
pulse two or more electronic states can be populated, and give place to in-
terference when the molecule experiences nonadiabatic couplings during the
trajectory. However, in many situations the quantum wavepackets would be
decoupled before entering the nonadiabatic region: for instance, in the excited
state the molecule may undergo geometrical relaxation, while remaining almost
stationary in the ground state. We showed that the ODC decoherence correc-
tions improve very much the agreement with QWD results [37]. In surface
hopping with explicit molecule-radiation interactions another problem arises,
namely how to implement energy conservation. Since field-induced transitions
do change the total energy, in SHARC the energy conservation is enforced after
a hop only if the potential energy difference of the states involved lies outside
the laser bandwidth [175]. A recipe of more general applicability consists in
partitioning the transition probability into field and nonadiabatic contribu-
tions, and to warrant energy conservation only when the latter contribution
prevails [37].

At low radiation intensities, as common in photochemistry experiments, tak-
ing into account explicitly the field-molecule interaction in the simulation of
nonadiabatic dynamics is unpractical, given the small rate of field-induced
transitions. In such cases perturbation theory applies and the field-induced
transition probability is proportional to the squared transition dipole between
the initial state 0 and the final one k, µ2

0k. With a radiation pulse of carrier fre-
quency ν, the resonance condition |Uk − U0| ≃ hν holds more or less precisely
depending on the shape and length of the pulse. The above considerations
suggest a practical recipe for the sampling of initial conditions, that dispenses
with running a simulation with explicit consideration of the radiation. Here
we schematically describe the procedure (see examples of applications for more
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details [7, 16, 17, 30,36,179,180]):
(1) A transition energy window [∆Emin,∆Emax] is chosen according to the

excitation process (narrower for almost monochromatic light, wider for
broadband excitation), and a user-defined parameter (a squared transition
dipole) µ2

ref is set.
(2) A set of (Qi,Pi) phase space points is sampled from the desired distribu-

tion ρ(Q,P) for the initial PES U0, and the steps 3 to 5 are repeated for
each point.

(3) The transition energies Uk(Qi)−U0(Qi) of the electronic states considered
in the simulation are computed, along with the corresponding transition
dipoles µ0,k(Qi).

(4) The sum µ2
tot of the squared transition dipoles of the eligible states, i.e.

those with transition energies in the interval [∆Emin,∆Emax], is com-
puted. The maximum number of trajectories to be launched from the
(Qi,Pi) IC’s, Nmax, is given by µ2

tot/µ
2
ref , approximated to the next inte-

ger (if there are no eligible states, Nmax = 0).
(5) The interval [0, Nmaxµ

2
ref ] is partitioned in subintervals corresponding to

the eligible excited states, each one of length µ2
0,k, plus a dummy subin-

terval. For Nmax times, a pseudo-random number X, contained in the
[0, Nmaxµ

2
ref ] range, is generated. If X falls in the subinterval belonging

to the excited state k, a trajectory is launched with IC’s (Qi,Pi), in the
electronic state k. If X falls in the dummy subinterval, no trajectory is
launched.

In this way, the probability density of launching a trajectory in state k with
IC’s (Q,P) is given by the initial state density ρ(Q,P), multiplied by a factor
proportional to µ2

0,k(Q), but vanishes if Uk(Q)−U0(Q) /∈ [∆Emin,∆Emax]. The
µ2
ref parameter regulates the average number of trajectories launched with the

same IC’s. The algorithm can be applied to single state, microcanonical or
canonical initial densities ρ(Q,P), however obtained.

2.4 Coupling schemes and time propagation.

The sets of equations (1-3) for QWD and (13-15) for nonadiabatic trajectory
methods are quite general, in the sense that we did not specify a particular
choice of the electronic basis ϕk(q;Q). We shall examine first the electrostatic
approximation, whereby the magnetic interactions are neglected. In this case,
transitions only take place within a given spin-manifold, so for an even num-
ber of electrons only singlet electronic states are normally considered. In the
adiabatic representation the ϕk(q;Q) states are identified with the eigenstates
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ψk of the electrostatic Hamiltonian Ĥel, so that H
(el)
kl = Ukδkl. The adiabatic

states ψk are numbered according to their energy ordering, and normally a dy-
namical treatment takes into account the first few of them, say up to k = nst.
This is quite reasonable as far as the states with k > nst are not energetically
accessible at any molecular geometry for the considered molecular process.
Of course nst is kept as small as viable, to reduce the computational burden.
This is important in dynamics calculations, especially in direct QWD methods
where all nst energy gradients must be computed and the number of coupling
matrix elements increases as n2

st. Moreover, the methodological requirements
for determining larger numbers and various kinds of excited states are increas-
ingly exacting, which translates into a faster than linear growth of the costs.
Within a PES-fitting strategy, exceptions to the rule of considering the nst

lowest states are quite possible, for instance by projecting out of the electronic
subspace one or more “intruder” states that are very weakly coupled to the
others. In the fitting process, the PES’s can be modified so that the crossings
with the intruder states are eliminated. When computing the electronic states
on the fly it is more difficult to implement such adjustments. Exceptions to
the real energy ordering are automatically enforced whenever the quantum
chemistry method is not able to represent certain kinds of states, for instance
Rydberg states because of basis set limitations.

All quantum chemistry methods are devised to determine adiabatic states,
within specific approximation schemes. However, it is possible to define al-
ternative representations of the electronic structure. The concept of diabatic
electronic states [10, 181–192], already implicit in the work of Landau and
Zener on electronic transitions at curve crossings, was initially developed to
facilitate the treatment of nonadiabatic dynamics. When two electronic states
of different nature are weakly coupled and their PES’s tend to cross, in avoided
crossing regions the DNAC’s G

(r)
kl (Q) and T

(r)
kl (Q) are large and they diverge

at a CoIn point [8–12, 183, 185, 186]. In principle, it is advisable to tackle
the problem in a representation where the interstate couplings are as small as
possible. In practice, before the development of efficient methods to compute
the DNAC matrix elements in the 1980’s [10,88,193–205], one reason to use a
diabatic basis was to get rid of the DNAC’s. A set of electronic states ηi(q;Q)

is called diabatic if the DNAC’s G
(r)
ij (Q) =

〈

ηi
∣

∣

∣

∂
∂Qr

∣

∣

∣ ηj
〉

vanish. In general,
this condition cannot be fulfilled for all the internal coordinates in a poly-
atomic [206]. As a consequence, several definitions of “quasi-diabatic” states
have been proposed [10, 181–192], with the common objective of avoiding the
divergence of the DNAC’s at CoIn points, and possibly to make them negli-
gible at all relevant geometries. These conditions are practically equivalent to
imposing that the ηi’s do not undergo rapid changes as functions of the nuclear
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coordinates Q. A number of recipes have been devised to determine (quasi-
)diabatic states: some require computing the DNAC’s, but most dispense with
this task and are based on the (almost) invariance of the ηi wavefunctions or
related properties versus changes of the Q’s [10, 181–192]. In many methods
the conversion from the adiabatic to the diabatic basis (“diabatization”) is
performed by a non-singular (often unitary) transformation, so that both ba-
sis sets span the same electronic subspace. It must be stressed that to define a
quasi-diabatic basis in a complex system is seldom a trivial task, for instance
when several reaction pathways are considered or intruder states are present
in the starting adiabatic set [184]. The quasi-diabatic states one obtains not
only depend on the chosen definition, but also on details of the diabatization
procedure, such as the number of states themselves [191]. This means that

the H
(el)
ij and

〈

ηi
∣

∣

∣

∂
∂Qr

∣

∣

∣ ηj
〉

matrix elements are affected by such choices, and so
is the computed dynamics, especially if the dynamic couplings are altogether
neglected.

The choice between the adiabatic or a (quasi-)diabatic representation has not
the same implications in the QWD, mean-field or surface hopping approaches.
In QWD, if no Hamiltonian terms are neglected, it is just a question of choos-
ing a different basis of electronic times nuclear wavefunctions to span the rel-
evant subspace. In principle, differences arise only as far as the truncation of
the ΦI(Q, t) basis does not allow to represent accurately the time-dependent
Ψ(q,Q, t), eq. (1). Within trajectory methods, the mean-field approach can
also guarantee the invariance of the results with respect to choosing different
electronic basis sets, provided they span the same subspace. Surface hopping,
on the contrary, lacks this invariance property, first of all because the trajec-
tories will depend on the PES’s on which they run (the Uk’s in the adiabatic

mode or the H
(el)
ii ’s in the diabatic one); for a given energy, certain regions of

the nuclear coordinate space will be classically accessible in one mode and not
in the other. Except in crossing regions, the adiabatic PES’s offer a more real-
istic description of the molecular energetics than the diabatic ones. A second
source of discrepancy between the results obtained in the two modes is inherent
to the hopping model, that works quite well when the transition probability is
localized in narrow regions and therefore short time intervals, much less when
it is small but not negligible for a long time [31]. In the adiabatic mode the

localization condition is usually satisfied, because the DNAC’s G
(r)
kl are large

when the energy difference Uk −Ul is small and these two circumstances coop-
erate in increasing the transition probability. On the contrary, the couplings
H

(el)
ij between diabatic states are not directly related to the H

(el)
ii −H(el)

jj energy
differences. Surface hopping dynamics is therefore preferably run in the adia-
batic mode, except in limiting cases where the H

(el)
ij couplings are very small
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for physical reasons, so that transitions can occur only close to degeneracy
points (H

(el)
ii ≃ H

(el)
jj ). This condition is met, for instance, when charge or

energy transfer take place between centers that are weakly coupled, because of
distance or other reasons; then, the diabatic states are very naturally identified
by the localization of charge or excitation [190,191,207], as implicit in Marcus’
theory [208].

Nowadays the diabatic state concept is mainly invoked to investigate cases
of (almost) intersecting PES’s, that are important in the charge or energy
transfer processes just mentioned, as well as in ultrafast photoreactions and
excited state decays. Models of CoIn’s can be built to interpret experimental
data or to explore the role of the relevant parameters [10–12,117,118,188,207,
209]. In such models the adiabatic PES’s are identified as eigenvalues of an
effective Hamiltonian, built on a (quasi-)diabatic basis. This is the only way to
understand the physical features of the PES crossings [8–12] and to reproduce
them by simple functions of the nuclear coordinates. Therefore, models of the
same kind are needed to fit the ab initio data (energies and DNAC’s) in the
proximity of PES crossings [10,38,133,140,184,188–190], in order to run PES-
fitting simulations. A favorable case for PES-fitting is met with clusters of
rare gases or other systems where atom-atom pairwise interactions represent
sufficiently well the electronic states and their PES’s; then, the diatomics-in-
molecules [210] (DIM) representation provides a set of approximately diabatic
states and a good tool to fit ab initio or experimental data (see Heitz el al for

an application [211]). In general, in a well conceived diabatic basis the H
(el)
ij

matrix elements are smooth functions of the nuclear coordinates and therefore
can be easily interpolated or fitted.

In direct dynamics the PES and DNAC fitting problem is bypassed, so the
diabatization is seldom applied. An exception is the vMCG method (see sec-
tion 2.1), that makes use of a very simple conversion from the adiabatic to a
quasi-diabatic representation devised by Köppel and coworkers [10, 185, 186].
Köppel’s procedure is noticeable in that it only makes use of energy data
(no wavefunction properties), namely the current point adiabatic energies and
their derivatives, plus their geometrical relationship with the crossing seam.
Of course this implies a certain preliminary knowledge of the PES’s, and the
practical application to direct dynamics may be non trivial with complicated
PES crossing topologies [212]. On the other hand, one should consider that
some preparatory work is almost unavoidable in all direct dynamics methods,
as discussed in the next section. An improved diabatization strategy that ad-
dresses such problems has been recently proposed in the vMCG context [213].

When the spin-orbit coupling (SOC) is introduced, radiationless transitions
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between states with different spin (InterSystem Crossing, ISC) become pos-
sible [214]. The most usual way these phenomena are presented and simu-
lated is by reference to “pure” spin electronic states, i.e. eigenstates of both
Sz and S2. In this case the SOC is an electronic coupling term, that con-
tributes to the H

(el)
ij matrix elements of eqs. (3) and (15). The electronic

basis in principle may be adiabatic or diabatic in the meaning seen above,
i.e. with reference to the electrostatic Hamiltonian, but in both cases we shall
call it “spin-diabatic” because of the invariance of the spin properties of the
states versus geometry changes, and because of the role played by the SOC.
A spin-diabatic representation may be simply constructed by choosing a set
of eigenstates of the electrostatic Hamiltonian for each spin-manifold. This
approach is very practical, because one can make use of the usual SOC-free
computational techniques, and introduce the SOC’s only to run the dynam-
ics. An alternative is to use an electronic basis made of eigenstates of the
complete Hamiltonian, including the spin-orbit contribution. Such states are
“spin-coupled” (i.e. mixtures of states with different Sz and S2), and will be
called “spin-adiabatic”. With small SOC’s the corresponding PES give place
to weakly avoided crossings, while with the large SOC’s normally encountered
in heavy atoms systems, the spin-adiabatic PES’s differ substantially from the
spin-diabatic ones. The “spin-adiabatic” states are coupled by derivative ma-
trix elements of the

〈

ψk

∣

∣

∣

∂
∂Qr

∣

∣

∣ψl

〉

type, that depend on the mixing of states

belonging to the same as well as to different spin-manifolds [34].

The results of a well converged QWD calculation with SOC’s in principle do
not depend on the adiabatic/diabatic choice, as in the SOC-free case. Within
the PES-fitting approach it is more convenient to represent by analytic func-
tions the spin-diabatic PES’s and the SOC’s, rather than the spin-adiabatic
quantities, because their dependence on the nuclear coordinates is more regu-
lar. In direct QWD calculations as well the spin-diabatic basis is preferable,
because the gradients and Hessians of the SOC-free PES’s are commonly avail-
able in electronic structure programs, contrary to those of the spin-coupled
ones. In nonadiabatic trajectory calculations, however, the spin-diabatic ap-
proach presents two drawbacks. One is a lack of rotational invariance, due to
the fact that the spin-diabatic basis is defined with reference to a fixed spin
quantization axis [34]. This artifact is often eliminated by reducing each spin-
multiplet to one (rotationally invariant) state that interacts through SOC with
the other multiplets. However, the reduction can be rigorously performed only
in simple cases (for instance, one triplet and one singlet state) [34]. Another
problem arises when the SOC’s are large (heavy atoms), because then the spin-
diabatic PES’s do not represent accurately the energetics of the molecule. For
instance, in photodissociations generating atomic fragments both mean-field
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and surface hopping methods do not treat properly the spin-orbit split multi-
plets, and may even predict dissociation in energetically non-accessible states.
Both issues, rotational invariance and state energies, are correctly dealt with in
the spin-adiabatic representation. In the PES-fitting strategy, once the SOC-
free PES’s and the SOC’s have been represented by analytic functions, one can
build the full Hamiltonian matrix and obtain its eigenvalues (the spin-adiabatic
PES’s), their gradients and the SOC-induced derivative couplings. As already
noted, most quantum chemistry packages do not compute the derivatives of
SOC matrix elements, with rare exceptions [33], so a fully direct spin-adiabatic
approach is seldom feasible.

The choice of the basis, adiabatic or (quasi-)diabatic, also affects the numer-
ical problem of integrating the TDSE, either in the full quantum version, eq.
(3), or in the purely electronic one, eq. (13). We shall not examine the
plethora of algorithms that have been devised to propagate the wavefunction
by fixed or variable time steps ∆t [215]. In the trajectory based methods we
have two integrators, one for Newton’s equations and one for the electronic
TDSE. It is a common experience that the latter problem is often more ex-
acting than the former [216–220]. Whatever the algorithm, the faster and the
more unpredictable is the variation of the Hamiltonian matrix elements (PES’s
and couplings), the smaller must be ∆t to guarantee an accurate integration.
Particularly troublesome for trajectory methods are the sharp peaks in the
DNAC’s that occur in the proximity of conical intersections, and most fre-
quently when two states of different nature (spin symmetry or localization of
charge/excitation) are weakly coupled. In such cases ∆t must be sufficiently
shorter than the time width of the peak of the coupling 〈ψk |d/dt|ψl〉 that
appears in eq. (15), otherwise the peak itself may be completely ignored or its
height severely underestimated [51,201,218,219]. A smaller time step of course
means a heavier computational burden, especially when running on the fly dy-
namics, because the number of steps is inversely proportional to ∆t. In large
molecules with many electronic states involved in nonadiabatic processes [218]
such weakly avoided crossing situations are quite likely to occur. In these cases
a (quasi-)diabatic representation might be preferable because it would allow
to integrate the TDSE with a sufficient accuracy for a smaller computational
effort. Unfortunately it is not easy to perform a general diabatization for many
states in complex molecules, especially within the direct dynamics approach.

A partial solution of the TDSE integration problem in difficult cases is to
use two different time steps: the trajectory is propagated by one larger step,
which is then divided into several smaller steps by interpolating the molecular
geometry, and the TDSE is solved with the finer grid [218,220]. This procedure
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is computationally convenient only provided the calculation of DNAC’s is fast
as compared with those needed for the the trajectory integration, i.e. the PES
gradient and, for some algorithms, also its Hessian. In fact, the DNAC’s must
be computed at each small time step, to resolve even the narrowest peaks.
A different strategy consists in performing a “local” diabatization [27, 219],
which is specific for each trajectory and does not aim to eliminate all DNAC’s,
but only the time-derivative coupling terms 〈ψk |d/dt|ψl〉 = Q̇tGkl. To this
purpose it is sufficient to compute the overlap of the adiabatic states at the
initial and final points of the time step, 〈ψk(t) |ψl(t+∆t)〉. The overlaps
provide information about the overall change of the wavefunctions across the
time step, so a state switch is never overlooked [51]. The propagation algorithm
based on the local diabatization [27] proved to be much more stable than
the DNAC based ones when increasing the time step, in tests on charge and
excitation transfer dynamics [219].

3 The electronic structure problem.

Both in the PES-fitting and in the direct approaches the choice of the quan-
tum chemistry method for solving the electronic structure problem is crucial.
Accuracy versus computational burden is the most obvious requirement, and
it concerns the PES’s of ground and excited states, as well as their wave-
functions, on which all couplings depend (DNAC’s, SOC’s and field-molecule
interactions). As we shall see, the consistency between PES and wavefunctions
is also an important issue. These and other requirements will be discussed in
this section with reference to the most used quantum chemistry methods.

The fitting or interpolation of the PES’s and couplings in principle requires
electronic structure calculations at an NC-dimensional mesh of geometries,
where NC is the number of internal coordinates (possibly reduced with re-
spect to the real system, to run model simulations). The computational bur-
den therefore increases exponentially with NC . Using approximate potentials,
such as harmonic stretching or bending terms for bonds not involved in re-
active processes, may reduce the number of electronic structure calculations.
The simplification is most effective if minima, transition states and possibly
also Minimum Energy Pathways (MEP) can be located, which requires the
determination of gradients and Hessians. In the presence of PES crossings,
effective Hamiltonians in the diabatic representation must be set up, as dis-
cussed in section 2.4. Simplified quadratic models have been proposed also
for conical intersections [207] and can be used to fit quantum chemistry data,
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usually after locating the minimum of the PES crossing seam with ad hoc
algorithms [221–224].

As already discussed in section 2, with direct approaches the number of elec-
tronic structure calculations depends primarily on the simulation time TS and,
for trajectory methods, is also proportional to the number of trajectories. In
principle, no preliminary characterization of the PES’s is needed, but the
time propagation requires the knowledge of the PES gradients and possibly
also of the Hessians, depending on the integrator. Moreover, one needs the
inter-state couplings, i.e. DNAC’s, SOC’s, time-derivative matrix elements
〈ψk |d/dt|ψl〉 = Q̇tGkl or wavefunction overlaps 〈ψk(t) |ψl(t+∆t)〉. These re-
quirements restrict the choice of viable quantum chemistry methods, in some-
what different ways for the PES-fitting and the direct approaches.

3.1 Ab initio methods.

Configuration mixing frequently characterizes excited states, particularly in
the case of PES crossings, and also in the intermediate phases of many re-
active processes, either thermal or photochemical. Configuration Interaction
(CI) based methods are therefore the standard choice. Most often the molec-
ular orbitals (MO) are determined by a Multi Configurational SCF (MCSCF)
calculation, and more specifically by the Complete Active Space variant of
MCSCF, i.e. CASSCF [12, 225, 226]. Running a separate “state specific” cal-
culation for each electronic state (SS-MCSCF or SS-CASSCF) is often not
possible because of convergence problems for the higher states, and would also
complicate the determination of transition matrix elements (couplings and
other properties) due to the non orthogonality of MO’s and states. For this
reason, “state average” calculations (SA-MCSCF or SA-CASSCF) are usually
run, whereby the average of the energies of all states of interest is variation-
ally minimized. The optimization of an MCSCF wavefunction is a non-linear
problem with many solutions, i.e. local minima of the energy in the space of
the MO coefficients [227–229]. It is not easy to guarantee convergence to the
global minimum, or to continuously connected minima for different molecular
geometries, especially when the CAS space is replaced by reduced subspaces
such as RAS or ORMAS [229] to decrease the computational burden. As a
consequence, the PES’s as well as all other electronic matrix elements may
show discontinuities as functions of the nuclear coordinates. When using state
averaging, a further source for sudden changes in the MCSCF solution upon ge-
ometry variation is the possibility of root switchings that modify the subset of
states to be optimized [66,230]. As far as such discontinuities are small enough
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and connect two physically acceptable solutions, they can be smoothed out in
PES-fitting procedures. The problem is more serious when running direct dy-
namics, because it leads to numerical integration errors. Correction algorithms
can be applied in combination with standard trajectory integrators [231].

MCSCF or CASSCF do not yield accurate results for excitation energies
and in general for states or geometries that differ as to the dynamic corre-
lation [12, 225, 226]. This drawback is normally more serious for small config-
uration subspaces, but the convergence towards a full CI result may be slow
and computationally costly. Valid alternatives are the multi-reference CI (MR-
CI) treatments using CASSCF zeroth-order wavefunctions, that can be either
variational (MR-CI) [12,225] or based on perturbation theory (CASPT2 [232],
NEV-PT [233]). In all variational methods the PES’s are simply related to
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consistency. This means, for instance, that the DNAC’s diverge or take large
values at conical intersections or weakly avoided PES crossings, and in sec-
tion 2.4 we have already stressed the importance of this coincidence for the
nonadiabatic dynamics. With exact eigenfunctions, this is guaranteed by the
Hellmann-Feynman formula
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For CI or MCSCF wavefunctions the contribution to G
(r)
kl (Q) due to the CI

coefficient derivatives takes an analogous form:
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where C
(CI)
k is an eigenvector of the CI matrix H(CI). Such consistency may be

lost when applying theoretically or empirically based corrections to the PES’s,
without adapting the wavefunctions accordingly. This is why in nonadiabatic
dynamics single state perturbative CI methods cannot be applied, but rather
one needs multi-state treatments based on effective Hamiltonian perturbation
theory [232–234], possibly coupled with diabatization procedures [181].

Large scale post-CASSCF methods are seldom applied in direct dynamics,
because of their computational cost and because not all quantum chemistry
packages support the calculation of PES gradients and DNAC’s [203, 204] at
these levels of theory (see however some examples of simulations on small sys-
tems [235–237]). They are instead routinely used to compute data for use in
PES-fitting procedures. The MCSCF based methods are rivaled by Valence
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Bond (VB) approaches [238], that span essentially the same applicability range
and can also be complemented by perturbation corrections [239]. The ab initio
VB methods are not frequently used in dynamics, although the VB wavefunc-
tions lend themselves to a more direct analysis of the electronic structure and
are a good starting point for the determination of diabatic states. Altogether,
direct simulations with high quality ab initio methods are still rather limited
as to propagation times and size of the molecular systems that can be treated
(see Table 1). Also the number of trajectories in surface hopping calculations
is usually kept in the order of some tens, which corresponds to a rather poor
sampling of initial conditions.

3.2 Density Functional Theory.

A valid alternative to ab initio methods in computing excited state properties
is provided by time-dependent Density Functional Theory (TD-DFT) [240].
In the usually applied linear response version, TD-DFT can be assimilated to
single excitation CI (CIS), but yields much better excitation energies. In many
cases, the accuracy of results obtained by combining ground state DFT and
TD-DFT is at the level of the best ab initio methods, with a much smaller
computational effort, especially for large systems. However, the method fails
in some typical situations that are particularly important in excited state dy-
namics. A well known artifact is the underestimation of the energy of charge
transfer states, that can be partially corrected by modifying the long range
behavior of the exchange potential [241] and/or by switching to second order
response TD-DFT [242]. Also very effective in this respect is the applica-
tion of many body Green’s function theory to compute excited states [243].
A more fundamental problem is the single determinant character of standard
DFT, that may be inadequate at geometries where the first TD-DFT state is
lower in energy than the DFT ground state, or close to it [223]. Moreover,
TD-DFT fails in reproducing the double cone shape of the PES’s at a CoIn
between ground and excited states. In several cases one (instead of two) de-
generacy lifting coordinate is found [223,244,245]. This fact is connected with
the limitations to single determinant density for the Kohn-Sham ground state
and linear response for the TD-DFT treatment (HF+CIS produces the same
crossing seam topology, because of Brillouin’s theorem). Such a drawback may
seriously affect the prediction of S1 → S0 decay rates, while the transitions
between excited states should be correctly dealt with. An interesting compar-
ison of ab initio, TD-DFT and semiempirical direct dynamics was provided by
Barbatti et al [246], who simulated the decay of the S1 state of 9H-adenine
with several methods.
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The determination of DNAC’s in TD-DFT is less direct than in wavefunction
based methods [88, 195, 197–200]. A wavefunction ansatz is applied, whereby
the ground state is represented by the Kohn-Sham determinant and the ex-
cited states in the form of a CIS, using either the Kohn-Sham virtual orbitals
or one linear response orbital for each of the occupied ones. The latter choice
allows to apply density functional perturbation theory to compute the DNAC’s
analytically. An alternative is to use finite differences in the time variable to
compute the 〈ψk |d/dt|ψl〉 couplings [247]. Recently an approach that avoids
the explicit construction of wavefunctions has been proposed [202]. The calcu-
lation of second derivative matrix elements has also been implemented [205].
De Carvalho et al have derived Breit-Pauli SOC matrix elements within the
TD-DFT formalism [248]. TD-DFT has found numerous applications in direct
dynamics simulations, of which we quote just a few [170,247,249–251].

The single determinant limitation is somewhat relieved by the Restricted Open
Kohn-Sham (ROKS) approach, whereby the energy corresponding to a sin-
glet configuration Φ1 with two unpaired electrons can be minimized [252].
While Φ1 and the Kohn-Sham closed shell determinant Φ0 are generally non-
orthogonal, two orthogonal eigenstates can be obtained by diagonalizing an
effective Hamiltonian in the {Φ0,Φ1} basis [194]. A rather arbitrary ansatz
about the off-diagonal element is needed in order to build the 2x2 Hamilto-
nian matrix. This approach guarantees the correct topology of S0/S1 CoIn’s,
and both energy gradients and DNAC’s can be computed analytically. In the
present formulation it is limited to the first two singlet states, but has been
used in several simulations involving fairly large systems [253–257].

Fully multi-reference DFT approaches have also been proposed. For instance,
Grimme’s DFT/MRCI method exploits information from a DFT calculation to
build an effective CI matrix with a set of empirical rules and parameters [258].
For this method (as for TD-DFT), SOC matrix elements are available [214],
but no analytical energy gradients nor DNAC’s have been implemented. A
more recent proposal is to use information from constrained DFT (C-DFT)
calculations to set up the effective CI matrix (C-DFT-CI) [244, 245]. In C-
DFT, the molecule is partitioned into fragments, and the density is optimized
by imposing constraints on the total charge and spin of each fragment. By
using different localization criteria, C-DFT can directly produce a set of quasi-
diabatic states, that are approximately identified with the respective Kohn-
Sham determinants ΦI . The adiabatic states are obtained by diagonalization of
the the effective CI Hamiltonian in the ΦI basis (notice that the computational
route goes from diabatic to adiabatic states, so is just opposite to the usual
one, discussed in section 2.4). The multireference DFT methods here discussed
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are based on approximations that must be computationally validated, but the
PES’s they yield are eigenvalues of an hermitian effective Hamiltonian, so they
exhibit the correct crossing topology [244, 245]. The analytic gradients of the
C-DFT-CI energies have been implemented [245], so this method is suitable for
direct dynamics. Its main limitation is probably the need to identify a priori
an adequate diabatic representation and the associated constraints, which is
straightforward in many charge or energy transfer problems, but not always
so for one-chromophore valence excitations.

3.3 Semiempirical methods.

Semiempirical methods are faster than both ab initio and DFT, so they are a
popular choice for direct dynamics simulations. They rely on simplifications
of the electronic Hamiltonian, among which the removal of the core electrons
and a set of drastic approximations as to how to compute the one- and two-
electron integrals. Given this starting point, no refinement of the semiempirical
technology can guarantee accuracy without a validation against ab initio or ex-
perimental data. Standard semiempirical methods [259] were devised to treat
ground state molecules near their equilibrium geometries, so they cannot be
used as such in nonadiabatic dynamics. Semiempirical treatments of excited
states have been usually limited to single excitation CI (CIS), as in the case
of ZINDO/S [260]. While ZINDO/S yields reasonable excitation energies near
ground state minima, it shares the drawbacks already discussed for ab initio
CIS or linear response TD-DFT as to the description of photochemical path-
ways: namely, it cannot correct for the monoconfigurational description of the
ground state and it cannot represent correctly the crossing seams involving the
ground state.

As in the ab initio realm, a CI with higher order excitations or a VB approach
are needed for nonadiabatic dynamics. The latter was proposed by Bernardi,
Olivucci and Robb [261] with the acronym MM-VB (Molecular Mechanics with
Valence Bond) as a tool for modeling MC-SCF results. A wavefunction com-
posed of one or more VB structures represents the bonds that undergo major
changes in the chemical process under investigation (reactive center), while
other parts of the molecule are described by a force field. The semiempiri-
cal Hamiltonian depends on a set of parameters that must be determined by
fitting ab initio results. The force field parameters can be taken from stan-
dard Molecular Mechanics models [262], with the exception of those pertaining
to atoms at the boundary with the reaction center, that must be adapted to
the specific molecular system. Overall, the parameterization of multi-state
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MM-VB is rather demanding, but a certain degree of transferability among
homologous molecules is observed [263, 264]. The applications of MM-VB to
nonadiabatic dynamics [69, 70, 265, 266] are rightly presented as pertaining to
the direct approach, since electronic wavefunctions are computed as eigenfunc-
tions of a (simplified) Hamiltonian. However, MM-VB can also be seen as an
elaborated and potentially very accurate fitting procedure for ab initio results.

The FOMO-CI approach set up by our group [26–29] is more in line with the
traditional semiempirical methods based on the neglect of differential overlap
(NDO) [259]. To cope with the needs of excited state dynamics, we introduced
some modifications with respect to the standard NDO practice. One is that the
MO’s φi are computed by floating occupation SCF, a pseudo-closed shell SCF
where the density matrix is defined in terms of fractional occupation numbers
ni:

ρ(~r) =
∑

i

niφ
2
i (25)

The occupation numbers depend on the orbital energies εi as

ni = 2
∫ εf

−∞
g(ε− εi) dε (26)

where g(x) is a bell-shaped function (usually a gaussian) normalized to 1,
and the Fermi energy εf is determined by the requirement that the ni sum
up to the number of electrons. This method correctly describes homolytic
bond breaking at MO level, even in the case of several photofragmentation
channels [179, 267], a problem that may be hard to tackle with SA-CASSCF.
Moreover, it ensures a balanced treatment of degenerate orbitals, which is
important for instance in the case of atomic or diatomic photofragments or
in transition metal complexes. The SCF calculation is followed by a CI, with
a number of configurations and a MO active space as small as possible but
such as to ensure a correct treatment of the static correlation. In practice,
FOMO-CI can be seen as a cheap substitute of SA-CASSCF, quite suitable in
a semiempirical context but applicable also to ab initio calculations [268–270].
With respect to SA-CASSCF, FOMO-CI has the advantage that the results
do not depend on the subspace of states that are optimized, and therefore is
not prone to the root switching problem [230] discussed in section 3.1.

A reparameterization of the semiempirical Hamiltonian is needed also in the
case of FOMO-CI, because most of the parameter sets in use (MNDO, AM1,
PMn and the like [259]) have been optimized for restricted HF wavefunctions
to represent ground state properties. However, standard parameter sets pro-
vide good starting points and in most cases do not need to be fully reop-
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timized. The reparameterization can take into account both ab initio and
experimental values concerning energy differences, stationary geometries, vi-
brational frequencies and wavefunction related properties. The optimization
of the parameter set P is performed by minimizing the weighted sum S(P)
of squared differences between the semiempirically computed values and the
target ones. Simplex minimization combined with simulated annealing and
genetic algorithms have been employed to this aim [35, 271], because of the
lack of analytic derivatives of S with respect to the P’s and in order to explore
multiple minima of S to improve the final results.

We list here the main features of the FOMO-CI direct dynamics, as it is im-
plemented in a development version of the MOPAC 2002 package [272]. Items
already discussed in this or other sections are very briefly summarized:
(1) Surface hopping dynamics with “energy-based” [31] or “overlap-based”

[32, 36, 37] quantum decoherence corrections. Of course the FOMO-CI
electronic structure method can be coupled with other approaches to nona-
diabatic dynamics, for instance FMS [116,273].

(2) Reparameterized NDO Hamiltonians.
(3) Floating occupation SCF MO’s and CI state energies and wavefunctions

[26, 27].
(4) Possibility of using different parameter sets in the SCF and CI calcula-

tions. While the CI parameters affect more directly the PES’s and wave-
functions, the SCF parameters can be used to control the composition
of the MO active space, for instance to prevent it to change suddenly in
response to geometry variations [35].

(5) Mixed Quantum Mechanics/Molecular Mechanics (QM/MM) method
with electrostatic embedding and possibly covalent bonding between the
QM and MM subsystems (see section 3.4).

(6) Analytic gradients for CI states through Coupled Perturbed Hartree-Fock
extended to the FOMO case, with the Z-vector technique (see appendices
in Ciminelli et al [30] and in Cusati et al [35]). With this implementa-
tion the computational cost is practically independent on the number of
coordinates, which is particularly important in QM/MM simulations.

(7) Efficient algorithm for computing CI wavefunction overlaps at nearby
geometries or subsequent time steps in a trajectory 〈ψk(t) |ψl(t+∆t)〉,
needed for the local diabatization solution of the TDSE [27] (see section
2.4).

(8) Simultaneous treatment of dynamic and spin-orbit couplings [34], with
analytic gradients of the spin-adiabatic PES’s [33] (see section 2.4).

(9) Explicit interaction with electromagnetic fields of arbitrary shape [37].
(10) State-specific corrections to the PES’s. For each spin-manifold, the same
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additive correction can be applied to all states, in the form of a function of
the internal coordinates ∆U(Q). Moreover, the energy of each state can be
modified with respect to the preceding one by multiplying the Uk − Uk−1

energy difference by a positive scaling factor Fk(Q). These corrections
leave unchanged the position of the crossing seams, which is a necessary
condition to guarantee the consistency with the computed wavefunctions,
i.e. with the DNAC’s. However, the energy and the optimized geometry
of a CoIn can be modified [35].

The FOMO-CI method has been applied to direct dynamics simulations of a
variety of molecular systems and nonadiabatic processes: photofragmentation
of small molecules [155,179,267], photoisomerization of isolated molecules [116,
180, 274], solutes [7, 36], adsorbates [275] and supramolecular systems [16, 17,
30], and chemiluminescent reactions [276].

A similar method has been put forward and applied to several problems in or-
ganic photochemistry by Thiel and coworkers [216, 217, 246, 277–282]. We list
here the main features that distinguish Thiel’s approach from the FOMO-CI
direct dynamics. In the first place, they make use of the OM2 semiempiri-
cal Hamiltonian, without ad hoc reparameterizations nor floating occupation
SCF MO’s. CI energies and wavefunctions are determined by the unitary
group technique (GUGA). The DNAC’s are computed by the Z-vector tech-
nique [283], and usually only the variation of the CI coefficients, eq. (24),
is taken into account, while the MO contribution is neglected [216]. A finite
differences approximation of the time-derivative couplings can also be used.
Finally, the integration of the TDSE is performed with very small time steps,
by interpolating the electronic energies and the DNAC’s along each nuclear
trajectory step. Most of the features that characterize either the FOMO-CI
or the OM2 based direct dynamics are compatible with both approaches, so
mixed variants could be easily implemented if required by specific problems.

3.4 Environmental effects.

In most photochemical and photophysical processes the electronic excitation,
the nonadiabatic dynamics and the chemical changes are localized in one or
few molecules. Chromophores and reactive centers must be described by quan-
tum chemistry methods, so they will be indicated as the QM (sub)system. If
a chemical environment is present, it may deeply affect the dynamics. By
chemical environment we mean any medium that does interact with the QM
subsystem without undergoing electronic excitation nor chemical change, such
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as a solvent, a polymer or biological matrix, or an adsorbing surface.

The environmental effects can be classified as “static” or “dynamic” [15].
The former refer to modifications of the PES, as functions of the QM nu-
clear coordinates, due to the interactions with the medium. A quantitative
description of the static effects may be based on a full optimization of the
medium coordinates, which is however complicated and only partially repre-
sentative of the physical reality because of the existence of multiple minima. A
more comprehensive definition involves a thermal averaging over the medium
coordinates, as for instance in the Averaged Solvent Electrostatic Potential
(ASEP) method [284]. The simplest way to characterize the static effects of
a medium is to treat it as a continuum with macroscopically defined response
properties, such as the dielectric constant or the refraction index. This is the
gist of the Polarizable Continuum Model (PCM), that allows to produce free
energy potential surfaces and to separate the slow and fast response of the
medium [285–289]. Of course, the excited state dynamics can be affected by
any modification of the PES’s, among which particularly important are those
due to electrostatic interactions with the medium in systems that undergo elec-
tron or proton transfer. Especially relevant for the nonadiabatic transitions are
changes in the energy gaps between electronic states and in the accessibility
of crossing seams [190,207,288].

The medium does not equilibrate instantaneously in response to fast geome-
try changes and electronic transitions of the QM part [286–288]. This fact,
combined with the thermal fluctuations of the environment, results in instan-
taneous interactions that depart from the mean values corresponding to the
statically modified PES’s as defined above. Such “dynamic” interactions affect
both the nuclear and the nonadiabatic dynamics. Typically, reacting moieties
that move fast in photodissociations or isomerizations are hindered by the
surrounding environment (“caging”) and may even bounce back; fast charge
rearrangements (electron or proton transfers) may be energetically destabilized
because the medium does not relax dielectrically in comparably short times
(“dielectric friction”). One ubiquitous consequence is the energy transfer from
the excited chromophores to the medium or, to a lesser extent, the other way
around. In this field, Langevin type models play a role similar to the contin-
uum ones for static medium effects, and are very useful to understand and to
predict semiquantitatively the condensed state photodynamics [209, 290, 291].
However, only an atomistic description of the chemical environment is able
to describe accurately both static and dynamic effects without introducing
empirical parameters.

In most cases the “environment” is the larger portion of the system and cannot
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be treated at the same level as the QM subsystem in the electronic structure
calculations. Layered approaches are applied to reduce the computational ef-
fort while describing accurately the QM part, possibly further partitioning
the environment into subsystems according to their relevance as to the pro-
cesses of interest. The “outer layers” will be described by hierarchically less
accurate methods, and continuum models may be used to account for long
range electrostatic interactions [289, 292]. The simplest hybrid approach and
the most frequently applied in nonadiabatic dynamics is the QM/MM one,
where the whole environment is described by a Molecular Mechanics force
field (MM subsystem). Recent reviews [293–295] and many specific appli-
cations [7, 28, 29, 35, 53, 250, 251] are available, and we refer to them for all
technical details. The QM/MM Hamiltonian is partitioned into three terms:

Ĥtot = ĤQM(qQM ,QQM) + ĤMM(QMM) + ĤQM/MM(qQM ,QQM ,QMM) (27)

Here the suffixes QM and MM are the acronyms of the two subsystems and
label the nuclear and electronic coordinates Q and q, and the three Hamilto-
nian terms. ĤQM is the electronic Hamiltonian for the isolated QM subsystem

and ĤMM is the force field function that describes the environment. Different
QM/MM methods are essentially characterized by the definition and role of
ĤQM/MM , that contains the interactions between the two subsystems.

In some of the earliest simulations of nonadiabatic dynamics of polyatomics in
condensed phase [133] ĤQM/MM was defined as a mere function of the QQM

and QMM coordinates, which amounts to describing also the QM-MM inter-
actions by a force field. As a consequence, the adiabatic wavefunctions ψk are
(approximate) eigenfunctions of ĤQM , as in the isolated QM subsystem. This
is acceptable only when the mutual polarization of the two subsystems can be
neglected and it is not necessary to consider state-specific static effects of the
medium, such as solvent spectral shifts.

In order to acknowledge the influence of the environment on the QM wave-
functions, ĤQM/MM must contain the individual Coulomb potentials between
the QM nuclei and electrons and the MM atomic charges, so it also depends
on qQM . While the dispersion and repulsion terms remain mere functions of

QQM and QMM , the electrostatic term is added to ĤQM and contributes to
the determination of the wavefunctions ψk. The static environmental effects
are therefore accounted for in a state-specific way. In this case, the analytic
representation of crossing PES’s would be inextricably complicated without
resorting to the diabatic representation. In fact, each diabatic state, with its
typical charge distribution and polarizability, can be “dressed” with specific
QM-MM interactions; i.e., the

〈

ηk
∣

∣

∣ĤQM

∣

∣

∣ ηl
〉

matrix elements can be modi-
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fied by the addition of QM-MM terms smoothly dependent on the QQM and
QMM coordinates [293, 296]. The application of direct approaches is simpler
and does not require a diabatization procedure. Among the semiempirical
electronic structure methods (see section 3.3), MMVB is by construction of
QM/MM type, but also FOMO-CI and OM2 have been coupled with force
fields to run simulations of complex systems [7,16,17,28,29,35,280]. Covalent
bonding across the QM to MM boundary is allowed for by defining special
atom types [29, 297].

4 Simulation outcomes and typical applica-

tions.

The ultimate goal of simulations is predictiveness [86], which in the present
context means to be able to compute quantum yields, energy disposal and
transient spectra, to describe reaction and decay mechanisms, and to correlate
structure and reactivity. However, the unavoidable approximations done in
solving the electronic structure and the dynamic problems, and the computa-
tional restrictions as to propagation times and system size, limit the ability of
simulations to provide reliable predictions. In most cases, the winning strat-
egy is a combination of experiment, theory and calculation. To this aim, it is
important to simulate the very observables that are measured: for instance,
one should be able to predict the spectroscopic transient signals as functions
of time, in addition to the excited state populations. In fact the latter are
not observables, and are related to the measured transients, but not always in
a simple way, especially when different processes (such as geometrical relax-
ation, IVR, nonadiabatic decay) compete on the same time scale. When the
simulation, on the basis of a theoretical model, yields the relevant observables,
it can be validated by comparison with the experimental data. Conversely,
the simulations can provide a detailed interpretation of transient spectra and
other instrumental outputs; in other words, they can tell us what molecular
response property has been really measured.

Final process outcomes include product branching ratios i.e. quantum yields,
energy disposal distributions and vector correlations (see Persico et al [152]
for an example). Such data are easily extracted from wavepacket or trajec-
tory simulation results, with computational recipes similar to those in use for
ground state simulations [156,298]. Adopting direct or PES-fitting approaches
in this context does not make a difference, save that in the latter case one
can run more trajectories or wavepacket propagations in order to achieve a
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better statistics (see section 4.3), without proportionally increasing the com-
putational cost. Therefore, we shall not elaborate further on this issue and we
shall rather concentrate on transient spectroscopic data.

4.1 Transient spectroscopy.

In QWD and in mean-field methods all the time-dependent properties, in-
cluding the probe spectroscopic signals, are computed using the wavefunctions
univocally defined by eqs. (1) and (14), respectively. On the contrary, in TSH
one can choose between two alternatives, namely the wavefunction of the cur-
rent state or the solution of the TDSE, eq. (14), as in the mean-field case.
The former option is the standard one [106,107], but a combination of the two
wavefunctions has been shown to yield better results at least in charge transfer
problems [111]. Note that the introduction of decoherence corrections reduces
the difference between the results obtained with the two options.

Several spectroscopic techniques rely on electronic transitions, although also
time-resolved infrared absorption is exploited to monitor vibrational energy re-
distribution after electronic excitation and charge or energy transfer. We shall
briefly review fluorescence (that may be upconverted to achieve femtosecond
resolution), resonant Raman scattering, differential absorption and photoelec-
tron spectroscopy. The computational difficulties in simulating the signals
associated with these techniques increase in the same order as in the above
list. To compute fluorescence transient spectra, one needs the transition ener-
gies and moments (usually dipoles) between the state on which the wavepacket
or trajectory swarm is running, and the lower lying ones. Since usually all of
these states are accessible by nonadiabatic transitions, it is anyway necessary
to compute them, and the simulation of the fluorescence transient does not
increase the computational burden. Also the resonant Raman spectroscopy
deals with electronic levels lying within the energy of the exciting photon, but
requires a quantum treatment of the vibrational modes [46], whereas the ultra-
fast fluorescence transients are usually featureless and can be reasonably well
simulated by trajectory methods.

The differential absorption spectroscopy is a pump-and-probe method involv-
ing transitions to higher lying states (as well as to lower ones, by stimulated
emission), which are often more difficult to determine, as they require more
refined levels of computational theory and extended basis sets. In a typical
case, the cis → trans photoisomerization dynamics of rhodopsin was moni-
tored by recording transient absorption spectra, and the latter were quite well
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reproduced by on the fly SH simulations with SA-CASSCF electronic structure
calculations; to compute the spectra, the SA-CASSCF transition energies were
rescaled to match CASPT2 data [299]. Further examples of transient absorp-
tion and emission spectra, computed by surface hopping simulations, are found
in our previous work on azobenzene [7,180,300] and in recent simulations of the
photoisomerizations of furylfulgides [281, 282]. The case of azobenzene illus-
trates what differences can arise in the lifetimes extracted from time-dependent
excited state populations, versus those associated with spectroscopic transients
of the different types, either experimental or simulated. For instance, a typ-
ical behavior shared by azobenzene and by other chromophores with short
lived excited states, is that the fluorescence decays faster than the population,
especially at the short wavelength end of the emission spectrum, due to the
wavepacket motion towards lower regions of the excited PES and to the third
power dependence of the emission rate on the frequency [7].

The simulation of photoelectron spectroscopy is even more exacting. In order
to predict the intensity of the photoelectron signal as a function of the pho-
ton and of the ejected electron energies, one needs to determine the energy
differences between electronic states of the neutral molecule and of the cation,
and the associated photoionization cross sections. Precious information about
the nature of the starting electronic state can be obtained by measuring the
angular distribution of the photoelectrons, but the simulation of such features
requires an additional computational effort [170, 301, 302]. Examples of sim-
plified approaches are illustrated by a trajectory SH simulation of ethylene
photodynamics [303] and an AIMS study of acetone photodissociation [304].

In principle, the electronic properties needed for the spectral simulations dis-
cussed above (PES’s, transition moments and so on) must be computed at
all the geometries explored by the time-dependent wavepackets or classical
trajectories. In PES-fitting methods this is a further complication, because
additional electronic matrix elements, strongly dependent on the nature and
accuracy of the electronic wavefunctions, must be represented as functions
of the internal coordinates. The use of direct methods then appears to be
the most straightforward choice. However, as far as the probing process can
be considered a negligible perturbation [305], it may be convenient to decou-
ple the nonadiabatic dynamics calculation and the simulation of the monitor-
ing signal. This allows to perform the latter task with the most appropriate
quantum chemistry techniques, for instance to compute spectra by ab initio
methods even when the dynamics was based on semiempirical or fitted PES’s,
or to treat the photoionization by Dyson theory after running AIMS with
CASSCF [304].
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4.2 Dynamics descriptors.

While we emphasize that the simulations should yield results as close as possi-
ble to the experimental reality, it is also useful to describe the complex nona-
diabatic dynamics, graphically and numerically, by parameters that are not
necessarily physical observables [86]. Such descriptors allow to compare results
obtained with different computational methods and to discuss the reaction and
decay mechanisms with heuristic arguments. The already mentioned popula-
tions of the electronic states (adiabatic or diabatic, spin-coupled or not) are
an example of non-observable descriptors, at whatever level of theory they are
computed. To characterize the time evolution of the electronic properties it is
often more interesting to monitor the population of the diabatic states, rather
than the adiabatic ones [111]. In principle, any approximation that implies
abandoning a rigorous quantum formulation of the dynamics, such as treating
classically the electromagnetic field or the nuclear motion, cannot yield true
observables. So, for instance, it is interesting to point out at what molecular
geometries the nonadiabatic transitions do occur, although the non-locality
of quantum mechanics would forbid to formulate this very concept (see the
discussion on optimal spawning by Yang et al [52]). In practice, the successful
use in AIMS of localized basis sets and of the saddle-point approximation, eqs.
(11-12), indicates that one can reasonably determine “where” the population
transfer takes place at each time step. In FMS/AIMS or vMCG calculations,
any quantification of descriptors involving single basis functions, or pairs of
them, requires to perform a sort of Löwdin or Mulliken population analysis on
the time dependent wavepacket [116,306]. In surface hopping it is straightfor-
ward to monitor the geometries where hops occur. In conclusion, we note that
the interpretation of trajectory simulation results may be deceptively easy, but
is usually justified as far as the computed observables are in good agreement
with experiment or QWD.

4.3 Examples of applications.

In order to provide an overview of the capabilities of different methods, in Table
1 we list the main features of some selected simulations. For QM/MM calcu-
lations, the numbers of QM and MM atoms are entered separately. Whenever
the dynamics is limited to a subset of all the nuclear coordinates, the number
of active modes is given. We verify that trajectory methods can treat larger
systems and longer simulation times than QWD. It is easier to scale up the
number of atoms with direct methods, because PES fitting with many coor-
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dinates is increasingly costly and complicated, unless the largest portion of
the system can be treated with very simple force fields (e.g., rare gas clus-
ters). On the other hand, the PES-fitting approach is more convenient for
long simulation times.

More difficult is to assess the accuracy of the calculations. The quality of the
PES’s and of the electronic wavefunctions is a prerequisite. When the relevant
experimental or quantum chemistry data are available and reliable, PES-fitting
can be very accurate. As noted in sections 3.1 and 3.2, the ab initio methods
that are applied in direct simulations are often below the top level for practical
reasons. However, the use of reparameterized semiempirical Hamiltonians and
of state-specific corrections (see section 3.3) can yield accurate PES’s for rather
large molecules.

As to the simulation approaches, MCTDH calculations, if well converged, are
usually taken as benchmarks to validate all other methods. The accuracy
of vMCG and AIMS/FMS simulations depends on a set of options and pa-
rameters that affect the convergence of the expansion. The latter is usually
harder to achieve in all QWD methods, the longer is the propagation time,
as discussed in section 2.1. Classical trajectory methods have some funda-
mental drawbacks, that can be only partially circumvented by an appropriate
sampling of the initial conditions, plus quantum decoherence corrections and
other ad hoc options (see section 2.2). The thoroughness of the IC sampling
and the proper working of the SH stochastic algorithm require a large number
of trajectories NT , which is also listed in Table 1. In the same column we
also report the number of QWD runs NR, that may be more than one when a
canonical or microcanonical distribution of IC’s is taken into account, or when
the FMS/AIMS basis functions that span the initial wavepacket are propa-
gated in a decoupled way (see section 2.1). The appropriate number of runs
NT or NR very much depends on the kind of results sought for. For a binary
choice, for instance the occurrence or not of a given reaction, one determines
the probability (the quantum yield, in photochemistry) as the fraction Φ of
trajectories undergoing that process. If Φ is the theoretical probability and
NT the number of trajectories in one simulation, the statistical error (standard
deviation) on Φ is

∆Φ =

√

Φ(1− Φ)

NT

(28)

In SH simulations, both the sampling of the IC’s and the stochastic nonadi-
abatic trajectories do contribute to ∆Φ; the former is particularly important
when the probability of the process is sharply dependent on the IC’s, for in-
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stance because of total energy or initial conformation. In QWD simulations the
time propagation is not stochastic, so the IC sampling alone determines ∆Φ.
As an example, Toniolo et al [116] simulated the n → π∗ trans-azobenzene
photodynamics by NR = 20 FMS runs; each run yielded a fractional photo-
isomerization probability, because it generated an average of about 17 basis
functions (347 in total), traveling on the ground state PES either to the cis or
to the trans isomer; we see therefore that the 20 FMS runs have the potential-
ity of representing a variety of final outcomes roughly equivalent to hundreds
of trajectories. When the yield Φ is small (rare events), the relative error is

∆Φ

Φ
≃ 1√

NTΦ
(29)

An accurate determination of Φ then requires a number of trajectories that
increases in inverse proportion to Φ. The determination of differential cross
sections, transient spectra or energy disposal distributions obeys a similar rule,
since it reduces to computing the probability of the occurrence of a given
process within selected intervals of one or more measurable variables (energy,
delay time, wavelength of adsorbed or emitted photons, etc); by requiring a
good resolution, which amounts to reducing the widths of the intervals, what
one monitors are inevitably rare events. As an example, the simulation of
the very weak chemiluminescence emission generated by Al + H2O collisions
required some 170000 trajectories.

In Table 1 we collected examples of many different simulated processes, all
involving nonadiabatic transitions: they include photon adsorption and emis-
sion [7, 38, 46, 64, 276, 307], photoionization [170, 211], InterSystem Crossing
[155, 308, 309], excitation energy transfer [310], exciton dissociation [311], ul-
trafast decay of nucleobabses [312–315], hole or electron transfer [316–319],
proton transfer [320, 321], anelastic and reactive scattering [276, 322], pho-
toisomerization [116, 133, 179, 236, 237, 256, 320, 323, 324] and photodissocia-
tion [133, 155, 179, 325–330]. In practically all cases, excited state decay and
geometrical relaxation are essential ingredients of the simulation. It must be
clear that this is but a small sample of the recent production in this field:
searching the topic “nonadiabatic dynamics” in the Web of Science database
one finds about 2000 titles in the molecular physics and physical chemistry
areas in the last 10 years.
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5 Concluding remarks: mixing the direct and

PES-fitting approaches and beyond.

In this paper we have reviewed state-of-the-art methods for the computational
simulation of excited state dynamics, with focus on the methodological choice
between two alternative strategies, here indicated as PES-fitting and direct, re-
spectively. The former entails the preliminary determination and analytic rep-
resentation of PES’s and coupling matrix elements between electronic states,
while in the latter such quantities are computed “on the fly” during the time
propagation. The main advantage of the PES-fitting approach is that the
computational burden of the simulation only consists in the integration of
the dynamical equations, which makes it viable to simulate slow processes,
to sample large sets of initial conditions, and to compare different methods
and options for the dynamics. In particular, the knowledge of the PES’s and
couplings for all the relevant portions of the nuclear coordinate space allows to
run quantum wavepacket dynamics with a minimum of numerical approxima-
tions. The direct approach dispenses with the preliminary work of computing
and fitting the electronic structure data, which may be overly complicated in
the frequent case of intersecting PES’s, and extremely expensive for molecular
systems with many internal coordinates. On the other hand, the cost of direct
dynamics increases with the simulation time and with the number of simu-
lation runs. The combined advantages and drawbacks of the two approaches
shift the balance in favor of the direct one when simulating fast decay and/or
reactive processes in complex molecular systems. The direct strategy is espe-
cially suited when a local knowledge of the electronic structure quantities is
sufficiently adequate to predict the nonadiabatic dynamics, which is the ansatz
underlying trajectory-based methods such as Surface Hopping.

The previous sections and in particular section 3 illustrate in detail the above
considerations, but also show that the distinction between the PES-fitting and
the direct approach is not so sharp. First of all, direct dynamics does not re-
ally dispense with a preliminary validation of the electronic structure approach.
Even ab initio methods need a non trivial calibration (choice of basis set, or-
bital active space, etc) versus experimental data or computational results of
higher accuracy, and more so the DFT based methods (choice of the exchange-
correlation functional, representation of the excited states, etc). Semiempirical
methods need reparameterization, which may be so extensive and targeted to
a specific molecular system as to resemble an elaborated fitting procedure. In
the second place, the PES’s used in direct dynamics often contain additions
and corrections in the form of simple functions of the nuclear coordinates. For
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instance, the QM/MM methods are based on standard force fields to repre-
sent the MM subsystem, plus a variously parameterized term describing the
interaction between the QM and MM subsystems. Another example are the
state-specific corrections to the adiabatic PES’s introduced by our group in
the semiempirical context (see section 3.3), that can be also applied to ab ini-
tio PES’s. The advantages of the PES-fitting and direct approaches can be
combined by switching between the two during the integration of the dynam-
ics, as shown by Thompson and Mart́ınez in the framework of FMS [331]: the
former is used in the regions of the PES’s where the fitting is easier and more
accurate, and the latter in the proximity of the PES crossings.

Running the dynamics by direct methods is a way to suitably sample the por-
tions of the PES’s relevant to the dynamic process of interest and to accumulate
information about them, in order to switch to the PES-fitting approach in the
“production” step. The GROW algorithm, originally proposed by Collins for
adiabatic processes [332], combines the sampling along a swarm of trajecto-
ries with an efficient modified Shepard interpolation scheme, and allows to
build an analytic PES as a function of the internuclear distances. Its exten-
sion to multi-state dynamics by nonadiabatic trajectories [333,334] or quantum
wavepackets [335,336] relies on a quasi-diabatic representation of the electronic
Hamiltonian. The diabatization can be “global”, i.e. a general transformation
valid for the whole internal coordinate space of interest [333–335], or “local”,
i.e. adapted to each PES crossing region [336]. A similar method, recently put
forward by Zhu and Yarkony [337–339] represents the quasi-diabatic Hamilto-
nian matrix as a function of a redundant set of internal coordinates and focuses
on the accurate representation of the crossing seams, by interpolating energy,
gradient and DNAC data. The basic advantage of the GROW-like approaches
is that the dynamics itself indicates which regions of the PES’s must be rep-
resented by analytic functions, and the accuracy of the fitting is rigorously
tested and improved as more data accumulate. After a sufficiently representa-
tive sampling, the interpolated PES’s and couplings can be used to continue
the simulation with a much smaller computational effort: for instance, one
can run a larger number of trajectories to obtain a more reliable statistics, or
switch to a more accurate method for the dynamics.

The approaches recalled or outlined in the last two paragraphs show that hy-
bridizing the PES-fitting and direct strategies can extend the range of applica-
bility of simulations and improve their accuracy. More drastic improvements
are required to meet the challenge of multiscale phenomena. A host of im-
portant and complex photochemically initiated processes are of multiscale na-
ture, both in the size of the system (many chromophores, strongly interacting
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chemical environments) and in time: such are the workings of photosynthetic
complexes, of visual pigments, of dye sensitized solar cells and of many photore-
sponsive materials. Several subprocesses exhibit overlapping time scales [15]
and therefore must be simulated within the same general approach: the ge-
ometrical relaxation of excited molecules and the nonadiabatic decay can go
from the femtosecond to the nanosecond time scale, vibrational energy transfer
within a molecule and to the environment normally takes tens of picoseconds,
while spin changing, electron transfer and excitation energy transfer can be
much slower; finally, collective rearrangements, molecular diffusion and ther-
mal reaction kinetics normally require times that are many orders of magnitude
longer, but when these processes involve hot ground states their time scales
may still overlap those of excited state dynamics. Encompassing several of
these processes in the same simulation often requires methodological advances
beyond the scope of this paper.

Several attempts have concentrated on switching in time from full fledged,
atomistic, direct dynamics to standard Molecular Dynamics using force fields
or even more simplified representations of the molecular reality. When the sys-
tem has reverted to the ground state at not too distorted geometries, standard
force fields are usually adequate, allowing to switch from a QM or QM/MM
nonadiabatic trajectory to a fully MM adiabatic one; ad hoc procedures have
been developed to deal with minor mismatches between the two PES’s [340].
When many chromophores can be excited, simultaneously or sequentially, one
may switch on the QM multistate description of single molecules for the ap-
propriate time intervals, while the bulk of the system for most of the time
is treated by atomistic or even coarse grained Molecular Dynamics: such is
the procedure proposed by Doltsinis and coworkers to simulate the behavior
of mesogenic azo-chromophores [257]. The information obtained from single
chromophore photodynamics can be used to model more complex phenomena.
For instance, from such information one can derive force fields that describe the
switching from the excited to the ground state and allow to treat many chro-
mophores at once to simulate the behavior of photoresponsive materials [341].
Using molecular rotation data provided by direct nonadiabatic dynamics and
a stochastic model, our group simulated photo-orientation phenomena in vis-
cous media that occur in time scales ranging from tens of picoseconds to orders
of magnitude longer [19, 20]. Singlet fission rates in amorphous 5,12-diphenyl
tetracene were computed by Mou et al by relatively short SH trajectories (200
fs) and found to depend on the conformation of chromophore pairs; such infor-
mation was then used to model the phenomenon on a much longer time scale
(1 ns) by kinetic Monte Carlo simulations [342].
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A more ambitious goal is to parameterize the nonadiabatic transition rates as
functions of a set of nuclear phase space variables, in order to reduce the cost
of excited state dynamics simulations to that of standard ground state Molec-
ular Dynamics. This is is the gist of a simulation performed by Zannoni and
coworkers for the azobenzene photoisomerization in different solvents, where
the S1 → S0 Internal Conversion (IC) rate is assumed to be a simple function
of the energy gap, which depends in turn on the nuclear geometry [343]. A
similar treatment, with a more accurate reactive force field for the ground and
first excited state, has been tried by Li and Hartke [344]. Extensive tests,
taking into account the nuclear kinetic energies and other variables in addition
to the energy gap, show the transferability of azobenzene IC rates from gas
to condensed phase, even in viscous solvents that slow down considerably the
photoisomerization [345].

While a single protocol of general applicability to multi-scale problems is not
yet available, the above examples show that new tools and strategies for tack-
ling particular classes of systems and processes are being devised by several
groups.
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Mitrić R. (2013) ChemPhysChem 14: 1377

[175] Richter M., Marquetand P., González-Vázquez J., Sola I. R., González
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[281] Schönborn J. B., Koslowski A., Thiel W., Hartke B. (2012) Phys.

Chem. Chem. Phys. 14: 12193
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Table 1: A representative selection of nonadiabatic dynamics simulations performed
with different methods.

system, processa, dynam. elec. struct. QM/MM n. of duration NT or
reference methodb methodc atomsd coords.e TP (ps) NR

pyrazine absorption spectrum [38] MCTDH PES-fit 10 24 0.18 1
C6H5-C≡CH+ abs. spectrum [307] MCTDH PES-fit 14 36 0.30 1
ammonia photodissociation [325] MCTDH PES-fit 4 6 8 1
CH3I@resorc[4]arene photodyn. [326] MCTDH PES-fit 5/60 189 0.35 1
fullerene-oligothiophene CT [316] G-MCTDH PES-fit 90 60 0.25 1
formaldehyde photodissociation [327] vMCG CASSCF 4 ∼0.3
pyrazine absorption spectrum [64] MCE PES-fit 10 0.20 50
pyrrole photodynamics [66] MCE CASSCF 10 0.15 24
azobenzene photoisomerization [116] FMS semiemp. 24 1.5 30
butadiene photoisomerization [323] AIMS CASSCF 10 0.20 20
GFP photodynamics in water [53] AIMS CASSCF 22/900 0.80 20
ethylene resonance Raman spectr. [46] AIMS MR-CI 6 0.05 3
ethylene photoisomerization [237] AIMS CASPT2 6 0.20 37
azomethane photodissociation [133] TSH PES-fit 10 500 500
azomethane photoisom. in water [133] TSH PES-fit 10/360 10 100
CaAr55 photoelectron spectrum [211] TSH PES-fit 56 10 7500
ICl− photodiss. in CO2 clusters [328] TSH PES-fit 2/42 50 50
F2 photodissociation in solid Ar [329] TSH PES-fit 2/255 1.5 49
ICN photodissoc. at interfacef [330] TSH PES-fit 3/2565 10 6000
ClOOCl on ice photodissociation [179] TSH semiemp. 4/648 204 0.15 365
azobenzene photoisom. in solution [7] TSH semiemp. 24/4750 15 ∼1200
PPVg oligomers exciton dissociation [311] TSH semiemp. 202 1.5 35
phenylene ethynylene dendrim. ET [310] TSH semiemp. 48 0.04 200
adenine decay in DNA strands [315] TSH semiemp. 14/12515 ∼5700 1.5 146
salicilidenaniline photoisomerization [320] TSH semiemp. 26 1 209
thymine relaxation [312] TSH semiemp. 15 1.6 327
Al+H2O chemiluminescence [276] TSH semiemp. 4 ∼1 169200
acetone ISC and photodissociation [155] TSH semiemp. 10 50 1042
thioguanine ISC [308] TSH semiemp. 16 10 377
Pb16Se16 @ TiO2 CT [317] TSH DFT 176/312 0.25 >100
water @ GaN CT [318] TSH DFT 60 1 4000
Ru(bpy)3 photodyn. in water [250] TSH DFT 61/9896 0.05 2
indole photodynamics in water [251] TSH DFT 25/∼3300 0.30 100
azobenzene photoisom. in bulk [256] TSH DFT 24/8208 2 40
quaterthiophene @ ZnO CT [319] TSH DFT 552 0.08 50
uracil photodynamics [313] TSH CASSCF 12 2.5 90
stacked aminopyrimidine decay [314] TSH CASSCF 12/38 3 45
CH2(CH)6NH

+
2 photoisom. [324] TSH CASSCF 18 0.2 600

azaindole+(H2O)1−5 proton transfer [321] TSH ADC(2) 18-30 0.3 400
CH2(CH)4NH

+
2 photoisom. in hexane [236] TSH MR-CIS 17/3000 0.5 400

SO2 ISC [309] TSH MR-CIS 3 0.7 111
Ag3 time resolved photoel. spectrum [170] FISH DFT 3 2.0 48
scattering of NO from Au(111) [322] IESH PES-fit 2/528 10 ∼3500
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a ET = excitation energy transfer; CT = (electron) charge transfer; ISC = Inter-
System Crossing.

b Dynamical methods: MCTDH = Multi-Configurational Time-Dependent
Hartree; MCE = Multi-Configurational Ehrenfest; G-MCTDH, vMCG = vari-
ational Multiconfiguration Gaussian wavepacket; FMS = Full Multiple Spawn-
ing; AIMS = ab initio Multiple Spawning; TSH = Trajectory Surface Hopping;
FISH = Field Induced Surface Hopping; IESH = Independent Electron Surface
Hopping.

c Electronic structure methods: PES-fit = fitted or model PES and couplings;
other acronyms, direct dynamics.

d Number of atoms in the QM and MM subsystems; in PES-B methods, the QM
atoms are identified as those belonging to the subsystem for which a multistate
Hamiltonian has been fitted.

e Number of active coordinates (only when smaller than three times the number
of atoms).

f Water/chloroform boundary.
g Poly-p-phenylenevinylene oligomers.
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