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Whither discrete time model predictive
control?

Gabriele Pannocchia and James B. Rawlings and
David Q. Mayne and Giulio M. Mancuso

Abstract—This note proposes an efficient computational procedure for
the continuous time, input constrained, infinite horizon, linear quadratic
regulator problem (CLQR). To ensure satisfaction of the constraints, the
input is approximated as a piecewise linear function on a finite time
discretization. The solution of this approximate problem is a standard
quadratic program. A novel lower bound on the infinite dimensional
CLQR problem is developed, and the discretization is adaptively refined
until a user supplied error tolerance on the CLQR cost is achieved. The
offline storage of the required quadrature matrices at several levels of
discretization tailors the method for online use as required in model
predictive control (MPC). The performance of the proposed algorithm
is then compared with the standard discrete time MPC algorithms. The
proposed method is shown to be significantly more efficient than standard
discrete time MPC that uses a sample time short enough to generate a
cost close to the CLQR solution.

I. INTRODUCTION

In this paper we are concerned with the infinite horizon, continuous
time optimal control problem for a linear system subject to input
bounds. For brevity, we refer to this as the CLQR (constrained linear
quadratic regulator) problem. It is perhaps the simplest optimal con-
trol problem of significant interest after the classical, unconstrained
LQR. One of the compelling features of both LQR and CLQR is
the guarantee of nominal, closed-loop stability that they provide
for unconstrained and input constrained linear systems, respectively.
Model predictive control, which is based on implementing solutions
to optimal control problems as state measurements (or state estimates)
become available, is arguably the most important advanced industrial
control design method in use today. Besides linearity, however,
another feature of almost all industrial MPC methods is the use of
discrete time models. It is this use of discrete time that we would like
to examine in this paper. Is it necessary? Is it convenient? Is it as good
as, or even better than, continuous time? To provide a sound basis for
comparison, we first develop and present a new algorithm for solving
the CLQR problem. The problem is doubly infinite dimensional, first
because the input is a continuous time function, and second because
the cost is defined on an infinite horizon. We show that neither feature
causes insurmountable computational difficulties, and we can solve
this problem reasonably efficiently with a guarantee of proximity to
optimality.

The paper is organized as follows. In Section II, we develop the
basic numerical discretization of the continuous time problem using
a piecewise linear input parameterization. In Section III, we present
quadrature formulas, based on matrix exponentiation, that can be
computed and stored offline for fast, repetitive online calculation, as
is required in MPC. Because the original CLQR problem is (strictly)
convex, we are able to develop a novel lower bound on the optimal
cost; this is presented in Section IV. This lower bound enables a
stopping criterion that meets a user specified proximity to optimality.
In Section V, we propose an algorithm for refining the discretization
to solve the CLQR problem and discuss stopping criteria. Next in
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Section VI, we show that this algorithm converges. In Section VII,
we provide numerical examples that show the algorithm can be solved
quickly. Finally in Section VIII we draw conclusions of the study.

Notation: R and Z denote the fields of reals and integers,
respectively. Given a, b ∈ Z Za:b denotes {x ∈ Z | a ≤ x ≤ b}. The
symbol ′ is the transpose operator. Inequalities are meant: component
wise for vectors, in positive (semi)definite sense for symmetric
matrices. Given x, y ∈ Rn, (x, y) , [ xy ], 〈x, y〉 denotes the inner
product, |x| ,

√
〈x, x〉, |x|2Q , 〈x,Qx〉. For A ∈ Rn×m and

a, b, c, d ∈ Z>0, Aa:b,c:d denotes the submatrix with rows a to b
and columns c to d, and Aa:b,: denotes the submatrix of rows a
to b and all columns, Im is the identity matrix (dimension m ×m,
possibly omitted), λmin(A) is the smallest eigenvalue of a symmetric
matrix A, and int(S) is the interior of S.

II. PRELIMINARIES

A. Continuous time optimal control problem

In this paper we address the computation of the optimal solution
to the continuous time, infinite horizon, input constrained, linear
quadratic regulation problem:

P∞(x) : inf
u(·)

{
V∞(x, u(·)) ,

∫ ∞
0

`(x(t), u(t))dt

}
, (1a)

s.t. x(0) = x,

ẋ = f(x, u) , Ax+Bu, for all t ∈ [0,∞), and (1b)

u(·) ∈ U∞, (1c)

in which U∞ is the class of measurable controls defined on [0,∞)
and taking values in U =

∏m
i=1 Ui, where Ui , [umin

i , umax
i ], 0 ∈

int(U), which is a compact, convex subset of Rm. The state x ∈ Rn,
and the function `(·) is quadratic: `(x, u) , 1

2
(x′Qx+ u′Ru).

Assumption 1: The pair (A,B) is stabilizable and (Q1/2, A) is
observable. Q ≥ 0 and R > 0.

As discussed in [1], Assumption 1 can be relaxed to (Q1/2, A)
detectable. Let X∞ be the set of initial states x for which there
exists u(·) ∈ U∞ such that V∞(x, u(·)) is finite. Thus V∞ : X∞ ×
U∞ → R≥0. Existence and uniqueness of a solution to P∞(x) for
each x ∈ X∞ is established after (4).

In order to rewrite the infinite horizon problem P∞(x) as an
equivalent finite horizon problem, we define a suitable ellipsoid
invariant set. Let P be the unique symmetric positive definite solution
to the (continuous time) algebraic Riccati equation:

0 = Q+A′P + PA− PBR−1B′P. (2)

Given a positive scalar α, we consider the compact set: Xf , {x ∈
Rn | x′Px ≤ α}. Clearly, Xf is an invariant (ellipsoidal) set for
the unconstrained closed-loop system: ẋ = Ax+Bu, in which u =
Kx, with K = −R−1B′P . Because U contains the origin in its
interior, if α is chosen sufficiently small, x ∈ Xf implies Kx ∈ U.
Hence, u(t) = Kx(t) remains feasible at all times with respect to
the constraint (1c) once x(t) has entered Xf . Let U be rewritten as
{u ∈ Rm | Du ≤ d}. Given the eigenvalue decomposition P =
SΛS′, it is easy to show that the largest admissible value of α is
given by: α = mini

{
di

|Mi,:|2

}
with M = DKSΛ−1/2.

Given T ∈ R>0, we replace P∞(x) by the following finite horizon
optimal control problem:

PT (x) : min
u(·)

{
VT (x, u(·)) ,

∫ T

0

`(x(t), u(t))dt+ Vf (x(T ))

}
,

s.t. x(0) = x, (3a)

model (1b) for all t ∈ [0, T ], and u(·) ∈ UT , (3b)
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in which: Vf (x) , 1
2
x′Px with P > 0 computed from (2), UT is

the class of measurable controls defined on [0, T ] and taking values
in U. Thus, VT : Rn×UT → R≥0. PT (x) has a unique solution for
any x ∈ Rn [2, Thm. 14, Chapter 3]. Let u0

T (·) be the (finite time)
input trajectory solution to PT (x) and x0

T (·) the associated (finite
time) state trajectory.

Proposition 2 (See [1]): For each x ∈ X∞, there exists T̄ ∈ R>0

such that x0
T (T ) ∈ Xf ∀T ≥ T̄ , and limT→∞ x

0
T (T ) = 0.

For x ∈ X∞, if T ∈ R≥0 is large enough that x0
T (T ) ∈ Xf , since

Vf (x) is the optimal infinite horizon cost for any x ∈ Xf , by the
principle of optimality it follows that the (infinite time) input and
state trajectories defined as:(

u0
∞(·), x0

∞(·)
)
,{(

u0
T (t), x0

T (t)
)

if t ∈ [0, T ],

(Ke(A+BK)(t−T )x0
T (T ), e(A+BK)(t−T )x0

T (T )) if t > T,

(4)

are, respectively, the minimizer of P∞(x) and its associated state
trajectory. Thus, P∞(x) and PT (x) yield the same solution, i.e.
V 0
T (x) , VT (x, u0

T (·)) = V 0
∞(x) , V∞(x, u0

∞). From the above
discussion it follows that P∞(x) has a unique solution for all
x ∈ X∞. In discrete time, earlier but less general results on existence
and uniqueness of solutions to P∞ can be found in [3], [4].

There is a rich literature on solution methods for finite horizon
nonlinear constrained optimal control. In most approaches a piece-
wise constant input parameterization is considered and numerical dis-
cretization is deployed to derive and solve (approximate) optimality
conditions (see e.g. [5]–[7] and references therein). On the other hand,
methods specifically tailored to constrained linear systems are less
common, but some interesting results and methods can be found in
[8]–[14]. We remark that one distinguishing feature of our method
is that it computes a solution to P∞(x) that is accurate to a user
defined tolerance. Furthermore, our method is based on the solution of
strictly convex quadratic programming problems, for which reliable
algorithms exist, and has no specific restriction on the system (state
and input) dimensions.

Remark 3: We are assuming that the actuator hardware, if digital,
is able to implement the continuous time input solution to P∞(x)
without introducing noticeable discretization effects.

B. Input parameterizations and discretized optimal control problem

For all T ∈ R>0, let γ be a partition of the interval [0, T ], defined
as a sequence of Jγ ∈ Z>0 intervals {Ij , [tj , tj+1] | j ∈ Z0:Jγ−1}
such that 0 = t0 < t1 < · · · < tJγ = T . Let ∆j , tj+1− tj denote
the length of Ij ; we assume that each ∆j satisfies ∆j = 2qj δ with
qj ∈ Z≥0 and δ > 0, in which case we say that γ ∈ ΓTδ . In order to
consider a finite parameterization of the function u : [0, T ] → Rm,
it is customary in sampled data control of continuous time systems
(see, e.g. [15]) to assume that the input is constant in each interval
Ij , i.e.,

u(t) = uj for all t ∈ Ij . (5)

Formally, given a partition γ of [0, T ], we define Uγ,ZOH
T as the

set of all functions u(·) ∈ UT satisfying the zero-order hold (ZOH)
parameterization (5) in which uj ∈ U for all j ∈ Z0:Jγ−1. Since
u(·) is piecewise constant it is measurable. Besides the fact that
restricting u(·) to the set Uγ,ZOH

T makes PT (x) finite dimensional,
it also ensures that u(t) ∈ U for all t ∈ [0, T ]. In [16] we argued
that a better choice is to assume the input piecewise linear in each
interval:

u(t) = (1−ηj(t))uj+ηj(t)vj , for all t ∈ Ij , with ηj(t) ,
t− tj
∆j

.

(6)

Formally, given a partition γ of [0, T ], we define Uγ,PWLH
T as the

set of all functions u(·) ∈ UT satisfying the piecewise linear hold
(PWLH) parameterization (6) in which (uj , vj) ∈ U2 for all j ∈
Z0:Jγ−1. Notice that for all j ∈ Z0:Jγ−1, we have that ηj(tj) = 0
and ηj(tj+1) = 1. Thus, if (uj , vj) ∈ U2, then u(t) ∈ U for all
t ∈ Ij , all j ∈ Z0:Jγ−1.

Given a partition γ and choosing either ZOH or PWLH, i.e.,
UγT , Uγ,ZOH

T or UγT , Uγ,PWLH
T , we can obtain a suboptimal

solution to PT (x) by solving the discretized optimal control problem:

PγT (x) : min
u(·)∈Uγ

T

VT (x, u(·)) s.t. x(0) = x and model (1b) .

(7)
In most existing approaches to solve CLQR (and general nonlinear
optimal control) problems, the time partition is uniform, but a number
of methods exist which take advantage of (offline predetermined)
non-uniform partition schemes [12], [16], [17].

III. ODE SOLVER FREE DISCRETIZATION

A. LQR discretization for ZOH via matrix exponential

Given an interval Ij , assuming to use the ZOH parameterization
(5), it is well known that we can compute an equivalent dis-
crete time system evolution as: xj+1 = Ajxj + Bjuj , in which
xj , x(tj) and Aj = eA∆j , Bj =

∫∆j
0

eAsBds. Moreover,
we have that: VT (x, u(·)) =

∑Jγ−1
j=0 `j(xj , uj) + Vf (x(T )), with

`j(xj , uj) ,
∫ tj+1

tj
`(x, u)dt = 1

2
(x′jQjxj + u′jRjuj + 2x′jMjuj),

in which
[
Qj Mj

M′j Rj

]
=
∫∆j

0
e[
A B
0 0 ]

′
s [Q 0

0 R

]
e[
A B
0 0 ]s ds. The matrices

(Aj , Bj , Qj , Rj ,Mj) can be obtained by solving a system of ordi-
nary differential equations (ODE). However, Van Loan [18] showed
that all of these matrices can be found by means of a single matrix
exponentiation

C ,

[
−A′ I 0 0

−A′ Q 0
A B

0

]
, eCτ ,

[
F1(τ) G1(τ) H1(τ) K1(τ)

F2(τ) G2(τ) H2(τ)
F3(τ) G3(τ)

F4(t)

]
,

Aj = F3(∆j), Bj = G3(∆j),

Qj = F ′3(∆j)G2(∆j), Mj = F ′3(∆j)H2(∆j),

Rj = R∆j +
[
B′F ′3(∆j)K1(∆j)

]
+
[
B′F ′3(∆j)K1(∆j)

]′
. (8)

B. LQR discretization for PWLH via matrix exponential

Numerical experience shows that computation of
(Aj , Bj , Qj , Rj ,Mj) for ZOH via matrix exponential formulas (8)
is faster and (typically) more accurate than via an ODE solver. A
similar procedure can be implemented for PWLH. To this aim, in each
interval Ij , we can define an augmented state z , (z(1), z(2)) ∈ R2n,
with z(1)(t) , x(t) and z(2)(t) , u(t)− uj = ηj(t)(vj − uj), and
a constant input wj = (uj , vj) ∈ R2m. The augmented state z(t)
evolves as:

ż = [A B
0 0 ] z +

[
B 0

− Im
∆j

Im
∆j

]
wj , t ∈ Ij .

If we set A∗ , [A B
0 0 ], B∗ ,

[
B 0

− Im
∆j

Im
∆j

]
, Q∗ ,

[
Q 0
0 0

]
and we

define C and its partitioned exponential as in (8) with (A,B,Q)
replaced by (A∗, B∗, Q∗), under PWLH (6) we obtain: zj+1 =
A∗jzj + B∗jwj and `∗j (zj , wj) ,

∫ tj+1

tj
`(x, u)dt = 1

2
(z′jQ

∗
jzj +

w′jRjwj + 2z′jM
∗
j wj), where

A∗j = F3(∆j), B∗j = G3(∆j), Q∗j = F ′3(∆j)G2(∆j),

M∗j = F ′3(∆j)H2(∆j), Rj = (1/6) [ 2R R
R 2R ] ∆j+[

B′F ′3(∆j)K1(∆j)
]

+
[
B′F ′3(∆j)K1(∆j)

]′
. (9)
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Finally, by noticing that z(2)(tj) = 0, we can remove the extra
component z(2) to obtain:

xj+1 = Ajxj +Bjwj , (10)

VT (x, u(·)) =

Jγ−1∑
j=0

`j(xj , wj) + Vf (x(T )),

`j(xj , wj) = 1
2
(x′jQjxj + w′jRjwj + 2x′jMjwj),

where Aj = A∗j 1:n,1:n
, Bj = B∗j 1:n,:

, Qj = Q∗j 1:n,1:n
, Mj =

M∗j 1:n,:
, and Rj is defined in (9). We observe that in (10) the discrete

time evolution of the system under PWLH is still described by a
linear system with the original state xj and an augmented input wj =
(uj , vj).

For the sake of brevity, from now on we focus solely on PWLH,
but all derivations and results will apply directly to ZOH, which can
be seen as a particular PWLH in which wj = (uj , uj).

Given the above premises, let u , (w0, w1, . . . , wJγ−1) be an
augmented input sequence of length Jγ . Thus, problem PγT (x) can
be rewritten as a conventional discrete time CLQR problem:

PγT (x) : min
u∈U2Jγ

V γT (x,u) ,

Jγ−1∑
j=0

`j(xj , wj) + Vf (xJγ )

 ,

s.t. x0 = x and model (10). (11)

Clearly, if u(·) ∈ UγT and u ∈ U2Jγ is its parameterization vector,
then VT (x, u(·)) = V γT (x,u). We observe that V γT : Rn × U2Jγ →
R≥0, and we notice that for each γ and each x, the map u 7→
V γT (x,u) is continuous, differentiable and convex.

IV. LOWER BOUNDS ON OPTIMAL COST OF PT (x) AND
PγT (x)

Exploiting the convexity of both PT (x) and PγT (x), we can obtain
a lower bound of the optimal cost of each problem, given any feasible
input u(·).

A. Lower bound of the continuous time optimal cost

VT : Rn × UT → R≥0 is defined by: VT (x, u(·)) ,∫ T
0
`(xu(t;x)), u(t)dt + Vf (xu(T ;x)), in which xu(t;x) is the

solution of (1b) at time t given that the initial state is x at time 0 and
the control is u(·) ∈ UT . Similarly, the cost due to another control
ν(·) ∈ UT is VT (x, ν(·)) ,

∫ T
0
`(xν(t;x)), ν(t)dt+ Vf (xν(T ;x)).

Let ∆u(·) , ν(·)−u(·) and let ∆x(·) , xν( · ;x)−xu( · ;x) for all
t ∈ [0, T ]. Because `(x, u) = 1

2
(x′Qx+u′Ru) and Vf (x) = 1

2
x′Px,

we can write:

VT (x, ν(·))− VT (x, u(·)) =

∫ T

0

(〈∆x(t), Qxu(t;x)〉+

〈∆u(t), Ru(t)〉)dt+ 〈∆x(T ), Pxu(T )〉+

1
2

∫ T

0

(〈∆x(t), Q∆x(t)〉+ 〈∆u(t), R∆u(t)〉)dt+
1
2
〈∆x(T ), P∆x(T )〉. (12)

The first order terms may be computed in the usual way [19, pp.
148-149]:∫ T

0

〈∆x(t), Qxu(t;x)〉+ 〈∆u(t), Ru(t)〉dt+

〈∆x(T ), Pxu(T ;x)〉 =∫ T

0

〈∇uH(xu(t;x), u(t), λu(t;x)),∆u(t)〉dt,

in which the Hamiltonian H : Rn × Rm × Rn → R is defined by
H(x, u, λ) , `(x, u) +λ′(Ax+Bu), and λu(t;x) is the solution at
time t of the adjoint system:

−λ̇(t) = A′λ(t) +Qxu(t;x), λ(T ) = Pxu(T ;x).

Since Q ≥ 0 and P > 0, for any R∗ ∈ R , {S | 0 ≤ R∗ ≤ R},
we have:

VT (x, ν(·))− VT (x, u(·)) ≥∫ T

0

〈g(x, u(·))(t), (ν(t)− u(t))〉+ 1
2
|ν(t)− u(t)|2R∗dt,

for all ν(·) ∈ UT , in which g(·) is defined by: g(x, u(·))(t) ,
∇uH(xu(t;x), u(t), λu(t;x)).

We now define the optimality function [20] θ : Rn × UT → R≤0

for problem PT (x) as:

θ(x, u(·)) , inf
ν(·)∈UT

∫ T

0

〈g(x, u(·))(t), ν(t)− u(t)〉+

1
2
|ν(t)− u(t)|2R∗dt

=

∫ T

0

min
v∈U
{〈∇uH(xu(t;x), u(t), λu(t;x)), v − u(t)〉+

1
2
|v − u(t)|2R∗}dt, (13)

where the last equality holds as shown in [1] using results in [21,
p.107-108]. Thus, for any ν(·) ∈ UT , we have: VT (x, ν(·)) −
VT (x, u(·)) ≥ θ(x, u(·)). Hence we have proved:

Proposition 4: For any (x, u(·), T ) ∈ Rn × UT × R>0, the
following inequality holds:

V 0
T (x) ≥ VT (x, u(·)) + θ(x, u(·)).

B. Lower bound of the optimal cost for a given partition

In various stages of the algorithm described in § V, it is useful to
have a lower bound on the optimal cost of the discretized problem
PγT (x). Given an input u(·) ∈ UγT defined on a partition γ and its as-
sociated parameterization vector u = (w0, w1, . . . , wJγ−1) ∈ U2Jγ ,
then:

VT (x, u(·)) = V γT (x,u) ,

Jγ−1∑
j=0

( 1
2
〈xj , Qjxj〉+ 1

2
〈wj , Rjwj〉+

〈xj ,Mjwj〉) + 1
2
〈xJγ , PxJγ 〉.

For another ν(·) ∈ UγT , with associated parameterization vector ννν =
(ν0, ν1, . . . , νJγ−1) then:

V γT (x,ννν)− V γT (x,u) =

Jγ−1∑
j=0

(〈∆xj , Qjxj〉+ 〈∆wj , Rjwj〉+

〈∆xj ,Mjwj〉) + 〈∆xJγ , PxJγ 〉+ 1
2

Jγ−1∑
j=0

(〈∆xj , Qj∆xj〉+

〈∆wj , Rj∆wj〉+ 2〈∆xj ,Mj∆wj〉) + 1
2
〈∆xJγ , P∆xJγ 〉. (14)

The first order terms may be computed in the usual way [19, pp.
43-47]:

Jγ−1∑
j=0

(〈∆xj , Qjxj〉+ 〈∆wj , Rjwj〉+ 〈∆xj ,Mjwj〉)+

〈∆xJγ , PxJγ 〉 = 〈gγ(x,u), ννν − u〉,
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in which gγ(x,u) , (gγ0 (x,u), gγ1 (x,u), . . . , gγJγ−1
(x,u)) with:

gγj (x,u) , ∇wjHj(xj , wj , λj+1) = M ′jxj +Rjwj +B′jλj+1,

j ∈ Z0:Jγ−1 , (15)

where Hj : Rn × R2m × Rn → R is the Hamiltonian defined by
Hj(x,w, λ) , `j(x,w) +λ′(Ajx+Bjw) and {λ0, λ1, . . . , λJγ} is
the solution of the discrete time adjoint system:

λj = A′jλj+1 +M ′jwj +Qjxj , λJγ = PxJγ .

The second row of (14) consists of the second order
terms. Forming the Schur complement, we note that:
(〈∆xj , Qj∆xj〉+ 〈∆wj , Rj∆wj〉+ 2〈∆xj ,Mj∆wj〉) ≥
〈∆wj , (Rj −M ′jQ−1

j Mj)∆wj〉. Since P > 0, it follows from (14)
and (15) that, for all ν(·) and u(·) in UγT :

V γT (x,ννν)− V γT (x,u) ≥ 〈gγ(x,u), ννν − u〉+ 1
2
〈ννν − u,R∗(ννν − u)〉,

with R∗ a block diagonal matrix formed by matrices R∗j ∈ Rj ,
{S | 0 ≤ S ≤ Rj −M ′jQ−1

j Mj}, j ∈ Z0:Jγ−1. We now define the
optimality function θγ : Rn × UγT → R≤0 for PγT (x) as:

θγ(x, u(·)) , min
ννν∈U2Jγ

〈gγ(x,u), ννν − u〉+ 1
2
〈ννν − u,R∗(ννν − u)〉 =

Jγ−1∑
j=0

θγj (x, u(·)), (16)

θγj (x, u(·)) , min
w∈U2

〈gγj (x,u), w − wj〉+ 1
2
〈w − wj , R∗j (w − wj)〉.

(17)

Thus, for any ννν ∈ U2Jγ , we have: V γT (x,ννν) − V γT (x,u) ≥
θγ(x, u(·)). Hence we have proved:

Proposition 5: For any (x, u(·), T ) ∈ Rn × UγT × R>0, the
following inequality holds:

V γ,0T (x) ≥ VT (x, u(·)) + θγ(x, u(·)). (18)

Finally, let θδ(x, u(·)) denote θγ(x, u(·)) for the uniform partition
γδ ∈ ΓTδ in which each constituent interval has length δ. Recalling
that for any partition in ΓTδ , all intervals Ij have a length that is a
multiple of δ (or at most equal to δ), we will refer to γδ as the finest
partition.

V. ALGORITHM: CONCEPTUAL DESIGN AND
PRACTICAL IMPLEMENTATION

A. Conceptual algorithm

We solve PγT (x) repeatedly, refining γ at each iteration, until we
obtain a satisfactory solution of P∞(x). We refer to γ̃ ∈ ΓTδ as a
refinement of γ ∈ ΓTδ if some of the intervals {Ĩj} defining γ̃ are
obtained by bisecting one or more intervals in the set {Ij} that defines
γ and if the remaining intervals in γ̃ are the same as the corresponding
ones in γ. If V 0

T (x) and V γ,0T (x) are, respectively, the optimal value
functions of PT (x) and PγT (x) then, clearly V γ,0T (x) ≥ V 0

T (x), for
all x ∈ Rn, all γ ∈ ΓTδ , all permissible δ ∈ (0, T ). Moreover, if γ̃ is
a refinement of γ, it follows that V γ,0T (x) ≥ V γ̃,0T (x). We now state
the (conceptual) optimization algorithm to solve P∞(x).

Algorithm 6 (Conceptual Alg.):
Initialize: δ, ε > 0, γ ∈ ΓTδ , c ∈ (0, 1), T,∆T > 0.

1: Solve PγT (x) yielding control u(·) ∈ UγT and state trajectory x(·).
Compute θδ(x, u(·)).

2: Refine γ (repeatedly if necessary) until θγ(x, u(·)) ≤
cθδ(x, u(·)).

3: If θδ(x, u(·)) ≤ −ε, go to Step 1. Else, go to Step 4.
4: If x(T ) 6∈ Xf , define IJγ = [T, T + ∆T ], and γ ← {γ, IJγ},
T ← T + ∆T , Jγ ← Jγ + 1.

5: Replace ε← ε/2, δ ← δ/2. Go to Step 1.
A procedure for refining γ (repeatedly if necessary) is given in

Section V-B. In Step 5, ε ← ε/2 and δ ← δ/2 may be replaced,
respectively, by ε ← c1ε and δ ← c2δ, with c1 ∈ (0, 1) and c2 =
(1/2)q (with q ∈ Z>0).

Remark 7: The control u(·) ∈ UγT obtained in Step 1 satisfies
θγ(x, u(·)) = 0; if γ̃ is the refined partition obtained in Step 2, and
u(·) is not optimal for Pγ̃T (x), then θγ̃(x, u(·)) < 0.

Remark 8: T is increased in Step 4 if the (implicit) terminal
constraint x(T ) ∈ Xf is not satisfied. As shown later by Theorem 10,
this step occurs only a finite number of iterations.

B. Refinement strategy

Since the length of each interval in the current partition γ is an
even multiple of the current δ and since the length of all intervals in
the refined partition should also be a multiple of δ, the refinement
strategy of Step 2 consists of bisecting each interval with length
greater than or equal to 2δ and selecting a subset whose bisection
satisfies the condition in Step 2.

Suppose the current partition γ consists of the intervals
{I0, I1, ..., IJγ−1}. Because the current u(·) is optimal for PγT (x),
then θγj (x, u(·)) = 0 for all j ∈ Jγ , Z0:Jγ−1. If Ij is bisected,
yielding Ij1 = [tj , tj1] and Ij2 = [tj1, tj+1] with tj1 =

tj+tj+1

2
,

let wj , (uj , vj) be replaced by wj1 = (uj ,
uj+vj

2
) in Ij1 and

wj2 = (
uj+vj

2
, vj) in Ij2, and let xj1 and λj1 denote the value

of x(·) (the current state trajectory) and λ(·) at time tj1. Then the
gradients gγj1(x, u(·)) and gγj2(x, u(·)) of the cost with respect to
wj1 and wj2 may be computed from (15) yielding:

θγ̃j (x, u(·)) , θγ̃j1(x, u(·)) + θγ̃j2(x, u(·)), (19)

where θγ̃j1(x, u(·)) and θγ̃j2(x, u(·)) are defined as in (17), respec-
tively, for Ij1 and Ij2. Notice that θγ̃j (x, u(·)) ≤ 0 is a lower bound
on the cost reduction obtainable by bisecting Ij . Given a candidate
set of intervals to be bisected, J ⊆ Jγ , we obtain: θγ̃(x, u(·)) =∑
j∈J θ

γ̃
j (x, u(·)). By ordering θγ̃j (x, u(·)) in ascending manner, i.e.,

from the most negative to the least negative, J is chosen as the subset
of Jγ with smallest cardinality such that the condition in Step 2 is
satisfied by θγ̃(x, u(·)). If no such J can be found even if all intervals
Ij are bisected, i.e., if J = Jγ , the procedure is repeated with γ
replaced by the partition with every Ij bisected.

C. Practical considerations and algorithm with stopping conditions

The discrete time matrices appearing in the various steps of
Algorithm 6 can be computed and stored offline for a (finite) number
of possible interval sizes, in geometric sequence of ratio 2, using
the formulas of § III. The minimization in (17) is analytic if R∗j
are chosen diagonal, due to the fact that U (and hence U2 also) is
a box constraint set. The choice of R∗j diagonal is always possible,
e.g. R∗j , λmin(Rj − M ′jQ

−1
j Mj)I2m is a valid choice because

0 < R∗j ≤ Rj − M ′jQ
−1
j Mj . For a general polytopic set U, the

minimization in (17) is a small dimensional convex QP, namely in
2m decision variables.

For a given δ, the loop in Steps 1-3 is always exited in a finite num-
ber of iterations because, otherwise, the refinement of γ would reach
γδ and then we would have θγ(x, u(·)) = θδ(x, u(·)) = 0, which
makes the condition to proceed to Steps 4-5 true. However, as written,
Algorithm 6 never terminates because it would keep entering Step 5,
reducing δ (and ε) and then going to Step 1. A practical variant could
terminate after Step 1 and return the computed solution u(·) when
θ(x, u(·)) ≥ −ρ, for a given ρ > 0. By doing so, there is a guarantee
that the achieved cost VT (x, u(·)) satisfies: VT (x, u(·))−V 0

T (x) ≤ ρ.



5

However, evaluation of θ(x, u(·)) from (13) requires computing a
numerical integral of the scalar function ψ : [0, T ] → R≤0 given
by: ψ(t) , minv∈U{〈∇uH(xu(t;x), u(t), λu(t;x)), v − u(t)〉 +
1
2
|v − u(t)|2R∗ , i.e., θ(x, u(·)) ,

∫ T
0
ψ(t)dt. Notice that if R∗ ≤ R

is chosen as a diagonal matrix, the previous minimization can be
performed analytically. Thus, evaluating θ(x, u(·)) and ensuring an
exact bound on the termination error is achievable, but for fast closed-
loop implementations a simpler alternative is to terminate after Step 1
when

θδ(x, u(·)) ≥ −ρ. (20)

In this way the computed solution is guaranteed to satisfy
VT (x, u(·)) − V δ,0T (x) ≤ ρ, i.e., the solution to PγT (x) is a ρ-close
approximation to the problem Pγ

δ

T (x) at the current finest partition
γδ . Notice that ρ should be chosen (significantly) smaller than the
initial value of ε.

VI. PROPERTIES OF THE ALGORITHM

The next result follows from Theorem 3.1 in [22].
Theorem 9: For all (x, T ) ∈ Rn × R>0, u0

T : [0, T ] → U is
Lipschitz continuous.

Let ui(·), xi(·), εi, γi, δi and Ti denote, respectively, the values of
u(·), x(·), ε, γ, δ and T at iteration i of Algorithm 6, where i ∈ Z≥1

increases each time Step 1 is executed.
We can now state the main result, which is proved in [1].
Theorem 10: For each x ∈ X∞, there exists an i∗ ∈ Z≥1 and a

T ∗ ∈ R>0 such that Ti = T ∗ and xi(Ti) ∈ Xf for all i ≥ i∗. Also
VTi(x, ui(·)) → V 0

T∗(x) = V 0
∞(x) and ui(·) → u0

T∗(·) in Lp(T ∗)
for all p ∈ Z≥1 as i → ∞ (with u0

T∗(·) = u0
∞(·) restricted to

[0, T ∗]).
Note that to prove this theorem [1], we do not have to assume that
the largest interval in the partition goes to zero as i→∞.

VII. APPLICATION EXAMPLE

Computations are performed in Matlab (R2012b) on a MacBook
Air (1.8 GHz Intel Core i7, 4 GB of RAM). Problems PγT (x) are
solved using the function quadprog.m 1, in which both input and
state sequences ({wj} and {xj}) are the QP decision variables (see,
e.g., [23]). Timing is measured with the functions tic and toc. The
following performance indicators are considered during the iterations
of Algorithm 6: (i) number of intervals, Jγ ; (ii) continuous time cost
error bound, −θ(x, u(·)); (iii) cumulative solution time (previous and
current iteration).

We consider a stable three-state one-input system defined by
the (continuous time) matrices: A =

[−0.1 0 0
0 −2.0 −6.25
0 4.0 0

]
, B =[

0.25
2.0
0

]
, Q = I3, R = 0.1. Given the initial state x(0) =

[ 1.3440 −4.5850 5.6470 ]′, we consider the first five iterations of Al-
gorithm 6 in three different variants: (i) using PWLH and adaptive
refinement as in § V-B; (ii) using PWLH and fixed refinement in
which all intervals are bisected; (iii) using ZOH and fixed refinement
in which all intervals are bisected. In all cases we use the following
parameters T = 10, c = 0.8, and initial values of δ = 0.125 and
ε = 0.1. The storage of the required discretized matrices, for 11
different interval sizes, takes 7 kB. Comparative results are depicted
in Fig. 1 (left). From these results we observe that: adaptive PWLH is
much more effective and efficient than ZOH as the same solution error
is achieved with fewer intervals and much less computation time. In
order to further examine the efficiency of the adaptive refinement
procedure we depict in Fig. 1 (right) the input u(·) achieved during

1With options: ’interior-point-convex’ algorithm, ’function tol-
erance’ of 10−12 and ’variable tolerance’ of 10−10.

TABLE I
CLOSED-LOOP PERFORMANCE COMPARISON OF CONTINUOUS TIME

CLQR AND DISCRETE TIME MPC. RESULTS ARE AVERAGED OVER 50
CLOSED-LOOP SIMULATIONS OF 20 S, EACH STARTING FROM A DIFFERENT

RANDOM INITIAL STATE.

Controller (TC/Ts) (VCL − V 0
CL)/V

0
CL

Mean Max Mean Max

CTCLQR 1 (ρ = 5 · 10−4, Ts = 1 s) 0.0229 0.1144 – –
CTCLQR 2 (ρ = 5 · 10−3, Ts = 1 s) 0.0178 0.0585 0.0018 0.0053
DTMPC 1 (N = 10, Ts = 1 s) 0.0096 0.0141 0.1223 0.2820
DTMPC 2 (N = 200, Ts = 0.05 s) 0.8141 1.3879 0.0002 0.0012

each iteration of Algorithm 6 using PWLH. In this picture the
partition intervals at each iteration are also reported. It is clear that the
devised adaptive procedure is able to detect which intervals require
(possibly repeated) bisection. The partitions do not have an a-priori
conceivable pattern, e.g. finer in the early part of [0, T ] and gradually
more sparse as assumed in DT MPC implementations with move
blocking. Hence, the algorithm is parsimonious in the use of intervals
and hence of decision variables to solve PγT (x).

Next, we discuss the closed-loop performance of the proposed
continuous time CLQR and compare it with that of standard discrete
time MPC, formulated as in [23] and solved using the function
quadprog.m with same options and tolerances used in solving
problems PγT (x). Every sampling time Ts, given the current state
x, we solve PT (x) and inject the first portion, t ∈ [0, Ts), of the
computed input u(·). Three controllers, which use a sampling time of
Ts = 1s, are compared: CTCLQR 1 and CTCLQR 2 use Algorithm 6
with PWLH and stopping condition (20) for ρ = 5 · 10−4 and
ρ = 5 · 10−3, respectively; DTMPC 1 is a discrete time MPC with
horizon N = 10. DTMPC 2 instead uses a horizon of N = 200
and hence a sampling time of Ts = T/N = 0.05 s. In Table I we
report: the ratio between computation time TC and sampling time Ts,
the closed-loop suboptimality with respect to CTCLQR 1 defined as
(VCL − V 0

CL)/V 0
CL in which VCL =

∫ Tf
0

`(x, u)dt, Tf = 20 s, is
the closed-loop cost achieved with a given controller and V 0

CL is that
achieved with CTCLQR 1. We can observe that CTCLQR 2 has a
small relative suboptimality of (up to 0.53%), whereas DTMPC 1
has a suboptimality (up to 28.2%). By decreasing the sample time,
DTMPC 2 achieves a small suboptimality (up to 0.12%). However,
CTCLQR 1, CTCLQR 2 and DTMPC 1 have computation times
significantly smaller than their sampling time. DTMPC 2, instead,
have computation times similar and even larger than its sampling
time. See [1] for other examples.

VIII. CONCLUSIONS

The method presented in this paper solves the input constrained,
infinite horizon, continuous time linear quadratic regulator problem to
a user specified accuracy. The algorithm is efficient due to the storage
of matrix exponentials for exact solution of the model, cost, and
gradients at several levels of discretization. The storage requirement
for these matrices is minor.

The advantages of finite horizon discrete time linear MPC, and the
reasons for its dominant position in industrial implementations, are
mainly computational. All that is required for implementation is the
solution of a strictly convex, finite dimensional quadratic program,
and standard software exists for solving the QP to near machine
precision in a finite number of iterations. If one wants a controller
with a guarantee of even nominal recursive feasibility and closed-loop
stability, however, more is required. Current theory requires a terminal
penalty and an implicit or explicit terminal constraint. The terminal
constraint restricts the set of feasible initial states that can be handled.
One method to offset this reduction in the feasible set is to increase
the horizon length. Since computational cost increases at least linearly
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Fig. 1. Left: Performance indicators during the first five iterations of Algorithm 6 using PWLH with adaptive refinement (red), PWLH with fixed refinement
(blue), ZOH with fixed refinement (green). Right: Input u(·) computed during the first five iterations of Algorithm 6 using PWLH, and associated (adaptive)
intervals.

with horizon length, this approach creates an unpleasant tradeoff
between the size of the feasible set and computational efficiency. The
same difficult tradeoff applies to the choice of sample time. If chosen
too large, closed-loop performance and robustness to disturbances
degrade; if chosen too small, the horizon and computation time are
excessively large or the feasible set of initial states is excessively
small.

If we can instead solve efficiently the infinite horizon, continuous
time CLQR, then nominal recursive feasibility and closed-loop sta-
bility follow directly, and the CLQR feasible set is the largest set
possible. But can we solve online the infinite horizon problem? As
shown in this paper, the answer is already yes for some systems.
And when computing an infinite horizon solution for a challenging
system, CT offers significant advantages over DT. If a system is
highly constrained and requires a long time to enter the terminal set,
the flexible CT partition requires far fewer decision variables than
DT. When a system displays fast dynamics at constraint switching
times, the CT algorithm automatically locates these times and places
discretization points only in intervals where they are required, which
is not possible with DT MPC.

It remains to be seen whether the CT approach can handle the
largest industrial applications, which currently consist of hundreds or
thousands of state variables. Because all notions of sample time are
removed from the regulation problem, sample time can be chosen
as a design parameter relevant to sensor hardware and robustness
to disturbances, without consideration of the underlying regulation
problem. This comment, of course, presumes that the regulation
computation is several times faster than the desired sampling rate.
Research directed at further improving the online efficiency of solving
the CLQR is therefore always relevant.
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[17] J. W. C. Robinson and P. Ögren, “On the use of gradual dense–sparse
discretizations in receding horizon control,” Opt. Contr. Appl. and Meth.,
2013, DOI: 10.1002/oca.2065.

[18] C. F. Van Loan, “Computing integrals involving the matrix exponential,”
IEEE Trans. Auto. Contr., vol. 23, no. 3, pp. 395–404, 1978.

[19] A. E. Bryson and Y. Ho, Applied Optimal Control. New York:
Hemisphere Publishing, 1975.

[20] E. Polak, Optimization: Algorithms and Consistent Approximations.
Springer Verlag, 1997.

[21] R. B. Vinter, Optimal Control. Boston: Birkhaüser, 2000.
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