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Abstract. In the present paper we consider spectral optimization problems involving the
Schrédinger operator —A + p on R?, the prototype being the minimization of the k-th eigen-
value Ag(p). Here p may be a capacitary measure with prescribed torsional rigidity (like in the
Kohler—Jobin problem) or a classical nonnegative potential V' which satisfies the integral constraint
J V~Pdz < m with 0 < p < 1. We prove the existence of global solutions in R4 and that the optimal
potentials or measures are equal to 400 outside a compact set.
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1. Introduction. In shape optimization problems, as in all general optimization
problems, proving the existence of a solution is a crucial step, which may turn out to
be, in some cases, particularly difficult, due to the lack of compactness of minimizing
sequences. In the case of shape optimization problems of spectral type, the existence
issue was studied by Buttazzo and Dal Maso in [13] (see also [2, 8, 11, 22, 23] for a
survey on the field), who proved that when the competing domains ) are constrained
to stay in a given bounding box D C R¢, the optimization problem for a shape cost
functional F

(1.1) min {F(Q): Q@ C D, |Q <m}

admits a solution, provided the assumptions below are satisfied:
(i) F is lower semicontinuous with respect to a suitable variational convergence
of sets (called ~-convergence, see section 2.5), that is,

F(Q) <liminf F(£2,) whenever ,, — Q;

(ii) F is monotone decreasing with respect to the set inclusion, that is,
F(2) < F() whenever ; C Qs.

Removing the bounded box constraint @ C D in (1.1) creates additional difficul-
ties, and a general existence result, similar to the Buttazzo and Dal Maso one, is not
available. The particular case of spectral optimization problems, in which

F(Q) = 2(\Q)),
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M) = (A1(92), A2(R2), ... ) being the spectrum of the Dirichlet Laplacian in €2, made
by the eigenvalues A (£2) of the operator —A on the space Hj(£2), was considered in
[7] and in [27]. In these papers, by using two different approaches, an optimal solution
for the problem

min {® (A (Q),..., () : QC RY, Q] <m}

is shown to exist, provided @ is increasing in each variable and Lipschitz continuous. In
addition, these solutions are proved to be bounded domains of R of finite perimeter.
In particular, this applies to the case

(1.2) BN) = A,

which provides the optimal shape for the k-th eigenvalue A\, (€2) under the sole volume
constraint.

The purpose of this paper is to consider spectral optimization problems similar
o (1.2), but involving the Schrédinger operator

~A+pu on RY

where g is either a general nonnegative Borel measure absolutely continuous with
respect to capacity (these measures are the so-called capacitary measures and they
may possibly be infinite; see section 2.1) or a classical potential V. The potential
V', which is a nonnegative Borel function in our framework, can be interpreted as a
capacitary measure by setting p = V(x)dz.

In our first main result (Theorem 5.4), we prove that the problem

min {)\k(V) :V>0onRY [ VPdx < m}

Rd
when 0 < p < 1 has a solution and, moreover, that the optimal potential V equals
400 outside a compact set. We remark that the condition f]Rd V~Pdxr < 400 with
0 < p < 1 implies the compactness of the resolvent of the Schrédinger operator with
potential V on R (see Example 3.10 of [9]), so that the corresponding spectrum is
discrete. The techniques we use rely on new tools, such as concentration-compactness
results for capacitary measures (section 3), on the concept of subsolutions for measure
functionals (section 4), and on a De Giorgi type argument (Lemma 4.4).

The second result of the paper is concerned with the minimization of the k-th
eigenvalue under a torsion constraint, in the spirit of the Kohler—Jobin result for the
first eigenvalue (see [25]), precisely,

min{)\k(,u) VIS Mcap(Rd)v Pp) < m} )

where M.ap(R?) is the class of capacitary measures and P(yu) is the torsion of the
measure 4 (see section 2.2). In Theorem 6.2 we prove that optimal capacitary mea-
sures exist and that they are +o00 outside a compact set. Nevertheless, we are not able
to prove that the optimal measure is a domain, as in the particular cases k = 1,2. An
interesting property we use in the proof is concerned with the behavior of the heat
equation solutions in unbounded sets: as soon as the heat source is positive outside a
compact set, the corresponding temperature has the same property.

As final remarks in the introduction, we point out that the results of Theorems 5.4
and 6.2 are valid for a general function of eigenvalues

(A1, M),
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where ® : (R )¥ — R is nondecreasing and locally bi-Lipschitz in each variable. We
chose to present only the case <I>()\1, cee )\k) = )\ for the simplicity of the exposition.
The extension to a general function ® is based on an induction argument which is not
specific to potentials. (See, for instance, [19, Theorem 1.2] for the case of shapes.)

As well, we notice that if one restricts the class of potentials in Theorem 5.4,
e.g., to competing potentials that take the value 4+oco outside a given bounded set
D C R? (so that the corresponding solutions vanish on R?\ D), a recent result (see
[14, Theorem 4.1]) provides the existence of an optimal potential when minimizing a
quite general functional F(V'), which is not necessarily of spectral type. Removing
the boundedness of D introduces the difficulties that we are able here to overcome
only for spectral functionals.

2. Preliminaries.

2.1. Sobolev spaces and capacitary measures. We define the capacity of a
generic set £ C R? as

cap(E) = inf {||ul|} : v € H'(R?), u=1 a.e. in a neighbourhood of E},

where |ul|2: = ||lul|22+|Vul|2.. We say that a property P(z) holds quasi-everywhere
if the set where P(z) does not hold has zero capacity, i.e.,

cap ({z € R?: P(z) does not hold}) = 0.

We say that a function f : R? — R is quasi-continuous if there is a sequence of
open set w, C R? such that

cap(w,) — 0 and f:(R¥\ w,) =R is continuous.

It is well known (see, for example, [24, 21, 29]) that every Sobolev function u € H!(R%)
has a quasi-continuous representative @ : R — R. Moreover, if %, and o are two
quasi-continuous representatives of the same class of equivalence v € H'(R?), then
U = lip quasi-everywhere. From now on we identify the Sobolev space H'(R?) with
the space of quasi-continuous representatives

HY'(RY) = {u :R? — R : u quasi-continuous, / (u® + |Vu|2) dzx < +oo},
Rd

and we note that each element of H'(R?) is a function defined up to a set of zero
capacity. Moreover, we recall that if the sequence u,, € H'(R%) converges in norm to
u € H'(R?), then u,, converges quasi-everywhere (up to a subsequence) to u.

We say that a regular Borel measure (possibly +oo valued) p in R? is a capacitary
measure if

(cap(E) =0) = (w(E) =0)  for every E C R

Remark 2.1. Any measure p which is absolutely continuous with respect to the
Lebesgue measure is a capacitary measure. Indeed, if cap(E) = 0, then |E| = 0 and
so u(E) = 0.

Since the Sobolev functions are defined up to a set of zero capacity, the integral
fRd u?dp is well defined, when p is a capacitary measure, for every u € H'(R?). We
say that the capacitary measures p and v are equivalent if

/ u? dp = / u*dv  for every u € H'(R?).
R4 Rd
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We denote by M.ap(R?) the space obtained as a quotient of the family of capacitary
measures on R? with respect to this equivalence relation. From now on we will
identify a capacitary measure with its class of equivalence (see also [3]). On the space
of capacitary measures M, (R?), there is a partial order, induced by the testing with
Sobolev functions, i.e., we say that u < v if

/ u? dp < / u*dv  for every u € H'(R?).
Rd Rd
We define the Sobolev space H ;1L as
1/mdy 1/mdy . 2

H,(R )—{ueH (R )/u du<+oo}.

As was proved in [13], the space H, ;, equipped with the norm
lullzy, = llullin + ull2,),

is a Hilbert space. Notice that if ;1 < v, then Hﬁ D HL.

A typical example of a capacitary measure is the measure I, associated to a Borel
set )

To(E) = 0 if cap(ENQ°) =0,
¢ | 4oo if cap(ENQC) >0

for every E C R%. For a Borel set © C R, we use the notation Hj(Q) := Hj_ (R?).
We note that (see [8, 24]) if Q) is an open set, then H}(f2) is the usual Sobolev space,
obtained as the closure, with respect to the norm || - | g1, of the smooth functions
with compact support in Q, which we denote by C2°(Q).

In what follows we will often be interested to the action of a capacitary measure
JTRS Mcap(Rd) inside a quasi-open set  C R?.  For this purpose we define the
capacitary measure p V Ig as

w(E) if cap(ENQ°) =0,

ViIg(F) =
p Ia(E) {+oo if cap(ENQ°) > 0.

It is easy to see that uV I € Mcap(Rd) and that the corresponding Sobolev space
satisfies

Hjyr, =H, N Hy(Q).

2.2. Torsional rigidity and torsion function. Let y € My, (RY) and fix
[ e LP(RY) with p € [1,+oc]. For u e H} N LP (R?), where p’ = p/(p — 1), we define

the functional
1 2 1 2
Juflu) == |Vu|”de + = u®dp — fudzx
2 Rd 2 Rd Rd

and the torsional energy of p as

E(p) = inf {Jy1(u) : u € H) N L'(RY)}.
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Since J,,1(0) = 0, we have that E(u) < 0. We call torsion of p the nonnegative
quantity P(u) := —E(u), extending in this way the classical notion of torsional rigidity
of a two-dimensional simply connected domain up to multiplicative constant. We note
that P(u) can be 400, for example, in the case 4 = 0. On the other hand, if u = Iqg
for some set  of finite Lebesgue measure, then P(u) < 400 and the functional J,
has a unique minimizer in H}(Q).

We define the torsion function w, for a generic € Meap(R?) as

w,, = sup wg,
R>0

where wg is the unique minimizer of JMVIBR,la i.e., the solution of

1 1
min —/ |Vu|2dx—|——/ uzdu—/ udr:u € H N Hy(Br) ¢ .
2 Rd 2 Rd Rd K

For every capacitary measure p, we denote by €, the set of finiteness of p (also
known in the literature as the regular set of 1), that is,

Q, = {w# > O}.

In the following we denote by /\/lfap(Rd) the subclass of capacitary measures p whose
torsion P(u) is finite.

The following result was proved in [9] and [28] and relates the integrability of
w, to the finiteness of the torsion P(u) and to the compact embedding of H), into
L' (RY).

THEOREM 2.2. Let pt € Meap(R?) and let wy, be its torsion function. Then the
following conditions are equivalent:

(1) The inclusion H, C LY(R?) is continuous, and there is a constant C > 0

such that

(2.1) ullzr < C(|VulF2 + ||u||2L2(#))1/2 for every u € H),.

(2) The inclusion H), C L' is compact and (2.1) holds.

(3) The torsion function w, is in L*(R%).

(4) The torsion P(u) is finite.
Moreover, if the above conditions hold, then w, € HﬁﬂLl (R9) is the unique minimizer
of Ju1 in Hy and

C? < / wy de = 2P(u).
Rd

Proof. We first prove that (3) and (4) are equivalent.
(3) = (4). Since the functions in H }L N L' with compact support are dense in
Hﬁ N L', we have

inf {J,1(u) :u € HY(RY) N L' RY)} = inf inf {Ju1(u):ue HinR(Rd) NLYRY}
. . 1
(2.2) = zlzgfoj“’l(wR) = Il%gfo{_§/Rd WR da:}

1
= ——/ wy, dr > —0o0,
2 ]Rd
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where the last equality is due to the fact that wg is increasing in R and converges to
w,,. Moreover, we have that w, € H;, N L'(R?) and w,, minimizes .J, ;. Indeed, since
wpg converges to wy, in L'(R?) and wg is uniformly bounded in H}, by the inequality

/|VwR|2dx—|—/ w%dx§2/ wRdx§2/ wy, dz,
R4 R4 R R4

we have that w, € Hllt and J,1(w,) <liminfr o Jy 1 (wR).
(4) = (3). By (2.2), we have that for every R > 0,

/ wrdr < —2inf {J,1(u) 1 u € Hi(Rd) NLYRY} < +oc.
Rd
Taking the limit as R — oo, and taking in consideration again (2.2), we obtain
/ wy dr = —2inf {J,1(u) 1 u € Hi(Rd) N Ll(Rd)} < 4o00.
Rd

Since the implication (2) = (1) is clear, it is sufficient to prove that (1) = (4)
and (3) = (2).

(1) = (4). Let u, € H) be a minimizing sequence for .J,, 1 such that u,, > 0 and
Ju1(u,) <0 for every n € N. Then we have

1 1
5/ |V, | dr + 5/ u? dp < / Up dr < C(||Vun|\%2 + Hu”||2L2(M))1/2,
R4 R4 R4

and so u, is bounded in H}(R%) N L*(R?). Suppose that u is the weak limit of u,, in
H,. Then

[[u|l g < liminf ||uy, || 71, / udr = lim Uy, dz,
H n—00 H Rd n—0o0 |pd

where the last equality is due to the fact that the functional {u — [wdz} is continu-
ous in H}. Thus, u € Hj, N L*(R?) is the (unique, due to the strict convexity of J,,1)
minimizer of J, 1, and so E(u) = inf J, 1 > —oc.

We now prove (3) = (1). Since w, € H} N LY(R?) is the minimizer of J, 1 in

H }L N L'(R?), we have that the following Euler-Lagrange equation holds:
(2.3) Vw, - Vudz + / wyudp = / udz Yu € Hllt(]Rd) N LY(RY).
R Rd Rd

Thus, for every u € Hllt(Rd) N LY (R%), we obtain
1/2 1/2
lullzr < (IVwullZe + lwalZagy) " (IVHlZe + lullizg,)

1/2 1/2
= w2 (IVull2s + l[ull2s(,,))

Since Hllt(Rd) N L' (R%) is dense in Hllt(Rd), we obtain (1).

(3) = (2). Following [9, Theorem 3.2], consider a sequence u, € H,, weakly
converging to zero in H ; and suppose that u,, > 0 for every n € N. Since the injection
HY(R?Y) — L}

lOC(Rd) is locally compact, we only have to prove that for every ¢ > 0
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there is some R > 0 such that fB% up dz < e. Consider the function nr(z) := n(x/R),
where

neCrRY), 0<n<1, n=1onB;, 5n=0onR\Bs.

Testing (2.3) with (1 — ng)u,, we have
/ [unVw, - V(1 =nr) + (1 — nr)Vw, - Vu,)| do + / wy (1 —nr)un du
R4 R4

:/ (1 —nr)uy, dz,
R4

and using the identity || Vng| L~ = R~ V7|1~ and the Cauchy—Schwartz inequality,
we have

[ e < R ez [Vl + 19022 V1203
B

SR
1/2
+ lunllzzo (/ w? du) ,
Bg

which for R large enough gives the desired . O
Remark 2.3. We note that if the conditions of Theorem 2.2 hold, then Hli -

LY(R%) N L? (R%), so that by interpolation H) C LP(R?) for every 1 < p < 2d/(d—2),
and

[ullr < C(||Vull72 + ||u||2L2(M))1/2 for every u € H,,.

Moreover, the embedding is compact.

2.3. Infinity estimates.

LEMMA 2.4. Let i € Meap(R?) and consider a nonnegative function f € LP(R?),
where p € (d/2,400]. Suppose that u € H;QLPI (RY) minimizes J,, y in H) NLY (RY).
Then we have for some constant C, depending on d and p,

1w = 8)* Lo < Clfllol{u > 3PP v >0,

Proof. We first notice that, being u € L¥ (R%), we have
1 /
|{u>t}|§—,/ W s < too V>0,
P Jpa

For every t € (0, ||u||z~) and € > 0, we consider the test function
ue =uAt+(u—t—e)t.

Since uy e <u and Jy, ¢(u) < J, 5(ure), we get

1 1
5/ |Vu|2da:—/ fude < 5/ |Vut,5|2dx—/ furede,
R R4 R R

and after some calculations

1
5/ |Vul? de < / flu—uge) de < 6/ fdx.
{t<u<t+e} R4 {u>t}
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By the co-area formula, for a.e. t > 0 we have
/ IVu|de‘1S2/ fdw < 2||f||ol{u >t}
{u=t} {u>t}
Setting p(t) = |{u > t}|, for a.e. t > 0 we have that

/ 1 d—1
o' (t) = —/ ——dH
2 {u=ty |Vul

-1
- (/ [Vul d’H‘i_l> P({u > t})?
{u=t}
< = flzre®) P Cap(t)? D = —| | Caplt) =D P,

IN

where C} is the constant from the isoperimetric inequality in R?. Setting o = df;z +

1
P
and A = Cy/||f|lL», we have that o < 1 and the solution of the ODE

y'=-Ay",  y(to) = yo,

where ty > 0, is given by

y(t) = (o~ = (1 — a)A(t — 1)) /7.

Note that ¢(t) > 0 for every ¢ > 0, and y(¢) > ¢(¢) if ¢(¢) > 0. Thus, we have that
there is some ty,,x such that ¢(t) = 0 for every t > tmax. Taking yo = ¢(to) = [{u >
to}], we have the estimate

pd 2/d—1/
—t0) T oo < tmax —to < —————— v t P
[(w—t0) " ||z < 0 < (2p—d)CdHfHL {u > to}|
as required. O
PROPOSITION 2.5. Let € ME (RY), d > 2, p € (d/2,40c], and f € LP(R?).

Then there is a unique minimizer uw € H), of the functional J,, ; : H) — R. Moreover,
u satisfies the inequality

(2.4) [ullLee < CP(u)* || £l

for some constants C' and «, depending on the dimension d and the exponent p.
Proof. We first note that for any v € H} such that J, ;(v) <0, we have

[vepdos [ dusz [ fode<2lflulol.
R4 R4 R4

On the other hand, p > d/2 implies p’ < -4, and so p’ € [1, 24). Thus, using (2.1)

with C' = P(u)'/? and an interpolation as in Remark 2.3, we obtain

(2.5) / Vol de + / o dp < CaP ()| 12,
R4 Rd

which in turn implies the existence of a minimizer u of J, ¢, satisfying the same
estimate.

In order to prove (2.4), it is sufficient to consider the case f > 0. In this case the
solution is nonnegative u > 0 (since the minimizer is unique and J, ¢(|u|) < J,, f(u))
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and, by Lemma 2.4, we have that v € L. We set M := |jul/p~ < 400 and again
apply Lemma 2.4 to obtain

M2

M M
= | Or=nd <Ol [ s 0 @< Ol

where we set 8 =2/d —1/p < 1. Thus we obtain
M < C|If oo llull s,

and using (2.5) with v = u, we get (2.4). O
PROPOSITION 2.6. Suppose that i is a capacitary measure such that w, € LY(RY).
Then w,, € L=(RY) and vanishes at infinity:

_2
hwulles < Callwnl 77 and limJw,Lpg [z~ =0,

where Cy is a dimensional constant.
Proof. We set w := w,,. Taking f =1 and p = 400 in Lemma 2.4, we obtain

1(w =)+ ||z < Cal{w > 3>/,
Thus, w € L>®(R?) and setting M = |[w|| =, we have
(M = 1) < O3 {w > 1},
and integrating for ¢t € (0, M|, we get

) M M
2 :/ (M—t)d/zdt§03/2/ w > t}]dt = C¥2|fw, | 11,

which gives the first part of the claim. The second part was proved in [9]. O
2.4. Schrodinger operators for capacitary measures. Suppose that f €

LP(RY) and p € [2,+00]. Arguing as in the proof of the first part of Proposition

2.5, we can show that for every capacitary measure € ML (R?) there is a unique

minimizer wy, ; € H, of the functional .J,, . Moreover, w), ; satisfies

(2.6) Vuw,, ;- Vvdr +/ Wy, fUdp = / fudx for every v € Hi,
R R R

where the last integral is well defined thanks to Remark 2.3. By definition, we say
that w,, ¢ solves the equation

—Awy f+ pwu g =f,  wuy € H,.

Using v = wy, s as a test function in (2.6), we get

[ 9wnsP ot [ pdu= [ wnrfde <1l

which in turn gives that there is a constant C' (depending on the dimension d, on the
exponent p, and on the torsion P(u)) such that

[0 pll o < Cllfllo-
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We call resolvent of p the linear continuous operator
R, - L*(RY) — L*(RY), Ru(f) =wp,z.

Since p € ME,(R?), by Theorem 2.2 the operator R, is compact and so it has a
discrete spectrum 0 < -+ < Ap(p) < -+ < Ao(p) < Ay(p). Thus the spectrum
of the unbounded Schrédinger operator (—A + ), associated to the bilinear form
Qu(w) = [Vull2 + lul2.,,,, is given by

0<Ar(p) <Aa(p) <o S Ag(p) <000

where A\, (1) = Ay (1) ~t. Moreover, we have the variational characterization

Vul? dz + u?d
Ak(#) = min max Jya IV Jps ,u’
SkCHY u€Sy, Jga u? dx

where the minimum is over all k-dimensional subspaces Sy of H ;i
There is a sequence of eigenfunctions u;, € H, i, orthonormal in L?(R?) and satis-
fying

—Aug + ugp = Mg (p)ug, uy, € Hi
Moreover, uj, € L>(R?), and we have the estimate (see [18] and [28])
(2.7) lurl| = < €/ ED g ()1

Remark 2.7 (scaling). Let u € ML _(R?) be a capacitary measure of finite torsion

cap

and let uy € H), be the kth eigenfunction of (—A + ). Then we have
—Auy + pug, = Mg () u,
and rescaling the eigenfunction uy with ¢t > 0, we have
—A(up(z/t) + e (z/t) = 2N (p)uk(z/t), ug(-/t) € Hit,

where the measure y; is defined as p; := t4=2u(-/t), i.e., for every ¢ € L*(u1), we have

[ ot du@) =12 [ od
Repeating the same argument for every eigenfunction, we have that
M (1) = 72Xk ().
Analogously, for the energy function w,, we obtain
~A(w, (/D) + e w, (/1) = 72, wa(/t) € HY,
and, in particular, we have
W @) = Cwu(eft)  and  B(ug) = 2 E(p).

Remark 2.8 (scaling of potentials). We note that if p € Mgp(Rd) is of the form
p = V(z)dz, then p; = Vi(z)dx, where Vi(x) :=t=2V (x/t).



2966 D. BUCUR, G. BUTTAZZO, AND B. VELICHKOV

2.5. The v-distance on the space of capacitary measures. We define the
7-distance between p,v € ML (R?) as

dy (p, V) = [lwp — wy | L1,

where w,, and w, are the torsion functions of u and v, which are integrable by Theorem
2.2. In particular, we say that the sequence of capacitary measures p,, € ./\/lfap(]Rd)
~-converges to p € M{;p
LY(R?) to the energy function w,. It was first proved in [16] and [17] (see also [15]
for a different approach) that if 2 is a bounded open set, then the space of capacitary

measures in

(R9) if the sequence of energy functions Wy, converges in

{ne MELRY) I < p}

is compact and, in particular, complete with respect to the y-distance. Using this
result, it was proved in [6] that the space MZ, (R?) endowed with the distance d., is
complete. (We also refer to [28] for a more direct approach.)

Remark 2.9. The y-convergence implies the norm convergence of the resolvents
R, and the I'-convergence in L?(R?) of the norms || - |11 More precisely, we have
the following:

(i) If the sequence p, € MZ (R?) ~-converges to u € ME (R?), then the

sequence of resolvents R, converges in norm to R, i.e.,

Jim 1Ry, = Bylleqre) = 0.

(i) If the sequence p, € ML (R?) y-converges to p € MZ (R?), then the

cap

sequence of functionals || - [|%,:, : L?(R?) — [0, 400] defined by
pn

e [ g e e
tn +00 otherwise

I-converges to | - [|%. : L2(R%) — [0, +oc], i.e., the following conditions are satisfied:

(I'1) for every sequence u,, € L*(R%), converging in L?(R%) to u € L?(R?), we
have

[l g, < Timinf [jug |,

(I'2) for every u € H }L, there is a sequence u,, € H} | converging to u strongly

fin?
in L2(R9) and such that
Jullzg = T ol

For a proof of these two facts we refer to [28].

Remark 2.10. We note that the y-convergence is not equivalent to the norm
convergence of the resolvent operators R, € £(L?(R?)). In fact, one can construct a
sequence of capacitary measures i, € /\/lf;p (R9) such that
(2.8) lw i =1 and Ry, lleqzaay — 0.

For example, let p,, = I, , where ©Q, is a disjoint union of n balls B, i := B, (z}),
k =1,...,n, of the same radius equal to 7, > 0. Since w,, = > ,_, wry |, We can
choose 7, such that ||w,, ||[;x = 1. Since r,, — 0, as n — oo, we have that

||Run ||£(L2(Rd)) = )\fl(ﬂn) = Cdri — 0,

which completes the construction of the sequence satisfying (2.8).
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2.6. (A — p)-harmonic functions. In order to prove the boundedness of the
local subsolutions for functionals of the form E; — E;, we will need the notion of
(A — p)-harmonic function.

DEFINITION 2.11. Let p € /\/lfap(Rd) be a capacitary measure with finite torsion
and let Bg C R? be a given ball. For every u € H}L, we will denote with h, the
solution of the problem

(2.9) min{/ |Vv|2da:+/ vzdu:vEHlﬁ, u—vEHé(BR)}.
B Br

We will refer to h, as the (A — p)-harmonic function on Br with boundary data u
on OBg.
The following remark summarizes the main properties of the harmonic functions,
which we will use in what follows.
Remark 2.12. Properties of the (A — p)-harmonic functions:
o (Uniqueness) By the strict convexity of the functional in (2.9), we have that
the problem (2.9) has a unique minimizer, i.e., h,, is uniquely determined.
e (First variation) Calculating the first variation of the functional from (2.9),
we have

(2.10) Vhy - Vi dx +/ hypdp=0 Vi € H) N Hj(Bg),
R4 R4

and conversely, if the function h, € H, satisfies (2.10), then it minimizes (2.9).

e (Comparison principle) If u,w € Hﬁ are two functions such that w > u on
OBg, then hy < h,. Indeed, using hy V hy, € Hj and hy, A by, € H), to test
the minimality of h,, and h,, respectively, we get

/ |Vha|? dx—i—/ hZ dp = / |Vh|? dac+/ h dp,
{hu>hw} {hu>hw} {hu>hy} {huw>haw}

which implies that h,, A h,, is also a minimizer of (2.9) and s0 hy A by = hy.

3. Concentration-compactness principle for capacitary measures. In this
section we introduce our main tools for studying the behavior of minimizing sequences
of functionals involving capacitary measures. Our main result is a concentration-
compactness principle for capacitary measures, analogous to the concentration-
compactness theorem proved by Bucur in [6], which was the key argument in the
proof of existence of optimal domains for \; under measure constraint. Before we
state the main theorem, we need some preliminary results. We start by recalling a
classical result due to Lions (see [26]).

THEOREM 3.1. Let (fn)nen be a sequence of nonnegative functions, uniformly
bounded in L*(R?). Then, up to a subsequence, one of the following properties holds:

(1) Concentration. There exists a sequence (zy,)n>1 C R with the property that

for all e > 0 there is some R > 0 such that

sup/ fndr <e.
neENJRI\Bg(zn)

(ii) Vanishing. For each R >0

lim sup/ fndx ] =0.
N0 \ zeRd J Br(z)
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(iii) Dichotomy. For every o > 1, there is a sequence z,, € R and an increasing
sequence R, — +oo such that

"7 JBar, (#n)\Br,, (z5)

lim inf / fndx >0 and lim inf / fndx > 0.
Br,, ($n) Rd\BaRn (1n)

n—roo n—oo

Remark 3.2. Since the inclusion H'(R?) C L}, (R?) is compact, we have that if a

loc
sequence (U, )nen is bounded in L!(R4) N H!(R4) and has the concentration property,

then there is a subsequence converging strongly in L*.
LeEMMA 3.3. Let p € ME _(RY). Then, for every 1 < Ry < Ry < +00, we have

cap
(3.1) dv(u,u\/IBRlLJB%Z) g/ w,, dx + C(Ry? + Ry ?),
B2ry\BR, /2

where the constant C' depends only on the torsion P(u) and the dimension d.
Proof. We first consider the case Ry = +00. We set for simplicity R = Ry,
WR = Wyvi,,, and Nr(r) = n(z/R), where
neCeMRY), 0<n<1l, n=1onB;, 7n=0onR\By.

Then we have

d’Y(H?/L\/IB2R) = /Rd(w# _wQR) dz
:/ wudm+2J#(ng)§/ wy dx + 2, (Rw,.)
R4 R4
:/ |V(7]Rw#)|2dx+/ n%widu—Z/ anﬂda:+/ wy, d
R4 R4 R4 R4

= /Rd (wi|V77R|2 + Vw, - V(m%iwu)) dx + /]Rd nf{wi du

—2/ an#dx—F/ wy, dx

Rd Rd

:/ wi|VnR|2dx+/ n%wudx—2/ ande—k/ wy, dx
Rd Rd Rd Rd

:/ wi|VnR|2dx+/ (1—77R)2wudx
R R

91~
< e lwullze + oy dz,
which concludes the proof. The case Re < 40¢ is analogous. O
LEMMA 3.4. Let p, p/ € ME(R?) be such that ju < /. Then, we have

d—1)/d>
1Ry — Ryl erey < C s (p, )0

where Cg,, is a constant depending only on the dimension d and the torsion P(u).
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Proof. The proof follows the same argument as in [6, Lemma 3.6] and we report
it here for the sake of completeness. Let p > d > 2 and f € LP, f > 0. Then by the
choice of p, we have that R, (f) € L°(R?) and

62) [ IR = Ru(DP da < IR = R (DI [ Bl = By P o

<At [ flw - w) ds
R
< CP I o — wiar [
and so, R, — R,/ is a linear operator from L” to L such that

_ 1
1Ry = Ryl ooy < C P fwyy — w1127,

where, by Proposition 2.5, the constant C' depends on the dimension d and the torsion
T(u) = ||wy|lp:. Since R, — R, is a self-adjoint operator in L?, we can extend it to
an operator on L? . Indeed, let f € L2N LP, where p/ = p/(p — 1). Since L? is the
dual of L? and L2 N L? and and L2 N L are dense, respectively, in L? and Lp/, we
have

IR0 = B Dl =su{ [ (B(0) = B)ado: g € 22022, gl =1}

On the other hand, by the self-adjointness of R, — R, in L?, for f and g as above,
we have

| (Bl = Rutada = | (Rulo) = Fla)) o
< [Rulg) — R ()l Lol f1] o
_ 1
< O P — w7 g o £ o
which gives that for every f € L2 N LV
_ 1
IRu(F) = R (D)o < VP = w20 £l o
and so R, — R, can be extended to a linear operator on L?" such that
_ 1
[ RM'HL‘(LP’;LP’) <ct Up”“’u - wu'HL/pZI)-
By the classical Riesz—Thorin interpolation theorem we get

_ 1
|Ry — Ryl ez < ct l/p”w# - Wy ||L/:/)

— 1/p® -1)/p?
< C Pl 2 oy — w1 E7

Now using the L* estimate on w,,, and taking p = d, we have the claim. d

We are now in position to state the concentration-compactness principle for ca-
pacitary measures. In the theorem below we will use the notion of infimum of two
capacitary measures p and v with disjoint sets of finiteness, i.e., cap(2, N Q,) = 0,
namely,

w(QuNE)+v(Q,NE) if cap (E\ (2,UQ,)) =0,

pAv(E) = {—l—oo if cap (E\ (2,UQ,)) > 0.
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THEOREM 3.5. Let p, € Mgp(Rd) be a sequence of capacitary measures of
uniformly bounded torsion P(uy). Then, up to a subsequence, one of the following
situations occurs:
(i) (Compactness) There is a sequence x,, € R? such that ,(x,+-) v-converges.
(ii) (Vanishing) The sequence of resolvents Ry, converges to zero in the operator
norm of L(L*(R?)). Moreover, we have ||wy,|[L~ — 0 and A (un) — ~+00,
as n — 0.
(iii) (Dichotomy) There are capacitary measures u’ and p? such that
o dist(Q1,9Q,2) = +00, as n — oo, where Q1 and Q2 are the sets of
finiteness defined in section 2.2';
o, <k A 2 for every n € N;
oy (fmy il A pi2) = 0, as n — oo;
IRy, — Rui a2 lloz2y — 0, as n — oo;
Hﬁliﬁ.‘fp(“’ll) >0 and gglixgp(ui) > 0.
Proof. Consider the sequence of corresponding energy functions w,, := w,,, . Since

van||2L2 + HwnH%%#n) = [lwnllpr = 2P(pn),

we have that w, is bounded in H'(R%) N L*(RY). We now apply the concentration
compactness principle (Theorem 3.1) to the sequence wy,.

If the concentration (Theorem 3.1(i)) occurs, then by the compactness of the
embedding H*(RY) c L} (R?), up to a subsequence w, (- + x,) is compact in L'(R%)

loc
for some sequence z,, € R?, and so we have (i).

Suppose now that the vanishing (Theorem 3.1(ii)) holds. We prove that (ii) holds.

Let ¢ € C°(R?%) and let £ > 0. We choose R > e=4*/2(d=1) Jarge enough and N € N
such that for every n > N, we have

/ w, dx < e¥/(@d=1),
Br

By Lemmas 3.3 and 3.4, we have

1R, () = Bupvis, (0)l22 < Cellol| 2

for some constant C', and by the vanishing property,

[ Bunvis, (P)lz < Cellgll 2.

Thus,

1By ()l L2 < 1Ry (9) = Bunvisg (9)lL2 + [ Runvis, (92 < Cellell 2,

and we obtain the strong convergence in (ii).

We now prove that ||wy,|/~ — 0. Suppose by contradiction that there is 6 > 0
and a sequence r,, € R? such that w,(z,) > 6. Since Aw, + 1 > 0 on R? (see
Proposition 3.4 of [12]), we have that the function

r? — |z — 2|

x = wp(T) — 57

1We use the notation dist(A, B) to denote the quantity inf{|z —y|:z € A, y € B}.
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is subharmonic. Thus, choosing r = v/dd, we have

2
r
Wy, dx > wy(x,) — — > 0/2,
‘/Br(wn) 2d

which contradicts Theorem 3.1(ii).
Let u,, € H, in be the first eigenfunction for the operator —A + u,,, normalized in
L*(R%). By (2.7), we have

— Attt = M it < NGt | e < €57y (1) /4,

Suppose that the sequence A1 () is bounded. Then by the weak maximum principle
(see Proposition 3.4 of [12]), we have u,, < Cw, for some constant C. Thus, we have

1= / u? dr < 02/ w? dx < C?||wy]| Lo ||wn || L — 0,
Rd R4

which is a contradiction.
Suppose that the dichotomy (Theorem 3.1(iii)) occurs. Choose v = 8 and let
r, € R and R,, — oo be as in Theorem 3.1(iii). Setting

pn = bV I Bap ) Aa0d = 0 VB e

we have that pl and p2 have disjoint sets of finiteness and it is immediate to check
that

B A = bV Ipyp (20)UBS, (20)-
Since R, — 400, by the estimate (3.1) from Lemma 3.3, we obtain
: 1A 2y
By Lemma 3.4, we have
2)(01—1)/012 -0

liminf | Ry, — Ryt gz | c(zaay) < C Hm dy (s, iy, A pr

where C' is a constant depending on the dimension and on sup,, P ().
For last claim of (iii), we note that by Theorem 3.1(iii)

lim inf Wy dr >0 and lim inf wy, dz,
nreo Bar,, () nreo BZRn (zn)

and, on the other hand, by Lemma 3.3 we have

OS/ wnda:—/ w%de/ wndx—FC'R;Z,
Bar,, (%) R4 Bsr,, \Br,

OS/ wndx—/ w#%dxg/ wndx—i-CR;Z
B¢, (x,) R4 Bsr, \Br,

for some constant C' > 0, which gives the claim since the right-hand side of both
inequalities converges to zero as n — +o0. O

c
4R,
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4. Subsolutions of measure functionals. Consider a functional

F:ME (R =R

cap
We say that the capacitary measure p is a subsolution for F if we have

F(u) < F(v) for every v € ME_(R?) such that u < v.

cap

We say that the capacitary measure p is a local subsolution for F if

Je>0:F(p) <F(v) for every v € ./\/lfap(]Rd) such that ¢ < v and d,(p,v) <e.
In the rest of this section we study the torsion function w, of a subsolution p for a
special class of functionals F. Precisely, we consider spectral functionals with energy
and mass penalization

Flu)=M(w) + P(u)  and  F(u) = M) + / ) de.

where p € (0,1) and 4. denotes the absolute continuous part of u with respect to the
Lebesgue measure. Our main qualitative results, Theorems 4.5 and 4.9, state that if
1 is a subsolution, then it is constantly equal to infinity, outside a compact set. In
other words, the sets of finiteness 2, := {w, > 0} is bounded.

4.1. From spectral to energy functionals. In general, the spectral function-
als are difficult to treat when the aim is to study the qualitative properties of the
optimal measures. This difficulty is due to the fact that the eigenvalues A\(u) are
defined through a min-max principle, which makes any perturbation argument quite
involved. In [7] a technique was introduced that allows us to concentrate only on
energy functionals, at least when we aim to study the boundedness of the set of
finiteness.

The following result is just a slight improvement of [7, Lemma 3], but it is one
of the crucial steps in the proof of existence of optimal measures for spectral-torsion
functionals of the form F(u) = A (1) + P ().

LEMMA 4.1. Let p be a capacitary measure such that w, € LY(RY). Then for
every capacitary measure p < v and every k € N, denoting by A;(p) = Aj%#) the

eigenvalues of the resolvent operator R,, we have for every 1 < j <k
Aj(p) — Aj(v) < K2et/ U \y () @972 / (R, (wu)w, — Ry (wy,)w,,) da.
Rd

Proof. Consider the orthonormal in L2(R?) family of eigenfunctions uy,...,ux €
H}, corresponding to the compact self-adjoint operator R, : L*(R?) — L?(R%). Let
Py be the projection

k

Py L*(RY) —» L*(RY),  Pe(w) =) (/ w; dx) u;.
j=1 VR
Consider the linear space V' = Im(FP;), generated by u1, ..., uy, and the operators T},

and T, on V, defined by

T,=P,oR,0P and T, =P,oR, o Py.
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It is immediate to check that wi,...,ux and Aq(p),..., A1 (u) are the eigenvectors
and the corresponding eigenvalues of T,. On the other hand, for the eigenvalues
A (T), ..., Ak(T),) of T,, we have the 1nequahty

Aj(T,,)SAj(I/) V‘]Zl,,k

Indeed, by the min-max theorem, we have

Pr,oR,oP
Aj(T)) = min  max (P o Ry o zk(u)’u>L2
V;CV ueVulV; llul|72

(B (u), u)r>

= min max

V,cL? ueVulV;  |lull?,
R
< min max M =A;(v),
V;CL? wel2ulV;  ||ul|7.

where with V; we denote a generic (j — 1)-dimensional subspace of L*(R%).
In conclusion, we obtain the estimate

0 < Aj(p) = Aj(v) < Aj(TL) = A (1) < 1Ty = Tollevy

On the other hand, by definition of the norm || - ||z(y), we have

T,—T,)u,u R, — R))u,u
(4'1) HTN _ TyHﬁ(V) _ Sup <( M 2) >L2 — su <( 14 2) >L2
uev l[ullZ2 uev [lullZ
.
= SUp —5— R, (u) — R,(u))udzx.
ey ”u”%2 Rd( #( ) ( ))

Let w € V be the function for which the supremum in the right-hand side of (4.1) is
achieved. We can suppose that ||ul| 2 = 1, i.e., that there are real numbers ag, . .., ay,
such that

u=qoiu; + ...+ opug and a%—l—...—!—ai:l.

Thus, we have

k

@2) T~ Tlew) < [ IR0 = Rofw]-Jul do
k
;aj(ﬁu(uj) (W) (X hut) o

-
LS (S

=1

BN

k

(R
< /Rd(ZlaRuuum ) (im)d%

=
where the last inequality is due to the linearity and the positivity of R, — R,, which
easily follows by the maximum principle. We now recall that by (2.7), we have
lujl| Lo < esw e (@)% for each j = 1,..., k. By the weak maximum principle applied
for u; and w,, we have

(4.3) ;| < e/ N () D ey, for every 1 < j < k.
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Using again the positivity of R, — R, and substituting (4.3) in (4.2), we obtain the
claim. O

For a capacitary measure u € ML (R
with respect to the function f € L?, i.e.,

), we denote by E(u) the Dirichlet energy

Ef(u)—ulggl g = Jpr(Wpf) / Jwp.rs

which can be written in terms of the resolvent R, as

1

(4.4) B =5 |

FRu(f) dee

PROPOSITION 4.2. Suppose that G : ML, (R?Y) — R is a given functional and that
the capacitary measure [ € Mcap(Rd) is a subsolution for the functional F = A\, +G.
Then there is a nonnegative function f € L'(RY)NL>(R?) vanishing at infinity, such
that (1 is a local subsolution for the functional Er(u) + G(u).

Proof. We first note that by Lemma 3.4, we can choose € > 0 such that, for every
ve ME (RY) with p < v and d,(u,v) < e, we have Mg (1) < Mp(v) < 2M,(pn). We

cap
now consider v € ML _(R?) with this property. Since y is a subsolution for F, we

cap
have

G(u) = G(v) < Xe(v) = Ak(w)
<20 (1) (Ak(p) = Ak (v))

+8

AR A1) (B, (1) = Eu, (1),
where the last inequality is due to Lemma 4.1 and the representation (4.4). Note
that for a generic p € L? and t > 0, we have Ey,(u) = t*E,(u). Thus, setting
f = 2kes= /\k(u)#w#, we have the claim. O

4.2. Subsolutions of spectral functionals with mass penalization. In this
subsection we prove that the subsolutions for the functionals of the form

(45) F) = Melp) + [ pocle) ™ da

have bounded sets of finiteness whenever p € (0, 1). Our argument is based on Propo-
sition 4.2 and the following Lemma, which is implicitly contained in [19, Lemma 3.1].

LEMMA 4.3. Suppose that i € Mcap(Rd) s a capacitary measure of finite torsion.
For the half-space H = {x € R? : ¢+ - & > 0}, where the constant ¢ € R and the
vector € € R are given, we have

Gy T) < Sl [ weant= = [ v

RA\ H
—/ wid,u—l—Z/ wy, dz.
RA\ H RA\ H
Proof. For the sake of simplicity, set w := wy,, M = ||w||z=, ¢ = 0, and £ =
(0,...,0,—1). Consider the function
M if 21 < —v/M,

vz, ... 2q) = (ZM (z1 + \/2M)2) if — 2M < a1 <0,

ifOSQIl,

S ol
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and let wy =w Av € Hy(H) N H,,. We have

&y (o 1V Int) = / (W — W) d = 2( (W) — ()

Rd

< 2(Ju(wn) = Ju(w))

S/ |V(wH)|2—|Vw|2dx—/ wzdu+2/ (w —wp)dx
Rd R\ H Rd

g/ |V(wH)|2—|Vw|2dx—/ Vw2 do
{—V2M <z <0} RA\ H

—/ wzdu+2/ (w—wg) dx
R\ H R

§2/ VwH-V(wH—w)da:—l—Z/ (w—wy)dx
{—V2M<z,<0} {—V2M<z,<0}
—/ |Vw|2dx—/ wzdu+2/ wdx
RI\ H RI\ H RI\ H

VU-V(wH—w)dx+2/ (w—wg)dx
{—V2M<z,<0}

—/ |Vw|2dx—/ w2du—|—2/ wdx
RI\H RI\H RI\H

=V8M wdH — Yw|? dx — w?dp+ 2 wdx
vV m
oH R\ H RI\H RA\H

{—V2M<z,<0}

as required. O
The next result has a double implication: on the one side it plays a fundamental
role in the proof of the existence of optimal potentials, and on the other side it gives
a first qualitative result on them. The spirit of the proof follows a classical argument
introduced by De Giorgi, associated to an Alt—Caffarelli truncation argument [1].
LEMMA 4.4. Consider a nonnegative function f € L™(R?) and a real number
€ (0,1). Suppose that p € ME _(R?) is a local subsolution for the functional

cap

Flu) = Ey(p) + /

tac(x) 7P dx.
Rd

Then the set Q,, = {w, > 0} is bounded.
Proof. We first recall that if v € ML _(R?) is such that y < v, then the functional

cap

R, — R, : L*(R?) — L%*(R?) is positive. Thus, we have

1

By(0) = By) = 5 [ (R = TR) dn < G113~ (BW) ~ E().

and so we can restrict our attention to the case f = 1.
For each t € R, we set

H,={z cR?: 2, =1}, Hf ={z Rz > t}, H ={zcR%:z <t}

We prove that there is some ¢ € R such that |H,” N Q| = 0. For the sake of simplicity,
set

w = wy, M = ||\w|| L, and V(z)dx = pge.
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By Lemma 4.3 and the subminimality of €, we have

1 1
—/ |Vw|2dx+—/ w2de+/ VPdr < V2M wde*1+/ w dx
2 H; 2 H; Hf H, H;

for every t € R. We aim to prove that the left-hand side is greater than a power of
J -+ wdz. Indeed, by the Holder and Young inequalities, we have
t

2p ﬁ ﬁ
/ wrtt dx < </ w2de) </ VP dx)
H; H; H;

1
< P w?Vde + —— V7 Pdx.
L+p Jur L+p Jur

If d > 3, using the Hoélder, Sobolev, and Young inequalities, we get

d+2p (1+p)(d+2) (1—p)(d—2)
dTitp 2p 2(d+1+p) 2d 2(d+1+p)
(/ wd;v) <</ wmdx) (/ wd— 2dx)
H; H;
(+p)(d+2) (1-p)d
“2(d+1+p) 2(d+1+p)
(o)™ (e
<(1+p )(d+2) / ( p)d / |Vw|2d;v
~ 2(d+1+p) 2(d+1+p) ’

which finally gives

« p(d + 2) / 9 d+2 _
d < - d _ Pd
</Ht+“’ x) S SRR T L

(1—p)d
+ (d—|—1—|—p)/ |Vwl|? dz

<CVeM | wdH*'+C wdz,

H, H

where a = dcflgfp < 1 and C' is a constant depending on the dimension d and the

exponent p. Setting

we have that

and finally
P(t)” < —CV2M'(t) + Co(t),

which gives that ¢ vanishes in a finite time. Repeating this argument in any direction,
we obtain that the support of w is bounded.
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If d = 2, the same reasoning can be repeated replacing the Sobolev inequality by
313
[ullLs ey < §||“HL1(R2)||VUHL2(R2)~ a

THEOREM 4.5. Suppose that p € ME _(R?) is a subsolution for the functional F

cap

defined in (4.5). Then the set of finiteness Q,, = {w, > 0} is bounded.
Proof. By Proposition 4.2, we have that p is a local subsolution for a functional
of the form Ey(p) + [pa pigs* dz. The conclusion follows by Lemma 4.4. O

4.3. Subsolutions for spectral-torsion functionals. In this subsection we
consider spectral functionals with torsion penalization of the form

(4.6) F(p) = Ai(p) + P(p).

We prove that any subsolution  for F has a bounded set of finiteness Q, = {w,, > 0}.
As in the case of functionals with mass penalization (4.5), we will reduce our study to
subsolutions of energy functionals. Our main instrument in proving the boundedness
of €2, will be the following comparison principle “at infinity.”

LEMMA 4.6. Consider a capacitary measure of finite torsion p € Mgp(Rd),
Suppose that u € Hli is a solution of

—Au—f—uu:f, UEHBD

where f € LY(R?) N L>®(R?) and lim,_,o f(z) = 0. Then, there is some R > 0 large
enough such that u < w, on R4 \ Bgr.

Proof. Set v = u — w,. We will prove that the set {v > 0} is bounded. Taking
vT instead of v and pV I;,~0y instead of p, we note that it is sufficient to restrict our
attention to the case v > 0 on R?. We will prove the Lemma in four steps.

Step 1. There are constants Ry > 0, Cy > 0, and § > 0 such that

1
1+6
(4.7) </ vzwm”)) SCd/ IVolPv?dz Vo € Wy™(B,).
Rd Rd

For any ¢ € W1 >°(R?), we have that vp? € H},
function in

and so we may use it as a test
—Av+pv=f—-1, UEH;;
obtaining the identity
(4.8)
/ |V (pv)|? dz —l—/ ©*v? dp :/ |Vp|?v? dx —l—/ vp?(f —1)dx Ve € WH(RY).
Rd Rd Rd Rd

Let Ry > 0 be large enough such that 1— f > %4_4. Then for any ¢ € W(}’W(Rd\BRO),
we use the Hoélder, Young, and Sobolev’s inequalities together with (4.8) to obtain



2978 D. BUCUR, G. BUTTAZZO, AND B. VELICHKOV

dt2
2d+8 d+4
viparT dr
R4

d—2

4
2 a1 a+a
</ (gov)d*—d2 dx) </ vp? d;v)
R4 R4

d—2
d 2d d 4
< — 2 — >d
_d+4</Rd(tpv)d2 x) +d—|—4 Rdvgp x

<0, </ |V(<pv)|2da:+/ v<p2(1—f)dx)
Rd Rd
< Cd/ |V|?v? da,
Rd

IN

where Cy is a dimensional constant.

Step 2. There is some Ry > 0 such that the function M (r) 1= go—a=r [z v? dH*
is decreasing and convex on the interval (R;, +00).

We first note that for R > 0 large enough, Av > (1 — f)x{u>01 > 0 as an element
of H7Y(B%). Since A(v?) = 2vAv + 2|Vu|?, we get that the function U := v? is
subharmonic on R?\ Bg. Now, the formal derivation of the mean M gives

1
- VU dHI!
) dwgrd—1 /BBTV o

where v,. is the external normal to dB,. Let Ry > 0 be such that 1 > f on R?\ Bg, .
Then for any R; < r < R < 400, we have

M’ (r

dwa(R”TM'(R) — "M (r)) = /8 .

= / AU dx > 0.
Bry\Bry

If we have that M’(r) > 0 for some r > Ry, then M’(R) > 0 for each R > r and
so M is increasing on [r, +00), which is a contradiction of the fact that v (and so,
M) vanishes at infinity. Thus, M'(r) < 0 for all r € (Ry,+o0) and so for every
Ri <7 < R < 400, we have

uR-VUd’Hd’l—/ vy - VU dH?
OB,

R&“HM'(R) — M'(r)) > R©IM'(R) — v~ 1M (r) > 0,

which proves that M’(r) is also increasing.
Step 3. There are constants Ry > 0, C' > 0, and 0 < § < 1/(d — 1) such that the
mean value function M (r) satisfies the differential inequality

(4.9) M(r) < C(r|M' ()] + M) 7 IM ()25 ¥ € (Ra, +00).

We first test the inequality (4.7) with radial functions of the form p(z) = ¢(|z|),
where
r—R

o(ry=0forr <R, o(r)= =)

for R<r < R+e(R), ¢(r)=1forr> R+e(R),

where R > 0 is large enough and ¢(R) > 0 is a given constant. As a consequence, we
obtain

(4.10) (/+OO M (r) dr) - < Cue(R)™2 /R+E(R) r= M (r) dr.

R+e(R) R
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MR) e(R)

R R+&(R) r

R

Fia. 1. We estimate the integral fR +e(R) M(r)dr by the area of the rectangle on the right,

while the integral f;ﬁ(ﬂt) M(r)dr is bounded from below by the area of the triangle on the right.

By Step 2, we have that for R large enough

e M is monotone, i.e., M(r) < M(R) for r > R;

e M is convex, i.e., M(r) > M'(R)(r — R) + M(R) for r > R.
We now take e(R) = %%, ie., 2¢(R) is exactly the distance between (R,0)
and the intersection point of the z-axis with the line tangent to the graph of M in
(R, M(R)) (see Figure 1). With this choice of ¢(R), we estimate both sides of (4.10),
obtaining

(R+6(R))% (EM(R)E(R)) o < Cd(R+5(R))d_ls(R)_2M(R),

which, after substituting (R) with %%, gives (4.9).
Step 4. Each nonnegative (differentiable a.e.) function M (r), which vanishes at
infinity and satisfies the inequality (4.9) for some § > 0 small enough, has compact
support.
Let r € (Ra,+00), where Ry is as in Step 3. We have two cases:
(a—

(a) If r|M'(r)| > M(r), then M(r)<Cir S M ()5
(b) T r|M'(r)| < M(r), then M(r) < Cy|M'(r)["+5 (=952,

Choosing § small enough, we get that in both cases M satisfies the differential
inequality

M(r)'=% < —Cr>M'(r)
for appropriate constants C' > 0 and 0 < 1,02 < 1. After integration, we have
CI o Cllr1752 > M(r)th

for some constants C’, C” > 0, which concludes the proof. d

Remark 4.7. An alternative shorter proof of Lemma 4.6 could be made by using
viscosity solutions. For the sake of completeness, we report this alternative proof in
the appendix.

LEMMA 4.8. Consider a capacitary measure of finite torsion p € Mfap(Rd),
Let f be a bounded measurable function converging to zero at infinity, i.e.,
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Hmp— oo [[fllLee(pe) = 0. If pu is a local subsolution for the functional E¢(u)+ P(p),
then the finiteness set 2, = {w, > 0} is bounded.

Proof. Let v € ML, (R?) be such that 4 < v and d (1, ) < e. The subminimality
of p gives

Ep(p) = E(p) < Ef(v) = E(v),

which can be stated in terms of R, and R, as

(4.11) /R (Ru(1) — fRu(f)) dz < /R (R,(1) = fR,(f)) dz.

Moreover, by considering f/2 instead of f, we can suppose that the above inequality
is strict whenever w,, # w,.

We now show that choosing v = Vv I, for some R large enough, we can obtain
equality in (4.11). Indeed, we have

0= [ (Ru1) = R1) = F(Ru(F) = RA) o
> [ (B0 = Rl) = (Rl ) = Rl 1)) da
= [ () = B0) = (RS~ ) = BulF e 1)
[ (R = R )

B

> [ (Bu) = Ro(1) = (Bl ) = Bl 1)) o
Br

where the last inequality holds for R > 0 large enough and is due to Lemma 4.6. We
now set for simplicity w,u € H ; to be, respectively, the solutions of

—Aw+ pw =1 and — Au+ pu = || f|lLf-
Thus, the functions
hw=Ra(l) ~Ru(1) € H,  and  hy = Ra(|flr=f) = Ru(|fllr=f)

are (A — p)-harmonic on the ball Bg. By the comparison principle, since w > u on
0BpRr, we have that h,, > h,, in Bg. Thus, for R large enough and v = pV Ip,, we
have an equality in (4.11), which gives that w, = w, and so 2, is bounded. d
THEOREM 4.9. Suppose that 1 € Meap(R?) is a subsolution for the functional F
from (4.6). Then the set of finiteness Q,, = {w,, > 0} is bounded.
Proof. By Proposition 4.2, we have that p is a subsolution for a functional of the
form Ef(u) + P(u). By Lemma 4.8, we conclude that €, is bounded. o

5. Optimal potentials for Schrédinger operators. In this subsection we
consider optimization problems for spectral functionals in R%. In particular, we con-
sider the problem

(5.1) min {)\k(V) : Vi R% — [0, +00] measurable, V7Pde = 1},

Rd
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where p € (0,1). In the following proposition we prove that, under the integrability
constraint in (5.1), the spectrum of —A+V is discrete and thus A, (V') is well defined.

PROPOSITION 5.1 (compactness of the embedding H{, < L'). Let V : R? —
[0, +00] be a measurable function such that [y, V™7 dx < 400, where p € (0,1]. Then
the torsion function wy, related to the measure Vdzx, is integrable. In particular, the
embedding H‘l, < LY(R?) is compact and the spectrum of the operator —A + V is
discrete.

Proof. See Example 3.10 in [9]. 0

By Remark 2.8, the cost functional A\x (V) and the constraint [,, V7 dz have the
following rescaling properties:

Me(Vi) =t72\e(V)  and V, P dx = 2T / VP dx,
R4 R4

where
(5.2) Vi(x) := t 72V (z/t).

This rescaling property allows us to make the following remark.
Remark 5.2 (measure penalization). The potential V : R? — [0, 4+oc0] is a solution
of

(5.3) min {)\k(V) +m [ V7 Pde:V:RY =0, +oq] measurable}

Rd

if and only if, for every ¢ > 0, we have that 17,5, defined as in (5.2), is a solution of

min {)\k(V) : Vi R — [0, +o0] measurable, / VPdr = VP dx},
R4

]Rd
and the function
F(t) = t2M(V) + mt2p+d/ VP d
]Rd

achieves its minimum, on the interval (0, +00), in the point ¢ = 1.

In the case k = 1, the existence holds for every p > 0. The following result was
proved in [14].

PROPOSITION 5.3 (Faber-Krahn inequality for potentials). For every p > 0
there is a solution V), of the problem (5.1) with k = 1. Moreover, there is an optimal
potential 'V, given by

1/p
v = </ fuy |20/ 5D dm) fuy | 2/ (147
Rd

where uy is a radially decreasing minimizer of

(r+1)/p
min{ |Vul|? dz + </ |u|?P/ (P+1) d;v) cu € HY(RY), / u? de = 1}.
Ré Rd R4

Moreover, u, has a compact support, and hence the set {V,, < +oc} is a ball of finite
radius in R?.



2982 D. BUCUR, G. BUTTAZZO, AND B. VELICHKOV

We now prove the existence of an optimal potential in the general case k > 2.

THEOREM 5.4. Suppose that p € (0,1). Then, for every k € N, there is a solution
of the problem (5.1). Moreover, any solution V' of (5.1) is constantly equal to +00
outside a ball of finite radius.

Proof. By Remark 5.2, every solution of (5.1) is a solution also of the penal-
ized problem (5.3) for some appropriately chosen Lagrange multiplier m > 0. Thus,
by Theorem 4.5 and Lemma 4.4, we have that if V' is optimal for (5.3), then it is
constantly +oo outside a ball of finite radius.

The proof of the existence part follows by induction on k. The first step &k =1
was proved in Proposition (5.3). We prove the claim for k& > 1, provided that the
existence holds for all 1,...,k — 1.

Let V,, be a minimizing sequence for (5.1). By Proposition 5.1, we have that
the sequence wy, is uniformly bounded in L'(R?) and so, by Theorem 3.5, we have
two possibilities for the sequence of capacitary measures V,dx: compactness and

dichotomy.
If the compactness occurs, then there is a capacitary measure g such that the
sequence V,,dx y-converges to p. The sequence v, := V,, ¥ /% is a bounded sequence

in L?(R%) and so, up to a subsequence, we have that v, converges weakly in L? to
some v € L?(R?). We will prove that the function V := v=2/P is a solution of (5.1).
The function V satisfies the constraint from (5.1), and so it is sufficient to prove the
inequality

(5.4) A(V) < Ap(p) = lm A (Vy),

n—r 00
where the equality is just the continuity of Ax with respect to the v-convergence. Since
Vydx y-converges to p, we have that the sequence of functionals || - || gy, I-converges
in L*(R?) to the functional |- |1 (see Remark 2.9). In particular, for every u € H},
there is a sequence u,, € H‘l/n which converges to u in L?(R?) and is such that

n—oo

(5.5) / |Vu|2da:—|—/ u?dp = lim |Vun|2dx—|—/ uV, dx
R R4 R R

= lim |Vun|2dx—|—/ v ?/P dx
R R

n—oo

Z/ |Vu|2da:—|—/ o ™2/P dx
R4 R

:/ |Vu|2dx—|—/ u?V du,
R? Rd

where the inequality in (5.5) is due to strong-weak lower semicontinuity of integral
functionals (see, for instance, [10]). Thus, for any v € H é, we have that

/qu,uZ/ quda:,
Rd R

and so V' < pu. Since )\ is an increasing functional, we obtain the first inequality in
(5.4), and so V is a solution of (5.1).
If the dichotomy occurs, then we can suppose that V,, = V.t vV V.~ where

LV =YV,I+1/Vr,  dist({V,] < oo}, {V,” <eo}) = +oo.
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Since V,, is minimizing, there is 1 <[ < k — 1 such that
A(Vn) = M(V,F) = A (V).

Taking the solutions V' and V™, respectively, of

min {/\I(V) :V :R% — [0, +00] measurable, / V™Pdr = lim 78 da:},
Rd

n—oo Rd

min {/\kl(V) : Vi RY — [0, +o0] measurable, / V™Pdz = lim V. dx}
Rd n—oo Rd
in such a way that dist({V+ < oco},{V~ < o0}) > 0, we have that V =V AV~ is
a solution of (5.1). O

6. Optimal measures for spectral-torsion functionals. In this section we
consider consider the problem

(6.1) min {Ax(p) : p € Mgp(Rd), P(p) = c},

where ¢ > 0 is a given constant. As in the case of potentials, we can substitute the
constraint by a penalization.

Remark 6.1 (measure penalization). The capacitary measure fi € Mcap(R9) is a
solution of

(6.2) min { Ak () + mP(u) : p € Mip(Rd)}

if and only if, for every ¢t > 0, the capacitary measure fi;, defined as in Remark 2.7, is
a solution of

min { A (p) : p € MEL(RY), P(u) = P(jir)},
and the function
F(t) = 12\ () + i P()

achieves its minimum, on the interval (0, +00), for t = 1.
THEOREM 6.2. For every k € N and ¢ > 0, there is a solution of the problem
(6.1). Moreover, for any solution u of (6.1), there is a ball Br such that Ip,, < p.
Proof. Suppose first that p is a solution of (6.1). By Remark 6.1, p is also
a solution of the problem (6.2) for some constant m > 0. In particular, p is a
subsolution for the functional

F(p) = Ae(p) +mP ().

By Theorem 4.9, we have that the set of finiteness Q, = {w, > 0} is bounded, and
so there is a ball Br such that Ip, < p.

The proof of the existence part follows by induction on k. Suppose that k£ = 1
and let u, be a minimizing sequence for the problem

(6.3) min { A1 (p2) + mP(p) : p € ME (R}

By the concentration-compactness principle (Theorem 3.5), we have two possibilities:
compactness and dichotomy. If the compactness occurs, we have that, up to a sub-
sequence, i, y-converges to some pu € MZE _(RY). Thus, by the continuity of A\; and

cap
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T, we have that u is a solution of (6.3). We now show that the dichotomy cannot
occur. Indeed, if we suppose that , = ut A p,, where uf and p,; have distant sets
of finiteness Qui and u then

A(pn) = min{ Xy (10), M ()} and  E(pn) = E(u)) + E(py, ).
Since, by Theorem 3.5

liminf P(1f) >0  and lim inf P(p,,) > 0,

n—roo n—oo

we obtain that one of the sequences p;f and p., say, u7, is such that
. . + + . .
lim inf { A1 () + mP(py) } < liminf {X1 (1) +mP(pn) },

which is a contradiction, and so the compactness is the only possible case for fi,.

We now prove the claim for k£ > 1, provided that the existence holds for all
1,...,k—1.

Let p, be a minimizing sequence for (5.1). The sequence w,, is uniformly
bounded in L*(R%), and so by Theorem 3.5, we have two possibilities for the sequence
of capacitary measures p,: compactness and dichotomy.

If the compactness occurs, then there is a capacitary measure p such that the
sequence i, y-converges to u, which by the continuity of Ay and the torsion 7" is a
solution of (6.1).

If the dichotomy occurs, then we can suppose that p, = p" A ., where the sets
of finiteness 2 + and € - are such that

dist(Q,+,9Q,-) = +oo,  P(un) = P(u}) + P(uy,),
lim P(u)) >0 and lim P(u, ) > 0.
n—00 n—oo

Since p,, is a minimizing sequence, there is a constant 1 <1 < k — 1 such that

Ak (bn) = Ni(py) = Mot (par,)-

Taking the solutions u™ and p~, respectively, of

min { (1) : 1 € Meap(R), P() = lim_ P(f) },

n—oo

min { \e-o(11) : 11 € Meap(RY), P(u) = Tim P(u;) |
in such a way that dist(,+,Q,-) > 0, we have that © = u™ A ™ is a solution of
(6.1). d

Remark 6.3. The Kohler—Jobin inequality (we refer to [5] and the references
therein for more details on this isoperimetric inequality) states that the ball B, such
that E(B) = ¢, minimizes the first eigenvalue A1 (Q2) under the constraint E(Q) = ¢,
among all open sets  C R?. Since the set {Ig : @ C R? open} € ML, (R?) is dense
in Meap(R?) (see [13]), we have that the measure I solves (6.1) for k = 1.

Open problem. It would be interesting to establish whether the optimal mea-
sure p given by Theorem 6.2 is actually a domain. Some numerical computations
made by Beniamin Bogosel [4] and Ioana Durus [20] seem to indicate that this is true
and that, at least in dimension two and for low k, the optimal set is made by & disjoint
equal disks.
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Appendix A. An alternative proof of Lemma 4.6.

Proof of Lemma 4.6. Set v = v — w,. We will prove that the set {v > 0} is
bounded. Taking v* instead of v and pu V I1y~0y instead of p, we note that it is
sufficient to restrict our attention to the case v > 0 on R%. We now prove that if
v € H'(R?) is a nonnegative function such that

(A1) —Av+pv = f—1, veHi,

where € ML (RY), f € L (RY), and lim o f(x) = 0, then {v > 0} is bounded.

We first prove that there is some Ry > 0 large enough such that the function
v satisfies the inequality Av > 1/2 on R?\ Bg, in the viscosity sense, i.e., for each
r € R\ Bg, and each ¢ € C°°(RY), satisfying v < ¢ and ¢(z) = v(x), we have that
Ap(z) > 1/2.

Suppose that ¢ € C*(R?) is such that v < ¢, p(z) = v(x), and Ap(r) < 1/2—¢.
By modifying ¢ and considering /2 instead of £, we may suppose that, for 6 > 0
small enough, {v+ ¢ > ¢} C Bf and Ap < 1/2 — € on the set {v+J > ¢}. Now
taking (v — ¢ +6)" € H}, as a test function in (A.1), we get that

/(f—l)(v—g0+5)+dx: Vv-V(v—go—i—d)erx—i—/ v(v—p+6)Tdu
Rd

R R4

> Ve -V—p+06)Tdr
R4

= —/Rd(v—<p+5)+A<pda:

> (—%+S)Ad(v—¢+5)+dx,

which gives a contradiction, once we choose Ry > 0 large enough such that f < 1/4
on R?\ Bg,.

For r € (Ro,+00), we consider the function M(r) = supgp v. Then M :
(Ro, +00) — R satisfies the inequality

d—1

(A.2) M"(r)+ ——M'(r) > in the viscosity sense.
r

N =

Indeed, let r € (Rp,+o00) and ¢ € C>°(R) be such that ¢(r) = M(r) and ¢ > M.
Then, taking a point x¢ € 9B, such that v(x) = M (r) (which exists due to the upper
semicontinuity of v) and the function () := ¢(|z|), we have that ¢ € C>(R?),
o(xg) = v(r), and ¢ > v, which implies Ap > 1/2 and so (A.2) holds.

There is a constant g9 > 0, depending on Ry, the dimension d, and ||v||ze, such
that the function ¢ € C°°(R), which solves

d—
S+ =5 o(Re) = 9(Ro + <o) = 2ol

changes sign on the interval (R, Ry + €o). We set
to=sup{t: {M >¢p+t}#0}>0.

Since M is upper semicontinuous, there is some r € (R, Ry + €o) such that M(r) =
o(r) +to and M < ¢ + to, which is a contradiction with (A.2). O
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