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SPECTRAL OPTIMIZATION PROBLEMS FOR POTENTIALS AND
MEASURES∗

DORIN BUCUR†, GIUSEPPE BUTTAZZO‡ , AND BOZHIDAR VELICHKOV§

Abstract. In the present paper we consider spectral optimization problems involving the
Schrödinger operator −Δ + μ on R

d, the prototype being the minimization of the k-th eigen-
value λk(μ). Here μ may be a capacitary measure with prescribed torsional rigidity (like in the
Kohler–Jobin problem) or a classical nonnegative potential V which satisfies the integral constraint∫
V −pdx ≤ m with 0 < p < 1. We prove the existence of global solutions in Rd and that the optimal

potentials or measures are equal to +∞ outside a compact set.
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1. Introduction. In shape optimization problems, as in all general optimization
problems, proving the existence of a solution is a crucial step, which may turn out to
be, in some cases, particularly difficult, due to the lack of compactness of minimizing
sequences. In the case of shape optimization problems of spectral type, the existence
issue was studied by Buttazzo and Dal Maso in [13] (see also [2, 8, 11, 22, 23] for a
survey on the field), who proved that when the competing domains Ω are constrained
to stay in a given bounding box D ⊂ R

d, the optimization problem for a shape cost
functional F

(1.1) min
{
F (Ω) : Ω ⊂ D, |Ω| ≤ m

}
admits a solution, provided the assumptions below are satisfied:

(i) F is lower semicontinuous with respect to a suitable variational convergence
of sets (called γ-convergence, see section 2.5), that is,

F (Ω) ≤ lim inf
n

F (Ωn) whenever Ωn → Ω;

(ii) F is monotone decreasing with respect to the set inclusion, that is,

F (Ω2) ≤ F (Ω1) whenever Ω1 ⊂ Ω2.

Removing the bounded box constraint Ω ⊂ D in (1.1) creates additional difficul-
ties, and a general existence result, similar to the Buttazzo and Dal Maso one, is not
available. The particular case of spectral optimization problems, in which

F (Ω) = Φ
(
λ(Ω)

)
,
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Bourget-Du-Lac, France (dorin.bucur@univ-savoie.fr, http://www.lama.univ-savoie.fr/∼bucur/).
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λ(Ω) =
(
λ1(Ω), λ2(Ω), . . .

)
being the spectrum of the Dirichlet Laplacian in Ω, made

by the eigenvalues λk(Ω) of the operator −Δ on the space H1
0 (Ω), was considered in

[7] and in [27]. In these papers, by using two different approaches, an optimal solution
for the problem

min
{
Φ
(
λ1(Ω), . . . , λk(Ω)

)
: Ω ⊂ R

d, |Ω| ≤ m
}

is shown to exist, provided Φ is increasing in each variable and Lipschitz continuous. In
addition, these solutions are proved to be bounded domains of Rd of finite perimeter.
In particular, this applies to the case

(1.2) Φ(λ) = λk,

which provides the optimal shape for the k-th eigenvalue λk(Ω) under the sole volume
constraint.

The purpose of this paper is to consider spectral optimization problems similar
to (1.2), but involving the Schrödinger operator

−Δ+ μ on R
d,

where μ is either a general nonnegative Borel measure absolutely continuous with
respect to capacity (these measures are the so-called capacitary measures and they
may possibly be infinite; see section 2.1) or a classical potential V . The potential
V , which is a nonnegative Borel function in our framework, can be interpreted as a
capacitary measure by setting μ := V (x)dx.

In our first main result (Theorem 5.4), we prove that the problem

min

{
λk(V ) : V ≥ 0 on R

d,

∫
Rd

V −pdx ≤ m

}
when 0 < p < 1 has a solution and, moreover, that the optimal potential V equals
+∞ outside a compact set. We remark that the condition

∫
Rd V

−pdx < +∞ with
0 < p < 1 implies the compactness of the resolvent of the Schrödinger operator with
potential V on R

d (see Example 3.10 of [9]), so that the corresponding spectrum is
discrete. The techniques we use rely on new tools, such as concentration-compactness
results for capacitary measures (section 3), on the concept of subsolutions for measure
functionals (section 4), and on a De Giorgi type argument (Lemma 4.4).

The second result of the paper is concerned with the minimization of the k-th
eigenvalue under a torsion constraint, in the spirit of the Kohler–Jobin result for the
first eigenvalue (see [25]), precisely,

min
{
λk(μ) : μ ∈ Mcap(R

d), P (μ) ≤ m
}
,

where Mcap(R
d) is the class of capacitary measures and P (μ) is the torsion of the

measure μ (see section 2.2). In Theorem 6.2 we prove that optimal capacitary mea-
sures exist and that they are +∞ outside a compact set. Nevertheless, we are not able
to prove that the optimal measure is a domain, as in the particular cases k = 1, 2. An
interesting property we use in the proof is concerned with the behavior of the heat
equation solutions in unbounded sets: as soon as the heat source is positive outside a
compact set, the corresponding temperature has the same property.

As final remarks in the introduction, we point out that the results of Theorems 5.4
and 6.2 are valid for a general function of eigenvalues

Φ
(
λ1, . . . , λk

)
,
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where Φ : (R+)
k → R is nondecreasing and locally bi-Lipschitz in each variable. We

chose to present only the case Φ
(
λ1, . . . , λk

)
= λk for the simplicity of the exposition.

The extension to a general function Φ is based on an induction argument which is not
specific to potentials. (See, for instance, [19, Theorem 1.2] for the case of shapes.)

As well, we notice that if one restricts the class of potentials in Theorem 5.4,
e.g., to competing potentials that take the value +∞ outside a given bounded set
D ⊂ R

d (so that the corresponding solutions vanish on R
d \D), a recent result (see

[14, Theorem 4.1]) provides the existence of an optimal potential when minimizing a
quite general functional F (V ), which is not necessarily of spectral type. Removing
the boundedness of D introduces the difficulties that we are able here to overcome
only for spectral functionals.

2. Preliminaries.

2.1. Sobolev spaces and capacitary measures. We define the capacity of a
generic set E ⊂ R

d as

cap(E) = inf
{‖u‖2H1 : u ∈ H1(Rd), u = 1 a.e. in a neighbourhood of E

}
,

where ‖u‖2H1 = ‖u‖2L2+‖∇u‖2L2. We say that a property P(x) holds quasi-everywhere
if the set where P(x) does not hold has zero capacity, i.e.,

cap
({
x ∈ R

d : P(x) does not hold
})

= 0.

We say that a function f : Rd → R is quasi-continuous if there is a sequence of
open set ωn ⊂ R

d such that

cap(ωn) → 0 and f : (Rd \ ωn) → R is continuous.

It is well known (see, for example, [24, 21, 29]) that every Sobolev function u ∈ H1(Rd)
has a quasi-continuous representative ũ : Rd → R. Moreover, if ũ1 and ũ2 are two
quasi-continuous representatives of the same class of equivalence u ∈ H1(Rd), then
ũ1 = ũ2 quasi-everywhere. From now on we identify the Sobolev space H1(Rd) with
the space of quasi-continuous representatives

H1(Rd) =

{
u : Rd → R : u quasi-continuous,

∫
Rd

(
u2 + |∇u|2) dx < +∞

}
,

and we note that each element of H1(Rd) is a function defined up to a set of zero
capacity. Moreover, we recall that if the sequence un ∈ H1(Rd) converges in norm to
u ∈ H1(Rd), then un converges quasi-everywhere (up to a subsequence) to u.

We say that a regular Borel measure (possibly +∞ valued) μ in R
d is a capacitary

measure if (
cap(E) = 0

)⇒ (
μ(E) = 0

)
for every E ⊂ R

d.

Remark 2.1. Any measure μ which is absolutely continuous with respect to the
Lebesgue measure is a capacitary measure. Indeed, if cap(E) = 0, then |E| = 0 and
so μ(E) = 0.

Since the Sobolev functions are defined up to a set of zero capacity, the integral∫
Rd u

2 dμ is well defined, when μ is a capacitary measure, for every u ∈ H1(Rd). We
say that the capacitary measures μ and ν are equivalent if∫

Rd

u2 dμ =

∫
Rd

u2 dν for every u ∈ H1(Rd).
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We denote by Mcap(R
d) the space obtained as a quotient of the family of capacitary

measures on R
d with respect to this equivalence relation. From now on we will

identify a capacitary measure with its class of equivalence (see also [3]). On the space
of capacitary measures Mcap(R

d), there is a partial order, induced by the testing with
Sobolev functions, i.e., we say that μ ≺ ν if∫

Rd

u2 dμ ≤
∫
Rd

u2 dν for every u ∈ H1(Rd).

We define the Sobolev space H1
μ as

H1
μ(R

d) =

{
u ∈ H1(Rd) :

∫
u2 dμ < +∞

}
.

As was proved in [13], the space H1
μ, equipped with the norm

‖u‖2H1
μ
= ‖u‖2H1 + ‖u‖2L2(μ),

is a Hilbert space. Notice that if μ ≺ ν, then H1
μ ⊃ H1

ν .

A typical example of a capacitary measure is the measure IΩ associated to a Borel
set Ω

IΩ(E) =

{
0 if cap(E ∩ Ωc) = 0,

+∞ if cap(E ∩ Ωc) > 0

for every E ⊂ R
d. For a Borel set Ω ⊂ R

d, we use the notation H1
0 (Ω) := H1

IΩ
(Rd).

We note that (see [8, 24]) if Ω is an open set, then H1
0 (Ω) is the usual Sobolev space,

obtained as the closure, with respect to the norm ‖ · ‖H1 , of the smooth functions
with compact support in Ω, which we denote by C∞

c (Ω).

In what follows we will often be interested to the action of a capacitary measure
μ ∈ Mcap(R

d) inside a quasi-open set Ω ⊂ R
d. For this purpose we define the

capacitary measure μ ∨ IΩ as

μ ∨ IΩ(E) =

{
μ(E) if cap(E ∩Ωc) = 0,

+∞ if cap(E ∩Ωc) > 0.

It is easy to see that μ ∨ IΩ ∈ Mcap(R
d) and that the corresponding Sobolev space

satisfies

H1
μ∨IΩ = H1

μ ∩H1
0 (Ω).

2.2. Torsional rigidity and torsion function. Let μ ∈ Mcap(R
d) and fix

f ∈ Lp(Rd) with p ∈ [1,+∞]. For u ∈ H1
μ ∩ Lp′

(Rd), where p′ = p/(p− 1), we define
the functional

Jμ,f (u) =
1

2

∫
Rd

|∇u|2 dx +
1

2

∫
Rd

u2 dμ−
∫
Rd

fu dx

and the torsional energy of μ as

E(μ) = inf
{
Jμ,1(u) : u ∈ H1

μ ∩ L1(Rd)
}
.
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Since Jμ,1(0) = 0, we have that E(μ) ≤ 0. We call torsion of μ the nonnegative
quantity P (μ) := −E(μ), extending in this way the classical notion of torsional rigidity
of a two-dimensional simply connected domain up to multiplicative constant. We note
that P (μ) can be +∞, for example, in the case μ ≡ 0. On the other hand, if μ = IΩ
for some set Ω of finite Lebesgue measure, then P (μ) < +∞ and the functional Jμ,1
has a unique minimizer in H1

0 (Ω).
We define the torsion function wμ for a generic μ ∈ Mcap(R

d) as

wμ = sup
R>0

wR,

where wR is the unique minimizer of Jμ∨IBR
,1, i.e., the solution of

min

{
1

2

∫
Rd

|∇u|2 dx +
1

2

∫
Rd

u2 dμ−
∫
Rd

u dx : u ∈ H1
μ ∩H1

0 (BR)

}
.

For every capacitary measure μ, we denote by Ωμ the set of finiteness of μ (also
known in the literature as the regular set of μ), that is,

Ωμ =
{
wμ > 0

}
.

In the following we denote by MP
cap(R

d) the subclass of capacitary measures μ whose
torsion P (μ) is finite.

The following result was proved in [9] and [28] and relates the integrability of
wμ to the finiteness of the torsion P (μ) and to the compact embedding of H1

μ into

L1(Rd).
Theorem 2.2. Let μ ∈ Mcap(R

d) and let wμ be its torsion function. Then the
following conditions are equivalent:

(1) The inclusion H1
μ ⊂ L1(Rd) is continuous, and there is a constant C > 0

such that

(2.1) ‖u‖L1 ≤ C
(‖∇u‖2L2 + ‖u‖2L2(μ)

)1/2
for every u ∈ H1

μ.

(2) The inclusion H1
μ ⊂ L1 is compact and (2.1) holds.

(3) The torsion function wμ is in L1(Rd).
(4) The torsion P (μ) is finite.

Moreover, if the above conditions hold, then wμ ∈ H1
μ∩L1(Rd) is the unique minimizer

of Jμ,1 in H1
μ and

C2 ≤
∫
Rd

wμ dx = 2P (μ).

Proof. We first prove that (3) and (4) are equivalent.
(3) ⇒ (4). Since the functions in H1

μ ∩ L1 with compact support are dense in
H1

μ ∩ L1, we have

inf
{
Jμ,1(u) : u ∈ H1

μ(R
d) ∩ L1(Rd)

}
= inf

R>0
inf
{
Jμ,1(u) : u ∈ H1

μ∨IBR
(Rd) ∩ L1(Rd)

}
= inf

R>0
Jμ,1(wR) = inf

R>0

{
−1

2

∫
Rd

wR dx

}
(2.2)

= −1

2

∫
Rd

wμ dx > −∞,
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where the last equality is due to the fact that wR is increasing in R and converges to
wμ. Moreover, we have that wμ ∈ H1

μ ∩L1(Rd) and wμ minimizes Jμ,1. Indeed, since

wR converges to wμ in L1(Rd) and wR is uniformly bounded in H1
μ by the inequality∫

Rd

|∇wR|2 dx +

∫
Rd

w2
R dx ≤ 2

∫
Rd

wR dx ≤ 2

∫
Rd

wμ dx,

we have that wμ ∈ H1
μ and Jμ,1(wμ) ≤ lim infR→∞ Jμ,1(wR).

(4) ⇒ (3). By (2.2), we have that for every R > 0,∫
Rd

wR dx ≤ −2 inf
{
Jμ,1(u) : u ∈ H1

μ(R
d) ∩ L1(Rd)

}
< +∞.

Taking the limit as R → ∞, and taking in consideration again (2.2), we obtain∫
Rd

wμ dx = −2 inf
{
Jμ,1(u) : u ∈ H1

μ(R
d) ∩ L1(Rd)

}
< +∞.

Since the implication (2) ⇒ (1) is clear, it is sufficient to prove that (1) ⇒ (4)
and (3) ⇒ (2).

(1) ⇒ (4). Let un ∈ H1
μ be a minimizing sequence for Jμ,1 such that un ≥ 0 and

Jμ,1(un) ≤ 0 for every n ∈ N. Then we have

1

2

∫
Rd

|∇un|2 dx+
1

2

∫
Rd

u2n dμ ≤
∫
Rd

un dx ≤ C
(‖∇un‖2L2 + ‖un‖2L2(μ)

)1/2
,

and so un is bounded in H1
μ(R

d) ∩L1(Rd). Suppose that u is the weak limit of un in
H1

μ. Then

‖u‖H1
μ
≤ lim inf

n→∞ ‖un‖H1
μ
,

∫
Rd

u dx = lim
n→∞

∫
Rd

un dx,

where the last equality is due to the fact that the functional
{
u �→ ∫

u dx
}
is continu-

ous in H1
μ. Thus, u ∈ H1

μ ∩L1(Rd) is the (unique, due to the strict convexity of Jμ,1)
minimizer of Jμ,1, and so E(μ) = inf Jμ,1 > −∞.

We now prove (3) ⇒ (1). Since wμ ∈ H1
μ ∩ L1(Rd) is the minimizer of Jμ,1 in

H1
μ ∩ L1(Rd), we have that the following Euler–Lagrange equation holds:

(2.3)

∫
Rd

∇wμ · ∇u dx+
∫
Rd

wμu dμ =

∫
Rd

u dx ∀u ∈ H1
μ(R

d) ∩ L1(Rd).

Thus, for every u ∈ H1
μ(R

d) ∩ L1(Rd), we obtain

‖u‖L1 ≤ (‖∇wμ‖2L2 + ‖wμ‖2L2(μ)

)1/2(‖∇u‖2L2 + ‖u‖2L2(μ)

)1/2
= ‖wμ‖1/2L1

(‖∇u‖2L2 + ‖u‖2L2(μ)

)1/2
.

Since H1
μ(R

d) ∩ L1(Rd) is dense in H1
μ(R

d), we obtain (1).
(3) ⇒ (2). Following [9, Theorem 3.2], consider a sequence un ∈ H1

μ weakly
converging to zero in H1

μ and suppose that un ≥ 0 for every n ∈ N. Since the injection

H1(Rd) ↪→ L1
loc(R

d) is locally compact, we only have to prove that for every ε > 0
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there is some R > 0 such that
∫
Bc

R
un dx ≤ ε. Consider the function ηR(x) := η(x/R),

where

η ∈ C∞
c (Rd), 0 ≤ η ≤ 1, η = 1 on B1, η = 0 on R

d \B2.

Testing (2.3) with (1− ηR)un, we have∫
Rd

[
un∇wμ · ∇(1− ηR) + (1− ηR)∇wμ · ∇un)

]
dx +

∫
Rd

wμ(1− ηR)un dμ

=

∫
Rd

(1 − ηR)un dx,

and using the identity ‖∇ηR‖L∞ = R−1‖∇η‖L∞ and the Cauchy–Schwartz inequality,
we have ∫

Bc
2R

un dx ≤ R−1‖un‖L2‖∇wμ‖L2 + ‖∇un‖L2‖∇wμ‖L2(Bc
R)

+ ‖un‖L2(μ)

(∫
Bc

R

w2
μ dμ

)1/2

,

which for R large enough gives the desired ε.
Remark 2.3. We note that if the conditions of Theorem 2.2 hold, then H1

μ ⊂
L1(Rd)∩L2∗(Rd), so that by interpolation H1

μ ⊂ Lp(Rd) for every 1 ≤ p < 2d/(d−2),
and

‖u‖Lp ≤ C
(‖∇u‖2L2 + ‖u‖2L2(μ)

)1/2
for every u ∈ H1

μ.

Moreover, the embedding is compact.

2.3. Infinity estimates.
Lemma 2.4. Let μ ∈ Mcap(R

d) and consider a nonnegative function f ∈ Lp(Rd),

where p ∈ (d/2,+∞]. Suppose that u ∈ H1
μ∩Lp′

(Rd) minimizes Jμ,f in H1
μ∩Lp′

(Rd).
Then we have for some constant C, depending on d and p,

‖(u− t)+‖L∞ ≤ C‖f‖Lp|{u > t}|2/d−1/p ∀t ≥ 0.

Proof. We first notice that, being u ∈ Lp′
(Rd), we have

|{u > t}| ≤ 1

tp′

∫
Rd

up
′
dx < +∞ ∀t > 0.

For every t ∈ (0, ‖u‖L∞) and ε > 0, we consider the test function

ut,ε = u ∧ t+ (u − t− ε)+.

Since ut,ε ≤ u and Jμ,f (u) ≤ Jμ,f (ut,ε), we get

1

2

∫
Rd

|∇u|2 dx−
∫
Rd

fu dx ≤ 1

2

∫
Rd

|∇ut,ε|2 dx −
∫
Rd

fut,ε dx,

and after some calculations

1

2

∫
{t<u≤t+ε}

|∇u|2 dx ≤
∫
Rd

f (u− ut,ε) dx ≤ ε

∫
{u>t}

f dx.
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By the co-area formula, for a.e. t > 0 we have∫
{u=t}

|∇u| dHd−1 ≤ 2

∫
{u>t}

f dx ≤ 2‖f‖Lp|{u > t}|1/p′
.

Setting ϕ(t) = |{u > t}|, for a.e. t > 0 we have that

ϕ′(t) = −
∫
{u=t}

1

|∇u| dH
d−1

≤ −
(∫

{u=t}
|∇u| dHd−1

)−1

P ({u > t})2

≤ −‖f‖−1
Lpϕ(t)

−1+1/pCdϕ(t)
2(d−1)/d = −‖f‖−1

LpCdϕ(t)
(d−2)/d+1/p,

where Cd is the constant from the isoperimetric inequality in R
d. Setting α = d−2

d + 1
p

and A = Cd/‖f‖Lp, we have that α < 1 and the solution of the ODE

y′ = −Ayα, y(t0) = y0,

where t0 > 0, is given by

y(t) =
(
y1−α
0 − (1 − α)A(t− t0)

)1/(1−α)
.

Note that φ(t) ≥ 0 for every t ≥ 0, and y(t) ≥ φ(t) if φ(t) > 0. Thus, we have that
there is some tmax such that φ(t) = 0 for every t ≥ tmax. Taking y0 = φ(t0) = |{u >
t0}|, we have the estimate

‖(u− t0)
+‖L∞ ≤ tmax − t0 ≤ pd

(2p− d)Cd
‖f‖Lp|{u > t0}|2/d−1/p,

as required.
Proposition 2.5. Let μ ∈ MP

cap(R
d), d ≥ 2, p ∈ (d/2,+∞], and f ∈ Lp(Rd).

Then there is a unique minimizer u ∈ H1
μ of the functional Jμ,f : H1

μ → R. Moreover,
u satisfies the inequality

(2.4) ‖u‖L∞ ≤ CP (μ)α‖f‖Lp

for some constants C and α, depending on the dimension d and the exponent p.
Proof. We first note that for any v ∈ H1

μ such that Jμ,f (v) ≤ 0, we have∫
Rd

|∇v|2 dx +

∫
Rd

v2 dμ ≤ 2

∫
Rd

fv dx ≤ 2‖f‖Lp‖v‖Lp′ .

On the other hand, p > d/2 implies p′ < d
d−2 , and so p′ ∈ [1, 2d

d−2 ). Thus, using (2.1)

with C = P (μ)1/2 and an interpolation as in Remark 2.3, we obtain

(2.5)

∫
Rd

|∇v|2 dx+

∫
Rd

v2 dμ ≤ CdP (μ)
α‖f‖2Lp,

which in turn implies the existence of a minimizer u of Jμ,f , satisfying the same
estimate.

In order to prove (2.4), it is sufficient to consider the case f ≥ 0. In this case the
solution is nonnegative u ≥ 0 (since the minimizer is unique and Jμ,f (|u|) ≤ Jμ,f (u))
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and, by Lemma 2.4, we have that u ∈ L∞. We set M := ‖u‖L∞ < +∞ and again
apply Lemma 2.4 to obtain

M2

2
=

∫ M

0

(M − t) dt ≤ C‖f‖Lp

∫ M

0

|{u > t}|β dt ≤ C‖f‖LpM1−β‖u‖βL1,

where we set β = 2/d− 1/p ≤ 1. Thus we obtain

M1+β ≤ C‖f‖Lp‖u‖βL1,

and using (2.5) with v = u, we get (2.4).
Proposition 2.6. Suppose that μ is a capacitary measure such that wμ ∈ L1(Rd).

Then wμ ∈ L∞(Rd) and vanishes at infinity:

‖wμ‖L∞ ≤ Cd‖wμ‖
2

d+2

L1 and lim
R→∞

‖wμ�Bc
R
‖L∞ = 0,

where Cd is a dimensional constant.
Proof. We set w := wμ. Taking f ≡ 1 and p = +∞ in Lemma 2.4, we obtain

‖(w − t)+‖L∞ ≤ Cd|{w > t}|2/d.
Thus, w ∈ L∞(Rd) and setting M = ‖w‖L∞ , we have

(M − t)d/2 ≤ C
d/2
d |{w > t}|,

and integrating for t ∈ (0,M ], we get

2

2 + d
M

d+2
2 =

∫ M

0

(M − t)d/2 dt ≤ C
d/2
d

∫ M

0

|{w > t}| dt = C
d/2
d ‖wμ‖L1,

which gives the first part of the claim. The second part was proved in [9].

2.4. Schrödinger operators for capacitary measures. Suppose that f ∈
Lp(Rd) and p ∈ [2,+∞]. Arguing as in the proof of the first part of Proposition
2.5, we can show that for every capacitary measure μ ∈ MP

cap(R
d) there is a unique

minimizer wμ,f ∈ H1
μ of the functional Jμ,f . Moreover, wμ,f satisfies

(2.6)

∫
Rd

∇wμ,f · ∇v dx+

∫
Rd

wμ,fv dμ =

∫
Rd

fv dx for every v ∈ H1
μ,

where the last integral is well defined thanks to Remark 2.3. By definition, we say
that wμ,f solves the equation

−Δwμ,f + μwμ,f = f, wμ,f ∈ H1
μ.

Using v = wμ,f as a test function in (2.6), we get∫
Rd

|∇wμ,f |2 dx+

∫
Rd

w2
μ,f dμ =

∫
Rd

wμ,ff dx ≤ ‖f‖Lp‖wμ,f‖Lp′ ,

which in turn gives that there is a constant C (depending on the dimension d, on the
exponent p, and on the torsion P (μ)) such that

‖wμ,f‖Lp′ ≤ C‖f‖Lp .
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We call resolvent of μ the linear continuous operator

Rμ : L2(Rd) → L2(Rd), Rμ(f) = wμ,f .

Since μ ∈ MP
cap(R

d), by Theorem 2.2 the operator Rμ is compact and so it has a
discrete spectrum 0 ≤ · · · ≤ Λk(μ) ≤ · · · ≤ Λ2(μ) ≤ Λ1(μ). Thus the spectrum
of the unbounded Schrödinger operator (−Δ + μ), associated to the bilinear form
Qμ(u) := ‖∇u‖2L2 + ‖u‖2L2(μ), is given by

0 < λ1(μ) ≤ λ2(μ) ≤ · · · ≤ λk(μ) ≤ · · · ,
where λk(μ) = Λk(μ)

−1. Moreover, we have the variational characterization

λk(μ) = min
Sk⊂H1

μ

max
u∈Sk

∫
Rd |∇u|2 dx+

∫
Rd u

2 dμ∫
Rd u2 dx

,

where the minimum is over all k-dimensional subspaces Sk of H1
μ.

There is a sequence of eigenfunctions uk ∈ H1
μ, orthonormal in L2(Rd) and satis-

fying

−Δuk + ukμ = λk(μ)uk, uk ∈ H1
μ.

Moreover, uk ∈ L∞(Rd), and we have the estimate (see [18] and [28])

(2.7) ‖uk‖L∞ ≤ e1/(8π)λk(μ)
d/4.

Remark 2.7 (scaling). Let μ ∈ MP
cap(R

d) be a capacitary measure of finite torsion
and let uk ∈ H1

μ be the kth eigenfunction of (−Δ+ μ). Then we have

−Δuk + μuk = λk(μ)uk,

and rescaling the eigenfunction uk with t > 0, we have

−Δ
(
uk(x/t)

)
+ μtuk(x/t) = t−2λk(μ)uk(x/t), uk(·/t) ∈ H1

μt
,

where the measure μt is defined as μt := td−2μ(·/t), i.e., for every φ ∈ L1(μ), we have∫
Rd

φ(x/t) dμt(x) := td−2

∫
Rd

φdμ.

Repeating the same argument for every eigenfunction, we have that

λk(μt) = t−2λk(μ).

Analogously, for the energy function wμ, we obtain

−Δ
(
wμ(x/t)

)
+ td−2μ(x/t)wμ(x/t) = t−2, wμ(·/t) ∈ H1

μt
,

and, in particular, we have

wμt(x) = t2wμ(x/t) and E(μt) = td+2E(μ).

Remark 2.8 (scaling of potentials). We note that if μ ∈ MP
cap(R

d) is of the form
μ = V (x)dx, then μt = Vt(x)dx, where Vt(x) := t−2V (x/t).
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2.5. The γ-distance on the space of capacitary measures. We define the
γ-distance between μ, ν ∈ MP

cap(R
d) as

dγ(μ, ν) = ‖wμ − wν‖L1 ,

where wμ and wν are the torsion functions of μ and ν, which are integrable by Theorem
2.2. In particular, we say that the sequence of capacitary measures μn ∈ MP

cap(R
d)

γ-converges to μ ∈ MP
cap(R

d) if the sequence of energy functions wμn converges in

L1(Rd) to the energy function wμ. It was first proved in [16] and [17] (see also [15]
for a different approach) that if Ω is a bounded open set, then the space of capacitary
measures in Ω {

μ ∈ MP
cap(R

d) : IΩ ≺ μ
}

is compact and, in particular, complete with respect to the γ-distance. Using this
result, it was proved in [6] that the space MP

cap(R
d) endowed with the distance dγ is

complete. (We also refer to [28] for a more direct approach.)
Remark 2.9. The γ-convergence implies the norm convergence of the resolvents

Rμ and the Γ-convergence in L2(Rd) of the norms ‖ · ‖H1
μ
. More precisely, we have

the following:
(i) If the sequence μn ∈ MP

cap(R
d) γ-converges to μ ∈ MP

cap(R
d), then the

sequence of resolvents Rμn converges in norm to Rμ, i.e.,

lim
n→∞ ‖Rμn −Rμ‖L(L2(Rd)) = 0.

(ii) If the sequence μn ∈ MP
cap(R

d) γ-converges to μ ∈ MP
cap(R

d), then the

sequence of functionals ‖ · ‖2H1
μn

: L2(Rd) → [0,+∞] defined by

‖u‖2H1
μn

=

{
‖∇u‖2L2 + ‖u‖2L2(μn) + ‖u‖2L2 if u ∈ H1

μn
,

+∞ otherwise

Γ-converges to ‖ · ‖2H1
μ
: L2(Rd) → [0,+∞], i.e., the following conditions are satisfied:

(Γ1) for every sequence un ∈ L2(Rd), converging in L2(Rd) to u ∈ L2(Rd), we
have

‖u‖H1
μ
≤ lim inf

n→∞ ‖un‖H1
μn

;

(Γ2) for every u ∈ H1
μ, there is a sequence un ∈ H1

μn
, converging to u strongly

in L2(Rd) and such that

‖u‖H1
μ
= lim

n→∞ ‖un‖H1
μn
.

For a proof of these two facts we refer to [28].
Remark 2.10. We note that the γ-convergence is not equivalent to the norm

convergence of the resolvent operators Rμ ∈ L(L2(Rd)). In fact, one can construct a
sequence of capacitary measures μn ∈ MP

cap(R
d) such that

(2.8) ‖wμn‖L1 = 1 and ‖Rμn‖L(L2(Rd)) → 0.

For example, let μn = IΩn , where Ωn is a disjoint union of n balls Bn,k := Brn(x
n
k ),

k = 1, . . . , n, of the same radius equal to rn > 0. Since wμn =
∑n

k=1 wIBn,k
, we can

choose rn such that ‖wμn‖L1 = 1. Since rn → 0, as n→ ∞, we have that

‖Rμn‖L(L2(Rd)) = λ−1
1 (μn) = Cdr

2
n → 0,

which completes the construction of the sequence satisfying (2.8).
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2.6. (Δ − μ)-harmonic functions. In order to prove the boundedness of the
local subsolutions for functionals of the form Ef − E1, we will need the notion of
(Δ− μ)-harmonic function.

Definition 2.11. Let μ ∈ MP
cap(R

d) be a capacitary measure with finite torsion

and let BR ⊂ R
d be a given ball. For every u ∈ H1

μ, we will denote with hu the
solution of the problem

(2.9) min

{∫
Br

|∇v|2 dx+

∫
BR

v2 dμ : v ∈ H1
μ, u− v ∈ H1

0 (BR)

}
.

We will refer to hu as the (Δ − μ)-harmonic function on BR with boundary data u
on ∂BR.

The following remark summarizes the main properties of the harmonic functions,
which we will use in what follows.

Remark 2.12. Properties of the (Δ− μ)-harmonic functions:
• (Uniqueness) By the strict convexity of the functional in (2.9), we have that
the problem (2.9) has a unique minimizer, i.e., hu is uniquely determined.

• (First variation) Calculating the first variation of the functional from (2.9),
we have

(2.10)

∫
Rd

∇hu · ∇ψ dx+

∫
Rd

huψ dμ = 0 ∀ψ ∈ H1
μ ∩H1

0 (BR),

and conversely, if the function hu ∈ H1
μ satisfies (2.10), then it minimizes (2.9).

• (Comparison principle) If u,w ∈ H1
μ are two functions such that w ≥ u on

∂BR, then hu ≤ hw. Indeed, using hu ∨ hw ∈ H1
μ and hw ∧ hu ∈ H1

μ to test
the minimality of hw and hu, respectively, we get∫
{hu>hw}

|∇hu|2 dx+
∫
{hu>hw}

h2u dμ =

∫
{hu>hw}

|∇hw|2 dx+
∫
{hu>hw}

h2w dμ,

which implies that hw ∧ hu is also a minimizer of (2.9) and so hw ∧ hu = hu.

3. Concentration-compactness principle for capacitary measures. In this
section we introduce our main tools for studying the behavior of minimizing sequences
of functionals involving capacitary measures. Our main result is a concentration-
compactness principle for capacitary measures, analogous to the concentration-
compactness theorem proved by Bucur in [6], which was the key argument in the
proof of existence of optimal domains for λk under measure constraint. Before we
state the main theorem, we need some preliminary results. We start by recalling a
classical result due to Lions (see [26]).

Theorem 3.1. Let (fn)n∈N be a sequence of nonnegative functions, uniformly
bounded in L1(Rd). Then, up to a subsequence, one of the following properties holds:

(i) Concentration. There exists a sequence (xn)n≥1 ⊂ R
d with the property that

for all ε > 0 there is some R > 0 such that

sup
n∈N

∫
Rd\BR(xn)

fn dx ≤ ε.

(ii) Vanishing. For each R > 0

lim
n→∞

(
sup
x∈Rd

∫
BR(x)

fn dx

)
= 0.
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(iii) Dichotomy. For every α > 1, there is a sequence xn ∈ R
d and an increasing

sequence Rn → +∞ such that

lim
n→∞

∫
BαRn (xn)\BRn (xn)

fn dx = 0,

lim inf
n→∞

∫
BRn(xn)

fn dx > 0 and lim inf
n→∞

∫
Rd\BαRn (xn)

fn dx > 0.

Remark 3.2. Since the inclusion H1(Rd) ⊂ L1
loc(R

d) is compact, we have that if a
sequence (un)n∈N is bounded in L1(Rd)∩H1(Rd) and has the concentration property,
then there is a subsequence converging strongly in L1.

Lemma 3.3. Let μ ∈ MP
cap(R

d). Then, for every 1 < R1 < R2 ≤ +∞, we have

(3.1) dγ
(
μ, μ ∨ IBR1∪Bc

R2

) ≤ ∫
B2R2\BR1/2

wμ dx + C(R−2
1 +R−2

2 ),

where the constant C depends only on the torsion P (μ) and the dimension d.

Proof. We first consider the case R2 = +∞. We set for simplicity R = R1,
wR = wμ∨IBR

, and ηR(x) = η(x/R), where

η ∈ C∞
c (Rd), 0 ≤ η ≤ 1, η = 1 on B1, η = 0 on R

d \B2.

Then we have

dγ(μ, μ ∨ IB2R) =

∫
Rd

(wμ − w2R) dx

=

∫
Rd

wμ dx+ 2Jμ(w2R) ≤
∫
Rd

wμ dx+ 2Jμ(ηRwμ)

=

∫
Rd

|∇(ηRwμ)|2 dx+

∫
Rd

η2Rw
2
μ dμ− 2

∫
Rd

ηRwμ dx+

∫
Rd

wμ dx

=

∫
Rd

(
w2

μ|∇ηR|2 +∇wμ · ∇(η2Rwμ)
)
dx+

∫
Rd

η2Rw
2
μ dμ

− 2

∫
Rd

ηRwμ dx+

∫
Rd

wμ dx

=

∫
Rd

w2
μ|∇ηR|2 dx+

∫
Rd

η2Rwμ dx− 2

∫
Rd

ηRwμ dx+

∫
Rd

wμ dx

=

∫
Rd

w2
μ|∇ηR|2 dx+

∫
Rd

(1− ηR)
2wμ dx

≤ ‖∇η‖2L∞

R2
‖wμ‖L2 +

∫
Rd\BR

wμ dx,

which concludes the proof. The case R2 < +∞ is analogous.

Lemma 3.4. Let μ, μ′ ∈ MP
cap(R

d) be such that μ ≺ μ′. Then, we have

‖Rμ −Rμ′‖L(L2) ≤ C [dγ(μ, μ
′)](d−1)/d2

,

where Cd,μ is a constant depending only on the dimension d and the torsion P (μ).
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Proof. The proof follows the same argument as in [6, Lemma 3.6] and we report
it here for the sake of completeness. Let p ≥ d ≥ 2 and f ∈ Lp, f ≥ 0. Then by the
choice of p, we have that Rμ(f) ∈ L∞(Rd) and∫

Rd

|Rμ(f)−Rμ′(f)|p dx ≤ ‖Rμ(f)−Rμ′(f)‖p−1
L∞

∫
Rd

Rμ(f)−Rμ′(f) dx(3.2)

≤ Cp−1‖f‖p−1
Lp

∫
Rd

f(wμ − wμ′ ) dx

≤ Cp−1‖f‖pLp‖wμ − wμ′‖Lp′ ,

and so, Rμ −Rμ′ is a linear operator from Lp to Lp such that

‖Rμ −Rμ′‖L(Lp;Lp) ≤ C1−1/p‖wμ − wμ′‖1/p
Lp′ ,

where, by Proposition 2.5, the constant C depends on the dimension d and the torsion
T (μ) = ‖wμ‖L1 . Since Rμ − Rμ′ is a self-adjoint operator in L2, we can extend it to

an operator on Lp′
. Indeed, let f ∈ L2 ∩ Lp′

, where p′ = p/(p− 1). Since Lp′
is the

dual of Lp and L2 ∩ Lp and and L2 ∩ Lp′
are dense, respectively, in Lp and Lp′

, we
have

‖Rμ(f)−Rμ′(f)‖Lp′ = sup

{∫
Rd

(
Rμ(f)−Rμ′(f)

)
g dx : g ∈ L2 ∩ Lp, ‖g‖Lp = 1

}
.

On the other hand, by the self-adjointness of Rμ − Rμ′ in L2, for f and g as above,
we have ∫

Rd

(
Rμ(f)−Rμ′(f)

)
g dx =

∫
Rd

(
Rμ(g)−Rμ′(g)

)
f dx

≤ ‖Rμ(g)−Rμ′(g)‖Lp‖f‖Lp′

≤ C1−1/p‖wμ − wμ′‖1/p
Lp′‖g‖Lp‖f‖Lp′ ,

which gives that for every f ∈ L2 ∩ Lp′

‖Rμ(f)−Rμ′(f)‖Lp′ ≤ C1−1/p‖wμ − wμ′‖1/p
Lp′‖f‖Lp′ ,

and so Rμ −Rμ′ can be extended to a linear operator on Lp′
such that

‖Rμ −Rμ′‖L(Lp′ ;Lp′) ≤ C1−1/p‖wμ − wμ′‖1/p
Lp′ .

By the classical Riesz–Thorin interpolation theorem we get

|Rμ −Rμ′‖L(L2) ≤ C1−1/p‖wμ − wμ′‖1/p
Lp′

≤ C1−1/p‖wμ‖1/p
2

L∞ ‖wμ − wμ′‖(p−1)/p2

L1 .

Now using the L∞ estimate on wμ, and taking p = d, we have the claim.
We are now in position to state the concentration-compactness principle for ca-

pacitary measures. In the theorem below we will use the notion of infimum of two
capacitary measures μ and ν with disjoint sets of finiteness, i.e., cap(Ωμ ∩ Ων) = 0,
namely,

μ ∧ ν(E) =

{
μ(Ωμ ∩E) + ν(Ων ∩E) if cap

(
E \ (Ωμ ∪ Ων)

)
= 0,

+∞ if cap
(
E \ (Ωμ ∪ Ων)

)
> 0.
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Theorem 3.5. Let μn ∈ MP
cap(R

d) be a sequence of capacitary measures of
uniformly bounded torsion P (μn). Then, up to a subsequence, one of the following
situations occurs:

(i) (Compactness) There is a sequence xn ∈ R
d such that μn(xn+ ·) γ-converges.

(ii) (Vanishing) The sequence of resolvents Rμn converges to zero in the operator
norm of L(L2(Rd)). Moreover, we have ‖wμn‖L∞ → 0 and λ1(μn) → +∞,
as n→ ∞.

(iii) (Dichotomy) There are capacitary measures μ1
n and μ2

n such that
• dist(Ωμ1

n
,Ωμ2

n
) → +∞, as n → ∞, where Ωμ1

n
and Ωμ2

n
are the sets of

finiteness defined in section 2.21;
• μn ≤ μ1

n ∧ μ2
n for every n ∈ N;

• dγ(μn, μ
1
n ∧ μ2

n) → 0, as n→ ∞;
• ‖Rμn −Rμ1

n∧μ2
n
‖L(L2) → 0, as n→ ∞;

• lim inf
n→+∞ P (μ1

n) > 0 and lim inf
n→+∞ P (μ2

n) > 0.

Proof. Consider the sequence of corresponding energy functions wn := wμn . Since

‖∇wn‖2L2 + ‖wn‖2L2(μn)
= ‖wn‖L1 = 2P (μn),

we have that wn is bounded in H1(Rd) ∩ L1(Rd). We now apply the concentration
compactness principle (Theorem 3.1) to the sequence wn.

If the concentration (Theorem 3.1(i)) occurs, then by the compactness of the
embedding H1(Rd) ⊂ L1

loc(R
d), up to a subsequence wn(·+ xn) is compact in L1(Rd)

for some sequence xn ∈ R
d, and so we have (i).

Suppose now that the vanishing (Theorem 3.1(ii)) holds. We prove that (ii) holds.

Let ϕ ∈ C∞
c (Rd) and let ε > 0. We choose R > ε−d2/2(d−1) large enough and N ∈ N

such that for every n ≥ N , we have∫
BR

wn dx ≤ εd
2/(d−1).

By Lemmas 3.3 and 3.4, we have

‖Rμn(ϕ)−Rμn∨IBR
(ϕ)‖L2 ≤ Cε‖ϕ‖L2

for some constant C, and by the vanishing property,

‖Rμn∨IBR
(ϕ)‖L2 ≤ Cε‖ϕ‖L2.

Thus,

‖Rμn(ϕ)‖L2 ≤ ‖Rμn(ϕ)−Rμn∨IBR
(ϕ)‖L2 + ‖Rμn∨IBR

(ϕ)‖L2 ≤ Cε‖ϕ‖L2,

and we obtain the strong convergence in (ii).
We now prove that ‖wn‖L∞ → 0. Suppose by contradiction that there is δ > 0

and a sequence xn ∈ R
d such that wn(xn) > δ. Since Δwn + 1 ≥ 0 on R

d (see
Proposition 3.4 of [12]), we have that the function

x �→ wn(x)− r2 − |x− xn|2
2d

1We use the notation dist(A,B) to denote the quantity inf{|x− y| : x ∈ A, y ∈ B}.
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is subharmonic. Thus, choosing r =
√
dδ, we have∫

Br(xn)

wn dx ≥ wn(xn)− r2

2d
≥ δ/2,

which contradicts Theorem 3.1(ii).
Let un ∈ H1

μn
be the first eigenfunction for the operator −Δ+ μn, normalized in

L2(Rd). By (2.7), we have

−Δun + μnun = λ1(μn)un ≤ λ1(μn)‖un‖L∞ ≤ e1/(8π)λ1(μn)
(d+4)/4.

Suppose that the sequence λ1(μn) is bounded. Then by the weak maximum principle
(see Proposition 3.4 of [12]), we have un ≤ Cwn for some constant C. Thus, we have

1 =

∫
Rd

u2n dx ≤ C2

∫
Rd

w2
n dx ≤ C2‖wn‖L∞‖wn‖L1 → 0,

which is a contradiction.
Suppose that the dichotomy (Theorem 3.1(iii)) occurs. Choose α = 8 and let

xn ∈ R
d and Rn → ∞ be as in Theorem 3.1(iii). Setting

μ1
n = μn ∨ IB2Rn (xn) and μ2

n = μn ∨ IB4Rn (xn)c ,

we have that μ1
n and μ2

n have disjoint sets of finiteness and it is immediate to check
that

μ1
n ∧ μ2

n = μn ∨ IB2Rn (xn)∪Bc
4Rn

(xn).

Since Rn → +∞, by the estimate (3.1) from Lemma 3.3, we obtain

lim
n→∞ dγ(μn, μ

1
n ∧ μ2

n) = 0.

By Lemma 3.4, we have

lim inf
n→∞ ‖Rμn −Rμ1

n∧μ2
n
‖L(L2(Rd)) ≤ C lim

n→∞ dγ(μn, μ
1
n ∧ μ2

n)
(d−1)/d2

= 0,

where C is a constant depending on the dimension and on supn P (μn).
For last claim of (iii), we note that by Theorem 3.1(iii)

lim inf
n→∞

∫
B2Rn (xn)

wn dx > 0 and lim inf
n→∞

∫
Bc

4Rn
(xn)

wn dx,

and, on the other hand, by Lemma 3.3 we have

0 ≤
∫
B2Rn (xn)

wn dx−
∫
Rd

wμ1
n
dx ≤

∫
B8Rn\BRn

wn dx+ CR−2
n ,

0 ≤
∫
Bc

4Rn
(xn)

wn dx−
∫
Rd

wμ2
n
dx ≤

∫
B8Rn\BRn

wn dx+ CR−2
n

for some constant C > 0, which gives the claim since the right-hand side of both
inequalities converges to zero as n→ +∞.



2972 D. BUCUR, G. BUTTAZZO, AND B. VELICHKOV

4. Subsolutions of measure functionals. Consider a functional

F : MP
cap(R

d) → R.

We say that the capacitary measure μ is a subsolution for F if we have

F(μ) ≤ F(ν) for every ν ∈ MP
cap(R

d) such that μ ≺ ν.

We say that the capacitary measure μ is a local subsolution for F if

∃ ε > 0 : F(μ) ≤ F(ν) for every ν ∈ MP
cap(R

d) such that μ ≺ ν and dγ(μ, ν) < ε.

In the rest of this section we study the torsion function wμ of a subsolution μ for a
special class of functionals F . Precisely, we consider spectral functionals with energy
and mass penalization

F(μ) = λk(μ) + P (μ) and F(μ) = λk(μ) +

∫
Rd

μ−p
ac (x) dx,

where p ∈ (0, 1) and μac denotes the absolute continuous part of μ with respect to the
Lebesgue measure. Our main qualitative results, Theorems 4.5 and 4.9, state that if
μ is a subsolution, then it is constantly equal to infinity, outside a compact set. In
other words, the sets of finiteness Ωμ := {wμ > 0} is bounded.

4.1. From spectral to energy functionals. In general, the spectral function-
als are difficult to treat when the aim is to study the qualitative properties of the
optimal measures. This difficulty is due to the fact that the eigenvalues λk(μ) are
defined through a min-max principle, which makes any perturbation argument quite
involved. In [7] a technique was introduced that allows us to concentrate only on
energy functionals, at least when we aim to study the boundedness of the set of
finiteness.

The following result is just a slight improvement of [7, Lemma 3], but it is one
of the crucial steps in the proof of existence of optimal measures for spectral-torsion
functionals of the form F(μ) = λk(μ) + P (μ).

Lemma 4.1. Let μ be a capacitary measure such that wμ ∈ L1(Rd). Then for
every capacitary measure μ ≺ ν and every k ∈ N, denoting by Λj(μ) := 1

λj(μ)
the

eigenvalues of the resolvent operator Rμ, we have for every 1 ≤ j ≤ k

Λj(μ)− Λj(ν) ≤ k2e1/(4π)λk(μ)
(d+4)/2

∫
Rd

(
Rμ(wμ)wμ −Rν(wμ)wμ

)
dx.

Proof. Consider the orthonormal in L2(Rd) family of eigenfunctions u1, . . . , uk ∈
H1

μ corresponding to the compact self-adjoint operator Rμ : L2(Rd) → L2(Rd). Let
Pk be the projection

Pk : L2(Rd) → L2(Rd), Pk(u) =

k∑
j=1

(∫
Rd

uuj dx

)
uj.

Consider the linear space V = Im(Pk), generated by u1, . . . , uk, and the operators Tμ
and Tν on V , defined by

Tμ = Pk ◦Rμ ◦ Pk and Tν = Pk ◦Rν ◦ Pk.
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It is immediate to check that u1, . . . , uk and Λ1(μ), . . . ,Λ1(μ) are the eigenvectors
and the corresponding eigenvalues of Tμ. On the other hand, for the eigenvalues
Λ1(Tν), . . . ,Λk(Tν) of Tν , we have the inequality

Λj(Tν) ≤ Λj(ν) ∀j = 1, . . . , k.

Indeed, by the min-max theorem, we have

Λj(Tν) = min
Vj⊂V

max
u∈V,u⊥Vj

〈Pk ◦Rν ◦ Pk(u), u〉L2

‖u‖2L2

= min
Vj⊂L2

max
u∈V,u⊥Vj

〈Rν(u), u〉L2

‖u‖2L2

≤ min
Vj⊂L2

max
u∈L2,u⊥Vj

〈Rν(u), u〉L2

‖u‖2L2

= Λj(ν),

where with Vj we denote a generic (j − 1)-dimensional subspace of L2(Rd).
In conclusion, we obtain the estimate

0 ≤ Λj(μ)− Λj(ν) ≤ Λj(Tμ)− Λj(Tν) ≤ ‖Tμ − Tν‖L(V ).

On the other hand, by definition of the norm ‖ · ‖L(V ), we have

‖Tμ − Tν‖L(V ) = sup
u∈V

〈(Tμ − Tν)u, u〉L2

‖u‖2L2

= sup
u∈V

〈(Rμ −Rν)u, u〉L2

‖u‖2L2

(4.1)

= sup
u∈V

1

‖u‖2L2

∫
Rd

(
Rμ(u)− Rν(u)

)
u dx.

Let u ∈ V be the function for which the supremum in the right-hand side of (4.1) is
achieved. We can suppose that ‖u‖L2 = 1, i.e., that there are real numbers α1, . . . , αk,
such that

u = α1u1 + . . .+ αkuk and α2
1 + . . .+ α2

k = 1.

Thus, we have

‖Tμ − Tν‖L(V ) ≤
∫
Rd

|Rμ(u)−Rν(u)| · |u| dx(4.2)

≤
∫
Rd

∣∣∣∣ k∑
j=1

αj

(
Rμ(uj)−Rν(uj)

)∣∣∣∣ · ( k∑
j=1

|uj |
)
dx

≤
∫
Rd

( k∑
j=1

∣∣(Rμ(uj)−Rν(uj)
∣∣) ·

( k∑
j=1

|uj|
)
dx

≤
∫
Rd

( k∑
j=1

(
(Rμ(|uj |)−Rν(|uj |)

)) ·
( k∑

j=1

|uj|
)
dx,

where the last inequality is due to the linearity and the positivity of Rμ −Rν , which
easily follows by the maximum principle. We now recall that by (2.7), we have

‖uj‖L∞ ≤ e
1
8π λk(μ)

d/4 for each j = 1, . . . , k. By the weak maximum principle applied
for uj and wμ, we have

(4.3) |uj| ≤ e1/(8π)λk(μ)
(d+4)/4wμ for every 1 ≤ j ≤ k.
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Using again the positivity of Rμ − Rν and substituting (4.3) in (4.2), we obtain the
claim.

For a capacitary measure μ ∈ MP
cap(R

d), we denote by Ef (μ) the Dirichlet energy
with respect to the function f ∈ L2, i.e.,

Ef (μ) = min
u∈H1

μ

Jμ,f = Jμ,f (wμ,f ) = −1

2

∫
Rd

fwμ,f ,

which can be written in terms of the resolvent Rμ as

(4.4) Ef (μ) = −1

2

∫
Rd

fRμ(f) dx.

Proposition 4.2. Suppose that G : MP
cap(R

d) → R is a given functional and that

the capacitary measure μ ∈ MP
cap(R

d) is a subsolution for the functional F = λk +G.
Then there is a nonnegative function f ∈ L1(Rd)∩L∞(Rd) vanishing at infinity, such
that μ is a local subsolution for the functional Ef (μ) + G(μ).

Proof. We first note that by Lemma 3.4, we can choose ε > 0 such that, for every
ν ∈ MP

cap(R
d) with μ ≺ ν and dγ(μ, ν) < ε, we have λk(μ) ≤ λk(ν) ≤ 2λk(μ). We

now consider ν ∈ MP
cap(R

d) with this property. Since μ is a subsolution for F , we
have

G(μ)− G(ν) ≤ λk(ν) − λk(μ)

≤ 2λk(μ)
2
(
Λk(μ)− Λk(ν)

)
≤ 4k2e

1
4π λk(μ)

d+8
2

(
Ewμ(μ)− Ewμ(ν)

)
,

where the last inequality is due to Lemma 4.1 and the representation (4.4). Note
that for a generic ρ ∈ L2 and t > 0, we have Etρ(μ) = t2Eρ(μ). Thus, setting

f = 2ke
1
8π λk(μ)

d+8
4 wμ, we have the claim.

4.2. Subsolutions of spectral functionals with mass penalization. In this
subsection we prove that the subsolutions for the functionals of the form

(4.5) F(μ) = λk(μ) +

∫
Rd

μac(x)
−p dx

have bounded sets of finiteness whenever p ∈ (0, 1). Our argument is based on Propo-
sition 4.2 and the following Lemma, which is implicitly contained in [19, Lemma 3.1].

Lemma 4.3. Suppose that μ ∈ MP
cap(R

d) is a capacitary measure of finite torsion.

For the half-space H = {x ∈ R
d : c + x · ξ > 0}, where the constant c ∈ R and the

vector ξ ∈ R
d are given, we have

dγ(μ, μ ∨ IH) ≤
√
8‖wμ‖L∞

∫
∂H

wμ dHd−1 −
∫
Rd\H

|∇wμ|2 dx

−
∫
Rd\H

w2
μ dμ+ 2

∫
Rd\H

wμ dx.

Proof. For the sake of simplicity, set w := wμ, M = ‖w‖L∞ , c = 0, and ξ =
(0, . . . , 0,−1). Consider the function

v(x1, . . . , xd) =

⎧⎪⎪⎨⎪⎪⎩
M if x1 ≤ −√

M,
1
2

(
2M − (x1 +

√
2M)2

)
if −√

2M ≤ x1 ≤ 0,

0 if 0 ≤ x1,
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and let wH = w ∧ v ∈ H1
0 (H) ∩H1

μ. We have

dγ(μ, μ ∨ IH) =

∫
Rd

(w − wμ∨IH ) dx = 2(Jμ(wμ∨IH )− Jμ(w))

≤ 2(Jμ(wH)− Jμ(w))

≤
∫
Rd

|∇(wH)|2 − |∇w|2 dx−
∫
Rd\H

w2 dμ+ 2

∫
Rd

(w − wH) dx

≤
∫
{−√

2M<x1≤0}
|∇(wH)|2 − |∇w|2 dx−

∫
Rd\H

|∇w|2 dx

−
∫
Rd\H

w2 dμ+ 2

∫
Rd

(w − wH) dx

≤ 2

∫
{−√

2M<x1≤0}
∇wH · ∇(wH − w) dx+ 2

∫
{−√

2M<x1≤0}
(w − wH) dx

−
∫
Rd\H

|∇w|2 dx−
∫
Rd\H

w2 dμ+ 2

∫
Rd\H

w dx

= 2

∫
{−√

2M<x1≤0}
∇v · ∇(wH − w) dx + 2

∫
{−√

2M<x1≤0}
(w − wH) dx

−
∫
Rd\H

|∇w|2 dx−
∫
Rd\H

w2 dμ+ 2

∫
Rd\H

w dx

=
√
8M

∫
∂H

w dHd−1 −
∫
Rd\H

|∇w|2 dx −
∫
Rd\H

w2 dμ+ 2

∫
Rd\H

w dx

as required.
The next result has a double implication: on the one side it plays a fundamental

role in the proof of the existence of optimal potentials, and on the other side it gives
a first qualitative result on them. The spirit of the proof follows a classical argument
introduced by De Giorgi, associated to an Alt–Caffarelli truncation argument [1].

Lemma 4.4. Consider a nonnegative function f ∈ L∞(Rd) and a real number
p ∈ (0, 1). Suppose that μ ∈ MP

cap(R
d) is a local subsolution for the functional

F(μ) = Ef (μ) +

∫
Rd

μac(x)
−p dx.

Then the set Ωμ = {wμ > 0} is bounded.
Proof. We first recall that if ν ∈ MP

cap(R
d) is such that μ ≺ ν, then the functional

Rμ −Rν : L2(Rd) → L2(Rd) is positive. Thus, we have

Ef (ν) − Ef (μ) =
1

2

∫
Rd

(
fRμ(f)− fRν(f)

)
dx ≤ 1

2
‖f‖2L∞

(
E(ν)− E(μ)

)
,

and so we can restrict our attention to the case f ≡ 1.
For each t ∈ R, we set

Ht = {x ∈ R
d : x1 = t}, H+

t = {x ∈ R
d : x1 > t}, H−

t = {x ∈ R
d : x1 < t}.

We prove that there is some t ∈ R such that |H+
t ∩Ω| = 0. For the sake of simplicity,

set

w := wμ, M = ‖w‖L∞ , and V (x)dx := μac.
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By Lemma 4.3 and the subminimality of Ω, we have

1

2

∫
H+

t

|∇w|2 dx+
1

2

∫
H+

t

w2V dx+

∫
H+

t

V −p dx ≤
√
2M

∫
Ht

w dHd−1 +

∫
H+

t

w dx

for every t ∈ R. We aim to prove that the left-hand side is greater than a power of∫
H+

t
w dx. Indeed, by the Hölder and Young inequalities, we have

∫
H+

t

w
2p

p+1 dx ≤
(∫

H+
t

w2V dx

) p
1+p
(∫

H+
t

V −p dx

) 1
1+p

≤ p

1 + p

∫
H+

t

w2V dx+
1

1 + p

∫
H+

t

V −p dx.

If d ≥ 3, using the Hölder, Sobolev, and Young inequalities, we get

(∫
H+

t

w dx

) d+2p
d+1+p

≤
(∫

H+
t

w
2p

p+1 dx

) (1+p)(d+2)
2(d+1+p)

(∫
H+

t

w
2d

d−2 dx

) (1−p)(d−2)
2(d+1+p)

≤
(∫

H+
t

w
2p

p+1 dx

) (1+p)(d+2)
2(d+1+p)

(∫
H+

t

|∇w|2 dx
) (1−p)d

2(d+1+p)

≤ (1 + p)(d+ 2)

2(d+ 1 + p)

∫
H+

t

w
2p

p+1 dx+
(1− p)d

2(d+ 1 + p)

∫
H+

t

|∇w|2 dx,

which finally gives(∫
H+

t

w dx

)α

≤ p(d+ 2)

2(d+ 1 + p)

∫
H+

t

w2V dx +
d+ 2

2(d+ 1 + p)

∫
H+

t

V −p dx

+
(1− p)d

2(d+ 1 + p)

∫
H+

t

|∇w|2 dx

≤ C
√
2M

∫
Ht

w dHd−1 + C

∫
H+

t

w dx,

where α = d+2p
d+1+p < 1 and C is a constant depending on the dimension d and the

exponent p. Setting

φ(t) :=

∫
H+

t

w dx,

we have that

φ′(t) = −
∫
Ht

w dHd−1,

and finally

φ(t)β ≤ −C
√
2Mφ′(t) + Cφ(t),

which gives that φ vanishes in a finite time. Repeating this argument in any direction,
we obtain that the support of w is bounded.
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If d = 2, the same reasoning can be repeated replacing the Sobolev inequality by

‖u‖L3(R2) ≤ 3

2
‖u‖ 1

3

L1(R2)‖∇u‖
2
3

L2(R2).

Theorem 4.5. Suppose that μ ∈ MP
cap(R

d) is a subsolution for the functional F
defined in (4.5). Then the set of finiteness Ωμ = {wμ > 0} is bounded.

Proof. By Proposition 4.2, we have that μ is a local subsolution for a functional
of the form Ef (μ) +

∫
Rd μ

−α
ac dx. The conclusion follows by Lemma 4.4.

4.3. Subsolutions for spectral-torsion functionals. In this subsection we
consider spectral functionals with torsion penalization of the form

(4.6) F(μ) = λk(μ) + P (μ).

We prove that any subsolution μ for F has a bounded set of finiteness Ωμ = {wμ > 0}.
As in the case of functionals with mass penalization (4.5), we will reduce our study to
subsolutions of energy functionals. Our main instrument in proving the boundedness
of Ωμ will be the following comparison principle “at infinity.”

Lemma 4.6. Consider a capacitary measure of finite torsion μ ∈ MP
cap(R

d).
Suppose that u ∈ H1

μ is a solution of

−Δu+ μu = f, u ∈ H1
μ,

where f ∈ L1(Rd) ∩ L∞(Rd) and limx→∞ f(x) = 0. Then, there is some R > 0 large
enough such that u ≤ wμ on R

d \BR.

Proof. Set v = u − wμ. We will prove that the set {v > 0} is bounded. Taking
v+ instead of v and μ∨ I{v>0} instead of μ, we note that it is sufficient to restrict our

attention to the case v ≥ 0 on R
d. We will prove the Lemma in four steps.

Step 1. There are constants R0 > 0, Cd > 0, and δ > 0 such that

(4.7)

(∫
Rd

v2ϕ2(1+δ)

) 1
1+δ

≤ Cd

∫
Rd

|∇ϕ|2v2 dx ∀ϕ ∈W 1,∞
0 (Bc

R0
).

For any ϕ ∈ W 1,∞(Rd), we have that vϕ2 ∈ H1
μ, and so we may use it as a test

function in

−Δv + μv = f − 1, v ∈ H1
μ,

obtaining the identity

∫
Rd

|∇(ϕv)|2 dx+

∫
Rd

ϕ2v2 dμ =

∫
Rd

|∇ϕ|2v2 dx+

∫
Rd

vϕ2(f − 1) dx ∀ϕ ∈ W 1,∞(Rd).

(4.8)

Let R0 > 0 be large enough such that 1−f > 4
d+4 . Then for any ϕ ∈W 1,∞

0 (Rd\BR0),
we use the Hölder, Young, and Sobolev’s inequalities together with (4.8) to obtain
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(∫
Rd

v2ϕ
2d+8
d+2 dx

) d+2
d+4

≤
(∫

Rd

(ϕv)
2d

d−2 dx

) d−2
d+4
(∫

Rd

vϕ2 dx

) 4
d+4

≤ d

d+ 4

(∫
Rd

(ϕv)
2d

d−2 dx

) d−2
d

+
4

d+ 4

∫
Rd

vϕ2 dx

≤ Cd

(∫
Rd

|∇(ϕv)|2 dx+

∫
Rd

vϕ2(1 − f) dx

)
≤ Cd

∫
Rd

|∇ϕ|2v2 dx,

where Cd is a dimensional constant.
Step 2. There is someR1 > 0 such that the functionM(r) := 1

dωdrd−1

∫
∂Br

v2 dHd−1

is decreasing and convex on the interval (R1,+∞).
We first note that for R > 0 large enough, Δv ≥ (1− f)χ{v>0} ≥ 0 as an element

of H−1(Bc
R). Since Δ(v2) = 2vΔv + 2|∇v|2, we get that the function U := v2 is

subharmonic on R
d \BR. Now, the formal derivation of the mean M gives

M ′(r) =
1

dωdrd−1

∫
∂Br

ν · ∇U dHd−1,

where νr is the external normal to ∂Br. Let R1 > 0 be such that 1 ≥ f on R
d \BR1 .

Then for any R1 < r < R < +∞, we have

dωd

(
Rd−1M ′(R)− rd−1M ′(r)

)
=

∫
∂BR

νR · ∇U dHd−1 −
∫
∂Br

νr · ∇U dHd−1

=

∫
BR2\BR1

ΔU dx ≥ 0.

If we have that M ′(r) > 0 for some r > R1, then M ′(R) > 0 for each R > r and
so M is increasing on [r,+∞), which is a contradiction of the fact that v (and so,
M) vanishes at infinity. Thus, M ′(r) ≤ 0 for all r ∈ (R1,+∞) and so for every
R1 < r < R < +∞, we have

Rd−1
(
M ′(R)−M ′(r)

) ≥ Rd−1M ′(R)− rd−1M ′(r) ≥ 0,

which proves that M ′(r) is also increasing.
Step 3. There are constants R2 > 0, C > 0, and 0 < δ < 1/(d− 1) such that the

mean value function M(r) satisfies the differential inequality

(4.9) M(r) ≤ C
(
r|M ′(r)| +M(r)

) d−1
2 δ|M ′(r)|1− d−2

2 δ ∀r ∈ (R2,+∞).

We first test the inequality (4.7) with radial functions of the form ϕ(x) = φ(|x|),
where

φ(r) = 0 for r ≤ R, φ(r) =
r −R

ε(R)
for R ≤ r ≤ R+ε(R), φ(r) = 1 for r ≥ R+ε(R),

where R > 0 is large enough and ε(R) > 0 is a given constant. As a consequence, we
obtain

(4.10)

(∫ +∞

R+ε(R)

rd−1M(r) dr

) 1
1+δ

≤ Cdε(R)
−2

∫ R+ε(R)

R

rd−1M(r) dr.
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εR+  (R)

Fig. 1. We estimate the integral
∫R+ε(R)
R M(r) dr by the area of the rectangle on the right,

while the integral
∫+∞
R+ε(R) M(r) dr is bounded from below by the area of the triangle on the right.

By Step 2, we have that for R large enough
• M is monotone, i.e., M(r) ≤M(R) for r ≥ R;
• M is convex, i.e., M(r) ≥M ′(R)(r −R) +M(R) for r ≥ R.

We now take ε(R) = 1
2

M(R)
|M ′(R)| , i.e., 2ε(R) is exactly the distance between (R, 0)

and the intersection point of the x-axis with the line tangent to the graph of M in
(R,M(R)) (see Figure 1). With this choice of ε(R), we estimate both sides of (4.10),
obtaining

(
R+ ε(R)

) d−1
1+δ

(
1

4
M(R)ε(R)

) 1
1+δ

≤ Cd

(
R + ε(R)

)d−1
ε(R)−2M(R),

which, after substituting ε(R) with 1
2

M(R)
|M ′(R)| , gives (4.9).

Step 4. Each nonnegative (differentiable a.e.) function M(r), which vanishes at
infinity and satisfies the inequality (4.9) for some δ > 0 small enough, has compact
support.

Let r ∈ (R2,+∞), where R2 is as in Step 3. We have two cases:

(a) If r|M ′(r)| ≥M(r), then M(r) ≤ C1r
(d−1)δ

2 |M ′(r)|1+ δ
2 .

(b) If r|M ′(r)| ≤M(r), then M(r) ≤ C2|M ′(r)|1+ δ
2

(
1− (d−1)δ

2

)
.

Choosing δ small enough, we get that in both cases M satisfies the differential
inequality

M(r)1−δ1 ≤ −Crδ2M ′(r)

for appropriate constants C > 0 and 0 < δ1, δ2 < 1. After integration, we have

C′ − C′′r1−δ2 ≥M(r)δ1

for some constants C′, C′′ > 0, which concludes the proof.
Remark 4.7. An alternative shorter proof of Lemma 4.6 could be made by using

viscosity solutions. For the sake of completeness, we report this alternative proof in
the appendix.

Lemma 4.8. Consider a capacitary measure of finite torsion μ ∈ MP
cap(R

d).
Let f be a bounded measurable function converging to zero at infinity, i.e.,
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limR→+∞ ‖f‖L∞(Bc
R) = 0. If μ is a local subsolution for the functional Ef (μ)+P (μ),

then the finiteness set Ωμ = {wμ > 0} is bounded.
Proof. Let ν ∈ MP

cap(R
d) be such that μ ≺ ν and dγ(μ, ν) < ε. The subminimality

of μ gives

Ef (μ)− E(μ) ≤ Ef (ν) − E(ν),

which can be stated in terms of Rμ and Rν as

(4.11)

∫
Rd

(
Rμ(1)− fRμ(f)

)
dx ≤

∫
Rd

(
Rν(1)− fRν(f)

)
dx.

Moreover, by considering f/2 instead of f , we can suppose that the above inequality
is strict whenever wμ �= wν .

We now show that choosing ν = μ∨ IBR for some R large enough, we can obtain
equality in (4.11). Indeed, we have

0 ≥
∫
Rd

(
Rμ(1)−Rν(1)

)− f
(
Rμ(f)−Rν(f)

)
dx

≥
∫
Rd

(
Rμ(1)−Rν(1)

)− (Rμ(‖f‖L∞f)−Rν(‖f‖L∞f)
)
dx

=

∫
BR

(
Rμ(1)−Rν(1)

)− (Rμ(‖f‖L∞f)−Rν(‖f‖L∞f)
)
dx

+

∫
Bc

R

(
Rμ(1)−Rμ(‖f‖L∞f)

)
dx

≥
∫
BR

(
Rμ(1)−Rν(1)

)− (Rμ(‖f‖L∞f)−Rν(‖f‖L∞f)
)
dx,

where the last inequality holds for R > 0 large enough and is due to Lemma 4.6. We
now set for simplicity w, u ∈ H1

μ to be, respectively, the solutions of

−Δw + μw = 1 and −Δu+ μu = ‖f‖L∞f.

Thus, the functions

hw = RΩ(1)−Rω(1) ∈ H1
μ and hu = RΩ(‖f‖L∞f)−Rω(‖f‖L∞f)

are (Δ − μ)-harmonic on the ball BR. By the comparison principle, since w ≥ u on
∂BR, we have that hw ≥ hu in BR. Thus, for R large enough and ν = μ ∨ IBR , we
have an equality in (4.11), which gives that wμ = wν and so Ωμ is bounded.

Theorem 4.9. Suppose that μ ∈ Mcap(R
d) is a subsolution for the functional F

from (4.6). Then the set of finiteness Ωμ = {wμ > 0} is bounded.
Proof. By Proposition 4.2, we have that μ is a subsolution for a functional of the

form Ef (μ) + P (μ). By Lemma 4.8, we conclude that Ωμ is bounded.

5. Optimal potentials for Schrödinger operators. In this subsection we
consider optimization problems for spectral functionals in R

d. In particular, we con-
sider the problem

(5.1) min

{
λk(V ) : V : Rd → [0,+∞] measurable,

∫
Rd

V −p dx = 1

}
,
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where p ∈ (0, 1). In the following proposition we prove that, under the integrability
constraint in (5.1), the spectrum of −Δ+V is discrete and thus λk(V ) is well defined.

Proposition 5.1 (compactness of the embedding H1
V ↪→ L1

). Let V : Rd →
[0,+∞] be a measurable function such that

∫
Rd V

−p dx < +∞, where p ∈ (0, 1]. Then
the torsion function wV , related to the measure V dx, is integrable. In particular, the
embedding H1

V ↪→ L1(Rd) is compact and the spectrum of the operator −Δ + V is
discrete.

Proof. See Example 3.10 in [9].
By Remark 2.8, the cost functional λk(V ) and the constraint

∫
Rd V

−p dx have the
following rescaling properties:

λk(Vt) = t−2λk(V ) and

∫
Rd

V −p
t dx = t2p+d

∫
Rd

V −p dx,

where

(5.2) Vt(x) := t−2V (x/t).

This rescaling property allows us to make the following remark.
Remark 5.2 (measure penalization). The potential Ṽ : Rd → [0,+∞] is a solution

of

(5.3) min

{
λk(V ) +m

∫
Rd

V −p dx : V : Rd → [0,+∞] measurable

}
if and only if, for every t > 0, we have that Ṽt, defined as in (5.2), is a solution of

min

{
λk(V ) : V : Rd → [0,+∞] measurable,

∫
Rd

V −p dx =

∫
Rd

Ṽ −p
t dx

}
,

and the function

f(t) := t−2λk(Ṽ ) +mt2p+d

∫
Rd

Ṽ −p dx

achieves its minimum, on the interval (0,+∞), in the point t = 1.
In the case k = 1, the existence holds for every p > 0. The following result was

proved in [14].
Proposition 5.3 (Faber–Krahn inequality for potentials). For every p > 0

there is a solution Vp of the problem (5.1) with k = 1. Moreover, there is an optimal
potential Vp given by

Vp =

(∫
Rd

|up|2p/(p+1) dx

)1/p

|up|−2/(1+p),

where up is a radially decreasing minimizer of

min

{∫
Rd

|∇u|2 dx+

(∫
Rd

|u|2p/(p+1) dx

)(p+1)/p

: u ∈ H1(Rd),

∫
Rd

u2 dx = 1

}
.

Moreover, up has a compact support, and hence the set {Vp < +∞} is a ball of finite
radius in R

d.
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We now prove the existence of an optimal potential in the general case k ≥ 2.
Theorem 5.4. Suppose that p ∈ (0, 1). Then, for every k ∈ N, there is a solution

of the problem (5.1). Moreover, any solution V of (5.1) is constantly equal to +∞
outside a ball of finite radius.

Proof. By Remark 5.2, every solution of (5.1) is a solution also of the penal-
ized problem (5.3) for some appropriately chosen Lagrange multiplier m > 0. Thus,
by Theorem 4.5 and Lemma 4.4, we have that if V is optimal for (5.3), then it is
constantly +∞ outside a ball of finite radius.

The proof of the existence part follows by induction on k. The first step k = 1
was proved in Proposition (5.3). We prove the claim for k > 1, provided that the
existence holds for all 1, . . . , k − 1.

Let Vn be a minimizing sequence for (5.1). By Proposition 5.1, we have that
the sequence wVn is uniformly bounded in L1(Rd) and so, by Theorem 3.5, we have
two possibilities for the sequence of capacitary measures Vndx: compactness and
dichotomy.

If the compactness occurs, then there is a capacitary measure μ such that the

sequence Vndx γ-converges to μ. The sequence vn := V
−p/2
n is a bounded sequence

in L2(Rd) and so, up to a subsequence, we have that vn converges weakly in L2 to
some v ∈ L2(Rd). We will prove that the function V := v−2/p is a solution of (5.1).
The function V satisfies the constraint from (5.1), and so it is sufficient to prove the
inequality

(5.4) λk(V ) ≤ λk(μ) = lim
n→∞λk(Vn),

where the equality is just the continuity of λk with respect to the γ-convergence. Since
Vndx γ-converges to μ, we have that the sequence of functionals ‖ · ‖H1

Vn
Γ-converges

in L2(Rd) to the functional ‖ · ‖H1
μ
(see Remark 2.9). In particular, for every u ∈ H1

μ,

there is a sequence un ∈ H1
Vn

which converges to u in L2(Rd) and is such that∫
Rd

|∇u|2 dx+

∫
Rd

u2 dμ = lim
n→∞

∫
Rd

|∇un|2 dx+

∫
Rd

u2nVn dx(5.5)

= lim
n→∞

∫
Rd

|∇un|2 dx+

∫
Rd

u2nv
−2/p
n dx

≥
∫
Rd

|∇u|2 dx +

∫
Rd

u2v−2/p dx

=

∫
Rd

|∇u|2 dx +

∫
Rd

u2V dx,

where the inequality in (5.5) is due to strong-weak lower semicontinuity of integral
functionals (see, for instance, [10]). Thus, for any u ∈ H1

μ, we have that∫
Rd

u2 dμ ≥
∫
Rd

u2V dx,

and so V ≺ μ. Since λk is an increasing functional, we obtain the first inequality in
(5.4), and so V is a solution of (5.1).

If the dichotomy occurs, then we can suppose that Vn = V +
n ∨ V −

n , where

1/Vn = 1/V +
n + 1/V −

n , dist
({V +

n <∞}, {V −
n <∞})→ +∞.
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Since Vn is minimizing, there is 1 ≤ l ≤ k − 1 such that

λk(Vn) = λl(V
+
n ) ≥ λk−l(V

−
n ).

Taking the solutions V + and V −, respectively, of

min

{
λl(V ) : V : Rd → [0,+∞] measurable,

∫
Rd

V −p dx = lim
n→∞

∫
Rd

V +
n dx

}
,

min

{
λk−l(V ) : V : Rd → [0,+∞] measurable,

∫
Rd

V −p dx = lim
n→∞

∫
Rd

V −
n dx

}
in such a way that dist

({V + < ∞}, {V − < ∞}) > 0, we have that V = V + ∧ V − is
a solution of (5.1).

6. Optimal measures for spectral-torsion functionals. In this section we
consider consider the problem

(6.1) min
{
λk(μ) : μ ∈ MP

cap(R
d), P (μ) = c

}
,

where c > 0 is a given constant. As in the case of potentials, we can substitute the
constraint by a penalization.

Remark 6.1 (measure penalization). The capacitary measure μ̃ ∈ Mcap(R
d) is a

solution of

(6.2) min
{
λk(μ) +mP (μ) : μ ∈ MP

cap(R
d)
}

if and only if, for every t > 0, the capacitary measure μ̃t, defined as in Remark 2.7, is
a solution of

min
{
λk(μ) : μ ∈ MP

cap(R
d), P (μ) = P (μ̃t)

}
,

and the function

f(t) := t−2λk(μ̃) +mt2+dP (μ̃)

achieves its minimum, on the interval (0,+∞), for t = 1.
Theorem 6.2. For every k ∈ N and c > 0, there is a solution of the problem

(6.1). Moreover, for any solution μ of (6.1), there is a ball BR such that IBR ≺ μ.
Proof. Suppose first that μ is a solution of (6.1). By Remark 6.1, μ is also

a solution of the problem (6.2) for some constant m > 0. In particular, μ is a
subsolution for the functional

F(μ) = λk(μ) +mP (μ).

By Theorem 4.9, we have that the set of finiteness Ωμ = {wμ > 0} is bounded, and
so there is a ball BR such that IBR ≺ μ.

The proof of the existence part follows by induction on k. Suppose that k = 1
and let μn be a minimizing sequence for the problem

(6.3) min
{
λ1(μ) +mP (μ) : μ ∈ MP

cap(R
d)
}
.

By the concentration-compactness principle (Theorem 3.5), we have two possibilities:
compactness and dichotomy. If the compactness occurs, we have that, up to a sub-
sequence, μn γ-converges to some μ ∈ MP

cap(R
d). Thus, by the continuity of λ1 and
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T , we have that μ is a solution of (6.3). We now show that the dichotomy cannot
occur. Indeed, if we suppose that μn = μ+

n ∧ μ−
n , where μ

+
n and μ−

n have distant sets
of finiteness Ωμ+

n
and Ωμ−

n
, then

λ1(μn) = min{λ1(μ+
n ), λ1(μ

−
n )} and E(μn) = E(μ+

n ) + E(μ−
n ).

Since, by Theorem 3.5

lim inf
n→∞ P (μ+

n ) > 0 and lim inf
n→∞ P (μ−

n ) > 0,

we obtain that one of the sequences μ+
n and μ−

n , say, μ
+
n , is such that

lim inf
n→∞

{
λ1(μ

+
n ) +mP (μ+

n )
}
< lim inf

n→∞
{
λ1(μn) +mP (μn)

}
,

which is a contradiction, and so the compactness is the only possible case for μn.
We now prove the claim for k > 1, provided that the existence holds for all

1, . . . , k − 1.
Let μn be a minimizing sequence for (5.1). The sequence wμn is uniformly

bounded in L1(Rd), and so by Theorem 3.5, we have two possibilities for the sequence
of capacitary measures μn: compactness and dichotomy.

If the compactness occurs, then there is a capacitary measure μ such that the
sequence μn γ-converges to μ, which by the continuity of λk and the torsion T is a
solution of (6.1).

If the dichotomy occurs, then we can suppose that μn = μ+
n ∧ μ−

n , where the sets
of finiteness Ωμ+

n
and Ωμ−

n
are such that

dist
(
Ωμ+

n
,Ωμ−

n

)→ +∞, P (μn) = P (μ+
n ) + P (μ−

n ),

lim
n→∞P (μ+

n ) > 0 and lim
n→∞P (μ−

n ) > 0.

Since μn is a minimizing sequence, there is a constant 1 ≤ l ≤ k − 1 such that

λk(μn) = λl(μ
+
n ) ≥ λk−l(μ

−
n ).

Taking the solutions μ+ and μ−, respectively, of

min
{
λl(μ) : μ ∈ Mcap(R

d), P (μ) = lim
n→∞P (μ+

n )
}
,

min
{
λk−l(μ) : μ ∈ Mcap(R

d), P (μ) = lim
n→∞P (μ−

n )
}

in such a way that dist
(
Ωμ+ ,Ωμ−

)
> 0, we have that μ = μ+ ∧ μ− is a solution of

(6.1).
Remark 6.3. The Kohler–Jobin inequality (we refer to [5] and the references

therein for more details on this isoperimetric inequality) states that the ball B, such
that E(B) = c, minimizes the first eigenvalue λ1(Ω) under the constraint E(Ω) = c,
among all open sets Ω ⊂ R

d. Since the set {IΩ : Ω ⊂ R
d open} ⊂ MP

cap(R
d) is dense

in Mcap(R
d) (see [13]), we have that the measure IB solves (6.1) for k = 1.

Open problem. It would be interesting to establish whether the optimal mea-
sure μ given by Theorem 6.2 is actually a domain. Some numerical computations
made by Beniamin Bogosel [4] and Ioana Durus [20] seem to indicate that this is true
and that, at least in dimension two and for low k, the optimal set is made by k disjoint
equal disks.
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Appendix A. An alternative proof of Lemma 4.6.
Proof of Lemma 4.6. Set v = u − wμ. We will prove that the set {v > 0} is

bounded. Taking v+ instead of v and μ ∨ I{v>0} instead of μ, we note that it is

sufficient to restrict our attention to the case v ≥ 0 on R
d. We now prove that if

v ∈ H1(Rd) is a nonnegative function such that

(A.1) −Δv + μv = f − 1, v ∈ H1
μ,

where μ ∈ MP
cap(R

d), f ∈ L∞(Rd), and lim|x|→∞ f(x) = 0, then {v > 0} is bounded.
We first prove that there is some R0 > 0 large enough such that the function

v satisfies the inequality Δv ≥ 1/2 on R
d \ BR0 in the viscosity sense, i.e., for each

x ∈ R
d \BR0 and each ϕ ∈ C∞(Rd), satisfying v ≤ φ and ϕ(x) = v(x), we have that

Δϕ(x) ≥ 1/2.
Suppose that ϕ ∈ C∞(Rd) is such that v ≤ φ, ϕ(x) = v(x), and Δϕ(x) < 1/2−ε.

By modifying ϕ and considering ε/2 instead of ε, we may suppose that, for δ > 0
small enough, {v + δ > ϕ} ⊂ Bc

R0
and Δϕ < 1/2 − ε on the set {v + δ > ϕ}. Now

taking (v − ϕ+ δ)+ ∈ H1
μ as a test function in (A.1), we get that∫

Rd

(f − 1)(v − ϕ+ δ)+ dx =

∫
Rd

∇v · ∇(v − ϕ+ δ)+ dx+

∫
Rd

v(v − ϕ+ δ)+ dμ

≥
∫
Rd

∇ϕ · ∇(v − ϕ+ δ)+ dx

= −
∫
Rd

(v − ϕ+ δ)+Δϕdx

>
(
− 1

2
+ ε
)∫

Rd

(v − ϕ+ δ)+ dx,

which gives a contradiction, once we choose R0 > 0 large enough such that f < 1/4
on R

d \BR0 .
For r ∈ (R0,+∞), we consider the function M(r) = sup∂Br

v. Then M :
(R0,+∞) → R satisfies the inequality

(A.2) M ′′(r) +
d− 1

r
M ′(r) ≥ 1

2
in the viscosity sense.

Indeed, let r ∈ (R0,+∞) and φ ∈ C∞(R) be such that φ(r) = M(r) and φ ≥ M .
Then, taking a point x0 ∈ ∂Br such that v(x) =M(r) (which exists due to the upper
semicontinuity of v) and the function ϕ(x) := φ(|x|), we have that ϕ ∈ C∞(Rd),
ϕ(x0) = v(r), and ϕ ≥ v, which implies Δϕ ≥ 1/2 and so (A.2) holds.

There is a constant ε0 > 0, depending on R0, the dimension d, and ‖v‖L∞ , such
that the function φ ∈ C∞(R), which solves

φ′′(r) +
d− 1

r
φ′(r) =

1

3
, φ(R0) = φ(R0 + ε0) = 2‖v‖L∞,

changes sign on the interval (R0, R0 + ε0). We set

t0 = sup
{
t : {M ≥ φ+ t} �= ∅} > 0.

Since M is upper semicontinuous, there is some r ∈ (R0, R0 + ε0) such that M(r) =
φ(r) + t0 and M ≤ φ+ t0, which is a contradiction with (A.2).
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