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3CPT, Aix–Marseille Université and Université du Sud Toulon–Var, CNRS (UMR 7332), F-13288 Marseille, France
(Received 23 September 2013; published 22 November 2013)

We discuss the role of the Uð1Þ axial symmetry for the scalar and pseudoscalar meson mass spectrum of

QCD at finite temperature, above the chiral transition at Tc, using a chiral effective Lagrangian model,

which, in addition to the usual chiral condensate h �qqi, also includes a (possible) genuine Uð1ÞA-breaking
condensate that (possibly) survives across the chiral transition. The motivations for considering this

Lagrangian (and a critical comparison with other effective Lagrangian models existing in the literature)

are presented. A detailed comparison between the case Nf � 3 and the (remarkably different) case

Nf ¼ 2 is performed. The results obtained in the case Nf ¼ 2 are also critically compared with the

available lattice results.
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I. INTRODUCTION

It is well known that, at zero temperature, the SUðNfÞ �
SUðNfÞ chiral symmetry of the QCD Lagrangian with Nf

massless quarks (the physically relevant cases being
Nf ¼ 2 and Nf ¼ 3) is spontaneously broken down to

the vectorial subgroup SUðNfÞV by the condensation of

q �q pairs, i.e., by the nonzero value of the vacuum expec-

tation value h �qqi � PNf

l¼1h �qlqli (the so–called chiral

condensate), and the N2
f � 1 JP ¼ 0� mesons are just

the Goldstone bosons associated with this breaking (see,
e.g., Ref. [1] and references therein). One expects that
this scenario not only holds for massless quarks but also
continues for a small quark mass region, in which the
Goldstone bosons become pseudo-Goldstone bosons,
with small (if compared with other hadrons) nonzero
masses. The chiral condensate h �qqi is an order parameter
for the chiral symmetry breaking: at high temperatures, the
thermal energy breaks up the q �q condensate, leading to
the restoration of chiral symmetry for temperatures above
the chiral phase transition temperature Tc, defined as the
temperature at which the chiral condensate h �qqi goes to
zero (in the chiral limit m1 ¼ � � � ¼ mNf

¼ 0). From lat-

tice determinations of h �qqi, it is known (see, e.g., Refs. [2])
that this critical temperature is of the order Tc � 150�
170 MeV and practically equal to the deconfinement tem-
perature Td, separating the confined (or hadronic) phase at
T < Td, from the deconfined phase (also known as quark–
gluon plasma) at T > Td. But this is not the whole story
since, in addition to the SUðNfÞ � SUðNfÞ chiral symme-

try, QCD with Nf massless quarks also has a Uð1Þ axial
symmetry (at least at the classical level) [3,4]. This sym-
metry is broken by an anomaly at the quantum level, which

in the Witten–Veneziano mechanism [5,6] plays a funda-
mental role (via the so-called topological susceptibility) in
explaining the large mass of the �0 meson.
The role of the Uð1Þ axial symmetry for the finite

temperature phase structure has been not well understood
so far. One expects that at very high temperatures also the
Uð1Þ axial symmetry will be (effectively) restored (since,
at least for T � Tc, the density [in the partition function]
of the instanton configurations, responsible for the Uð1ÞA
breaking, are strongly suppressed due to a Debye-type
screening [7]); but it is still an open question of hadronic
physics whether the fate of the Uð1Þ chiral symmetry of
QCD has or has not something to do with the fate of the
SUðNfÞ � SUðNfÞ chiral symmetry. This question is surely

of phenomenological relevance since the particle mass
spectrum above Tc drastically depends on the presence or
absence of the Uð1Þ axial symmetry. From the theoretical
point of view, this question can be investigated by compar-
ing the behavior at nonzero temperatures of the two-point
correlation functions for the following q �q meson channels
(we consider for simplicity the case of Nf ¼ 2 light

flavors) [8,9]: the isoscalar (I ¼ 0) scalar channel � (also
known as f0 in the modern language of hadron spectros-
copy), interpolated by the operatorO� ¼ �qq; the isovector

(I ¼ 1) scalar channel ~� (also known as ~a0), interpolated

by the operator ~O� ¼ �q ~�
2 q; the isoscalar (I ¼ 0) pseudo-

scalar channel �, interpolated by the operator O� ¼
i �q�5q; and the isovector (I ¼ 1) pseudoscalar channel ~�,

interpolated by the operator ~O� ¼ i �q�5
~�
2 q. Under SUð2ÞA

transformations, � is mixed with ~�; thus, the restoration of
this symmetry at Tc requires identical correlators for these
two channels, which implies, in particular, identical chiral

susceptibilities, �� ¼ �� [�f �
R
d4xhTOfðxÞOy

f ð0Þi],
and identical (screening) masses, M� ¼ M�. Another

SUð2Þ chiral multiplet is ð�; ~�Þ. On the contrary, under

Uð1ÞA transformations, ~� is mixed with ~�, so, an effective
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restoration of the Uð1Þ axial symmetry should imply
that these two channels become degenerate, with identical
correlators and, therefore, with identical chiral susceptibil-
ities, �� ¼ ��, and identical (screening) masses, M� ¼
M�. Another Uð1Þ chiral multiplet is ð�;�Þ. (Clearly, if
both chiral symmetries are restored, then all �, ~�, �, and ~�
correlators should become the same.)

In this paper, we shall analyze the scalar and pseudoscalar
meson mass spectrum, above the chiral transition at Tc,
using a chiral effective Lagrangian model (which was
originally proposed in Refs. [10–12] and elaborated on
in Refs. [13–15]), which, in addition to the usual chiral
condensate h �qqi, also includes a (possible) genuine
Uð1ÞA-breaking condensate that (possibly) survives across
the chiral transition at Tc, staying different from zero at
T > Tc. The motivations for considering this Lagrangian
(and a critical comparison with other effective Lagrangian
models existing in the literature) are presented in Sec. II. The
results for themesonicmass spectrum forT > Tc are derived
in Sec. III, for the case Nf � 3, and in Sec. IV, for the case

Nf ¼ 2. Finally, in Sec. V, we shall summarize the results

that we have obtained, andwe shallmake some comments on
(i) the remarkable difference between the case Nf � 3 and

the caseNf ¼ 2 and (ii) the comparison between our results

and the available lattice results for Nf ¼ 2.

II. CHIRAL EFFECTIVE LAGRANGIANS

Chiral symmetry restoration at nonzero temperature is
often studied in the framework of the following effective
Lagrangian [16–19] (which had been originally proposed
to study the chiral dynamics at T ¼ 0 [20–22]), written in

terms of the (quark-bilinear) mesonic effective field Uij �
�qjRqiL ¼ �qjð1þ�5

2 Þqi (up to a multiplicative constant),1

L1ðU;UyÞ ¼ L0ðU;UyÞ þ Bm

2
ffiffiffi
2

p Tr½MUþMyUy	

þLIðU;UyÞ; (2.1)

where L0ðU;UyÞ describes a kind of linear sigma model:

L0ðU;UyÞ ¼ 1

2
Tr½@�U@�Uy	 � V0ðU;UyÞ;

V0ðU;UyÞ ¼ 1

4
	2
� Tr½ðUUy � 
�IÞ2	 þ 1

4
	02
�½TrðUUyÞ	2:

(2.2)

I is the identity matrix,M ¼ diagðm1; . . . ; mNf
Þ represents

the quark mass matrix, which enters in the QCD

Lagrangian as �LðmassÞ
QCD ¼ � �qRMqL � �qLM

yqR, while

LIðU;UyÞ is an interaction term of the form:

LIðU;UyÞ ¼ cI½detUþ detUy	: (2.3)

Since under UðNfÞL �UðNfÞR chiral transformations the

quark fields and the mesonic effective fieldU transform as,

UðNfÞL �UðNfÞR: qL ! VLqL;

qR ! VRqR ) U ! VLUVy
R;

(2.4)

where VL and VR are arbitrary Nf 
 Nf unitary matrices,

we have that L0ðU;UyÞ is invariant under the entire chiral
group UðNfÞL �UðNfÞR, while the interaction term (2.3)

[and so the entire effective Lagrangian (2.1) in the chiral
limit M ¼ 0] is invariant under SUðNfÞL � SUðNfÞR �
Uð1ÞV but not under a Uð1Þ axial transformation:2

Uð1ÞA: qL ! e�i�qL; qR ! ei�qR ) U ! e�i2�U:

(2.5)

It is often claimed (see, for example, Ref. [23] and refer-
ences therein) that instanton processes, which are known to
break the Uð1ÞA symmetry by means of an effective
2Nf-quark vertex that is invariant under SUðNfÞL �
SUðNfÞR �Uð1ÞV but not under a Uð1Þ axial transforma-

tion, can be modelled using the interaction term (2.3).
However, as was noticed by Witten [24], Di Vecchia,

and Veneziano [25], this type of anomalous term does
not correctly reproduce the Uð1Þ axial anomaly of the
fundamental theory, i.e., of the QCD (and, moreover, it is
inconsistent with the 1=Nc expansion). In fact, one should
require that, under a Uð1Þ axial transformation (2.5),
the effective Lagrangian, in the chiral limit M ¼ 0, trans-
forms as

Uð1ÞA: LðM¼0Þ
eff ðU;Uy; QÞ ! LðM¼0Þ

eff ðU;Uy; QÞ þ �2NfQ;

(2.6)

where QðxÞ ¼ g2

64�2 "
��
�Fa

��ðxÞFa

�ðxÞ is the topological

charge density and Leff also contains Q as an auxiliary
field. The correct effective Lagrangian, satisfying the trans-
formation property (2.6), was derived in Refs. [24–28] and
is given by

L2ðU;Uy; QÞ ¼ L0ðU;UyÞ þ Bm

2
ffiffiffi
2

p Tr½MUþMyUy	

þ i

2
QTr½logU� logUy	 þ 1

2A
Q2;

(2.7)

where A ¼ �i
R
d4xhTQðxÞQð0ÞijYM is the so-called topo-

logical susceptibility in the pure Yang–Mills (YM) theory.

1Throughout this paper, we use the following notations for the
left-handed and right-handed quark fields: qL;R � 1

2 ð1� �5Þq,
with �5 � �i�0�1�2�3.

2For the case of Nf ¼ 2 flavors, two other four–point cou-
plings with the same property, i.e., invariant under SUðNfÞL �
SUðNfÞR � Uð1ÞV but not under Uð1ÞA, could be considered
[16,19]; however, these terms are not relevant for the type of
analysis that we are going to perform in this paper.
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After integrating out the variable Q in the effective
Lagrangian (2.7), we are left with

L2ðU;UyÞ ¼ L0ðU;UyÞ þ Bm

2
ffiffiffi
2

p Tr½MUþMyUy	

þ 1

8
AfTr½logU� logUy	g2; (2.8)

to be compared with Eqs. (2.1), (2.2), and (2.3).
For studying the phase structure of the theory at finite

temperature, all the parameters appearing in the effective
Lagrangian must be considered as functions of the physical
temperature T. In particular, the parameter 
�, appearing
in the first term of the potential V0ðU;UyÞ in Eq. (2.2), is
responsible for the behavior of the theory across the chiral
phase transition at T ¼ Tc. Let us consider, for a moment,
only the linear sigma model L0ðU;UyÞ, i.e., let us neglect
both the anomalous symmetry-breaking term and the mass
term in Eq. (2.8). If 
�ðT < TcÞ> 0, then the value �U for
which the potential V0 is minimum (that is, in a mean-field
approach, the vacuum expectation value of the mesonic
field U) is different from zero and can be chosen to be

�Uj
�>0 ¼ vI; v � F�ffiffiffi
2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi


�	
2
�

	2
� þ Nf	

02
�

vuut ; (2.9)

which is invariant under the vectorial UðNfÞV subgroup;

the chiral symmetry is thus spontaneously broken down to
UðNfÞV . Instead, if 
�ðT > TcÞ< 0, we have that

�Uj
�<0 ¼ 0; (2.10)

and the chiral symmetry is realized à laWigner–Weyl. The
critical temperature Tc for the chiral phase transition is
thus, in this case, simply the temperature at which the
parameter 
� vanishes: 
�ðTcÞ ¼ 0.

For T > Tc, where 
� < 0 and �U ¼ 0, it is convenient to
use for the matrix fieldU the simple linear parametrization

Uij ¼ aij þ ibij; (2.11)

where aij and bij are 2N
2
f real fields, for which the vacuum

expectation values vanish ( �aij ¼ �bij ¼ 0). Inserting

Eq. (2.11) into Eq. (2.2), and putting 
� � � 1
2B

2
�, we

find that, up to terms of second order in the fields, L0¼
1
2@�aij@

�aijþ1
2@�bij@

�bij�1
4	

2
�B

2
�ða2ijþb2ijÞþ���; i.e.,

we have 2N2
f mesonic excitations with equal squared

masses M2
U ¼ 1

2	
2
�B

2
�.

Instead, for T < Tc, where 
� > 0 and �U ¼ F�ffiffi
2

p I, it is

more convenient to use for the matrix fieldU the nonlinear
parametrization (polar decomposition)

UðxÞ ¼ HðxÞ�ðxÞ ¼
�
F�ffiffiffi
2

p Iþ ~HðxÞ
�
ei

ffiffi
2

p
F�

�ðxÞ; (2.12)

where H ¼ F�ffiffi
2

p Iþ ~H is a Hermitian Nf 
 Nf matrix,

while � ¼ ei
ffiffi
2

p
F�

� is a unitary Nf 
 Nf matrix; i.e., ~HðxÞ ¼

1ffiffi
2

p P
ahaðxÞ�a þ 1ffiffiffiffiffi

Nf

p h0ðxÞI and �ðxÞ ¼ 1ffiffi
2

p P
a�aðxÞ�a þ

1ffiffiffiffiffi
Nf

p S�ðxÞI are two Hermitian matrix fields, where �a (a ¼
1; . . . ; N2

f � 1) are the generators of the SUðNfÞ algebra in
the fundamental representation, with the normalization
Trð�a�bÞ ¼ 2�ab (for Nf ¼ 2, they are the Pauli matrices,

while forNf ¼ 3, they are the Gell-Mann matrices), and ha,

h0 are scalarmesonic fields, while �a, S� are pseudoscalar
mesonic fields, for which the vacuum expectation values
vanish ( �ha ¼ �h0 ¼ ��a ¼ �S� ¼ 0). Inserting Eq. (2.12) into
Eq. (2.2), and making use of Eq. (2.9), we find that the fields
�a and S� are massless, and they are just the N2

f (pseudo-

scalar) Goldstone bosons generated by the spontaneous
breaking of the chiral symmetry down to the UðNfÞV sub-

group, while the (scalar) fields ha (a ¼ 1; . . . ; N2
f � 1) and

h0 have nonzero squared masses, respectively, given by
M2

a ¼ 	2
�F

2
� and M2

0 ¼ ð	2
� þ Nf	

02
�ÞF2

�.
3

If we now take into account the anomalous term in
Eq. (2.8) (while keeping, for simplicity, the chiral limit
M ¼ 0), it is easy to see that, for T < Tc, it modifies the
result simply by adding a quadratic term in the pseudosca-
lar singlet field S�,

LðM¼0Þ
2 ¼ L0 � 1

2

�
2NfA

F2
�

�
S2�; (2.13)

from which one derives the famous Witten–Veneziano
formula for the singlet squared mass (in the chiral limit):

M2
S�

¼ 2NfA

F2
�
. However, the anomalous term in Eq. (2.8)

makes sense only in the low-temperature phase (T < Tc),
and it is singular for T > Tc, where the vacuum expectation
value of the mesonic field U vanishes. On the contrary, the
interaction term (2.3) behaves well both in the low- and
high-temperature phases.

A. Effective Lagrangian with the inclusion
of a Uð1Þ axial condensate

The above-mentioned problems can be overcome by
considering a modified effective Lagrangian (which was
originally proposed in Refs. [10–12] and elaborated on in
Refs. [13–15]), which generalizes the LagrangianL2 written

3If one is interested, e.g., at T ¼ 0, only in the lowest-energy
effective states, i.e., only in the pseudoscalar mesonic excitations,
one can formally decouple the massive scalar excitations ~H by
taking the limit 	2

� ! 1, which is a ‘‘static,’’ i.e., infinite-mass,
limit for ~H and thus implies ~H ! 0. In this limit, the expression

(2.12) for the mesonic field U reduces to U ¼ F�ffiffi
2

p ei
ffiffi
2

p
F�

�; i.e.,

UUy ¼ F2
�

2 I, and the effective Lagrangian with this constraint
become a nonlinear sigma model. We also observe that the

quantity F�, defined in Eq. (2.9) as F� � ffiffiffi
2

p
v, is just the usual

pion decay constant, since the SUðNfÞ axial currents turn

out to be, using Eq. (2.12), A
�
a ¼ i

2 Tr½Taf@�U;Uyg	 �
i
2 Tr½Taf@�Uy; Ug	 ¼ � ffiffiffi

2
p

v@��a þ � � � � �F�@
��a þ � � � .
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in Eq. (2.7), so that it correctly satisfies the transformation
property (2.6) under the chiral group but also includes an
interaction term containing the determinant of the mesonic
fieldU, of the kind of that inEq. (2.3), assuming that there is a
Uð1ÞA-breaking condensate that (possibly) survives across
the chiral transition at Tc, staying different from zero up to a
temperature TUð1Þ > Tc. (Of course, it is also possible that

TUð1Þ ! 1, as a limit case. Another possible limit case, i.e.,

TUð1Þ ¼ Tc, will be discussed in the concluding comments in

Sec. V.) The new Uð1Þ chiral condensate has the form
CUð1Þ ¼ hOUð1Þi, where, for a theory with Nf light quark

flavors, OUð1Þ is a 2Nf-quark local operator that has the

chiral transformation properties of [4,29,30] OUð1Þ �
det stð �qsRqtLÞ þ det stð �qsLqtRÞ, where s; t ¼ 1; . . . ; Nf are

flavor indices. The color indices (not explicitly indicated)
are arranged in such away that (i)OUð1Þ is a color singlet and
(ii)CUð1Þ ¼ hOUð1Þi is a genuine 2Nf-quark condensate, i.e.,

it has no disconnected part proportional to some power of the
quark-antiquark chiral condensate h �qqi; the explicit form of
the condensate for the casesNf ¼ 2 andNf ¼ 3 is discussed

in detail in the Appendix A of Ref. [15] (see also
Refs. [12,31]).

The modified effective Lagrangian is written in terms of
the topological charge density Q, the mesonic field Uij �
�qjRqiL (up to a multiplicative constant), and the new field

variable X � det ð �qsRqtLÞ (up to a multiplicative constant),
associated with the Uð1Þ axial condensate [10–12],
LðU;Uy; X; Xy; QÞ

¼ 1

2
Tr½@�U@�Uy	 þ 1

2
@�X@

�Xy

� VðU;Uy; X; XyÞ þ i

2
!1QTr½logU� logUy	

þ i

2
ð1�!1ÞQ½logX � logXy	 þ 1

2A
Q2; (2.14)

where the potential term VðU;Uy; X; XyÞ has the form
VðU;Uy; X; XyÞ

¼ 1

4
	2
� Tr½ðUUy � 
�IÞ2	 þ 1

4
	02
�½TrðUUyÞ	2

þ 1

4
	2
X½XXy � 
X	2 � Bm

2
ffiffiffi
2

p Tr½MUþMyUy	

� c1

2
ffiffiffi
2

p ½Xy detUþ X detUy	: (2.15)

Since under chiral UðNfÞL �UðNfÞR transformations [see

Eq. (2.4)] the field X transforms exactly as detU,

UðNfÞL �UðNfÞR: X ! det ðVLÞ det ðVRÞ�X; (2.16)

[i.e., X is invariant under SUðNfÞL � SUðNfÞR �Uð1ÞV ,
while, under a Uð1Þ axial transformation (2.5), X !
e�i2Nf�X], we have that, in the chiral limit M ¼ 0, the
effective Lagrangian (2.14) is invariant under

SUðNfÞL � SUðNfÞR �Uð1ÞV , while under a Uð1Þ axial

transformation, it correctly transforms as in Eq. (2.6).
After integrating out the variable Q in the effective

Lagrangian (2.14), we are left with

LðU;Uy; X; XyÞ ¼ 1

2
Tr½@�U@�Uy	 þ 1

2
@�X@

�Xy

� ~VðU;Uy; X; XyÞ; (2.17)

where

~VðU;Uy; X; XyÞ
¼ VðU;Uy; X; XyÞ � 1

8
Af!1 Tr½logU� logUy	

þ ð1�!1Þ½logX � logXy	g2: (2.18)

As we have already said, all the parameters appearing in
the effective Lagrangian must be considered as functions
of the physical temperature T. In particular, the parameters

� and 
X determine the expectation values hUi and hXi,
and so they are responsible for the behavior of the theory
across the SUðNfÞ � SUðNfÞ and the Uð1Þ chiral phase

transitions. We shall assume that the parameters 
� and

X, as functions of the temperature T, behave as reported in
Table I; T
�

is thus the temperature at which the parameter


� vanishes, while TUð1Þ > T
�
is the temperature at which

the parameter 
X vanishes (with, as we have said above,
TUð1Þ ! 1, i.e., 
X > 0 8T, as a possible limit case). We

shall see in the next section that, in the case Nf � 3, one

has Tc ¼ T
�
(exactly as in the case of the linear sigma

model L0 discussed above), while, as we shall see in
Sec. IV, the situation in which Nf ¼ 2 is more compli-

cated, being T
�
< Tc < TUð1Þ in that case (unless T
�

¼
Tc ¼ TUð1Þ; this limit case will be discussed in the con-

cluding comments in Sec. V).
Concerning the parameter !1, in order to avoid a sin-

gular behavior of the anomalous term in Eq. (2.18) above
the chiral transition temperature Tc, where the vacuum
expectation value of the mesonic field U vanishes (in the
chiral limitM ¼ 0), we shall assume that!1ðT � TcÞ ¼ 0.
Finally, let us observe that the interaction term between

the U and X fields in Eq. (2.15), i.e.,

Lint ¼ c1

2
ffiffiffi
2

p ½Xy detUþ X detUy	; (2.19)

is very similar to the interaction term (2.3) that we have
discussed above for the effective LagrangianL1. However,
the term (2.19) is not anomalous, being invariant under the

TABLE I. Dependence of the parameters 
� and 
X on the
temperature T.

T < T
�
T
�

< T < TUð1Þ T > TUð1Þ

� > 0 
� < 0 
� < 0

X > 0 
X > 0 
X < 0
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chiral group UðNfÞL �UðNfÞR, by virtue of Eqs. (2.4) and

(2.16). Nevertheless, if the field X has a (real) nonzero
vacuum expectation value �X [the Uð1Þ axial condensate],
then we can write

X ¼ ð �Xþ hXÞei
SX
�X ðwith: �hX ¼ �SX ¼ 0Þ; (2.20)

and, after susbstituting this in Eq. (2.19) and expanding in
powers of the excitations hX and SX, one recovers, at the
leading order, an interaction term of the form (2.3)

Lint ¼ cI½detUþ detUy	 þ � � � ; with: cI ¼ c1 �X

2
ffiffiffi
2

p :

(2.21)

In the rest of this paper, we shall analyze in detail the
effects of assuming a nonzero value of the Uð1Þ axial
condensate �X on the scalar and pseudoscalar meson mass
spectrum above the chiral transition temperature (T > Tc),
both for the case Nf � 3 (Sec. III) and for the case Nf ¼ 2

(Sec. IV).

III. MASS SPECTRUM FOR T > Tc

IN THE CASE Nf � 3

The results for the scalar and pseudoscalar meson mass
spectrum for T > Tc in the case Nf � 3 were rapidly

sketched in Ref. [10] and, in this section, we shall rederive
them in a more detailed and accurate way in order to allow
for a more clear comparison with the novel results that we
shall obtain in the next section for the case Nf ¼ 2.

Let us suppose to be in the range of temperatures T
�
<

T < TUð1Þ, where, according to Table I,


� � � 1

2
B2
� < 0; 
X � 1

2
F2
X > 0: (3.1)

Since we expect that, due to the sign of the parameter 
X in
the potential (2.15), theUð1Þ axial symmetry is broken by a
nonzero vacuum expectation value of the field X (at least
for 	2

X ! 1, we should have �Xy �X ! 1
2F

2
X), we shall use

for the field U the linear parametrization (2.11), while for
the field X, we shall use a nonlinear parametrization,
similar to the polar decomposition in Eq. (2.12),

Uij ¼ aij þ ibij; X ¼ �ei ¼ ð ��þ hXÞeið �þ
SX
�� Þ;

(3.2)

where �X ¼ ��ei
� (with �� � 0) is the vacuum expectation

value of X and aij, bij, hX, and SX are real fields. Inserting

Eq. (3.2) into the expressions (2.15) and (2.18), we find the
expressions for the potential with and without the anoma-
lous term (with !1 ¼ 0),

~V ¼ V � 1

8
A½logX � logXy	2 ¼ V þ 1

2
A2 (3.3)

and

V¼Nf

16
	2
�B

4
�þ1

4
	2
�Tr½ðUUyÞðUUyÞ	þ1

4
	02
�½TrðUUyÞ	2

þ1

4
	2
X

�
�2�1

2
F2
X

�
2þ1

4
	2
�B

2
�ða2ijþb2ijÞ

�Bmffiffiffi
2

p ðmijaji�nijbjiÞ� c1

2
ffiffiffi
2

p ½�cosðdetUþdetUyÞ

þ i�sinðdetU�detUyÞ	; (3.4)

where we have assumed the most general (complex) mass
matrix Mij ¼ mij þ inij, with mij and nij real. Let us first

look for the equations for a stationary point (S) of the
nonanomalous potential V, indicating with �U and �X the
values of the fields U and X in this point:

@V

@aij

��������S
¼ 1

2
	2
�B

2
� �aij � Bmffiffiffi

2
p mji þ � � � ¼ 0;

@V

@bij

��������S
¼ 1

2
	2
�B

2
�
�bij þ Bmffiffiffi

2
p nji þ � � � ¼ 0;

@V

@�

��������S
¼ 	2

X

�
��2 � F2

X

2

�
��� c1

2
ffiffiffi
2

p ½cos �ðdet �Uþ det �UyÞ

þ i sin �ðdet �Uy � det �UÞ	 ¼ 0;

@V

@

��������S
¼ c1

2
ffiffiffi
2

p ��½sin �ðdet �Uþ det �UyÞ

� i cos �ðdet �Uy � det �UÞ	 ¼ 0: (3.5)

From the first two equations, where we have omitted terms
that, for Nf � 3, are of order 2 or higher in the fields a and

b, we find that, at the leading order in M,

�U ¼ 2Bmffiffiffi
2

p
	2
�B

2
�

My þ � � � : (3.6)

Let us now consider the second derivatives of the potential
V with respect to the fields, calculated at the stationary
point S:

@2V

@alm@aij

��������S
¼ 1

2
	2
�B

2
��il�jm þ � � � ;

@2V

@blm@bij

��������S
¼ 1

2
	2
�B

2
��il�jm þ � � � ;

@2V

@�2

��������S
¼ 	2

X

�
3 ��2 � F2

X

2

�
;

@2V

@2

��������S
¼ c1

2
ffiffiffi
2

p ��½cos �ðdet �Uþ det �UyÞ

þ i sin �ðdet �Uy � det �UÞ	;
@2V

@�@

��������S
¼ c1

2
ffiffiffi
2

p ½sin �ðdet �Uþ det �UyÞ

� i cos �ðdet �Uy � det �UÞ	: (3.7)

The first two equations are given at the leading order in the
quark masses, and all the second derivatives, which are not
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shown in Eq. (3.7), are of orderOðmÞ or higher in the quark
masses. From the third equation of Eqs. (3.7) it is clear that
the stationary point can be a minimum of the potential only
for �� � 0. If we now take forM the physical real diagonal
matrixM ¼ diagðm1; . . . ; mNf

Þ, we have thatM ¼ My and
therefore, by virtue of the result (3.6), also �U ¼ �Uy.
Indeed, this is a more general result, not directly related
to the particular solution (3.6) (which, as we shall see in the
next section, is valid for Nf � 3, but not for Nf ¼ 2),

being due, when M is a real diagonal matrix (or, more
generally, when M is Hermitian), to the invariance of the
theory under parity (P) transformations [i.e., being Uij �
�qjRqiL and X � det ð �qsRqtLÞ, Uðx0; ~xÞ!PUyðx0;� ~xÞ,
Xðx0; ~xÞ!PXyðx0;� ~xÞ], which requires that �U ¼ �Uy and
�X ¼ �Xy. From the last of Eqs. (3.5),we thus find that sin � ¼
0, i.e., � ¼ 0, �, which also implies that @2V

@�@ jS ¼ 0.

Moreover, from the fourth Eq. (3.7), using the result (3.6),
it is clear that, for the stationary point S to be aminimum, we
must require, assuming c1 > 0 and Bm > 0, that also
�� cos �> 0; so, finally, we can take ��> 0 and � ¼ 0. We
can then determine �� using the third equation in Eqs. (3.5)
and so find

�� ¼ FXffiffiffi
2

p þ c1ffiffiffi
2

p
	2
XF

2
X

�
2Bmffiffiffi
2

p
	2
�B

2
�

�
Nf

detMþ � � � ; (3.8)

which gives @2V
@�2 jS ¼ 	2

XF
2
X þOðdetMÞ.

If we now consider the full potential ~V, with the inclu-
sion of the anomalous term, see Eq. (3.3), it is trivial to see
that the solution that we have found for the minimum of V,
given by Eqs. (3.6) and (3.8) with � ¼ 0, is also a mini-
mum for the potential ~V, the only modification being in the
second derivative of the potential with respect to , which
is now given by [see the fourth equation in Eqs. (3.7)]
@2 ~V
@2 jS ¼ @2V

@2 jS þ A ¼ AþOðdetMÞ.
In particular, in the chiral limit M ¼ 0, we find that

�U ¼ 0 and �X ¼ �� ¼ FXffiffi
2

p , which means that, in this range

of temperatures T
�
< T < TUð1Þ, the SUðNfÞL � SUðNfÞR

chiral symmetry is restored so that we can say that (at least
for Nf � 3) Tc � T
�

, while the Uð1Þ axial symmetry is

broken by the Uð1Þ axial condensate �X. Concerning the
mass spectrum of the effective Lagrangian, we have 2N2

f

degenerate scalar and pseudoscalar mesonic excitations,
described by the fields aij and bij, plus a scalar singlet field

hX ¼ �� �� and a pseudoscalar singlet field SX ¼ ��
[see Eq. (3.2)], with squared masses given by

M2
U ¼ 1

2
	2
�B

2
�; M2

hX
¼ 	2

XF
2
X; M2

SX
¼ A

��2
¼ 2A

F2
X

:

(3.9)

While the mesonic excitations described by the field U are
of the usual q �q type, the scalar singlet field hX and the
pseudoscalar singlet field SX describe instead two exotic,
2Nf-quark excitations of the form hX � det ð �qsLqtRÞ þ
det ð �qsRqtLÞ and SX � i½det ð �qsLqtRÞ � det ð �qsRqtLÞ	. In
particular, the physical interpretation of the pseudoscalar
singlet excitation SX is rather obvious, and it was already
discussed in Ref. [10]: it is nothing but the would-be
Goldstone particle coming from the breaking of the Uð1Þ
axial symmetry. In fact, neglecting the anomaly, it has zero
mass in the chiral limit of zero quark masses. Yet, consid-
ering the anomaly, it acquires a topological squared mass
proportional to the topological susceptibility A of the
pure YM theory, as required by the Witten–Veneziano
mechanism [5,6].

IV. MASS SPECTRUM FOR T > Tc

IN THE CASE Nf ¼ 2

In this section we shall derive the results for the scalar
and pseudoscalar mesonic mass spectrum for T > Tc in
the case Nf ¼ 2, with a quark mass matrix given by M ¼
diagðmu;mdÞ.
As in the previous section, we start considering the range

of temperatures T
�
< T < TUð1Þ, with the parameters


� and 
X given by Eq. (3.1) (see also Table I). We shall
use for the field U a more convenient variant of the
linear parametrization (2.11), while for the field X, we
shall use the usual nonlinear parameterization given in
Eq. (3.2),4

U ¼ 1ffiffiffi
2

p ½ð�þ i�ÞIþ ð ~�þ i ~�Þ � ~�	;

X ¼ �ei ¼ ð ��þ hXÞei
SX
�� ;

(4.1)

where �a (a ¼ 1, 2, 3) are the three Pauli matrices [with the
usual normalization Trð�a�bÞ ¼ 2�ab] and the multiplica-
tive factor 1ffiffi

2
p guarantees the correct normalization of

the kinetic term in the effective Lagrangian. The fields �,

�, ~�, and ~� describe, respectively, the isoscalar (I ¼ 0)
scalar q �q mesonic excitation � (also known as f0 in the
modern language of hadron spectroscopy), the isoscalar
(I ¼ 0) pseudoscalar q �q mesonic excitation �, the isovec-

tor (I ¼ 1) scalar q �q mesonic excitation ~� (also known as
~a0), and the isovector (I ¼ 1) pseudoscalar q �q mesonic
excitation ~�.
Inserting Eq. (4.1) into the expressions (2.15) and (2.18),

we find the expression for the potential V, without the
anomalous term,

4Here, we immediately put � ¼ 0, since, as one can easily see,
the arguments leading to � ¼ 0, which we have given in the
previous section, are valid also for Nf ¼ 2.
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V ¼ 1

8
	2
�B

4
� þ 1

8
�2

�ð�2 þ �2 þ ~�2 þ ~�
2Þ2 þ 1

2
	2
�ð�2 ~�

2 þ 2�� ~� � ~�þ �2 ~�2Þ þ 1

2
	2
�½ ~�2 ~�

2 � ð ~� � ~�Þ2	

þ 1

4
	2
�B

2
�½�2 þ �2 þ ~�

2 þ ~�2	 þ 1

4
	2
X

�
�2 � F2

X

2

�
2 � Bm

2
½ðmu þmdÞ�þ ðmu �mdÞ�3	

� c1

2
ffiffiffi
2

p ½� cosð�2 � �2 � ~�
2 þ ~�2Þ þ 2� sinð��� ~� � ~�Þ	; (4.2)

where

�2
� � 	2

� þ 2	02
�; (4.3)

while the full potential ~V, including also the anomalous
term (with !1 ¼ 0), is still given by Eq. (3.3), i.e.,
~V ¼ V þ 1

2A
2.

When looking for the equations for a stationary point (S)
of the potential ~V, indicating as usual with �U and �X the
values of the fields U and X in this point, we can immedi-
ately make use, with M being a real diagonal (and, there-
fore, Hermitian) matrix, of the invariance of the theory
under parity (P) transformations (as already observed in
the previous section), which requires that �U ¼ �Uy and
�X ¼ �Xy. That is to say, using the parametrization (4.1),
�� ¼ ��a ¼ � ¼ 0. This automatically guarantees the van-
ishing of the first derivatives of the potential ~V with respect
to the pseudoscalar fields at the stationary point S, i.e.,
@ ~V
@� jS ¼ @ ~V

@�a
jS ¼ @ ~V

@ jS ¼ 0, as one can easily verify using

Eqs. (4.2) and (3.3).
Moreover, the vanishing, at the stationary point (S), of

the derivatives of Eq. (4.2) with respect to the fields �a

(a ¼ 1, 2, 3), gives the following three equations:

@ ~V

@�a

��������S
¼ 1

2
½�2

�ð ��2 þ �~�
2Þ þ 2	2

� ��2

þ ð	2
�B

2
� þ ffiffiffi

2
p

c1 ��Þ	 ��a

� 1

2
Bmðmu �mdÞ�a3 ¼ 0: (4.4)

For a ¼ 1 and a ¼ 2, using the fact that c1 > 0 and ��> 0
(or, more generally, c1 ��> 0; see the discussion in the
previous section, which can be easily extended also to
the case Nf ¼ 2 considered here), one immediately finds

the solution ��1 ¼ ��2 ¼ 0. Let us also observe that, in the
chiral limit mu ¼ md ¼ 0, or, more generally, in the limit
of equal quark masses mu ¼ md, one also has ��3 ¼ 0
so that �U ¼ ��ffiffi

2
p I, which is invariant under the SUð2ÞV

(isospin) symmetry, as it must be.
So, finally, we are left with the following three equations

for the values ��, �� and �� � ��3:

@ ~V

@�

��������S
¼ 1

2
½�2

�ð ��2þ ��2Þþ2	2
�
��2þð	2

�B
2
��

ffiffiffi
2

p
c1 ��Þ	 ��

�1

2
BmðmuþmdÞ¼ 0;

@ ~V

@�3

��������S
¼ 1

2
½�2

�ð ��2þ ��2Þþ2	2
� ��2þð	2

�B
2
�þ

ffiffiffi
2

p
c1 ��Þ	 ��

�1

2
Bmðmu�mdÞ¼ 0;

@ ~V

@�

��������S
¼	2

X

�
��2�F2

X

2

�
��� c1

2
ffiffiffi
2

p ð ��2� ��2Þ¼ 0: (4.5)

It is easy to see that Eqs. (4.5) admit the following solution
(at the first nontrivial order in the quark masses mu

and md),

�� ¼ Bm

	2
�B

2
� � c1FX

ðmu þmdÞ þ � � � ;

�� ¼ Bm

	2
�B

2
� þ c1FX

ðmu �mdÞ þ � � � ;

�� ¼ FXffiffiffi
2

p þ
ffiffiffi
2

p
c21	

2
�B

2
�

	2
XFXð	4

�B
4
� � c21F

2
XÞ2

B2
mðm2

u þm2
dÞ

þ
ffiffiffi
2

p
c1ð	4

�B
4
� þ c21F

2
XÞ

	2
XF

2
Xð	4

�B
4
� � c21F

2
XÞ2

B2
mmumd þ � � � ; (4.6)

which, in the chiral limit mu ¼ md ¼ 0, reduces to

�� ¼ �� ¼ 0; �� ¼ FXffiffiffi
2

p ;

i:e:: �U ¼ 0; �X ¼ �� ¼ FXffiffiffi
2

p ;

(4.7)

signalling that the SUðNfÞL � SUðNfÞR chiral symmetry is

restored, while the Uð1Þ axial symmetry is broken by the
Uð1Þ axial condensate �X.
To see if this stationary point is a minimum of the

potential (and, eventually, in order to derive the mass
spectrum of the effective Lagrangian), we must study the
matrix of the second derivatives (Hessian) of the potential
~V with respect to the fields at the stationary point S. By
virtue of the parity invariance of the theory, one immedi-
ately has that the mixed second derivatives of ~V with
respect to a scalar field and a pseudoscalar field vanish at
the stationary point S, as one can easily verify using
Eqs. (4.2) and (3.3). In other words, the scalar sector
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ðhX; �; ~�Þ and the pseudoscalar sector ðSX; �; ~�Þ are de-
coupled in the matrix of the second derivatives of ~V at the
stationary point S, and, therefore, they can be studied
separately.

A. Scalar sector

From Eqs. (4.2) and (3.3), it comes out that the Hessian
matrix (evaluated at the stationary point S) is already

diagonal with respect to the fields �1 and �2, with a
common value of the squared masses given by

M2
�1;2

¼ 1

2
ð	2

�B
2
� þ c1

ffiffiffi
2

p
��Þ þ 1

2
�2

�ð ��2 þ ��2Þ þ 	2
� ��2:

(4.8)

The Hessian of the remaining scalar fields ðhX; �; �3Þ turns
out to be

H ðSÞ ¼
	2
X

�
3 ��2 � F2

X

2

�
� c1ffiffi

2
p �� c1ffiffi

2
p ��

� c1ffiffi
2

p �� 1
2 ð	2

�B
2
� � c1

ffiffiffi
2

p
��Þ þ �� ð�2

� þ 2	2
�Þ �� ��

c1ffiffi
2

p �� ð�2
� þ 2	2

�Þ �� �� 1
2 ð	2

�B
2
� þ c1

ffiffiffi
2

p
��Þ þ ��

0
BBBB@

1
CCCCA; (4.9)

where �� � 3
2�

2
� ��2 þ 1

2 ð�2
� þ 2	2

�Þ ��2 and �� �
1
2 ð�2

� þ 2	2
�Þ ��2 þ 3

2 �
2
�
��2. Therefore, in the chiral limit

mu ¼ md ¼ 0, see Eq. (4.7), the Hessian matrix of the

scalar fields ðhX; �; ~�Þ turns out to be diagonal, with
squared masses given by

M2
hX

¼ 	2
XF

2
X;

M2
� ¼ 1

2
ð	2

�B
2
� � c1FXÞ;

M2
� ¼ 1

2
ð	2

�B
2
� þ c1FXÞ:

(4.10)

B. Pseudoscalar sector

From Eqs. (4.2) and (3.3), it comes out that the Hessian
matrix (evaluated at the stationary point S) is already
diagonal with respect to the fields �1 and �2, with a
common value of the squared masses given by

M2
�1;2

¼ 1

2
ð	2

�B
2
� � c1

ffiffiffi
2

p
��Þ þ 1

2
�2

�ð ��2 þ ��2Þ þ 	2
�
��2:

(4.11)

The Hessian of the remaining pseudoscalar fields
ðSX; �; �3Þ turns out to be

H ðPSÞ ¼

c1
2
ffiffi
2

p
��
ð ��2 � ��2Þ þ A

��2 � c1ffiffi
2

p �� c1ffiffi
2

p ��

� c1ffiffi
2

p �� 1
2 ð	2

�B
2
� þ c1

ffiffiffi
2

p
��Þ þ � 	2

� �� ��

c1ffiffi
2

p �� 	2
�
�� �� 1

2 ð	2
�B

2
� � c1

ffiffiffi
2

p
��Þ þ �

0
BBBB@

1
CCCCA; (4.12)

where � � 1
2 �

2
�ð ��2 þ ��2Þ. Therefore, in the chiral limit

mu ¼ md ¼ 0, see Eq. (4.7), the Hessian matrix of the
pseudoscalar fields ðSX; �; ~�Þ turns out to be diagonal,
with squared masses given by

M2
SX

¼ 2A

F2
X

; M2
� ¼ 1

2
ð	2

�B
2
� þ c1FXÞ;

M2
� ¼ 1

2
ð	2

�B
2
� � c1FXÞ:

(4.13)

Therefore, in the case Nf ¼ 2, the restoration of the
SUð2ÞL � SUð2ÞR chiral symmetry manifests itself in the
appearance, in the mass spectrum of the effective
Lagrangian, of two q �q chiral multiplets ð12 ; 12Þ, namely,

ð�; ~�Þ: M2
� ¼ M2

� ¼ 1

2
ð	2

�B
2
� � c1FXÞ;

ð�; ~�Þ: M2
� ¼ M2

� ¼ 1

2
ð	2

�B
2
� þ c1FXÞ:

(4.14)

Instead, the squared masses of the q �q mesonic excitations
belonging to a same Uð1Þ chiral multiplet, such as ð�;�Þ
and ð ~�; ~�Þ, remain split by the quantity

�M2
Uð1Þ � M2

� �M2
� ¼ M2

� �M2
� ¼ c1FX; (4.15)

proportional to the Uð1Þ axial condensate. This result is to
be contrasted with the corresponding result obtained in the
previous section for the Nf � 3 case, see Eq. (3.9), in

which all (scalar and pseudoscalar) q �qmesonic excitations
(described by the fieldU) turned out to be degenerate, with

squared masses M2
U ¼ 1

2	
2
�B

2
�.

We must now make an important remark about the solu-
tion (4.7) that we have found. From the results (4.10) and
(4.13), we see that this stationary point is a minimum of the
potential, provided that 	2

�B
2
� > c1FX; otherwise, the

Hessian evaluated at the stationary point would not be posi-

tive definite, being @2 ~V
@�2 jS ¼ @2 ~V

@�2
a
jS ¼ 1

2 ð	2
�B

2
� � c1FXÞ< 0.

Remembering that, for T
�
< T < TUð1Þ, 
� � � 1

2B
2
� < 0,
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the condition for the stationary point (4.7) to be a minimum
can be written as

G� � c1FX þ 2	2
�
� ¼ c1FX � 	2

�B
2
� < 0;

i:e:: 
� <� c1FX

2	2
�

:
(4.16)

In other words, assuming c1FX > 0 and approximately
constant (as a function of the temperature T) around T
�

,

we have that the stationary point (4.7) is a solution, i.e., a
minimum of the potential, not immediately above T
�

,

where the parameter 
� vanishes (see Table I) and G� is
positive, but (assuming that 	2

�B
2
� becomes large enough

increasing T, starting from 	2
�B

2
� ¼ 0 at T ¼ T
�

) only for

temperatures that are sufficiently higher than T
�
, so that

the condition (4.16) is satisfied, i.e., only for T > Tc, where
Tc is defined by the condition G�ðT ¼ TcÞ ¼ 0, and it is
just what we can call the chiral transition temperature.
In fact, for T > Tc the solution (4.7) is valid, and the
SUð2ÞL � SUð2ÞR chiral symmetry is restored. Therefore,
differently from the case Nf � 3 discussed in the previous

section, where Tc � T
�
, we have here that Tc > T
�

.

Now the question is as follows: What happens for
T
�

< T < Tc?

C. Study of the solution for T��
< T < Tc

One immediately sees that, when

G� � c1FX þ 2	2
�
� ¼ c1FX � 	2

�B
2
� � 0; (4.17)

Eqs. (4.5) also admit the solution (in the chiral limit mu ¼
md ¼ 0)

�� ¼ 1

��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1

ffiffiffi
2

p
��� 	2

�B
2
�

q
� �0; �� ¼ 0; (4.18)

with �� defined implicitly by the third equation in
Eqs. (4.5), i.e.,

	2
X

�
��2 � F2

X

2

�
�� ¼ c1

2
ffiffiffi
2

p
�2

�

ðc1
ffiffiffi
2

p
��� 	2

�B
2
�Þ: (4.19)

This solution, being of the form �U ¼ �0ffiffi
2

p I, with �0 > 0,

spontaneously breaks the chiral symmetry down to the
vectorial subgroupUð2ÞV . It is easy to verify that, by virtue
of the condition (4.17), Eq. (4.19) admits a unique solution

such that �� � FXffiffi
2

p � 	2
�B

2
�ffiffi

2
p

c1
[where the last inequality comes

from the condition (4.17)], thus leading to a well-defined
solution (4.18) for ��. When, in particular, G� ¼ 0 (i.e.,
when T ¼ Tc), then the solution coincides with Eq. (4.7),

being �� ¼ FXffiffi
2

p and �� ¼ �� ¼ 0. Instead, forG� > 0 (i.e., for

T < Tc), one has that ��> FXffiffi
2

p and ��> 0. By studying the

matrix of the second derivatives of the potential, calculated
in this stationary point, one immediately verifies that this
solution is a minimum of the potential and that the masses
of the pseudoscalar q �q excitations �a (the pions) vanish;

i.e., the�a are the three Goldstone bosons coming from the
breaking of SUð2ÞL � SUð2ÞR down to SUð2ÞV . Obviously,
the solution (4.18) and (4.19) continues to be valid also for

T < T
�
, where 
� � A2

�

2 > 0, provided that one substitutes

B2
� with �2
� ¼ �A2

�.

D. Chiral condensate for T > Tc and for T < Tc

It is well known that, since the derivative of the QCD
Hamiltonian with respect to the quark mass ml is the opera-

tor �qlql (being �LðmassÞ
QCD ¼ �PNf

l¼1 ml �qlql), then the corre-

sponding derivative of the vacuum energy represents the
vacuum expectation value of �qlql, i.e., the so-called chiral
condensate. In terms of the effective Lagrangian, this means

h �qlqli ¼ @ �V

@ml

; (4.20)

where �V ¼ ~Vð �U; �Uy; �X; �XyÞ ¼ Vð �U; �Uy; �X; �XyÞ is the vac-
uum expectation value of the potential of the effective
Lagrangian. Using the fact that � ¼ �� ¼ ��a ¼ ��1 ¼
��2 ¼ 0, we find, from Eqs. (3.3) and (4.2),

�V ¼ 1

8
	2
�B

4
� þ 1

8
�2

�ð ��2 þ ��2Þ2 þ 1

2
	2
� ��2 ��2

þ 1

4
	2
X

�
�2 � F2

X

2

�
2 þ 1

4
ð	2

�B
2
� � ffiffiffi

2
p

c1 ��Þ ��2

þ 1

4
ð	2

�B
2
� þ ffiffiffi

2
p

c1 ��Þ ��2 � Bm

2
½ðmu þmdÞ ��

þ ðmu �mdÞ ��	; (4.21)

which, when inserted into Eq. (4.20), gives

h �ququi ¼ @ �V

@mu

¼ �Bm

2
ð ��þ ��Þ;

h �qdqdi ¼ @ �V

@md

¼ �Bm

2
ð ��� ��Þ;

(4.22)

having used Eqs. (4.5) for the vacuum expectation values
��, ��, and ��. Substituting the solutions (4.6) into the
expressions (4.22), we find that, for T > Tc,

h �ququi ’ � B2
m

	4
�B

4
� � c21F

2
X

ðmu	
2
�B

2
� þmdc1FXÞ;

h �qdqdi ’ � B2
m

	4
�B

4
� � c21F

2
X

ðmd	
2
�B

2
� þmuc1FXÞ:

(4.23)

As we see, the chiral condensate vanishes in the chiral limit
mu ¼ md ¼ 0, signalling the restoring of the chiral sym-
metry. Concerning the dependence on the quark masses,
we observe that, in agreement with what was already found
in Ref. [10] for Nf � 3, also for the case Nf ¼ 2 the

expression (4.23) for the chiral condensate comes out to
be the sum of two contributions, h �qlqli ¼ O1ðmlÞ þ
O2ðQk�lmkÞ, for which the diagrammatic interpretation
is rather simple (see Fig. 1): the first term O1ðmlÞ corre-
sponds to a diagram with the insertion of a mass operator
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�ml �qlql, while the second term O2ð
Q

k�lmkÞ clearly
corresponds to a diagram with the insertion of the
2Nf-quark effective vertex (‘‘�’’) associated with the

Uð1Þ axial condensate �X.
Instead, for T < Tc, one finds, using the solution (4.18)

(with the substitution B2
� ! �2
� � �A2

�, if it is also
T < T
�

), that, in the chiral limit mu ¼ md ¼ 0,

h �ququi ¼ h �qdqdi ¼ � 1

2
Bm�0 � � 1

2
BmF�; (4.24)

since, in this case, �U ¼ �0ffiffi
2

p I, and, therefore, on the basis of

what we have observed in Sec. II [see, in particular,
Eq. (2.9) and the third footnote], �0 must be identified
with the pion decay constant: �0 � F�.

V. COMMENTS ON THE RESULTS
AND CONCLUSIONS

Let us first summarize the results that we have found.
Chiral symmetry restoration at nonzero temperature is

often studied in the framework of the effective Lagrangian
(2.1), (2.2), and (2.3) (see, e.g., Refs. [16–19]), written in
terms of the (quark-bilinear) mesonic effective field U as
(in the chiral limit M ¼ 0) L1 ¼ L0 þLI, where L0

describes a kind of linear sigma model [see Eq. (2.2)],
while LI is an interaction term of the form LI ¼
cI½detUþ detUy	. However, as was noticed by Witten
[24], Di Vecchia, and Veneziano [25], this type of anoma-
lous term does not correctly reproduce the Uð1Þ axial
anomaly of the fundamental theory (i.e., of the QCD),
which is instead correctly implemented in the effective
Lagrangian L2, written in Eq. (2.8), which was derived
in Refs. [24–28]. For studying the phase structure of the
theory at finite temperature, all the parameters appearing in
the effective Lagrangian must be considered as functions
of the physical temperature T. However, the anomalous
term in Eq. (2.8) makes sense only in the low-temperature
phase (T < Tc), and it is singular for T > Tc, where the
vacuum expectation value of the mesonic field U vanishes.
On the contrary, the interaction termLI behaves well both
in the low- and high-temperature phases.

To overcome the above-mentioned problems, we have
considered a modified effective Lagrangian (which was
originally proposed in Refs. [10–12] and elaborated on in
Refs. [13–15]), which generalizes the two effective
Lagrangians L1 and L2 mentioned above, in such a way

that it correctly satisfies the transformation property (2.6)
under the chiral group but also includes an interaction
term containing the determinant of the mesonic field U,
of the kind of that in Eq. (2.3), assuming that there is a
Uð1ÞA-breaking condensate that (possibly) survives across
the chiral transition at Tc, staying different from zero up
to a temperature TUð1Þ > Tc. The modified effective

Lagrangian is written in terms of the q �q mesonic effective
field U and of the 2Nf-quark (exotic) mesonic field X,

associated with the Uð1Þ axial condensate, and it is given
by Eqs. (2.17) and (2.18). In particular, the potential term
VðU;Uy; X; XyÞ, written in Eq. (2.15), contains an interac-
tion term between the U and X fields, i.e., Lint ¼ c1

2
ffiffi
2

p 

½Xy detUþ X detUy	, which is very similar to the inter-
action term LI that we have discussed above for the
effective Lagrangian L1. Even if this term is not anoma-
lous, being invariant under the chiral group UðNfÞL �
UðNfÞR, by virtue of Eqs. (2.4) and (2.16), nevertheless,

if the field X has a (real) nonzero vacuum expectation

value �X (the Uð1Þ axial condensate), then, writing X ¼
ð �X þ hXÞei

SX
�X (with �hX ¼ �SX ¼ 0) and expanding in powers

of the excitations hX and SX, one recovers, at the leading
order, an interaction term of the formLI:Lint ¼ cI½detUþ
detUy	 þ � � � , with cI ¼ c1 �X

2
ffiffi
2

p . In Secs. III and IV of this

paper, we have analyzed in detail the effects of assuming a
nonzero value of the Uð1Þ axial condensate �X on the scalar
and pseudoscalar mesonic mass spectrum above the chiral
transition temperature (T > Tc), both for the case Nf � 3

(Sec. III) and for the case Nf ¼ 2 (Sec. IV).

In particular, in the chiral limit M ¼ 0, one has that, for

T > Tc, �U ¼ 0, �X ¼ ffiffiffiffiffiffi

X

p � FXffiffi
2

p [where 
X � F2
X

2 , see

Eq. (3.1), is the parameter appearing in the potential term
(2.15)], which means that the SUðNfÞL � SUðNfÞR chiral

symmetry is restored, while the Uð1Þ axial symmetry is
broken by the Uð1Þ axial condensate �X. Concerning the
mass spectrum of the effective Lagrangian, first of all we
have two exotic 2Nf-quark mesonic excitations, described

by the scalar singlet field hX � det ð �qsLqtRÞ þ det ð �qsRqtLÞ
and by the pseudoscalar singlet field SX � i½det ð �qsLqtRÞ �
det ð �qsRqtLÞ	, with squared masses given by M2

hX
¼

2	2
X


2
X ¼ 	2

XF
2
X and M2

SX
¼ A

�X
¼ 2A

F2
X

. In particular, the

physical interpretation of the pseudoscalar singlet excita-
tion SX is rather obvious, and it was already discussed in
Ref. [10]; it is nothing but the would-be Goldstone particle
coming from the breaking of the Uð1Þ axial symmetry. In
fact, neglecting the anomaly, it has zero mass in the chiral
limit of zero quark masses. Yet, considering the anomaly, it
acquires a topological squared mass proportional to the
topological susceptibility A of the pure YM theory, as
required by the Witten–Veneziano mechanism [5,6].
In addition, we have the usual 2N2

f q �qmesonic excitations

described by the fieldU. In the case Nf ¼ 2, the restoration

of the SUð2ÞL � SUð2ÞR chiral symmetry manifests itself

FIG. 1. The chiral condensate above Tc.
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in the appearance, in the mass spectrum of the effective
Lagrangian, of two q �q chiral multiplets ð12 ; 12Þ, namely, using

forU the parametrization (4.1) in terms of the fields�, �, ~�,

and ~�, ð�; ~�Þ, with masses M2
� ¼ M2

� ¼ 1
2 ð	2

�B
2
� �ffiffiffi

2
p

c1 �XÞ, and ð�; ~�Þ, with masses M2
� ¼ M2

� ¼ 1
2 ð	2

�B
2
� þffiffiffi

2
p

c1 �XÞ. Instead, the squared masses of the q �q mesonic
excitations belonging to a same Uð1Þ chiral multiplet, such

as ð�;�Þ and ð ~�; ~�Þ, remain split by the quantity5

�M2
Uð1Þ � M2

� �M2
� ¼ M2

� �M2
� ¼ ffiffiffi

2
p

c1 �X; (5.1)

proportional to the Uð1Þ axial condensate �X ¼ FXffiffi
2

p . This

result is to be contrasted with the corresponding result ob-
tained in Sec. III for theNf � 3 case, see Eq. (3.9), where all

(scalar and pseudoscalar) q �qmesonic excitations (described
by the field U) turned out to be degenerate, with squared
massesM2

U ¼ 1
2	

2
�B

2
�. (The result that we have obtained for

Nf � 3 is in agreement with the result that was found in

Ref. [33], where simple group-theoretical arguments were
used to demonstrate that in the high-temperature chirally
restored phase of QCD with Nf massless flavors, all

n-point correlation functions of quark bilinears with
n < Nf are invariant under Uð1Þ axial transformations; in

particular, forNf � 3, all two-point correlation functions of

quark bilinears are invariant under Uð1Þ axial transforma-
tions, and, as a consequence, all q �q mesonic excitations are
degenerate.)

This difference in the mass spectrum of the q �q mesonic
excitations (described by the fieldU) forT > Tc between the
caseNf ¼ 2 and the caseNf � 3 is due to the different role

of the interaction term Lint ¼ cI½detUþ detUy	 þ � � � in
the two cases.WhenNf ¼ 2, this term is (at the lowest order)

quadratic in the fields U so that it contributes to the squared
massmatrix. Instead,whenNf � 3, this term is (at the lowest

order) an interaction term of order Nf in the fields U (e.g., a

cubic interaction term forNf ¼ 3) so that, in the chiral limit,

when �U ¼ 0, it does not affect the masses of the q �qmesonic
excitations.

Alternatively, we can also explain the difference by
using a ‘‘diagrammatic’’ approach, i.e., by considering,
for example, the diagrams that contribute to the following
quantity DUð1Þ, defined as the difference between the

correlators for the �þ and �þ channels:

DUð1ÞðxÞ � hTO�þðxÞOy
�þð0Þi � hTO�þðxÞOy

�þð0Þi
¼ 2½hT �uRdLðxÞ �dRuLð0Þi þ hT �uLdRðxÞ �dLuRð0Þi	:

(5.2)

What happens below and above Tc? For T < Tc, in the
chiral limit m1 ¼ � � �mNf

¼ 0, the left-handed and right-

handed components of a given light quark flavor can be
connected through the q �q chiral condensate, giving rise to
a nonzero contribution to the quantityDUð1ÞðxÞ in Eq. (5.2).
But for T > Tc, the q �q chiral condensate is zero, and,
therefore, also the quantity DUð1ÞðxÞ should be zero for

T > Tc, unless there is a nonzero Uð1Þ axial condensate �X;
in that case, one should also consider the diagram with the
insertion of the 2Nf-quark effective vertex (�; see Fig. 1 in

Sec. IV) associated with the Uð1Þ axial condensate �X. For
Nf ¼ 2, all the left-handed and right-handed components

of the up and down quark fields in Eq. (5.2) can be con-
nected through the four-quark effective vertex �, giving
rise to a nonzero contribution to the quantity DUð1ÞðxÞ.
Instead, for Nf ¼ 3, the six-quark effective vertex � also

generates a couple of right-handed and left-handed strange
quarks, which, for T > Tc, can only be connected through
the mass operator �ms �qsqs, so that (differently from the
case Nf ¼ 2) this contribution to the quantity DUð1ÞðxÞ
should vanish in the chiral limit; this implies that, for

Nf ¼ 3 and T > Tc, the ~� and ~� correlators are identical,

and, as a consequence, also M� ¼ M�. This argument can
be easily generalized to include also the other meson
channels and to the case Nf > 3.

Finally, let us see how our results for the mass spectrum
compare with the available lattice results.
As we have already said in the introduction, information

on the mass spectrum of the q �q mesonic excitations of the
theory can be obtained by studying the two-point correla-
tion functions of proper quark-bilinear operators; lattice
results for the case Nf ¼ 2 already exist in the literature,

even if the situation is, at the moment, a bit controversial.
In fact, there are lattice results [34–41], some of them
obtained using the so-called staggered fermions on the
lattice and some others using the so-called domain-wall
fermions on the lattice, which indicate the nonrestoration
of the Uð1Þ axial symmetry above the chiral transition at
Tc, in the form of a small (but nonzero) splitting between

the ~� and ~� correlators above Tc, up to �1:2Tc.
6 In terms

5Since, as we have seen in the previous section,
ffiffiffi
2

p
c1 �X ¼

c1FX � 0, where we have also included the equality sign to take
into account the limit cases in which c1 ¼ 0 and/or �X ¼ 0 (see
the discussion below), Eq. (5.1) implies that M�  M�, which
can be proved to be an exact inequality in QCD (see, e.g.,
Ref. [32] and references therein).

6We must point out that some of the above-mentioned lattice
results [39–41] refer, properly speaking, neither to the case Nf ¼
2 nor to the case Nf ¼ 3 but to the (more realistic) case
‘‘Nf ¼ 2þ 1,’’ in which there are two (up and down) very light
(eventually massless) quark flavors and one massive strange
quark with a realistic mass ms � 100 MeV. However, it is
commonly believed (see, e.g., Refs. [19] and references therein)
that, due to the large mass of the strange quark, this case, at least
in the vicinity of the phase transition at Tc, is closer to the ideal
case Nf ¼ 2 (obtained in the limit ms ! 1) rather than to the
ideal case Nf ¼ 3 (obtained in the limit ms ! 0). Moreover, the
fact that also, in this case, a splitting is observed between the ~�
and ~� correlators immediately above Tc can be considered (on
the basis of our previous arguments) as an a posteriori confir-
mation of this expectation.
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of our result (5.1), we would interpret this by saying that,
for T > Tc, there is still a nonzero Uð1Þ axial condensate,
�X > 0, so that cI ¼ c1 �X

2
ffiffi
2

p > 0 and the above-mentioned in-

teraction term, containing the determinant of the mesonic
field U, is still effective for T > Tc.

However, recently, other lattice results, obtained using
the so-called overlap fermions on the lattice, have been
reported [42], which do not show evidence of the above-
mentioned splitting above Tc, so indicating an effective
restoration of theUð1Þ axial symmetry above Tc, at least, at
the level of the q �q mesonic mass spectrum (see also
Ref. [43], where the same conclusions have been derived
analytically but always using the overlap lattice fermions,
with the help of certain assumptions). In terms of our result
(5.1), we would interpret this by saying that, for T > Tc,

one has c1 �X ¼ 0, so that cI ¼ c1 �X

2
ffiffi
2

p ¼ 0 and the above-

mentioned interaction term, containing the determinant
of the mesonic field U, is not present for T > Tc. For
example, it could be that also the Uð1Þ axial condensate
�X (like the usual chiral condensate h �qqi) vanishes at
T ¼ Tc, i.e., using the notation introduced in Sec. II (see
Table I), that TUð1Þ ¼ Tc. (Or, even more drastically, it

could be that, at least for Nf ¼ 2, there is simply no

genuine Uð1Þ axial condensate.) In this case, to preserve
the consistency of our effective model, we should require
that also the pure-gauge topological susceptibility AðTÞ
vanishes immediately above the critical temperature Tc;
otherwise, the anomalous term in Eq. (2.18) would be
singular above the critical temperature Tc, where the vac-
uum expectation values of the mesonic fields vanish (in the
chiral limit M ¼ 0). However, lattice results show that the
pure-gauge topological susceptibility AðTÞ is approxi-
mately constant up to the critical temperature Tc, and
then it has a sharp decrease above the transition, but it

remains different from zero, at least up to �1:2Tc (this
suppression for T > Tc, however, increases when increasing
the numberNc of colors, thus hinting at a vanishing large-Nc

limit of AðTÞ for T > Tc, as it was suggested in Ref. [44].
See Ref. [45] for a recent review on these problems.) We
recall that, in the Witten–Veneziano mechanism [5,6], a (no
matter how small) value different from zero for A is related
to the breaking of the Uð1Þ axial symmetry, since it implies
the existence of a pseudoscalar and flavor-singlet would-be
Goldstone particle; thus, a (small) nonzero value of AðTÞ for
T > Tc should imply a (presumably small) nonzero value of
the Uð1Þ axial condensate �X.
Alternatively, one could of course explain the (possible)

vanishing of the coefficient cI ¼ c1 �X

2
ffiffi
2

p of the interaction term

containing the determinant of the mesonic fieldU above Tc

simply by assuming that the coefficient c1 (possibly)
vanishes above Tc. (The possibility that c1 � 0 at every
temperature T, including T ¼ 0, must be discarded if we
also assume that there is a genuine nonzero Uð1Þ axial
condensate �X, since, as it was shown in Appendix B of
Ref. [15], this hypothesis would lead to wrong predictions
for the pseudoscalar-meson mass spectrum at T ¼ 0.)
In conclusion, further work will be necessary, both from

the analytical point of view but especially from the nu-
merical point of view (i.e., by lattice calculations), in order
to unveil the persistent mystery of the fate of theUð1Þ axial
symmetry at finite temperature.
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