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Abstract 

The minimum zone tolerance (MZT) meets the ISO 1101 definition of roundness error: it 

determines two concentric circles that contain the roundness profile and such that the difference in 

radii is the least possible value. 

This article provides theoretical evidence that the minimum size of the neighborhood of the centroid 

containing the minimum zone center is π-1
EC, where CE  is the roundness error related to the 

centroid, which can be evaluated in closed form. 

The implications of such linear estimating are twofold: (i) locating the part center with a given 

tolerance, e.g. for manufacturing tasks, such as handling (peg-hole) or machining (centering) and 

(ii) providing a search area for minimum zone center-based algorithms, such as metaheuristics (GA, 

PSO etc.). 
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1. Introduction 

The evaluation of form errors of machined parts is fundamental in quality inspection to verify their 

conformance to the expected tolerances. The form tolerance is evaluated with reference to a 

Euclidean geometric feature, i.e. a circle in the case of roundness. Roundness is a typical geometric 

form to be inspected. 

The most used criteria to establish the reference circle are: the least-squares method (LSQ), the 

maximum inscribed circle (MIC), the minimum circumscribed circle (MCC) and the minimum zone 

tolerance (MZT). The performance of minimum zone fitting algorithms has been reviewed in [1]. 

The use of a particular data fitting method depends on the required application; e.g., MIC and MCC 

can be used when mating is involved. The MZT meets the standard definition of roundness error, as 

reported in ISO 1101 [2] and therefore it prevents good parts to be rejected by data fitting and 

economic loss. 

The MZT determines two concentric circles that contain the roundness profile and such that the 

difference in radii is the least possible value. This difference is the minimum zone roundness error 

EMZ. Figure 1 shows two pairs of concentric circles that include the sample points centered 

respectively at C1 and C2 and where (R1 – r1) and (R2 – r2) are their difference in radii. If the 

minimum zone center is found, the minimum zone error can be determined as the corresponding 

roundness error. 
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Figure 1: Minimum zone error EMZ. C1 and C2 are possible locations of the centers of the two 

concentric circles. (R1 – r1) and (R2 – r2) are the differences in radii. C1 becomes the minimum zone 

center CMZ if the minimal difference in radii (R1 – r1) coincides with EMZ. Center-based algorithms 

(like metaheuristics) search the (unknown) neighborhood S for CMZ. The main purpose of this work 

is to provide center and radius of S, as indicated, where C is centroid of the roundness profile rp. 

Errors are scaled for clarity. 

About here 

 

The MZT is the solution of the following optimization problem [3]: 
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where S is the search space, θi = i×
n

π2
, i=1,...,n are the angular locations of n equiangular data of 

the roundness profile rp(x,y,θi) of the reference circle of center (x,y). 

The solution of problem (1) is the minimum zone error defined as: 
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where ),( MZMZMZ yxC =  is the minimum zone center. 

The main purpose of this work is to provide a closed form upper bound of the distance between 

centroid Cn and minimum zone center CMZ. This evaluation can be used tout court as a first 

estimation of the minimum zone center position or as the starting point for a local search, e.g. as a 

search neighborhood of metaheuristics, such as genetic algorithms, particle swarm optimization etc. 

By reducing the search area the algorithm complexity and the computation time can be reduced. 

It seems that a theoretical analysis that provides a closed form expression for the roundness problem 

with the MZT criterion is only available by the authors [4], where the center of the search space S is 

the centroid and the radius is the upper bound of the distance between centroid and minimum zone 

center; current lowest upper bound of about 
nCE43.0  has been extrapolated asymptotically. 

The search space definition represents the focus of current work. It will be shown that in the 

proposed approach it has been decreased by 27%. 

 

2. Literature 

Two approaches to the MZT problem have been proposed in the literature: computational geometry 

techniques and solutions of a non linear optimization problem. The first approach is, in general, 

very computationally intensive, especially, when the number of data points is large. One of these 

methods is based on the Voronoi diagram [5] [6]. The second approach is based on the 

minimization of the EMZ as a function of CMZ (Figure 1). The inconvenience is that this function has 

several local minima consequently the exploration is computation intensive; for this reason it takes 

advantage of the search area reduction, which is the main purpose of current work. Some examples 

of center-based approaches are: the Chebyshev approximation [7], the simplex search / linear 

approximation [8] [9], the steepest descent algorithm [10], and metaheuristics like the particle 

swarm optimization (PSO) [11] [12], the simulated annealing (SA) [13], and genetic algorithms 

(GAs) [3] [14] [15]. 

Wang et al. [16] and Jywe et al. [17] presented a generalized non-linear optimization procedure 

based on the developed necessary and sufficient conditions to evaluate the roundness error. In order 

to meet the standards, the minimum zone reference circles should pass through at least four points 

of the roundness profile. This can occur in two cases: a) when three points lie on a circle and one 

point lies on the other circle (the 1-3 and the 3-1 criteria); b) when two points lie on each of the 



concentric circles (the 2-2 criterion, represented by the circled red points in Figure 1). The 

computation time required to meet these conditions increases exponentially with the dataset size. 

Gadelmawla [18] uses a heuristic approach to drastically reduce the number of sample points used 

by the min-max 1-3, 3-1 and 2-2 criteria. 

Samuel and Shunmugam [19] established a minimum zone limaçon based on computational 

geometry to evaluate roundness error; with geometric methods, global optima are found by 

exhaustively checking every local minimum candidate. A mesh based method with starting center 

on the least square center, where the convergence depends on the number of mesh cross points, 

representing a compromise between accuracy and speed, was proposed by Xianqing et al. [20]. This 

and similar approaches require the approximate size of the search space. 

The strategy to equiangular data on the roundness profile is generally adopted in the literature. 

Conversely, in a previous paper the authors developed a cross-validation method for small samples 

to assess the kind of manufacturing signature on the roundness profile in order to detect critical 

points such as peaks and valleys [21]. 

Only few contributions are currently available in the literature regarding the setting of the search 

space of the non linear optimization problem. The centroid is usually considered as the center of the 

search space. In [14] the search space is a square of fixed 0.2 mm side, in [3] it is 5% of the circle 

diameter [22], the side is determined by the distance of the farthest point and the nearest point from 

the mean center which is approximated to
nCE2  where 

nCE  is the roundness error related to the 

centroid of n equiangular data. In [23] it is the rectangle circumscribed to the sample points. 

 

3. An upper bound for the centroid to minimum zone center distance 

In this section, we define a geometrical feature ( )αF  that represents a worst-case for the examined 

roundness problem. A formal theory is developed and presented below to find a closed form 

expression for a theoretical (local) maximum (upper bound) of the distance between the centroid, 

),( 00 yxC = , and the minimum zone center, ),( MZMZMZ yxC = . 

The proposed theory is general, it does not take into account form deviations, e.g. it is not signature 

specific. 

The proposed geometrical feature ( )αF  inspired from [4] is formed by two concentric-opposite 

arcs of circle shown in Figure 2 and described by: 
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where 0< r< R, 
22

π
α

π
<≤− and (x,0) is a control point, which makes the feature open in 0=θ . 

By construction α = θ + 
2

π
. 

In Appendix, the effect of the variation of x∈[0,R] on the minimum zone error is discussed. 

It will be proven that for x=r the control point forces the minimum zone center in 

)0,0(),( =MZMZ yx . This property is exploited by using the feature F(α) with the control point at 

(r,0) as displayed in Figure 2. 
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Figure 2: Worst-case for the distance (enhanced for clarity) between centroid C and minimum zone 

center MZC , with the control point in (r,0) 
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It results that ( )0F  is formed by two concentric-opposite semicircular arcs. 

The feature 

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F  is a circumference of radius 

r. 

As the considered feature is symmetrical with respect to the X axis by a rotation of axes, without 

loss of generality in the remainder the Y component is neglected. 

A number of properties of ( )αF  is given. They can be applied for each feature defined by 

expression (3) and rotated by .20,
2

π
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Lemma 1. Let C  be the centroid of ( )0F , then 
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■ The proof follows the fact that ( )0F  is formed by two semicircular arcs of radii R and r and the 

centroids of these semicircular arcs are located on the X axis respectively at 
π

R
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⋅
=

2
 and 
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r
Cr

2
. Obviously, the control point )0,(r  has a negligible weight in the evaluation of C  □ 

 

Let ( )αRF  and ( )αrF  be the component features of radii R and r, respectively, at the right and at 

the left side of ( )αF  as shown in Figure 3. Figure 3 (top) shows that ( )αF  is obtained by ( )0F  

removing (adding) a feature symmetric on the X
-
 axis (X

+
 axis), if 0>α  ( 0<α ). The maximum 

asymmetry of ( )αF  about the Y axis is achieved by setting 0=α . In fact if 0>α , ( )αrF  

evaluated for α
π

θ
π

+≤≤
22

 is mirrored to ( )αRF  evaluated for 
22

π
θα

π
≤≤−  (Figure 3 bottom). 

Analogously if 0<α  ( )αRF  evaluated for 
2

π
θα ≤≤  is mirrored to ( )αrF  evaluated for 

πθα
π

≤≤+
2

.  
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Figure 3: Graphical proof of the theorem for 
22

π
α

π
<≤− . Top: composition of feature ( )αF  

starting from ( )0F . Bottom: symmetry condition about the Y axis between ( )*αF  and 

( )*βF , ** αβ −= . 
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Reducing the asymmetry of ( )αF about the Y axis, the centroid C moves towards the minimum 

zone center MZC  (i.e. to the left according to Figure 3). 

 

Theorem 1. The two concentric-opposite semicircular arcs of ( )0F  maximize the distance 
π

rR −
 

given by Lemma 1 between the centroid and the origin (0,0) □ 

■ Let us suppose that a better upper bound exists, by reducing the asymmetry of the feature with 

0* ≠α  and let us show that the new centroid abscissa *C  is less than 
π

rR −
 from (0,0) thus 

contradicting the fact that reducing the asymmetry of the feature, the distance between the centroid 

and the minimum zone center increases. 

In fact, as 0* ≠α  and 
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           (4) 

□ 

 

In the case of 0* =α , it results CC =* .  

From Theorem 1 it follows that, in the worst-case, the distance from the centroid to the origin (0,0) 

is achieved when r is low. This distance D  can be formulated as a function of the roundness error 

CE  related to the centroid C . As a consequence, in the remainder only ( )0F  is considered. 

It can be noticed that if r is high enough with respect to R, MZC is located at p1=(0,0) because any 

given point belonging to ( )αF  is on the inner circumference (of radius r) or on the outer 



circumference (of radius R); EMZ is equal to (R-r). Vice versa, if r is low with respect to R, the 

smaller of the two concentric circles with minimal radial separation crosses the points (r,0) and 

(R,0): MZC  is located on p2= )0,
2

(
rR +

.  

Lemma 2. The minimum zone center MZC  of ( )0F  is at (0,0) if and only if the ratio 
R

r
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■ By the definition (2) of minimum zone center, p1= MZC  if the following condition is verified: 

)()()()( 2min2max1min1max pRpRpRpR −≤−         (5) 

Besides, if p2= MZC  the greater of the two concentric circles with minimal radial separation crosses 

the point (0,R). Hence in this case: 
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and the expression (5) becomes: 
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□  

Corollary. The interval of feasible solutions of expression (7) is 1 
4

17-5
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R

r
 because the 

contiguous interval 
4

175
1

+
≤≤

R

r
 includes unfeasible solutions for ( )αF . 

 

Theorem 2. CMZF ECCD
1

)0(max −≤−= π  □       

■ From Lemma 1 the distance D between centroid and minimum zone center is maximized when r 

is minimized.  

From Theorem 2 and its Corollary, if )0,0(=MZC  it results: 
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Equation (6) can be used to evaluate CE . Let CRC  and CRI  be the radii of, respectively, the 

minimum circumscribed and the maximum inscribed concentric circles centered at the centroid. By 

expression (6) it results: 
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From equations (8) and (11): 
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Finally, if )0,0(≠MZC  it is located on p2= )0,
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Expression (13) is verified because for the Corollary in this case  219.0
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4. Application 

To show a possible application of the method and to provide some orders of magnitude of the 

estimation of the minimum zone center CMZ found by different authors, its distance |C-CMZ| from the 

centroid C on datasets from the literature has been compared in Table 1 with the upper bound π-

1

nCE  predicted by the theory proven in the previous section. A similar comparison is reported in 

Table 2 with datasets obtained by NPL Chebyshev best fit circle certified software [24], where the 

exact minimum zone center is known by construction. By this analysis on concrete data, the 

position of the minimum zone center within the (theoretical) search area S is estimated. 

 

 



 

Table 1: The proposed upper bound (π-1
 

nCE ) compared with the distance between centroid C and minimum zone center CMZ (estimated) on 

roundness profiles taken from the literature. 

 

dataset algorithm centroid C 
minimum zone center 

CMZ 
|C-CMZ| π-1

nCE  
difference 

(14) 

ca
se

 #
 

re
fe

re
n

c
e
 

author n notes  x0 y0 
nCE  xMZ yMZ    

1. [3] [3] 1800 
Drilling/aluminum 

alloy/CMM data 
GA -0.0002 0.0n022 0.0301 -0.0026 0.0044 0.003256 0.009581 +0.006325 

2. [3] [3] 1800 
Milling/steel/ 

CMM data 
GA 0.0042 0.0008 0.0242 0.0071 -0.0018 0.003895 0.007703 +0.003808 

3. [3] [3] 1800 
Turning/steel/ 

CMM data 
GA 0.0007 -0.0048 0.0270 0.0010 -0.0049 0.000308 0.008594 +0.008287 

4. [3] [3] 1800 
Drilling/marble 

CMM data 
GA 0.0040 -0.0199 0.0688 0.0031 -0.0181 0.002012 0.021263 +0.019251 

5. [3] [3] 1800 
Turning/steel 

CMM data 
GA 0.0037 -0.0199 0.0709 -0.0060 -0.0137 0.009801 0.022568 +0.012768 

6. [3] [3] 1800 
Turning/aluminum 

alloy CMM data 
GA -0.0115 -0.0112 0.0935 -0.0178 -0.0068 0.007684 0.029762 +0.022078 

7. [3] [3] 1800 
Turning/steel 

CMM data 
GA -0.0021 0.0010 0.0423 -0.0071 0.0014 0.005016 0.013465 +0.008449 

8. [14] [17] 39 Artificial data GA 0.0356 -0.0536 0.0092 0.0356 -0.0529 0.0007 0.002928451 +0.002228451 

9. [14] [25] 100 Artificial data GA 0.02908 -0.00634 0.9868 0.00536 0.00788 0.027655864 0.314108196 +0.286452332 

10. [14] [10] 24 CMM data GA 82.989744 97.009116 0.039058 82.990941 97.008387 0.001401517 0.012432548 +0.01103103 



11. [26] [26] 8 Artificial data 
Computational 

Geometric 
29.997 40.0606 0.30177 29.96886 40.10828 0.055342 0.096056 +0.040715 

12. [10] [19] 24 CMM data 
Steepest 

Descend 
82.989744 97.009116 0.039058 82.99094 97.00839 0.001404 0.012433 +0.011029 

13. [10] [10] 25 CMM data 
Steepest 

Descend 
40.0007 50.0015 0.0293 40.00074 50.00153 0.0000492 0.009326 +0.009277 

14. [20] [20] 80 
CMM/Bearing 

ring 

Polar 

Coordinate 

Transform 

0 0 0.029 0.001599 -0.00165 0.0023 0.009231 +0.006931 

15. [20] [20] 80 
CMM/Bearing 

ring 

PTC 

8×80 mesh 

0 0 0.029 0.001422 -0.0023 0.002704 0.009231 +0.006527 

16. [20] [20] 80 
CMM/Bearing 

ring 

PTC 

10×120 mesh 

0 0 0.029 0.001592 -0.00166 0.0023 0.009231 +0.006931 

17. [20] [20] 80 
CMM/Bearing 

ring 

PTC 

8×100 mesh 

0 0 0.029 0.001372 -0.00233 0.002704 0.009231 +0.006527 

18. [20] [20] 80 
CMM/Bearing 

ring 

PTC 

20×180 mesh 

0 0 0.029 0.001573 -0.00168 0.002301 0.009231 +0.006930 

19. [27] [27] 100 Artificial data 
Approximation 

Algorithm 
0 0 0.04 

-

0.00000002 

-

0.00000001 
0.00000002 0.012732 +0.012732 

20. [27] [27] 1000 Artificial data 
Approximation 

Algorithm 
5 -4 0.02 5.00000016 

-

4.00000054 
0.0000006 0.006366 +0.006366 

 



Table 2: The proposed upper bound (π-1
 

nCE ) compared with the distance between centroid C and minimum zone center CMZ (known) on roundness 

profiles obtained by certified software [24] with increasing dataset size n, predefined minimum zone error EMZ and center CMZ=(xMZ, yMZ)≡(0,0). 
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 n
. n 

 

EMZ 

 
0x  0y  

nCE  

|C-CMZ| 

 

ππππ-1

nCE  

 

difference  

(14) 

1. 8 0.01 -0.0009 -0.0002 0.0113 0.0007 0.0036 +0.0029 

2. 16 0.03 -0.0001 -0.0025 0.0333 0.0024 0.0106 +0.0082 

3. 32 0.06 -0.0007 0.0030 0.0632 0.0031 0.0201 +0.0170 

4. 64 0.09 -0.0030 0.0008 0.0940 0.0031 0.0299 +0.0268 

5. 128 0.01 -0.0002 -0.0001 0.0102 0.0002 0.0032 +0.0030 

6. 256 0.03 0.0004 0.0002 0.0308 0.0004 0.0098 +0.0094 

7. 512 0.06 -0.004 -0.0007 0.0612 0.0008 0.0195 +0.0187 

8. 1024 0.09 0.0010 0.0001 0.0915 0.0010 0.0291 +0.0281 

9. 2048 0.01 0.0000 0.0000 0.0101 0.0000 0.0032 +0.0032 

10. 4096 0.03 0.0001 0.0000 0.0301 0.0001 0.0096 +0.0095 

11. 8192 0.06 0.0001 -0.0001 0.0602 0.0001 0.0192 +0.0190 

12. 16384 0.09 -0.0002 0.0000 0.0903 0.0002 0.0287 +0.0285 

 

 



 

 

As anticipated in the introduction, not all the minimum zone methods are based on the minimum 

zone center CMZ to determine the minimum zone roundness error and are able to provide its 

position. From our extensive search, all center-based methods found that provide the CMZ have been 

included in Table 1. The listed CMZ values are not necessarily optima; they have been obtained by 

the respective authors by their proposed method, as specified. Table 2 includes datasets where the 

CMZ is known. The estimate is quantified by the following parameter 

 

difference = MZC CCE
n

−−−1π       (14) 

 

and is always positive as an experimental evidence of the proposed theory. 

It can be noticed that the proposed upper bound π-1
 EC ranges from the double to one order of 

magnitude above the estimated C to CMZ distance in most cases, regardless of the magnitude of EC. 

The same can be observed for Table 2. 

It can also be observed for both tables that the difference increases both with the dataset size and 

with the minimum zone error. 

The first seven roundness profiles in Table 1 have been taken by the authors from real samples on a 

variety of materials and manufacturing processes, are visually shown in [3] and include different 

shapes, like flattened circle, three lobed part, elliptic form, circle with random deviations etc. 

Form deviations are not considered by the proposed theory, which provides a general result, e.g. it 

is not signature specific, however it is speculated that the upper bound provides a larger 

overestimate (difference by expression (14)) with high form errors (high 
nCE ) and low profile 

deviations (CMZ close to C). 

 

5. Profile sampling 

In Figure 4, the same comparison of previous section is repeated on roundness profiles at increasing 

sampling size n.  

36 datasets have been generated with certified software [24] and minimum zone error 0.01, 0.03 and 

0.06 mm for 12 values of the sampling size n in the range 8 to 16,384. The deviation type with 

generated profiles is random, i.e. the error is uniformly distributed around the 360°. 
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Figure 4: The proposed upper bound π-1
 EC compared to the distance between the centroid and the 

minimum zone center fixed in (0,0) of roundness profiles generated by certified software [24]. 
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As in Table 2, the minimum zone center in Figure 4 is known; it has been fixed at the origin of 

coordinates (0,0) in the profile generation; its distance from the centroid and the respective upper 

bound π-1
 EC proposed in this paper have been compared. 

The developed theory is valid for continuous profiles and consequently at increasing sampling size, 

when dealing with discrete data; however, it is satisfied already for n as low as 8. It should also be 

considered that in applications requiring better accuracy on the MZE estimation, n should be higher, 

up to thousands datapoints, which are available with optical scanning techniques. The trend on 

exact data is clearly monotonously decreasing as expected. 

 

6. Discussion and conclusions 

The worst-case described in Figure 2 has been built to achieve a closed form evaluation of the 

centroid to minimum zone center distance. By knowing the centroid of the roundness profile, the 

minimum zone center position can be estimated with a tolerance whose upper bound has been given 

in closed form by π-1
EC. 



The worst-case also expresses concrete manufacturing cases, such as casting or forming where two 

dies or molds have a different radius. 

The roundness error 
nCE  related to the centroid of a dataset with n equiangular data can be 

evaluated in linear function of the sampling data; increasing the number of sampled points, the 

estimate accuracy increases. 

This theory has extensive applications. 

− The part center can be located with a given tolerance in manufacturing tasks, such as handling 

(peg-hole) or machining (centering). 

− Based on the worst-case approach, these conclusions can be extended to any sampling profile 

also defined as blind or not manufacturing signature-specific.  

− By a transformation from polar to Cartesian coordinates, the proposed upper bound can be 

directly applied to the estimation of straightness. 

− Minimum zone based algorithms and algorithms that approach the minimum zone method by 

iterative center evaluations (e.g. metaheuristics like genetic algorithms or particle swarm 

optimization and others cited above) can benefit of the lower search space size to a neighbor of 

the centroid C. 

For these latter center-based minimum zone methods, current result represents a new opportunity 

for experimental research. 

The theoretical upper bound proposed is not signature specific, however it is speculated that a larger 

overestimate is obtained with high errors (high 
nCE ) and low profile deviations (CMZ close to C). 

The correlation between the proposed upper bound and form deviations can be investigated in 

future research. 

Future work includes the extension of the proposed theory to other (symmetrical) form errors, such 

as sphericity and planarity. 

 

Acknowledgements 

The authors would like to thank Mr. Stefano Chiodi for the insightful observations to Theorem 1 

and the anonymous referees for stimulating the discussion on practical implications. 

 

Appendix 

The two concentric-opposite arcs feature can be parameterized by: 
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where 
22

π
α

π
<≤−  and Rx ≤≤0 . 

 

Proposition. MZE  is un upper bound of )( rR −  when a control point (x,0) moves from r to 0 on the 

X axis □ 

■ The (1-3) minimum zone condition is considered: the one-point taken on the inner circumference 

is exactly (x,0); the three-points taken on the outer circumference have center MZC . Therefore 

rRxREMZ −≥−=  □ 

 

Besides, it can be observed that MZE  is included in the region delimited by )( xR −  and )( rR −  

when the point x moves from r to G on the X axis, where G is the circumcenter of vertexes 

 ( ) ( ) )0,(,cos,,cos, Rrsenrrsenr αααα ⋅−⋅⋅⋅  (not proven here). Finally, MZE  is equal to )( rR −  

for RxG ≤≤ . 
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Figure A: Qualitative effect of the variation of the control point x∈[0,R] on the minimum zone error 

MZE . 
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