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Abstract

Let C be a 2-connected projective curve either reduced with planar singu-
larities or contained in a smooth algebraic surface and let S be a subcanonical
cluster (i.e. a 0-dimensional scheme such that the space H0(C,ISKC) con-
tains a generically invertible section). Under some general assumptions on
S or C we show that h0(C,ISKC) ≤ pa(C)− 1

2 deg(S) and if equality holds
then either S is trivial, or C is honestly hyperelliptic or 3-disconnected.

As a corollary we give a generalization of Clifford’s theorem for reduced
curves with planar singularities.
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1 Introduction

Since the early days of algebraic geometry the rule of residual series turned out to
be fundamental in studying the geometry of a projective variety. The first results
of the German school (Riemann, Roch, Brill, Noether, Klein, etc...) on special
divisors were indeed based on the deep analysis of a linear series |D| and its residual
|K−D|.

The purpose of this paper is to extend this basic approach to the analysis of
special linear series defined on an algebraic curve (possibly singular, nonreduced
or reducible), giving applications to the case of semistable curves.

In this paper, in particular we generalize the Theorem of Clifford, which states
that

dim |D| ≤ degD
2

for every special effective divisor D on a smooth curve C (see [?]).

∗This research was partially supported by Italian MIUR through PRIN 2008 project “Geometria
delle varietà algebriche e dei loro spazi di moduli”.
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One can find in the literature many approaches which generalize Clifford’s
theorem and other classical results to certain kinds of singular curves, especially
nodal ones. Important results were given by D. Eisenbud and J. Harris (see [?] and
the appendix in [?]) and more recently by E. Esteves (see [?]), applying essentially
degeneration techniques, in the case of reduced curves with two components. See
also the case of graph curves by D. Bayer and D. Eisenbud in [?]. L. Caporaso
in [?] gave a generalization of Clifford’s theorem for certain line bundles on stable
curves, in particular line bundles of degree at most 4 and line bundles whose degree
is bounded by 2pa(Γi) for every component Γi.

Our approach is more general since we deal with rank one torsion free sheaves
on possibly reducible and non reduced curves, without any bound on the number of
components, but with very natural assumptions on the multidegree of the sheaves
we consider.

Our analysis focuses on 2-connected curves, keeping in mind the classical char-
acterization of special divisors on algebraic curves as effective divisors contained
in the canonical system. To this purpose we introduce the notion of subcanonical
cluster, i.e. a 0-dimensional subscheme S ⊂ C such that the space H0(C,ISKC)
contains a generically invertible section (see Section ?? for definition and main
properties).

We recall that a curve C is m-connnected if degB KC ≥ m+(2pa(B)− 2) for
every subcurve B⊂C, or equivalently B ·(C−B)≥m if C is contained in a smooth
surface.

From our point of view it is fundamental to work only with subcanonical clus-
ters since our aim is to consider only clusters truly contained in a canonical divisor.
Moreover we need to avoid clusters contained in a hyperplane canonical section but
with uncontrolled behavior. For instance by automatic adjunction (see [?, Lemma
2.4]) a section vanishing on a component A such that C = A+B yields a section in
H0(B,KB), but considering the embedding H0(B,KB) ↪→ H0(C,KC), we can build
clusters with unbounded degree on A such that every section in H0(C,KC) vanish-
ing on them vanishes on the entire subcurve A.

Our main result is the following theorem.

Theorem A Let C be a projective curve either reduced with planar singularities
or contained in a smooth algebraic surface. Assume C to be 2-connected and let
S⊂C be a subcanonical cluster. Assume one of the following holds:

(a) S is a Cartier divisor;

(b) there exists H ∈ H0(C,ISKC) such that div(H)∩Sing(Cred) = /0;

(c) Cred is 4-connected.
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Then
h0(C,ISKC)≤ pa(C)− 1

2
deg(S)

Moreover if equality holds then the pair (S,C) satisfies one of the following as-
sumptions:

(i) S = 0, KC;

(ii) C is honestly hyperelliptic and S is a multiple of the honest g1
2;

(iii) C is 3-disconnected (i.e. there is a decomposition C = A+B with A ·B = 2).

Let Cliff(ISKC) := 2pa(C)− deg(S)− 2 · h0(ISKC) be the Clifford index of
the sheaf ISKC. Notice that if S is a Cartier divisor then Cliff(ISKC) is precisely
the classical Clifford index for invertible sheaves. Theorem A is equivalent to the
statement that the Clifford index is non negative.

If C is a smooth curve the theorem is equivalent to the classical Clifford’s the-
orem, while if C is 1-connected but 2-disconnected then |KC| has base points and
therefore the cluster consisting of such base points does not satisfy the theorem.
Moreover without our assumptions the theorem is false even for subcanonical clus-
ters contained in curves with very ample canonical sheaf. See for instance Exam-
ple ??. However we obtain a more general inequality by adding a correction term
bounded by half of the number of irreducible components of C. See Theorem ??
for the full result.

The proof is based on the analysis of a cluster S of minimal Clifford index
and maximal degree and of its residual S∗ (see Subsection 2.3 for definitions and
main properties). When considering the restriction to Cred it may happen that every
section in H0(C,ISKC) decomposes as a sum of sections with small support. This
behaviour is completely new with respect to the smooth case and can even lead
to the existence of clusters with negative Clifford index. This is the reason why
in Section 2.3 we introduce the notion of splitting index of a cluster and we run
our analysis by a stratification of the set of subcanonical clusters by their splitting
index.

For clusters in each strata with minimal Clifford index the following dichotomy
holds: either S∗ ⊂ S or S and S∗ are Cartier and disjoint. In the first case we esti-
mate the rank of the restriction of H0(C,ISKC) to the curve supporting S, while in
the second case we give a generalization of the classical techniques developed by
Saint Donat in [?].

3



As a corollary of Theorem A we are able to analyze more deeply the case
of reduced curves since the intersection products are always nonnegative. The
following results apply in particular to the case of 4-connected semistable curves.

Theorem B Let C be a projective 4-connected reduced curve with planar singu-
larities. Let L be an invertible sheaf and S a cluster on C. Assume that

0≤ deg[(ISL)|B]≤ degKC |B

for every subcurve B⊂C. Then

h0(C,ISL)≤ degISL
2

+1.

Moreover if equality holds then ISL ∼= IT ωC where T is a subcanonical cluster.
The pair (T,C) satisfies one of the following assumptions::

(i) T = 0, KC

(ii) C is honestly hyperelliptic and T is a multiple of the honest g1
2.

In the case of smooth curves an effective divisor D either satisfies the assumptions
of Clifford’s theorem, or it is non special and h0(C,D) is computed easily by means
of Riemann-Roch Theorem. If the curve C has many components we may have a
mixed behavior, which we deal with in the following theorem.

Theorem C Let C be a projective 4-connected reduced curve with planar singu-
larities. Let L be an invertible sheaf and S a cluster on C such that

0≤ deg[(ISL)|B] for every subcurve B⊂C.

Assume there exists a subcurve Γ ⊂C such that deg(KC |Γ) < deg(ISL|Γ). and let
C0 be the maximal subcurve such that

deg[(ISL)|B]> degKC |B for every subcurve B⊂C0.

Then

h0(C,ISL)≤ degISL
2

+
deg(ISL−KC)|C0

2
.

We believe that the above results may be useful for the study of vector bundles on
the compactification of the Moduli Space of genus g curves and in particular to the
analysis of limit series. Moreover they may be considered as a first step in order to
develop a Brill-Noether type analysis for semistable curves. Further applications
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will be given in a forthcoming article (see [?]) in which we analyze the normal
generation of invertible sheaves on numerically connected curve. In particular we
are going to give a generalization of Noether’s Theorem.

Finally, as shown in [?], the study of invertible sheaves on curves lying on a
smooth algebraic surface is rich in implications when Bertini’s theorem does not
hold or simply if one needs to consider every curve contained in a given linear
system.

The paper is organized as follows. In Section 2 we set the notation and prove some
preliminary results. In Section 3 we prove Theorem A, in Section 4 we study the
case of reduced curves and prove Theorem B and C. Finally in Section 5 we show
some examples in which we illustrate that the Clifford index may be negative if our
assumptions are not satisfied.

Acknowledgments. The authors would like to thank Pietro Pirola for his stimu-
lating suggestions. We wish to thank the Referee for the careful reading and for
the very useful comments and corrections. The second author wishes to thank the
Department of Mathematics of the University of Pisa for providing an excellent
research environment.

2 Notation and Preliminary results

2.1 Notation and conventions

We work over an algebraically closed field K of characteristic ≥ 0.
Throughout this paper a curve C will always be a Cohen-Macaulay scheme of

pure dimension 1. Moreover, if not otherwise stated, a curve C will be projective,
either reduced with planar singularities (i.e. such that for every point P ∈ C it
is dimKM /M 2 ≤ 2 where M is the maximal ideal of OC,P) or contained in a
smooth algebraic surface X , in which case we allow C to be reducible and non
reduced.

In both cases we will use the standard notation for curves lying on smooth
algebraic surface, writing C = ∑

s
i=1 niΓi, where Γi are the irreducible components

of C and ni are their multiplicities.
A subcurve B⊆C is a Cohen-Macaulay subscheme of pure dimension 1; it will

be written as ∑miΓi, with 0≤ mi ≤ ni for every i.

Given a sheaf F on C, we write H0(B,F ) for H0(B,F|B) and H0(C,F )|B for the
image of the restriction map H0(C,F )→ H0(B,F|B).
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ωC denotes the dualizing sheaf of C (see [?], Chap. III, §7), and pa(C) the arith-
metic genus of C, pa(C) = 1−χ(OC). KC denotes the canonical divisor.

By abuse of notation if B ⊂C is a subcurve of C, C−B denotes the curve A such
that C = A+B.

Notice that under our assumptions every subcurve B⊆C is Gorenstein, which
is equivalent to say that ωB is an invertible sheaf.

Throughout the paper we will use the following exact sequences:

0→ ωA→ ωC→ ωC |B→ 0 (1)

0→ OA(−B)→ OC→ OB→ 0, (2)

where OA(−B)∼=OA⊗OX(−B) if C is contained in a smooth surface X and corre-
sponds to IA∩B ·OA if C is reduced. See [?, Chapter 3] and [?, Proposition II.6.4].

Definition 2.1 If A, B are subcurves of C such that A+B = C0 ⊆ C, then their
intersection product is

A ·B = degB(KC0)− (2pa(B)−2) = degA(KC0)− (2pa(A)−2).

If C is contained in a smooth algebraic surface X this corresponds to the intersec-
tion product of curves as divisors on X.

If A+B =C0 ⊆C we have the key formula (cf. [?, Exercise V.1.3])

pa(C0) = pa(A)+ pa(B)+A ·B−1. (3)

Following the original definition of Franchetta a curve C is (numerically) m-con-
nected if C1 ·C2≥m for every decomposition C =C1+C2 in effective, both nonzero
curves. See [?] for a more general definition in the case of Gorenstein curve. To
avoid ambiguity between the various notions of connectedness for a curve, we will
say that a curve is numerically connected if it is 1-connected, and topologically
connected if it is connected as a topological space (with the Zariski topology).

Let F be a rank one torsion free sheaf on C. We write degF|C for the degree of F
on C, degF|C = χ(F )− χ(OC). By Serre duality we mean Grothendieck-Serre-
Riemann-Roch duality theorem:

H1(C,F ) d Hom(F ,ωC)

(where d denotes isomorphic to the dual space).

6



If C = ∑niΓi then for each i the natural inclusion map εi : Γi → C induces a
map ε∗i : F →F|Γi . We denote by di = deg(F|Γi) = degΓi

F the degree of F on
each irreducible component, and by d := (d1, ...,ds) the multidegree of F on C. If
B is a subcurve of C, by dB we mean the multidegree of F|B. We remark that there
exists a natural partial ordering given by the multidegree.

F is NEF if di ≥ 0 for every i.
We say that two rank one torsion free sheaves F and G are numerically equiv-

alent if their degrees coincide on every subcurve and we will use the notation
F

num∼ G .
If S and S1 are linearly equivalent Cartier divisor, we will use the notation

S lin∼ S1.

Definition 2.2 A curve C is honestly hyperelliptic if there exists a finite morphism
ψ : C→ P1 of degree 2.

In this case C is either irreducible, or of the form C = Γ1 +Γ2 with pa(Γi) = 0 and
Γ1 ·Γ2 = pa(C)+1 (see [?, §3] for a detailed treatment). For a given point P ∈ P1

ψ∗(P) is a cluster of degree 2, which we will denote by a honest g1
2.

Definition 2.3 A cluster Z of degree degZ = r is a 0-dimensional subscheme with
lengthOZ = dimk OZ = r. The multidegree of Z is defined as the opposite of the
multidegree of IZ . We consider the empty set as the degree 0 cluster.

Definition 2.4 The Clifford index of a rank one torsion free sheaf F on C is

Cliff(F ) := deg(F )−2h0(C,F )+2

If S is a cluster and F ∼= ISKC then the Clifford index of S may be defined as the
Clifford index of ISKC and reads as follows:

Cliff(ISKC) := 2pa(C)−deg(S)−2 ·h0(ISKC)

If F is an invertible sheaf (in particular if S is a Cartier divisor) then Cliff(F ),
resp. Cliff(ISKC) is precisely the classical Clifford index of the line bundle F ,
resp. ISKC.

2.2 Preliminary results on projective curves

In this section we recall some useful results on invertible sheaves on projective
curves.
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In the following theorem we summarize the main applications of the results
proved in [?] on Cohen–Macaulay 1-dimensional projective schemes. For a general
treatment see §2, §3 of [?].

Theorem 2.5 Let C be a Gorenstein curve, KC the canonical divisor of C. Then

(i) If C is 1-connected then H1(C,KC)∼=K.

(ii) If C is 2-connected and C 6∼= P1 then |KC| is base point free.

(iii) If C is 3-connected and C is not honestly hyperelliptic (i.e., there does not
exist a finite morphism ψ : C→ P1 of degree 2) then KC is very ample.

(cf. Thm. 1.1, Thm. 3.3, Thm. 3.6 in [?]).

The main instrument in the analysis of sheaves on projective curves with sev-
eral components is the following proposition, which holds in a more general setup.

Proposition 2.6 ( [?], Lemma 2.4 ) Let C be a projective scheme of pure dimen-
sion 1 and let F be a coherent sheaf on C, and ϕ : F →ωC a nonvanishing map of
OC-modules. Set J = Annϕ ⊂OC, and write B⊂C for the subscheme defined by
J . Then B is Cohen–Macaulay and ϕ has a canonical factorization of the form

F � F|B ↪→ ωB = H omOC(OB,ωC)⊂ ωC,

where F|B ↪→ ωB is generically onto.

A useful corollary of the above result is the following:

Corollary 2.7 Let C be a pure 1-dimensional projective scheme, let F be a rank
1 torsion free sheaf on C. Assume that

deg(F )|B ≥ 2pa(B)−1

for every subcurve B⊆C.
Then H1(C,F ) = 0.

Proof. The proof is a slight generalization of the techniques used in [?, Lemma
2.1].

Let assume by contradiction that H1(C,F ) 6= 0. Pick a nonvanishing section
ϕ ∈Hom(F ,ωC)∼= H1(C,F )∗. By Proposition ?? there exists a curve B such that
ϕ induces an injective map F|B→ ωB. Thus

deg(F )|B ≤ degKB = 2pa(B)−2
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which is impossible. �

During our analysis of the curve C we will need to estimate the dimension of
H0(A,OA) for some subcurve A ⊂C. To this purpose we give a slight generaliza-
tion of a result of Konno and Mendes Lopes (see [?, Lemma 1.4]).

Lemma 2.8 Let C be a projective curve, either reduced with planar singularities
or contained in a smooth algebraic surface and let C = A+B a decomposition of
C. Assume A = ∑

h
i=1 Ai where the Ai are the topologically connected components

of A.

(i) if C is 1-connected then h0(A,OA)≤ A ·B

(ii) if C is 2-connected then h0(A,OA)≤ A·B
2

(iii) if C is m-connected with m ≥ 3 then h0(A,OA) ≤ A·B
2 − h · m−2

2 , where h =
#{Ai}. Moreover equality holds if and only if h0(Ai,OAi) = 1 and Ai ·B = m
for every component Ai.

Proof. The 1-connected case is treated in [?, Lemma 1.4]. We will apply the same
arguments for the m-connected case with m≥ 2.

If h0(A,OA) = 1 the inequality holds trivially. If h0(A,OA) ≥ 2 then by [?,
Lemma 1.2] there exist a decomposition A = A1 +A2 with OA1(−A2) NEF and
such that the restriction map H0(OA1(−A2))→ H0(Γ,OΓ(−A2)) is injective for
every irreducible Γ⊂ A1. Since OA1(−A2) is NEF we can conclude that

h0(OA1(−A2))≤ h0(Γ,OΓ(−A2))≤ 1−A2 ·Γ≤ 1−A1 ·A2.

Therefore by induction on the number of irreducible components of A we get

h0(A,OA)≤ h0(A2,OA2)+h0(OA1(−A2))≤
A2 · (C−A2)

2
− m−2

2
+1−A1 ·A2

=
A · (C−A)

2
− m−2

2
+1− A1 · (C−A1)

2
≤ A · (C−A)

2
− m−2

2
+1− m

2

This is enough to prove (ii). Applying the above dimension count to every topolog-
ically connected component of A we get the inequality stated in (iii). Moreover if
m≥ 3 and h0(Ai,OAi)≥ 2 for a topologically connected component Ai ⊂ A then by
the above computation we have h0(Ai,OAi)<

Ai·B
2 −

m−2
2 . Therefore equality holds

if and only if for every Ai we have h0(Ai,OAi) = 1 and Ai · (C−Ai) = Ai ·B = m. �
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2.3 Subcanonical clusters and Clifford index

In this section we introduce the notion of subcanonical cluster and we analyze its
main properties. Notice that our results works under the assumption C Gorenstein.

Definition 2.9 Let C be a Gorenstein curve. A cluster S ⊂ C is subcanonical if
the space H0(C,ISKC) contains a generically invertible section, i.e. a section s0
which does not vanish on any subcurve of C.

Notice that if S is a general effective Cartier divisor such that the inequality
degB(S) ≤ 1

2 degB(ωC) holds for every subcurve B ⊆C (or by duality such that its
multidegree satisfies 1

2 degB(ωC)≤ degB(S)≤ degB(ωC) for every subcurve B⊆C)
then by [?, §3] S is a subcanonical cluster.

Definition 2.10 Let C be a Gorenstein curve, S⊂C be a subcanonical cluster and
let s0 ∈H0(C,ISKC) be a generically invertible section. The residual cluster S∗ of
S with respect to s0 is defined by the following exact sequence

0 //H om(ISωC,ωC)
α //H om(OC,ωC) // OS∗ // 0

where the the map α is defined by α(ϕ) : 1 7→ ϕ(s0).

By duality it is IS∗ωC ∼= H om(ISωC,ωC). Moreover, denoting by Λ := div(s0)
the effective divisor corresponding to s0 we have the following exact sequence

0→IΛωC→ISωC→ OS∗ → 0

Therefore S∗ is subcanonical since s0 ∈ H0(C,IS∗KC) and it is straightforward to
see that (S∗)∗ = S.

Notice that if C is contained in a smooth surface and s0 is transverse to C at
a point P ∈ supp(S) such that P is smooth for Cred and C has multiplicity n at P,
writing IΛ = (x) and IS = (x,yk)⊂K[x,y]/(x,yn), then IS∗ ∼= (x,yn−k).

Remark 2.11 If S is a subcanonical cluster and S∗ is its residual with respect to
the section s0, then the sheaf IS∗ωC is the subsheaf of ωC given as follows:

IS∗ωC = {ϕ(s0) s. t. ϕ ∈H om(ISωC,ωC)}. (4)

This is clear from the analysis of the commutative diagram

0 //H om(ISωC,ωC)
α //

β1
��

H om(OC,ωC) //

β2

��

OS∗ // 0

0 // IS∗ωC // ωC // OS∗ // 0
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where the the map α is defined by α(ϕ) : 1 7→ ϕ(s0) and the maps β1 and β2 are
isomorphisms.

Remark 2.12 The product map H0(C,ISKC)⊗H0(C,IS∗KC)→H0(C,2KC) sat-
isfies the following commutative diagram:

H0(C,ISKC)⊗Hom(ISKC,KC)

β

��

ev // H0(C,KC)

·s0

��
H0(C,ISKC)⊗H0(C,IS∗KC) // H0(C,2KC)

where the first row is the evaluation map i⊗ϕ 7→ ϕ(i), the map β is the isomor-
phism defined by β (i⊗ϕ) = i⊗ϕ(s0), and the second column is the multiplication
by the section s0 defining the residual S∗.

The diagram is commutative: on the stalks the elements s0 ·ϕ(i) and i ·ϕ(s0)
must coincide. In particular consider i ∈ H0(C,ISKC) and j ∈ H0(C,IS∗KC): we
can write j = ϕ(s0) for some ϕ ∈ Hom(ISKC,KC), hence we have

i · j = i ·ϕ(s0) = s0 ·ϕ(i) in H0(C,2KC). (5)

Remark 2.13 Notice that, by Serre duality, it is H1(C,ISKC) d H0(C,IS∗KC),
and Cliff(ISKC) = Cliff(IS∗KC).

The following technical lemmas will be useful in the proof of Theorem A.

Lemma 2.14 Let C be a Gorenstein curve. Let S, S∗, T , T ∗ subcanonical clusters
such that

(i) S∗ is the residual to S with respect to H0 ∈ H0(C,ISKC)

(ii) T ∗ is the residual to S with respect to H1 ∈ H0(C,ISKC)

(iii) T is the residual to S∗ with respect to H2 ∈ H0(C,IS∗KC).

Then the cluster U defined as the union of T and T ∗ (i.e., IU = IT ∩IT ∗) and
the cluster defined by the intersection R = T ∩T ∗ (i.e., IR = IT +IT ∗) are sub-
canonical.

Proof. R is obviously subcanonical since it is contained in the cluster T .
Since H1 ∈ H0(C,ISKC) there exists an element ϕ1 ∈ Hom(IS∗KC,KC) such

that H1 = ϕ1(H0) by Equation (??). Similarly there exists ψ2 ∈ Hom(ISKC,KC)
such that H2 = ψ2(H0).
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By Equation (??) ψ2(H1) ∈ H0(C,IT ∗KC) and ϕ1(H2) ∈ H0(C,IT KC).
By Equation (??) we have

H0 ·ψ2(H1) = H1 ·ψ2(H0) = H1 ·H2 = ϕ1(H0) ·H2 = H0 ·ϕ1(H2) (6)

and since H0, H1 and H2 are generically invertible we conclude that ψ2(H1) =
ϕ1(H2) in H0(C,KC) and it is generically invertible. In particular

ψ2(H1) = ϕ1(H2) ∈ H0(C,IT KC)∩H0(C,IT ∗KC)⊂ H0(C,IU KC)

and we may conclude. �

Remark 2.15 It is not difficult to prove that the clusters T and T ∗ defined in
the previous Lemma are reciprocally residual with respect to the section H3 =
ψ2(H1) = ϕ1(H2) ∈ H0(C,KC). This induces an equivalence relation on the set of
clusters with properties similar to the classical linear equivalence relation between
divisors.

Definition 2.16 A nontrivial subcanonical cluster S is called splitting for the lin-
ear system |KC| if for every H ∈ H0(C,ISKC) there exists a decomposition H =
H1+H2 with H1, H2 ∈H0(C,ISKC) and a decomposition Cred =C1+C2 such that
supp(H1|Cred)⊂C1 and supp(H2|Cred)⊂C2.

The splitting index of S is the minimal number k such that for every element H ∈
H0(C,ISKC) there exists a decomposition H =∑

k
i=0 Hi with Hi ∈H0(C,ISKC) and

a decomposition Cred = ∑
k
i=0Ci such that supp(Hi|Cred)⊂Ci. We define the splitting

index of the zero cluster to be zero.

Proposition 2.17 Let C = ∑
s
i=1 niΓi be a Gorenstein curve and let S be a sub-

canonical cluster. Then the following properties hold.

1. If the splitting index of S is k then there is a decomposition Cred = ∑
k
i=0Ci

such that every H ∈ H0(C,ISKC) can be decomposed as H = ∑
k
i=0 H i with

supp(H i|Cred)⊂Ci. Moreover if H is generic then the sections H i can not be
further decomposed.

2. Given the above minimal decomposition Cred = ∑
k
i=0Ci we have that Ci∩C j

is in the base locus of |ISKC| for every i and j.

3. If there exists a section H ∈ H0(C,ISKC) such that div(H)∩ (Γi ∩Γ j) = /0
for every Γi 6= Γ j irreducible components in C, then the splitting index of S
is zero.
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Proof. To prove the first statement, since the possible decompositions of Cred are
finite, there exists a decomposition Cred = ∑

k
i=0Ci such that the generic element

H ∈ H0(C,ISKC) decomposes as H = ∑
k
i=0 H i, supp(H i|Cred) ⊂Ci. Call Y the set

of sections with this property, we are going to show that Y = H0(C,ISKC). Y is
obviously a linear subspace of H0(C,ISKC) and, since it is dense, it must coincide
with the entire space.

Similarly, we can prove that the subset X of H0(C,ISKC) whose elements can
be decomposed in at least k+2 summands is the union of a finite number of proper
subspaces of H0(C,ISKC), hence its complement is open.

To prove the second statement, assume that there exists a decomposition H =
H1+H2 with H1, H2 ∈H0(C,ISKC) and a decomposition Cred =C1+C2 such that
supp(H1|Cred) ⊂ C1 and supp(H2|Cred) ⊂ C2. Then H1 and H2 vanish on C1 ∩C2,
hence H vanishes there too.

In particular if div(H)∩ (Γi∩Γ j) = /0 for every Γi 6= Γ j, such a decomposition
can not exist. The third statement follows easily from the second. �

Remark 2.18 If S is a subcanonical cluster and S∗ is its residual with respect to
a section H then their splitting indexes are the same. Indeed, H0(C,IS∗KC) =
{ϕ(H)s.t.ϕ ∈ Hom(ISKC,KC)} and if H can be decomposed as in Lemma ??,
then the same is true for ϕ(H). By the symmetry of the situation we may conclude.

Lemma 2.19 Let C be a 1-connected Gorenstein curve and let S be a non trivial
subcanonical cluster with minimal Clifford index among the clusters with splitting
index smaller than or equal to k ∈N. Then H0(C,ISKC) is base point free, that is,
for every P ∈C the evaluation map

H0(C,ISKC)⊗OC,P→IS|P ⊂ OC,P

generates the ideal IS|P as OC,P−module.

Proof. The statement is equivalent to say that for every subscheme T containing S
with length(T ) = length(S)+1, it is h0(C,IT KC)< h0(C,ISKC).

If T is not subcanonical then by definition of subcanonical cluster there exists
a decomposition C = A+B and a suitable cluster TA with support on A such that

H0(A,ITAωA)∼= H0(C,IT KC)

and then we conclude since

H0(A,ITAωA) ↪→ H0(A,ISAωA)
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and h0(A,ISAωA)< h0(C,ISKC) because S is subcanonical and C is 1-connected.
If T is subcanonical and its splitting index is greater than k then necessarily the

vector spaces H0(C,IT KC) and H0(C,ISKC) cannot be equal.
If T is subcanonical and its splitting index is smaller than or equal to k then

Cliff(IT KC) = 2pa(C)−deg(S)−1−2h0(C,IT KC)≥ Cliff(ISKC)

if and only if h0(C,IT KC)< h0(C,ISKC). �

3 Clifford’s theorem

In this section we will prove Theorem A. The proof of the theorem is given arguing
by contradiction by assuming the existence of a very special cluster for which its
Clifford index is non-positive.

The first two lemmas works under the assumption C Gorenstein. The rest of
the section needs an assumption on the singularities of C, namely C with planar
singularities, or C contained in a smooth algebraic surface if non reduced.

In the following Lemma we will show that there exists a special relation be-
tween a maximal cluster with non-positive Clifford index and its residual with re-
spect to a generic section.

Lemma 3.1 Let C be a 2-connected Gorenstein curve. Fix k ∈ N and let S be a
nontrivial subcanonical cluster with minimal non-positive Clifford index and max-
imal total degree among the clusters with splitting index smaller than or equal to
k. Let S∗, T , T ∗ be subcanonical clusters such that

(i) S∗ is the residual to S with respect to a generic section H0 ∈ H0(C,ISKC)

(ii) T ∗ is the residual to S with respect to a generic section H1 ∈ H0(C,ISKC)

(iii) T is the residual to S∗ with respect to a generic section H2 ∈ H0(C,IS∗KC).

Then either T ∗∩T = /0 and Cliff(ISKC) = 0 or T ∗ ⊂ T .

Proof. Let Σk be the set of clusters with splitting index smaller than or equal to k.
Notice at first that degT = degS, h0(C,IT KC) = h0(C,ISKC) and similarly

for S∗ and T ∗ by Remark ??.
Cliff(ISKC) is minimal non-positive if and only if h0(C,ISKC) = pa(C)−

degS
2 +M with M ≥ 0 maximal.

Call R the intersection of the two clusters T and T ∗, i.e. the subscheme defined
by the ideal IT +IT ∗ , and U the minimal cluster containing both, i.e. IU =IT ∩
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IT ∗ . Then R and U are subcanonical clusters by Lemma ?? and they belong to
Σk. Indeed by Proposition ?? and Remark ?? the splitting indexes of T and T ∗ are
equal to the one of S. Regarding U , by Equation (??) we know that there is a section
H3 ∈ H0(C,KC) vanishing on U such that H0 ·H3 = H1 ·H2. Notice that, since H0
and H1 are generic, H3 can be seen as a deformation of H1 ∈H0(C,IT ∗KC), thus it
is generic too seen as a section of H0(C,IT ∗KC). Thus the splitting index of U is
smaller than or equal to the splitting index of T ∗. With regards to R, with a similar
argument we can prove that R∗ ∈ Σk hence R ∈ Σk too.

Moreover, we have the following exact sequence:

0→IU ωC→IT ωC⊕IT ∗ωC→IRωC→ 0

Thus we know that

h0(C,IT KC)+h0(C,IT ∗KC)≤ h0(C,IRKC)+h0(C,IU KC).

By Riemann-Roch and Serre duality the L.H.S. is equal to pa(C)+1+2M, whilst
the R.H.S. is ≤ pa(C)−degU/2+M+ pa(C)−degR/2+M = pa(C)+1+2M.

By the maximality of the degree of T then one of the following must hold:

(i) U = KC, R = 0, whence T ∩ T ∗ = /0 and M = 0, that is Cliff(IT KC) = 0;
moreover it is h0(C,ISKC)+h0(C,IS∗KC) = h0(C,KC)+1.

(ii) U = T, R = T ∗ and in particular T ∗ ⊆ T .

�

Lemma 3.2 Let C be a 2-connected Gorenstein curve and S be a subcanonical
cluster. Assume that there is an irreducible component Γ⊂C such that

dim[H0(C,ISKC)|Γ]≥ 2.

Then for a generic P ∈ Γ the cluster S+P is still subcanonical.

Proof. We argue by contradiction.
If S is subcanonical but P+ S is not, i.e. H0(C,IS+PKC)|B = 0 for some sub-

curve B ⊂ C, (clearly Γ * B since H0(C,IS+PKC)|Γ 6= 0 by our assumption), we
consider the following commutative diagram
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H0(C−B,IPI1KC−B)� _

��

// H0(C,IS+PKC)� _

��

// H0(B,IS+PKC)|B = 0

H0(C−B,I1KC−B)

��

// H0(C,ISKC)

��

// H0(B,ISKC)|B =K

H0(P,OP)
= // H0(P,OP)

where I1 is the ideal sheaf on C−B given as the kernel of the map IS→ (IS)|B.
By a simple diagram chase the restriction map H0(C−B,I1KC−B)→H0(P,OP)

must be zero, hence by genericity of the point P the global restriction map from
H0(C−B,I1KC−B) to Γ must be zero. This is impossible, since this would im-
ply that the restriction of the global space H0(C,ISKC) to Γ would be at most
1-dimensional, contradicting our assumption. �

The following Lemma generalizes the classical techniques showed by Saint
Donat in [?].

Lemma 3.3 Let C be a 2-connected projective curve, either reduced with planar
singularities or contained in a smooth algebraic surface.

Fix k ∈ N and let S be a nontrivial subcanonical cluster with minimal non-
positive Clifford index and maximal total degree among the clusters with splitting
index smaller than or equal to k. Let S∗ be the residual to S with respect to a
generic hyperplane section H.

Suppose that there is an irreducible component Γ⊂C such that

dim[H0(C,ISKC)|Γ]≥ 2

dim[H0(C,IS∗KC)|Γ]≥ 2

Then S∗ is a length 2 cluster such that h0(C,IS∗KC) = pa(C)−1. In particular
C is either honestly hyperelliptic or 3-disconnected.

Proof. We divide the proof in 4 steps.
Let Σk be the set of clusters with splitting index smaller than or equal to k. By

Remark ?? we know that S∗ ∈ Σk.
Notice that since C is 2-connected then 2≤ deg(S)≤ deg(KC)−2.

Step 1: S and S∗ are Cartier divisor and non splitting.
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Consider a generic point P ∈ Γ. In particular P /∈ S. By Lemma ?? P+ S is
subcanonical and by Lemma ?? h0(C,IPISKC) = h0(C,ISKC)−1.

Consider a generically invertible section H in H0(C,ISKC) vanishing at P and
the residual S∗ with respect to H. We have P ∈ S∗ and we can apply Lemma ??
because P is general, hence the corresponding invertible section is general as well.
Since S∗ 6⊂ S we have S∗∩S = /0 and both are Cartier divisors.

S and S∗ Cartier with minimal Clifford indexes among the clusters in Σk implies
that both the linear systems |KC(−S)| and |KC(−S∗)| are base point free by Lemma
??. Hence we can find a divisor S∗ ∈ |KC(−S)| not passing through the singular
locus of Cred. This implies that the splitting index of S∗ is zero by Proposition ??
and Remark ?? shows that the splitting index of S is zero as well.

Step 2: h0(C,ISKC)|D ≤ h0(C,IS∗KC)|D for any D⊂ C.
Consider again a generic point P ∈ Γ, P /∈ S and P /∈ S∗. With the same argu-

ment adopted in step 1, we take a cluster S∗1 residual to S such that P ∈ S∗1 and a
second cluster S2 residual to S∗ such that P ∈ S2. By Lemma ?? S∗1 ⊂ S2 since their
intersection contains P. This gives us the following inequality for every subcurve
D⊂C:

dim[H0(C,IS∗KC)|D] = dim[H0(C,IS∗1 KC)|D]≥ dim[H0(C,IS2KC)|D]

= dim[H0(C,ISKC)|D]
(7)

Step 3: h0(C,ISKC) = 2.
We argue by contradiction, assuming that h0(C,ISKC)≥ 3.

Case (a):
∃ irreducible Γ⊂C s. t. dim[H0(C,ISKC)|Γ]≥ 3.

We may apply Lemma ?? twice to conclude that, given 2 generic points P
and Q in Γ, the cluster P + Q + S is subcanonical and the points impose inde-
pendent conditions to H0(C,ISKC). Hence there exists a generically invertible
H ∈ H0(C,ISKC) passing through P +Q. Consider T ∗, the residual to S with
respect to H: P+Q⊂ T ∗.

Step 2 allows us to apply Lemma ?? to the cluster S∗ as well, hence P+ S∗

is subcanonical and P and Q impose independent conditions to H0(C,IS∗KC).
Hence there exists a generically invertible section H1 ∈H0(C,IPIS∗KC) but H1 /∈
H0(C,IQIPIS∗KC). Let T1 be the residual to S∗ with respect to this section. We
have that P ∈ T1 but Q /∈ T1.

This is impossible: P ∈ T1 ∩T ∗ but Q ∈ T ∗, Q /∈ T1. Thus /0 6= T1 ∩T ∗ ( T ∗

contradicting Lemma ??.
Hence this case can not happen, that is, for every irreducible component Γ the

restriction of H0(C,ISKC) to Γ is at most 2-dimensional.

17



Case b: {
dim[H0(C,ISKC)|Cred ]≥ 3
dim[H0(C,ISKC)|Γ0 ]≤ 2 for every irreducible Γ0 ⊂C

We want to argue as in case (a) finding two points P and Q which lead to the
same contradiction.

Since case (a) can not happen, we know that dim[H0(C,ISKC)|Γ] = 2, hence
there must exist a topologically connected reduced subcurve D⊃ Γ, minimal up to
inclusion, such that

dim[H0(C,ISKC)|D]≥ 3.

By minimality of D, there exists an irreducible component Γ1 ⊂ D, with Γ1 6=
Γ, and a section H0 ∈ H0(C,ISKC) such that H0|Γ1 6= 0 while H0|D−Γ1 = 0. In
particular H0 vanishes on Γ1∩ (D−Γ1).

We consider a generic point P ∈ Γ. Thanks to Lemma ?? and Step 1, there
exists a generically invertible section H ∈ H0(C,IS+PKC) not vanishing on any
singular point of Cred.

Hence we know that the sections H and H0 span a 2-dimensional subspace
of H0(C,IS+PKC)|Γ1 . We apply Lemma ?? to Γ1 taking a point Q generic in Γ1
such that S+P+Q is subcanonical and P and Q impose independent conditions
on H0(C,ISKC).

We may conclude as in case (a) that this case can not happen.

Case c: {
dim[H0(C,ISKC)|Cred ] = 2
dim[H0(C,ISKC)]≥ 3

Consider a generic point P ∈ Γ. By Lemma ?? S+P is subcanonical, and by
genericity of P

H0(C,IS+PKC)|Cred =< H >

where H is generically invertible and does not vanish on any singular point of Cred.
In particular P+S is non splitting.

We want to show that (P+S)|Cred = KC|Cred . If not there would exists a point Q
in Cred not imposing any condition on H0(C,ISKC), i.e. the unique nonzero sec-
tion H ∈ H0(C,IS+PKC)|Cred would vanish at Q. In particular S+P+Q would
be subcanonical, since the section H must be generically invertible. But, our
assumptions are that S has maximal degree among the non splitting nontrivial
cluster of minimal Clifford index. Therefore, since P+Q+ S 6= KC (otherwise
dim[H0(C,ISKC)]≤ 2), we should have

Cliff(IS+P+QKC)> Cliff(ISKC)

18



which is equivalent to

h0(C,IS+P+QKC)< h0(C,ISKC)−1

contradicting our hypotheses.
Thus (P+ S)|Cred = KC|Cred and we can argue as in Step 1 taking a cluster S∗1

residual to S with respect to a generic section and passing through P. Hence
S∗1|Cred

= P and the multiplicity of Γ in C is at least 2 since degS∗1 > 1.
In this case we consider a generic length 2 cluster σ0 supported at P. Since

S and S∗ are Cartier and supported on smooth points of Cred, it is easy to check
by semicontinuity that σ0 imposes independent conditions on H0(C,ISKC) and
H0(C,IS∗KC), and we can treat σ0 as we did with the length 2 cluster P+Q in the
previous case, that is, we take T1 and T ∗ such that P ∈ T1 ∩T ∗ but σ0 6⊂ T1 ∩T ∗.
By Lemma ?? this is a contradiction.

Hence we are allowed to conclude that

dim[H0(C,ISKC)] = 2.

Step 4: degS∗ = 2 and h0(C,IS∗KC) = pa(C)−1.
By our assumptions and Step 3

0≥ Cliff(ISKC) = deg(ISKC)−2h0(C,ISKC)+2 = deg(ISKC)−2

which implies that
degS∗ = deg(ISKC)≤ 2.

But if degS∗ = 1 then the point S∗ would be a base point for KC, which is absurd
by Theorem ?? since C is 2-connected and has genus al least 2 since pa(C) =
h0(C,KC)≥ dim[H0(C,ISKC)|Γ]≥ 2.

Finally, Riemann-Roch Theorem and Serre duality implies that

h0(C,IS∗KC) = pa(C)−1

hence S∗ is a length 2 cluster not imposing independent condition on KC. This
happens if and only if C is honestly hyperelliptic or C is 3-disconnected. �

The following three technical Lemmas will be used in the proof of Theorem
?? in order to give estimates for the rank of the restriction map r : H0(C,ISKC)→
H0(B,ISKC) for some particular subcurves B⊂C.
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Lemma 3.4 Let C be a 2-connected curve contained in a smooth algebraic surface
and S a non trivial subcanonical cluster with minimal Clifford index among the
clusters with splitting index smaller than or equal to k ∈ N.

If there is an irreducible component Γ and a point P ∈ Γ such that S|P is not
contained in Cred, then the restriction map H0(C,ISKC)→ H0(mΓ,ISKC) has
rank 1, where m is the minimal integer such that S|P ⊂ mΓ.

Proof. Let S be a non trivial subcanonical cluster with minimal Clifford index and
let P ∈C be a point such that S|P is not contained in Cred.

Let OC,P be the local ring of C at P, N be the maximal ideal of OC,P and M
be the maximal ideal of OCred,P.

Thanks to Lemma ??, locally at P the ideal IS|P ⊂OC,P can be written as

IS|P = (H,H1, · · · ,Hk, p1, · · · , pl)

where H,H1, · · · ,Hk, p1, · · · , pl are linearly independent sections in H0(C,ISKC).
Moreover we ask H,H1, · · · ,Hk, to be of minimal degree when restricted to Sred

whereas p1, · · · , pl must have degree strictly bigger. Algebraically, if ISred |P ⊂M n

but ISred |P 6⊂M n+1, then we ask H,H1, · · · ,Hk to be a basis of the K-vector space
ISred

ISred∩M
n+1 and p1, · · · , pl to satisfy pi|Cred

∈M n+1.

Let us consider a subcluster Ŝ⊂ S of colength =1, such that Ŝ 6= S precisely at P.
In particular we ask the ideal IŜ to coincide with (IS,H∞), where H∞ ∈I(m−1)Γ|P.

Define now a 1-dimensional family {Sλ} of clusters, each of them given locally
at P by the ideal

ISλ
= (H +λH∞,H1, · · · ,Hk, p1, . . . , pl)

and coinciding with Ŝ elsewhere. By construction every Sλ contains Ŝ and we have
H 6∈H0(C,ISλ

KC), which implies H0(C,ISλ
KC)( H0(C,IŜKC) for every λ 6= 0.

Indeed, if locally H ∈ISλ |P, there would exist elements α,αi,βi ∈ OC,P such that

H = α(H +λH∞)+∑αiHi +∑βi pi.

Since {H,H1, . . . ,Hk} represents a basis for the K-vector space
ISred

ISred∩M
n+1 , we

should have α ∼= 1 modN , the maximal ideal of OC,P. In particular α should be
invertible in OC,P and, since λ ∈ C∗, the above equation should imply

H∞ ∈ (H,H1, · · · ,Hk, p1, · · · pl) = IS|P,

i.e., IŜ|P
∼= IS|P, which is impossible by construction of H∞.
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On the contrary, since CliffISKC is minimal, it is H0(C,ISKC)=H0(C,IŜKC)
by our numerical assumptions. Indeed, let us consider the residual to S, respec-
tively Ŝ, with respect to a section in H0(C,ISKC). We have S∗ ⊂ Ŝ∗ and we know
that S∗ satisfies the assumptions of Lemma ?? since S does. Hence h0(C,IŜ∗KC)<
h0(C,IS∗KC) and in particular h0(C,ISKC)= h0(C,IŜKC) by Riemann-Roch The-
orem and Serre duality for residual clusters.

To conclude the proof we are going to show that this vector space is spanned
by H and a codimension 1 subspace given by sections vanishing on mΓ.

Our claim is that for every λ 6= 0 every section in H0(C,ISλ
KC) vanishes on

the curve mΓ.
Fix a cluster Sλ , let σ ∈ H0(C,ISλ

KC) and consider a generic Sµ . Since both
H0(C,ISλ

KC) and H0(C,ISµ
KC) are codimension 1 subspaces of the same vector

space then there exists a linear combination σ +bµH ∈ H0(C,ISµ
KC).

Localizing at P, we can write σ = ∑αi pi +α(H +λH∞)+∑γiHi. Since σ +
bµH belongs to ISµ

there exists elements βi,δi and β ∈ OC,P such that

α(H +λH∞)+bµH = ∑βi pi +β (H +µH∞)+∑δiHi.

Both the polynomials are in IŜ. By the description above, we must have

α +bµ = β modN
αλ = β µ modN

where N as above is the maximal ideal of OC,P. This forces

bµ = α(modN )(
λ

µ
−1).

Suppose now that α /∈N . Then, apart from H, any element in 〈σ ,H〉 should
be written as a(σ + bµH) for some µ . In particular for c 6= 0 every ideal of the
form

(cσ +dH,H1, · · · ,Hk, p1, . . . , pl)

is contained in some ISµ
.

This implies that length OC,P
(cσ+dH,H1,...,Hk,p1,...,pl)

is at least lengthS+ 1 since the
ideal vanishes on S and Sµ (since σ ∈ H0(C,ISλ

KC)⊂ H0(C,ISKC)).
But its degeneration OC,P

(H,H1,...,Hk,p1,...,pl)
=

OC,P
IS

= OS has strictly smaller length.
This is impossible since the length is upper semicontinuous.

We must conclude that α ∈N and that bµ = 0. This means that the original
σ ∈ H0(C,ISλ

KC) belongs to H0(C,ISµ
KC), i.e. H0(C,ISλ

KC) = H0(C,ISµ
KC)

for every λ ,µ ∈ C∗.
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In particular every section in H0(C,ISλ
KC) must vanish on every Sµ , and

in particular it vanishes on the scheme theoretic union
⋃

µ∈K
Sµ which has infinite

length. This may happen only if H0(C,ISλ
KC))|mΓ = {0}. �

Lemma 3.5 Let C be a 2-connected projective curve either reduced with planar
singularities or contained in a smooth algebraic surface. Let B⊂C be a subcurve
such that the restriction map

H0(C,IKC|BKC)→ H0(mΓ,OmΓ)

has rank 1 for every subcurve mΓ⊂ B.
If B=∑

l
j=1 B j is the decomposition of B in topologically connected component,

then the restriction map

H0(C,IKC|BKC)→ H0(B,OB)

has rank ≤ l (where l is the number of components).

Proof. The Lemma follows from Lemma ?? since the restriction map has rank 1
on every topologically connected component. �

Lemma 3.6 Let C be a 2-connected projective curve either reduced with planar
singularities or contained in a smooth algebraic surface. Suppose that Cred is µ-
connected. Let S be a subcanonical cluster, and assume that there exists a subcurve
B such that Cred ⊂ B and the restriction map

H0(C,ISKC)→ H0(mΓ,ISKC)

has rank 1 for every subcurve mΓ⊂ B. Then the following hold.

(i) The restriction map H0(C,ISKC)→ H0(B,ISKC) has rank k+ 1 (where k
is the splitting index of S);

(ii) If k > 0 we have degKC|B−degS|B ≥max{k; µ

2 (k+1)}.

Proof. Since the restriction map to every mΓ has rank one it is generated by the
restriction of a generically invertible section H ∈ H0(C,ISKC). By genericity we
may assume that H verifies the minimum for the splitting index, i.e. H = ∑

k
i=0 Hi

with Hi ∈ H0(C,ISKC) and there is a maximal decomposition Cred = ∑
k
i=0Ci with

supp(Hi|Cred) =Ci and H can not be further decomposed.

(i) To prove the first part of the statement notice that the restriction map

H0(C,ISKC)|B→ H0(C,ISKC)|Cred
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is an isomorphism. Indeed the above restriction map is obviously onto. It is injec-
tive as well, since otherwise there would be a section Ĥ in H0(C,ISKC) vanishing
on Cred but not on B. i.e. there would be a subcurve mΓ⊂B such that Ĥ vanishes on
Γ but not on mΓ. But the rank of the restriction H0(C,ISKC)→ H0(mΓ,ISKC) is
1 by our assumptions, as well as the rank of H0(C,ISKC)→ H0(Γ,ISKC), hence
the section Ĥ can not exists.

Thus without loss of generality we can assume B = Cred and we take the de-
composition Cred = ∑

k
i=0Ci.

The first statement follows if we prove that for every Ci it is H0(C,ISKC)|Ci =
〈Hi〉. For simplicity we are going to prove it for C1.

Write C1 = ∑
J0
j=1 Γ j, where Γ j’s are the irreducible components. Notice that C1

is connected, hence 1-connected, since the decomposition of C is maximal. We are
going to prove by induction that there exists a decomposition sequence

Γ1 = B1 ⊂ B2 ⊂ ·· · ⊂ BJ0 =C1

such that H0(C,ISKC)|BJ = 〈H1〉 for every J ≤ J0.
The first case, J = 1, follows from our assumptions. Assume now it holds for

BJ−1. Since C1 is 1-connected then BJ−1∩ (C1−BJ−1) 6= /0. Take H1 and evaluate
it on BJ−1 ∩ (C1−BJ−1). If it is zero, then H1 can be decomposed as the sum of
two sections of H0(C,ISKC)|C1 , one supported on BJ−1, the other on C1−BJ−1.
But then we may apply Proposition ??, part 1, to conclude that this would force
H1, and H as well, to be decomposed as the sum of more sections than allowed.

Hence there exists at least one component, say ΓJ , such that H1 does not vanish
on BJ−1∩ΓJ . Define BJ := BJ−1+ΓJ . Our claim is that H0(C,ISKC)|BJ = 〈H1〉. If
not there would exist H ∈ H0(C,ISKC)|DJ linearly independent from H1 such that
H |DJ−1 = 0 (possibly after a linear combination of sections). Moreover we would
have H |ΓJ = H1|ΓJ up to rescaling by our assumptions, hence H1 must vanish on
DJ−1∩ΓJ , which is absurd.

(ii) Suppose now that the splitting index k is at least 1. We are going to study
degKC−degS on B.

Assume at first that B =Cred. Consider a decomposition sequence C0 = D0 ⊂
D1 ⊂ . . .⊂Dk = B =Cred where Di−Di−1 =Ci. Up to reindexing the subcurve Ci

we can suppose that the curves Di are topologically connected, hence 1-connected
since they are reduced.

We prove by induction that deg(ISKC)|Di ≥ i. For i = 0 it is obvious. For i > 0
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consider the commutative diagram

0 // N //� _

��

(ISKC)|Di

πi //
� _

��

(ISKC)|Di−1
//

� _

��

0

0 // KC |Ci(−Di−1) //

����

KC |Di
//

����

KC |Di−1
//

����

0

0 // Z // S|Di
// S|Di−1

// 0

where N is the kernel of πi and Z a subsheaf of S|Di , both considered as sheaves
with support on Ci. Notice that by our assumptions the section Hi restricts to a
nonzero generically invertible section of N , thus degCi

N ≥ 0. Computing de-
grees we obtain

degCi
Z = degKC |Ci(−Di−1)−degN = degKC |Ci−Ci ·Di−1−degN

≤ degKC |Ci−Ci ·Di−1 ≤ degKC |Ci−1. (8)

But degS|Di = degS|Di−1 +degCi
Z, and by induction hypothesis we may assume

deg(ISKC)|Di−1 ≥ (i−1). Hence

deg(ISKC)|Di = degKC |Di−degS|Di

= (degKC |Di−1−degS|Di−1)+(degKC |Ci−degCi
Z)≥ (i−1)+1 = i

In particular we have the first inequality we wanted to prove, i.e.

degKC|B−degS|B ≥ k.

Moreover Equation (??) yields degKC|Ci−degS|Ci ≥Ci ·Di−1. Taking sum over
all Ci’s we obtain

degKC|Cred−degS|Cred ≥
1
2

k

∑
i=0

Ci · (Cred−Ci)

thus if the reduced curve Cred is µ-connected we have

degKC|B−degS|B ≥
µ

2
(k+1).

We deal now with the case Cred ( B. We just proved that

deg(ISKC)|Cred = degKC|Cred−degS|Cred ≥max{k, µ

2
(k+1)}.
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Consider the following diagram, which exists and commute since S is subcanoni-
cal:

OB−Cred(−(Cred))
� � ////

� _

��

OB� _

��

// // OCred� _

��
ker(ρ) �

� // (ISKC)|B
ρ // // (ISKC)|Cred

Computing degrees we may conclude by the following equation

deg(ISKC)|B = χ((ISKC)|B)−χ(OB)

= χ((ISKC)|Cred)+χ(ker(ρ))−χ(OCred)−χ(OB−Cred(−(Cred)))

= deg(ISKC)|Cred +χ(ker(ρ)))−χ(OB−Cred(−(Cred)))

≥ max{k, µ

2
(k+1)}.

�
Our main result follows from the following theorem.

Theorem 3.7 Let C be a projective curve either reduced with planar singularities
or contained in a smooth algebraic surface. Assume C to be 2-connected and Cred
µ-connected.

Let S⊂C be a subcanonical cluster of splitting index k. Then

h0(C,ISKC)≤ pa(C)− 1
2

deg(S)+
k
2

(9)

The following holds:

(i) if Cred is 2-connected then h0(C,ISKC)≤ pa(C)− 1
2 deg(S)+max{0, k

2−
1
2};

(ii) if Cred is 3-connected then h0(C,ISKC)≤ pa(C)− 1
2 deg(S)+max{0, k

4−
3
4};

(iii) if Cred is 4-connected then

h0(C,ISKC)≤ pa(C)− 1
2

deg(S). (10)

Moreover if equality holds in Equation (??) or in Equation (??) then the pair
(S,C) satisfies one of the following assumptions:

(i) S = 0, KC and k = 0;
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(ii) C is honestly hyperelliptic, S is a multiple of the honest g1
2 and k = 0;

(iii) C is 3-disconnected (i.e. there is a decomposition C = A+B with A ·B = 2).

Proof. Fix k ∈ N and let Σk be the set of clusters with splitting index smaller than
or equal to k.

Then Equation (??) is equivalent to

Cliff(ISKC) := 2pa(C)−deg(S)−2 ·h0(ISKC)≥−k

for every cluster S ∈ Σk.
If the Clifford index of nontrivial clusters is always positive the claim is triv-

ially true. Suppose then the existence of a nontrivial subcanonical cluster with
non-positive Clifford index in Σk.

Step 1: Clusters of minimal Clifford index and maximal degree.

We are going to prove at first that the claim is true for a cluster S of minimal
Clifford index and maximal degree, more precisely that the required inequalities
hold for such a cluster and if equality holds in Equation (??) or in Equation (??)
then the pair (S,C) satisfies one of the condition listed in the statement.

Let S be a nontrivial subcanonical cluster in Σk with minimal Clifford index and
maximal total degree. Let S∗ be its residual with respect to a generic hyperplane
section H. Without loss of generality we can suppose that the splitting index of S
is precisely k. We have

h0(C,ISKC) = pa(C)− degS
2

+M (11)

with M ≥ 0 maximal in Σk.
By Lemma ?? we know that either S∗ is contained in S or S is disjoint from S∗

and Cliff(ISKC) = 0; in the second case S and S∗ are Cartier divisors since they
are locally isomorphic to KC.

Case 1: There exists an irreducible component Γ⊂C such that

dim[H0(C,ISKC)|Γ]≥ 2 and dim[H0(C,IS∗KC)|Γ]≥ 2.

By Lemma ?? we know that deg(S∗) = 2, that is, C is 3-disconnected or hon-
estly hyperelliptic and that h0(C,ISKC) = pa(C)− degS

2 .
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Case 2: S∗ ⊂ S and the restriction map H0(C,ISKC)→ H0(Γ,ISKC) has rank 1
for every irreducible Γ⊂C.

Let B = ∑miΓi be the minimal subcurve of C containing S and all the Γ′is such
that degΓi

KC = 0.
First of all notice that S∩Γ 6= /0 for every irreducible component Γ ⊂ C such

that KC|Γ 6= 0 because S∗ ⊆ S. Thus Cred ⊂ B.
By Lemma ?? the restriction map H0(C,ISKC)→ H0(miΓi,ISKC) has rank

1 for every irreducible Γi ⊂ B with multiplicity mi > 1 in B. We apply Lemma ??
and we may conclude that the restriction map H0(C,ISKC)→ H0(B,ISKC) has
rank k+1.

Suppose at first that B 6= C (in particular C is not reduced). Consider the fol-
lowing exact sequence

0→ ωC−B→ISωC→ISωC |B→ 0

In particular

h0(C,ISKC) = h0(C−B,KC−B)+dimIm{rB : H0(C,ISKC)→ H0(B,ISKC)}.

Since the restriction map rB has rank k+1 then

h0(C,ISKC) = h0(C−B,KC−B)+ k+1.

Equation (??) and Equation (??) imply that

M = k− (
degKC |B

2
− degS

2
)− (

B · (C−B)
2

−h0(C−B,OC−B)).

If k = 0, i.e. the cluster S is not splitting, every summands in the above formula
can not be positive since by Lemma ?? B·(C−B)

2 − h0(C−B,OC−B) ≥ 0. Thus we
have M = 0, S = KC|B and B·(C−B)

2 = h0(C−B,OC−B) and, still by Lemma ?? we
know that the curve C is not 3-connected.

If k > 0, assume Cred to be µ-connected but not (µ +1)-connected. By Lemma
?? we know that degKC |B−degS≥max{k, µ

2 (k+1)}, thus by Lemma ??

0≤M ≤ min{k
2
, (1− µ

4
)k− µ

4
}− (

B · (C−B)
2

−h0(C−B,OC−B))

≤ min{k
2
, (1− µ

4
)k− µ

4
}.

Since M is nonnegative we have that µ ≤ 3.
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If µ ≥ 2 then min{ k
2 , (1−

µ

4 )k−
µ

4 }= (1− µ

4 )k−
µ

4 and

h0(C,ISKC) ≤ pa(C)− degS
2 +(1− µ

4 )k−
µ

4 − (B·(C−B)
2 −h0(C−B,OC−B))

≤ pa(C)− degS
2 +(1− µ

4 )k−
µ

4

and if equality holds then C is 3-disconnected thanks to Lemma ??. If Cred is
2-disconnected, i.e. µ = 1, we know that min{ k

2 , (1−
µ

4 )k−
µ

4 }=
k
2 and

h0(C,ISKC) ≤ pa(C)− degS
2 + k

2 − (B·(C−B)
2 −h0(C−B,OC−B))

≤ pa(C)− degS
2 + k

2

and if equality holds then C is 3-disconnected.

We have still to study the case in which B = C. With the same argument we
have

M = k− (
degKC

2
− degS

2
).

We can argue as before: if k = 0 and M ≥ 0 we have S = KC, which is impos-
sible since we asked S to be nontrivial. If k > 0 by Lemma ?? we conclude that
M ≤ min{ k

2 , (1−
µ

4 )k−
µ

4 } and Cred is not 4-connected. Moreover if M = k
2 then

degKC−degS = k. But degS∗ = degKC−degS = k by its definition. This forces
h0(C,IS∗KC) = pa(C)− degS∗

2 + k
2 = pa(C) which is impossible since k > 0 and

KC ample. Thus M ≤min{ k
2 −

1
2 , (1−

µ

4 )k−
µ

4 } and

h0(C,ISKC)≤ pa(C)− degS
2

+(1− µ

4
)k− µ

4

if µ = 2, 3 while

h0(C,ISKC)≤ pa(C)− degS
2

+
k
2
− 1

2

if µ = 1.

Case 3: S is a Cartier divisor, Cliff(ISKC) = 0 and there exists a decomposition
C = A+B such that A and B have no common components, S = KC |B and S∗ =
KC |A.
If Case 1 and 2 do not hold we may conclude by Lemma ?? that S and S∗ are disjoint
Cartier divisor, that their Clifford index is zero, and that for every irreducible Γ⊂C
one of the restriction maps to H0(Γ,ISKC) and H0(Γ,IS∗KC) has rank one.

If for an irreducible Γ ⊂ C the restriction map H0(C,ISKC)→ H0(Γ,ISKC)
has rank one, since ISKC is base point free by Proposition ??, then S|Γ = KC |Γ and
moreover S|nΓ = KC |nΓ for Γ of multiplicity n since S is Cartier. Thus S∗|nΓ

= /0.
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The same holds for S∗. Therefore there exists a decomposition C = A+B such
that A and B have no common components, S = KC |B and S∗ = KC |A.

Notice that in this case, since S and S∗ are Cartier divisor with minimal Clifford
index, by Proposition ?? we know that |ISKC| and |IS∗KC| are base point free and
in particular the generic section does not pass through the singularities of Cred.
Thus the splitting index k is 0.

In this situation we consider the following exact sequences

0→ ωA→ISωC
rB−→ OB→ 0

0→ ωB→IS∗ωC
rA−→ OA→ 0.

Since h0(C,ISKC) = h0(A,KA)+ rank(rB) (and similarly for S∗) the conditions
Cliff(ISKC) = Cliff(IS∗KC) = 0 imply that

h0(A,OA)+ rank(rB) =
A ·B

2
+1

h0(B,OB)+ rank(rA) =
A ·B

2
+1

hence
h0(A,OA)+h0(B,OB)+ rank(rA)+ rank(rB) = A ·B+2 (12)

Write A = ∑
h
i=1 Ai and B = ∑

l
j=1 B j where the Ai and B j are the topologically

connected components of A, respectively B.
By Lemma ?? and ?? we know that rank(rA)≤ h and rank(rB)≤ l.

If h0(A,OA)≤ A·B
2 −h and h0(B,OB)≤ A·B

2 − l equation (??) implies that

A ·B+2≤ A ·B
2
−h+

A ·B
2
− l +h+ l

which is impossible.

Thus we have either h0(A,OA)>
A·B
2 −h or h0(B,OB)>

A·B
2 − l. Let us suppose

that the first inequality is true.
By Lemma ?? we have h0(A,OA) ≤ A·B

2 −
m−2

2 · h assuming C m-connected
(with m ≥ 3). Therefore we know that C is 4-disconnected and moreover there
must be a topologically connected component of A, say A1, such that h0(A1,OA1)>
A1·B

2 −1.

If C is 3-connected, Lemma ?? says that h0(A1,OA1) ≤
A1·B

2 −
1
2 and we must

conclude that h0(A1,OA1) = 1 and A1 ·B = A1 · (C−A1) = 3. This forces C−A1

29



to be 2-connected by [?, Lemma A.4] and allows us to consider the subcanonical
cluster S̃∗ := S∗∩ (C−A1) = K(C−A1)|(A−A1). It is

h0(C,IS∗KC) = h0(C−A1,IS̃∗KC−A1)+1.

By an induction argument, we apply Clifford’s theorem to the curve C−A1 and
the cluster S̃∗ which can be easily seen to be subcanonical for the system |K(C−A1)|
since OC−A1 ⊂IS̃∗KC−A1 . Moreover the splitting index of S̃∗ is zero since it is clear
that H0(C−A1,IS̃∗KC−A1) does not have any base point in Sing((C−A1)red). Thus
we have

h0(C,IS∗KC) = h0(C−A1,IS̃∗KC−A1)+1≤ pa(C−A1)−
deg(S̃∗)

2
+1.

Since pa(C−A1) = pa(C)− pa(A1)− 2 and deg(S̃∗) = deg(S∗)− (2pa(A1)+1),
we conclude that

h0(C,IS∗KC) ≤ (pa(C)− pa(A1)−2)− deg(S∗)
2

+(pa(A1)+
1
2
)+1

= pa(C)− deg(S∗)
2

− 1
2
.

Therefore M =−1
2 , but we were asking M ≥ 0, hence C is 3-disconnected.

Step 2: Clusters of minimal Clifford index of any degree.

We deal now with the case of a cluster S of minimal Clifford index, without any
assumption on its degree.

If there exists a nontrivial cluster with minimal nonpositive Clifford index
S ∈ Σk, there exists as well a nontrivial cluster Smax of maximal degree with the
same Clifford index. In particular, a straightforward computation shows that the
inequalities of the statement hold for ISKC if and only if they hold for ISmaxKC,
and similarly for the equalities.

We just showed that ISmaxKC, and thus ISKC as well, satisfies the inequalities
of the statement, hence proving the first part of the statement.

Moreover, if equality holds in Equation (??) or in Equation (??) for ISKC (and,
equivalently, for ISmaxKC), then the pair (Smax,C) satisfies one of the condition
listed in the statement. If C is 3-disconnected there is nothing more to prove.

If, instead, C is 3-connected, then case (ii) must hold, hence C is honestly hy-
perelliptic. We can repeat verbatim the classical idea of Clifford’s theorem for a
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smooth hyperelliptic curve of Saint Donat (see [?] or [?, Lemma IV.5.5]) and con-
clude that S is a multiple of a honest g1

2. �

As a corollary we obtain the following result in which the computation of the
splitting index, usually tricky, is avoided by the count of the number of irreducible
components.

Theorem 3.8 Let C = ∑
s
i=0 niΓi be a projective curve either reduced with planar

singularities or contained in a smooth algebraic surface with (s+ 1) irreducible
components. Assume C to be 2-connected and let S⊂C be a subcanonical cluster.
Then

h0(ISKC)≤ pa(C)− 1
2

deg(S)+
s
2
.

Proof. If follows immediately from Theorem ?? since the splitting index of every
cluster is at most the number of irreducible components of C minus 1. �

If S is a Cartier divisor we have the following theorem.

Theorem 3.9 Let C be a projective curve either reduced with planar singularities
or contained in a smooth algebraic surface. Assume C to be 2-connected and let
S⊂C be a subcanonical Cartier cluster. Then

h0(C,ISKC)≤ pa(C)− 1
2

deg(S).

Moreover if equality holds then the pair (S,C) satisfies one of the following
assumptions:

(i) S = 0, KC;

(ii) C is honestly hyperelliptic and S is a multiple of the honest g1
2;

(iii) C is 3-disconnected (i.e. there is a decomposition C = A+B with A ·B = 2).

Proof. If S is not splitting the results follows from Theorem ??. Thus we can
suppose that S has splitting index k > 0. By Proposition ?? we know that there is a
decomposition Cred = ∑

k
i=0Ci such that every H ∈ H0(C,ISKC) can be written as

H = ∑
k
i=0 Hi with Hi ∈ H0(C,ISKC) and suppHi ⊂Ci.

In particular every section H ∈ H0(C,ISKC) vanishes on Ci ∩C j and we can
decompose H0(C,ISKC)|Cred as the direct sum of proper subspaces.
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H0(C,ISKC)|Cred =
k⊕

i=0

H0(C,ISKC)|Ci

such that the following diagram holds:

⊕k
i=0 H0(C,ISKC)|Ci� _

��

∼= // H0(C,ISKC)|Cred� _

��⊕k
i=0 H0(Ci,IS∩ICi∩(Cred−Ci)KC|Ci)

// H0(Cred,ISKC|Cred)
// H0(Z,OZ)

Since the map
⊕k

i=0 IS∩ICi∩(Cred−Ci)ωC|Ci →ISωC|Cred is generically an iso-
morphism its cokernel is a skyscraper sheaf OZ . Since S is Cartier, it is not difficult
to verify that OZ is isomorphic, as sheaf on Cred, to the structure sheaf of the scheme⋃

i, j Ci∩C j, thus it has length 1
2 ∑

k
i=0Ci · (Cred−Ci).

Let S be the base locus of H0(C,ISKC). We have the following exact sequence

0→IS→IS→F → 0

and F ∼= Oξ where ξ is a cluster. It is clear from the above diagram that there is
a natural surjective morphism Oξ � OZ . In particular the colength of S ⊂ S is at
least 1

2 ∑
k
i=0Ci · (Cred−Ci)≥ k.

Since H0(C,ISKC) = H0(C,ISKC) the splitting index of Ŝ is still k and we
can apply Theorem ??:

h0(C,ISKC) = h0(C,ISKC)≤ pa(C)− 1
2 degS+ k

2
= pa(C)− 1

2 degS− 1
2 colength(S⊃ S)+ k

2
≤ pa(C)− 1

2 degS− k
2 +

k
2 = pa(C)− 1

2 degS.

Notice that if equality holds h0(C,ISKC) = pa(C)− 1
2 degS+ k

2 , thus by Theo-
rem ?? we know that one of the 3 cases listed (S trivial, or C honestly hyperelliptic,
or C 3-disconnected) must hold. Since we are assuming that the splitting index k is
strictly positive, we are forced to conclude that case (iii) of Theorem ?? holds, i.e.,
C is 3-disconnected. �

Proof of Theorem A. It is a straightforward corollary of Theorem ?? if Cred is
4-connected; of Theorem ?? if S is Cartier; of Proposition ?? and Theorem ?? if
there is a section H ∈ H0(C,ISKC) avoiding the singularities of Cred since in this
case S is not splitting. Q.E.D.
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4 Clifford’s theorem for reduced curves

In this section we will prove Clifford’s theorem for reduced 4-connected curves
with planar singularities. Theorem B works under the assumptions that the sheaves
ISL and its dual H om(ISL,ωC) are NEF.

In Theorem C we deal with the case in which the second sheaf is not NEF. We
split the curve in C0 +C1 where C1 is the NEF part. It is still possible to find a
Clifford type bound for h0(C,ISL) with a correction term which corresponds to a
Riemann-Roch estimate over C0. In the extremal case in which C =C0 we recover
Riemann-Roch Theorem since h1(C,ISL) = 0.

The inequality of Theorem C can be written also as

h0(C,ISL)≤
deg(ISL)|C1

2
+deg(ISL)|C0−

deg(KC)|C0

2
.

The following trivial remark will be useful in the proof of Theorem B and C.

Remark 4.1 Let C be a reduced projective curve with planar singularities. Let
C = A+B be an effective decomposition of C in non trivial subcurves. Consider
two rank one torsion free sheaves ISALA and ISBLB supported respectively on A
and B with the property that A∩B⊂ SA and A∩B⊂ SB. Then the sheaf on C defined
as ISALA⊕ISBLB is a rank one torsion free sheaf as well, since the sheaves living
on the two curves can be glued together as they both vanish on the intersection.

Proof of Theorem B. If H0(C,ISL) = 0 or H1(C,ISL) = 0 the result follows
from Riemann-Roch Theorem and the positivity of degISL. We will assume from
now on that both spaces are nontrivial.

We are going to show that if the sheaf ISL attains the minimal Clifford in-
dex among the sheaves satisfying the assumption of Theorem B, then ISL is a
subcanonical sheaf.

With this aim we prove firstly that there exists an inclusion OC ↪→ ISL and
secondly that there exists an inclusion ISL ↪→ ωC .

If OC 6↪→ ISL, let B ⊂ C be the maximal subcurve which annihilates every
section in H0(C,ISL) and let A =C−B. Then there is a cluster SA on A such that

0→ISAL|A(−B)→ISL→ (ISL)|B→ 0

and moreover there is an isomorphism between vector spaces:

H0(A,ISAL|A(−B))∼= H0(C,ISL).
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If A 6= C, consider the sheaf F = ISAL|A(−B)⊕OB(A)(−A). By Remark ??
F is a rank 1 torsion free sheaf and it is immediately seen that

0≤ degF|C0 ≤ KC|C0 for every subcurve C0 ⊂C.

Since Cliff(ISL) is minimum by our assumption then

Cliff(ISL)≤ Cliff(F ). (13)

But, by our construction h0(C,F ) = h0(A,ISAL|A(−B))+ h0(B,OB) and by
definition of degree we have

deg(ISL) = χ(ISL)−χ(OC) = χ(ISAL|A(−B))+χ((ISL)|B)−χ(OC)

= χ(ISAL|A(−B))+deg((ISL)|B)+χ(OB)−χ(OC)

≥ χ(ISAL|A(−B))+χ(OB)−χ(OC) = deg(F ).

Thus

Cliff(F ) = deg(F )−2h0(C,F )+2

≤ deg(ISL)−2h0(A,ISAL|A(−B))−2h0(B,OB)+2

≤ deg(ISL)−2h0(A,ISAL|A(−B)) = Cliff(ISL)−2.

This contradicts Equation (??), hence A =C, i.e., there exist sections not vanishing
on any subcurve, or, equivalently, OC ↪→ISL.

Now we show that ISL ↪→ ωC. The dual sheaf H om(ISL,ωC) satisfies the
assumption of Theorem B and by Serre duality it has the same Clifford index
of ISL, hence thanks to the previous step OC ↪→H om(ISL,ωC). In particular
H0(C,OC) ↪→ H0(C,H om(ISL,ωC)) = Hom(ISL,ωC). Hence there is a map
from ISL to ωC not vanishing on any component, and by automatic adjunction
(Proposition ??) we may conclude that ISL ↪→ ωC.

We proved that any sheaf ISL with minimal Clifford index satisfies OC ↪→
ISL ↪→ ωC, hence ISL ∼= IT ωC where T is a subcanonical cluster. But Theorem
A holds for IT ωC, which concludes the proof. Q.E.D.

Remark 4.2 If ISL is not isomorphic to a sheaf of the form IT KC for a sub-
canonical T then the proof of Theorem B shows that we have the stricter inequality
h0(C,ISL)≤ deg(ISL)

2 .
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Proof of Theorem C. If H0(C,ISL) = 0 or H1(C,ISL) = 0 the result follows
from Riemann-Roch Theorem and the positivity of degISL. We will assume from
now on that both spaces are nontrivial.

Let C0 be the maximal subcurve such that

deg[(ISL)]|B > degKC |B

for every subcurve B⊂C0.
Consider a cluster T on C0 such that (IT ISL)|C0

num∼ KC|C0 . Such cluster must
exist by our degree assumptions. The sheaf IT ISL satisfies the assumptions of
Theorem B, thus

h0(C,IT ISL)≤ degISL
2

− degT
2

+1.

Moreover, if IT ISL∼= IZωC with Z subcanonical cluster, we have

h1(C,IT ISL)> h1(C,ISL).

This follows from the analysis of the following commutative diagram:

H1(C,ISL)∗ ∼= HomC(ISL,ωC)
� � //

��

HomC(IT ISL,ωC)∼= H1(C,IT ISL)∗

r0

��
0 = HomC0(ISL,ωC) // HomC0(IT ISL,ωC)

We have that HomC0(ISL,ωC) = H1(C0,ISL)∗ = 0 by Corollary ??. The map
r0 corresponds to the restriction map H0(C,IZ∗KC)→ H0(C0,IZ∗KC), which is
nonzero since Z∗ is subcanonical.

In this case we may conclude since

h0(C,ISL)≤ h0(C,IT ISL)+degT −1≤ degISL
2

+
deg(ISL−KC)|C0

2
.

If IT ISL is not subcanonical, by Remark ?? it is h0(C,IT ISL) ≤ degISL
2 −

degT
2 and we have the same inequality.

Q.E.D.
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5 Examples

In this section we will illustrate some examples in which the estimates of Theorem
?? and Theorem B and C are sharp. The first two examples concern Theorem
?? and show that the Clifford index can be negative when Cred is 4-disconnected.
Examples 5.3 and 5.4 regard Theorem A and in particular they show how to build
3-disconnected curves and nontrivial and non splitting subcanonical clusters with
vanishing Clifford index. The final example (firstly given by L. Caporaso in [?, Ex.
4.3.4]) shows a case in which H0(C,ISL) 6= 0, H1(C,ISL) 6= 0 and equality holds
in Theorem C.

Example 5.1 Let C = ∑
k
i=0 Γi such that Γi ·Γi+1 = 1, Γ0 ·Γk = 1 and all the other

intersection products are 0. Suppose that pa(Γi) ≥ 2. In the case k = 5 its dual
graph is the following

Γ0 Γ1

Γ5 Γ2

Γ4 Γ3

Take S∗=
⋃

i, j(Γi∩Γ j), which is a degree (k+1) cluster. Since Γi ·(C−Γi) = 2
every section in H0(C,KC) vanishing on a singular point of Γi must vanish on the
other, hence if a section H0(C,KC) vanishes on any of such points must vanish
through all of them. In particular h0(C,IS∗KC) = pa(C)−1 = pa(C)− degS∗

2 + k
2−

1
2 . It is clear that the splitting index of S∗ is precisely k.

Example 5.2 Let C = ∑
5
i=0 Γi and suppose that pa(Γi) ≥ 2. Suppose moreover

that the intersection products are defined by the following dual graph, where the
existence of the simple line means that the intersection product between the two
curves is 1.

Γ0 Γ1

Γ4 Γ3

Γ5 Γ2
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Take S∗ =
⋃

i, j(Γi∩Γ j), which is a degree 9 cluster. It is easy to check that one can
decompose H0(C,IS∗KC) ∼= ⊕5

i=0H0(Γi,KΓi) and that the splitting index of S∗ is
k = 5. Thus we have

h0(C,IS∗KC) =
s

∑
i=0

pa(Γi) = pa(C)− degS∗

2
+

1
2

and notice that 1
2 is precisely k

4 −
3
4 , which means that equality can hold when Cred

is 3-connected but 4-disconnected.

Example 5.3 Let C = Γ0 +∑
n
i=1 Γi with Γ0 ·Γi = 2 for every i≥ 1 and Γi ·Γ j = 0

for i > j ≥ 1 (possibly Γi = Γ j for some i, j).

Γ1

Γ4 Γ0 Γ2

Γ3

C is 2-connected but 3-disconnected. Taking S = KC |C−Γ0 we have

h0(C,ISKC) = h0(Γ0,KΓ0)+h0(C−Γ0,OC−Γ0) = pa(C)− degS
2

since h0(C−Γ0,OC−Γ0) = n = Γ0·(C−Γ0)
2 .

Example 5.4 Let C = Γ0 +Γ1 with Γ1 irreducible and Γ0 irreducible and hyperel-
liptic. Suppose that OΓ0(Γ1) is a g1

2 divisor on Γ0.
Let S be another divisor in the linear series g1

2 on Γ0. Then h0(Γ0,ISKC) =

pa(Γ0) thus h0(C,ISKC) = pa(Γ1)+ pa(Γ0) = pa(C)−1 = pa(C)− degS
2 .

We believe that if C is 2-connected but 3-disconnected and Cliff(ISKC) = 0 for
a subcanonical non splitting cluster S, then S must be the sum of clusters shaped as
the two above, i.e. a linear combination of a sum of g1

2 plus a term of the form KC|B

with h0(B,OB) =
B·(C−B)

2 or h0(C−B,OC−B) =
B·(C−B)

2 .

Example 5.5 Let C = ∑
k
i=1 Γi +∑

k
j=1 E j where pa(Γi) = 0, pa(E j) = 1. Moreover

Γi ·Ei = Γi ·Ei−1 = Γ1 ·Ek = 1 and every other intersection number is 0.
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Γ1 E1

E3 Γ2

Γ3 E2

Take a smooth point Pi over each Γi and consider the sheaf L = OC(∑i Pi). Un-
der the notation of Theorem C, we have that C0 = ∑Γi and C1 = ∑E j. A straight-

forward computation shows that h0(C,L) = k = degL
2 +

deg(L−KC)|C0
2 .
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