View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Archivio della Ricerca - Universita di Pisa

SIAM J. OPTIM. (© 2013 Society for Industrial and Applied Mathematics
Vol. 23, No. 3, pp. 1784-1809

A NONMONOTONE PROXIMAL BUNDLE METHOD WITH
(POTENTIALLY) CONTINUOUS STEP DECISIONS*

A. ASTORINOT, A. FRANGIONIf, A. FUDULI!, AND E. GORGONEY

Abstract. We present a convex nondifferentiable minimization algorithm of proximal bundle
type that does not rely on measuring descent of the objective function to declare the so-called
serious steps; rather, a merit function is defined which is decreased at each iteration, leading to
a (potentially) continuous choice of the stepsize between zero (the null step) and one (the serious
step). By avoiding the discrete choice the convergence analysis is simplified, and we can more easily
obtain efficiency estimates for the method. Some choices for the step selection actually reproduce
the dichotomic behavior of standard proximal bundle methods but shed new light on the rationale
behind the process, and ultimately with different rules; furthermore, using nonlinear upper models
of the function in the step selection process can lead to actual fractional steps.

Key words. nonsmooth optimization, bundle methods, nonmonotone algorithm
AMS subject classifications. 90C26, 65K05

DOI. 10.1137/120888867

1. Introduction. We are concerned with the numerical solution of the problem

(1.1) f*=inf{f(z):z€ X},

where f : R™ — R is a finite-valued proper convex possibly nondifferentiable function
and X C R" is closed convex; for notational simplicity we will initially assume X = R"
with extension to the constrained case discussed later on. Proximal bundle methods
are known to be among the most efficient implementable algorithms for solving (1.1)
when f is known only through an oracle (“black box”) that, given any « € X, returns
f(x) and one subgradient z € R, i.e., such that f(y) > f(z) + z(y — x) for all y; the
set of all subgradients is denoted by 9f(x) (the subdifferential). Thus, as a sequence
of tentative points {x;} is generated, the information f; = f(x;) and z; € 9f(x;)
provided by the oracle is gathered into the bundle B = {(z;, fi,z;)} that is used to
construct a model fg of the function f, usually the cutting plane one,

(1.2) fg(:z:) =max{ fi + zi(x — x;) : (x4, fi, 2:) € B},

that in turn drives the selection of the next tentative point. This is done by taking a
distinguished vector Z as the current point and solving a (primal) master problem

(13) bn.la) = nt { fu(a+d) + AP}

whose optimal solution d* provides a tentative descent direction along which the next
iterate is generated. In (1.3) one minimizes the model fz plus the stabilizing term

*Received by the editors August 22, 2012; accepted for publication (in revised form) June 19,

2013; published electronically September 12, 2013.
http://www.siam.org/journals/siopt/23-3/88886.html

TIstituto di Calcolo e Reti ad Alte Prestazioni, C.N.R., 87036 Rende (CS), Italy (astorino@
icar.cnr.it).

fDipartimento di Informatica, Universita di Pisa, 56127 Pisa, Italy (frangio@di.unipi.it).

$Dipartimento di Matematica, Universitd della Calabria, 87036 Rende (CS), Italy (antonio.
fuduli@unical.it).

9YDEIS, Universita della Calabria, 87036 Rende (CS), Ttaly (egorgone@deis.unical.it).

1784

https://core.ac.uk/display/80244532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A NONMONOTONE PROXIMAL BUNDLE METHOD 1785

+||d||* that discourages points “far away” from Z, where fz is presumably a “bad
model” of f; the proximal parameter t > 0 controls the “strength” of the stabilization.

In all proximal bundle methods (just “bundle methods” in the following unless
otherwise stated) known so far, a binary decision is taken depending on the quality
of the best point generated along d*. Typically, only the unitary step is probed;
that is, one compares f(Z) with f(z), where x = T + d*. If f(x) is “significantly
smaller” than f(Z), then Z is moved to x; this is called a serious step (SS). Otherwise,
(z, f(z),z € 9f(x)) is added to B in order to obtain a (hopefully) better direction at
the next iteration; this is called a null step (NS). With proper rules for the NS/SS
decision, and by appropriate handling of B and ¢, these approaches can be shown to
minimize f; however, the convergence analysis is somewhat complicated because two
basically distinct processes are going on.

In fact, sequences of consecutive NS aim at solving the stabilized primal problem

(14 o) = int { (o +)+]2}

i.e., computing the Moreau—Yosida regularization ¢ of f in T, which has the same set
of minima as f (cf. section 3) but is smooth. The optimal solution of (1.4) (if nonzero)
is guaranteed to be a descent direction at Z, but finding it with the sole help of the
black box for f is, in principle, as difficult as solving (1.1); thus, bundle methods solve
(1.4) approzimately and iteratively by a standard cutting-plane-type approach. Indeed,
an NS happens when fz(z) < f(Z) but f(x) & f(Z); in this case, the new (z, f(x), 2)
will significantly enrich B, eventually leading to a better approximation to the solution
of (1.4). However, after an SS is declared the algorithm can basically be restarted
from scratch (apart from keeping Z): the convergence analysis allows one to completely
change B then. In other words, bundle methods are usually analyzed as if being made
by two loosely related processes: sequences of consecutive NS, where an approximate
solution to (1.4) is computed for the given T and ¢, (possibly) interrupted by the
sought-after SS, with each sequence of NS basically seen as being almost completely
unrelated to all the others.

It can be argued that this may lead to substantially underestimating the rate
of convergence of these methods in practice. Indeed, the (few) available theoretical
estimates [18] depict an almost hopelessly slow method, even worse than what meth-
ods of this kind necessarily are [21]. While convergence can be slow, and tailing-off
often rears its ugly head [5], this is not always the case: when the model fz “rapidly
becomes a good approximation to f,” convergence can actually be pretty quick
[13, 14]. Thus, it appears that (as one would intuitively expect) the accumulation
of information in B can make a substantial difference in the convergence of the ap-
proach; yet, this phenomenon is completely lost by the available theoretical analysis.

The dichotomic NS/SS decision to be made at each step is clearly at the basis
of the characterization of bundle methods as being made of two loosely related pro-
cesses. We aim at developing a bundle method where this distinction is removed; that
is, convergence is proven by monitoring one single merit function and showing that
it is improved at all steps, until eventually optimality is reached. This requires doing
away with monotonicity in the (anyway, somewhat awkward) form that is usual for
bundle methods, i.e., that of the objective function value between two consecutive
SS. Our algorithm is nonmonotone in that particular sense, in a different way from
previous proposals [8, 15] that are based on the well-known trick of setting a fixed
k and requiring that the SS improves over the worst among the last k values of the

1786 ASTORINO, FRANGIONI, FUDULI, AND GORGONE

current point. Also, while the nonmonotone behavior of the filter-bundle approach of
[16] for constrainted optimization is dictated by the need to balance function value im-
provements with constraint satisfaction improvements, our approach is nonmonotone
even in the unconstrained case. The level bundle methods [21] are nonmonotone since
they always move the current point to the last iterate, making up for convergence
with a clever update of the stabilizing device; however they require some compact-
ness assumptions that may not be satisfied in applications, and they can be more
costly in practice since they can require the solution of two problems at each itera-
tion. Our proposal will instead keep the basic structure of proximal bundle methods,
with its advantages: the trait that clearly distinguishes our approach from all other
bundle methods so far is that the NS/SS decision is not eliminated, as in level meth-
ods, but rather made (ideally) continuous. Remarkably, the most natural choices for
the step selection process come back to dichotomic decisions; therefore, the simplest
implementations of the proposed algorithm still perform NS/SS, although possibly
nonmonotone (in terms of f-value) ones. This sheds new light on the rationale of the
process and may suggest further developments of classical methods.

The structure of the paper is as follows. In section 2 we introduce the necessary
notation and motivate our approach, starting with a naive initial version of our main
idea that does not work but that leads to the definition of the merit function we
employ, which is analyzed in section 3. Then, in section 4 we introduce the algorithm,
discussing in detail the crucial step of finding the optimal stepsize, and in section 5
we analyze its convergence, propose rules for the online management of the proximal
parameter (section 5.1), provide speed-of-convergence estimates (section 5.2), and
briefly discuss the impact of employing nonlinear upper models of f (section 5.3).
Finally, in section 6 we report some preliminary computational results aimed at giving
a first estimate of the actual convergence behavior of the new algorithm in relation
to that of the standard proximal bundle method, and in section 7 we draw some
conclusions.

2. Motivation. To motivate the key ideas in our development, we need to in-
troduce some notation. The lower model fp has to be intended as (1.2), which clearly
satisfies fg < f. Apart from easing the solution of the master problem, as fB is a
polyhedral function that can be represented by linear constraints, this has the extra
advantage that B can be considered as a set of pairs {(af, z;)}, where

(2.1) i(Z) = f(Z) = [fi + z:(T — ;)]
is the linearization error of the subgradient z; obtained at x; w.r.t. Z. In fact
(2.2) zi € Oa,(2) f(Z),

where the e-subdifferential J; f (Z) contains all e-subgradients z € R™ such that f(z) >
f(@) + z(x — %) — e for all x € R™. Thus, unlike with other models (e.g., [1]) one
does not need to keep track of the iterates x; in B, since the linearization error can
be easily updated using the information transport property when Z is moved to any
x?

(2.3) ai(z) = 2 (z — x) + ou(2) + (f(2) — f(T)).

(Just write (2.1) for and T and simplify out common terms.) Usually Z is regarded
as being fixed, and thus there is no need to stress the fact that the linearization errors
depend on it; in our case this is sometimes necessary, but for the sake of notational

A NONMONOTONE PROXIMAL BUNDLE METHOD 1787

simplicity we will still use a; as much as possible when Z is clear from the context.
Since we will move to points of the form x(\) = Z + Ad*, for which (2.3) gives

(2.4) ai(z(A) = ai(T) + f(z(N) = f(T) — Azid",

to simplify the notation we will denote a;(x()\)) simply as a}'; note, however, that

f(z(X)) in (2.4) is usually known only for A € {0,1}. To further ease notation, we will
often use the shorthand “i € B” for “(a;, z;) € B”; let us also remark here that while
the index ¢ can upon a first reading be considered that of the iteration, in general the

B evolves in rather different ways. Yet, all this allows us to rewrite (1.3) as
. 1 2 . _
(2.5) min < v + §||d|| cv>zid—a; 1€B [+f(z)],

where the constant term + f(Z) is most often disregarded, but it is crucial in our
development, as we shall see. Solving (2.5) is equivalent to solving its dual

i€B

2
+Zai9i R @} [—f(@)],

i€B

(2.6) min { %t

where © = {}_,.30; = 1,0; >0 i € B} is the unitary simplex of appropriate dimen-
sion, in that v(2.5) = —(2.6) (where v(-) denotes the optimal value of an optimization
problem), and the dual optimal solution 6* of (2.6), appropriately translated in the
(z, a)-space by

(2.7) 2" = Z zi0; of = Zalﬂf,

i€B icB
gives the primal optimal solution (v*,d*) of (2.5) as

(2.8) d* = —tz* v* = —t||z*]]> — o
The dual form of the master problem not only is useful for algorithmic purposes [9],
but it is also closely related to the stopping criterion of the method. In fact, from

(2.9) 2 € O f(7)

(cf. (2.2)) it follows that z* = 0 and o* = 0 imply that Z is optimal. In practice one
would therefore stop when ||z*|| and o* are “small,” e.g., as in

(2.10) s = t*]|25]2 + a* < e,

where ¢* is an appropriately chosen scaling factor and ¢ is the final (absolute) accu-
racy required. In general ¢ must be tuned online to reflect the quality of fz in the
neighborhood of z, while t* can stay fixed to a large enough value to ensure that ||z*||?
actually is small enough when the algorithm terminates; however, at first reading one
may take t* = t, with further discussion provided later on.

In the standard approach, after (2.5) (or, equivalently, (2.6)) are solved one sets
z =uif f(x) < f(Z) (with x = T + d*); while this sounds quite natural (after all,
we are minimizing f), it is not necessarily the best choice. Indeed, what one would
really want is that s* decreases as fast as possible, so that (2.10) is attained as early
as possible. But an SS (A = 1) does not necessarily decrease it; indeed, any decrease

1788 ASTORINO, FRANGIONI, FUDULI, AND GORGONE

in s* is at best indirectly caused by the fact that the a;’s change and in particular
that the new pair (z,a) obtained evaluating f(z) has a(r) = a(z(1)) = ot = 0.
Therefore, one may wonder whether, even if f(z) < f(Z), a different move than an
SS could be better in terms of (2.10). A simple possibility is to consider the line
segment £ = conv({Z,z}) = {x(N\) : A € [0,1]} and determine the optimal value * of
A that minimizes s* at the next iteration, then set the new current point Z to z(*).

One initial issue with this idea is that in order to set () as the current point one
needs to know f(x(\)) to compute the linearization errors (cf. (2.4)). However, one can
alternatively develop an upper model fB of f that is correct at least on L, i.e., such
that fB(\) = fB(x()\) > f(x(N\) for all 2(\) € L, and use it to (conservatively)
estimate the true function value and therefore the linearization errors:

(211) @} = 5O = [fi + 2i(@(V) = 20)] 2 f(2(V) = [fi + zi(2(N) — 2:)] = o

(Note that f; is known exactly, although it should be easy to extend the approach
to approzimate bundle methods where the oracle itself has errors [20].) In particular,
the straightforward worst case upper model is

(2.12) FEO) = (1= Nf(@) + Mf(2) = f(z) + AAS,

where Af = f(z) — f(Z); we will mainly work with (2.12) since any more accurate
f® can only improve (decrease) the df"s and thus result in faster convergence. Note
that f2 depends on the next iterate z, so one cannot use the upper model to drive its
selection; indeed, for this task we still use the lower model fg, restricting the use of
f® only to the selection of A, i.e., of the next current point z(\) € £. However, (2.12)
is still not directly useable because T itself may be the x(\) of the previous iteration,
hence f(Z) may actually be unknown; for the approach to work in general one has to
employ the recursive definition

(2.13) FEO) = @ =NfP@) + Af(x) = fE(@) + AT,
where Af = f(z) — f5(z), which still gives
(2.14) @ = fON) = [fi + zi(x(N) — 23)] = @i(&) + MAf — Azyd* > o)

(cf. (2.4)). In the following we will assume knowledge of an upper model like (2.13),
which we will denote simply as f, where possibly some of the data actually comes
from an upper estimate of f at previous iterations; this allows us to define the family
of QP dual pairs, parametric over \,

(2.15) —0(A) =min {v + %HdH2 v > zd—a) i€ B} [+f(z(N)],
(2.16) §(\) =min{ = Zzz ; +Z@39i :0e0y [—flz(N).
i€B i€B

The optimal solution 6*(A) of (2.16), or better its representative in the (z, a)-space
(2.17) 2(N) =) z0;(N), a)=>_ ar;)
i€B i€B

immediately gives (cf. (2.9) and (2.11))
(2.18) 2 € O5p f(@(N)) = 2(A) € D) f((N)).

A NONMONOTONE PROXIMAL BUNDLE METHOD 1789

Note that (2.18) refers to the “true” f(z()\)) rather than its approximation f(\),
since the estimate of linearization errors is “kept in check” by the fact that at each
application of (2.14) we do use the true value of f(z) to compute Af. Said otherwise,
applying (2.14) twice cancels out the term “fZ(z)” for the middle point together with
any error, so that the error in the estimate of the @ depends only on that of the
initial f(Z) and on that of the final f(x())); in particular, for an SS * = 1 =
z(A) =z = f(\) = f(x) gives &; = a;. Also, we remark for future reference that
d(A) = v(2.16) = —v(2.15) is a concave function. Indeed, A appears linearly in the
right-hand side of the constraints in (2.15); therefore, —J(\) is the value function of
a convex problem and hence convex.

Due to (2.18), the stopping condition (2.10)—with z(\) and «(\) replacing z*
and o, respectively—can still be applied. One could then seek the value of A\ such
that z(\) and «()) are the best possible for (2.10), i.e., the optimal solution A* of

(2.19) min {s*(A) = t*[z(A)[|> + a(A) : A € [0, 1]},

and set T = z(A*), in order to (hopefully) obtain (2.10) faster. However, it is easy to
prove that this approach does not work in general: for the linear f(z) = rz (r € R"
fixed) (1.1) is unbounded below, and a bundle algorithm would prove it by making
infinitely many consecutive SS along the direction —r. It is also easy to see that
B contains all and only identical copies (r,0); hence, (2(A), a(A)) = (r,0) whatever
the value of A, i.e., s*(\) actually does not depend on A. Therefore any A € [0,1]
is optimal to (2.19), and nothing can prevent the approach to always select A* = 0,
thereby dramatically failing to solve the problem. The example shows that s*(\) of
(2.19) is not an appropriate merit function for our problem; in the next section we will
therefore propose a modification of the approach that solves this issue. As we shall
see, the basic idea is simply that the constant f(z(X)) in (2.15)—(2.16) (or, better, its
readily available approximation f())) needs be taken into account as well.

3. The merit function. An appropriate merit function can be devised exploit-
ing the Moreau—Yosida regularization ¢; (cf. (1.4)) of f, for which

(3.2) ¢i(z) = f(x) <= =z optimal for (1.1).

Indeed, d = 0 is a feasible solution to (1.4), which gives (3.1). Furthermore, the
optimality conditions of (1.4),

0€d[f(z+)+I-1?/@(d") <= —d"/t € df(x+d),

clearly imply that d* =0 <= « is optimal for (1.1), but d* =0 < ¢:(z) = f(x),
whence (3.2). As remarked, ¢; is only a conceptual object because it is difficult to
compute (the oracle being for f); however, owing to fz < f, for the readily available
¢+ (cf. (1.3)) one clearly has

(3.3) Bt < 0 [<]
(3.4) ¢B,+ = f(xr) = x optimal for (1.1).

We are now ready to propose the merit function, in both the conceptual form,

Ce(x) = 2f (x) = o1 (),

1790 ASTORINO, FRANGIONI, FUDULI, AND GORGONE

and the implementable form,

(3.5) B.t(x) = 2f(x) — ¢e(x) [Gi(2)].

Another way to look at the definition is to write it as (;(z) = f(x) + (f(z) — ¢(x)),
thereby revealing the gap function associated with ¢; (and with ¢;)

(3.6) 6¢(x) = Ge(x) — f(z) = f(x) — ¢e(x) [= 0],

which gives (;(z) = f(z) < f(x) = ¢i(x) <= d:(x) =0, and therefore
(3.7) G > f,

(3.8) (i(x) = f(x) <= =z optimal for (1.1)

via (3.1)—(3.2). This and (3.5) then immediately give

(3.9) (Bt > G[> fl,

(3.10) (.t = f(z) = x optimal for (1.1),

which is equivalently rewritten in terms of
s =Ct—f=[f—¢p: >0 >0.

The link with the master problems (2.15)—(2.16) is

Ba(x(A) = 2f(x(A) = ¢p,(x(A) = 2f(2(X) — v (2.15)
(3.11) = f(@(N) + [z V[?/2+ (V) = fz(N) + 5.0(2(N))

due to v(2.15) = —v(2.16) and the fact that the constant term —f(z()\)) in (2.16)
cancels out with the factor of 2.

Hence, both (; and ¢; coincide with f only at optimality, but the former is an
upper approximation, whereas the latter is a lower approximation; even more relevant
is that while ¢, is convex, (; in general is not (although clearly it is a Difference of
Convex (DC) function, as is d;), as shown in Figure 3.1 for the simple piecewise-linear
function f(z) = max{—3z+8,—z+ 4,1,z — 3,22 — 9}. Thus, one could hardly use
(B, instead of ¢, in (1.3), but still ¢; is an appropriate merit function, at least on
converging (sub) sequences.

LEMMA 3.1. Assume that a sequence {T;,B;,t;} is given such that t; >t > 0,
{Z;} = T and liminf; .o (0; = 0B, +,(T;)) = 0; then, T is optimal for (1.1).

Proof. Since 6+ > ¢, t; > t, (; is nondecreasing in ¢ (hence ¢; is), and d; > 0 is
lower semicontinuous,

liminf 6;(Z;) = 0 = §,(Z) = 0 = ((T) = f(T),
71— 00
and the result follows from (3.10). O

Nota that Lemma 3.1 requires nothing specific about how B; is handled, provided
of course that one succeeds in sending 0p, ¢, (Z;) to zero; however, t; > ¢t > 0 is crucial.
In fact, there is an easy but fictitious way to ensure (¢(Z) = f(Z): just take t = 0 (or,
in a sequence, have t; — 0 fast). This does not harm much ¢;, except of course killing
any regularization effect, ¢g = f, which still means that all minima of ¢y are minima
of f. Conversely, it is disastrous for (;: (o — f = dp = 0, hence the merit function is of

A NONMONOTONE PROXIMAL BUNDLE METHOD 1791

Fic. 3.1. ¢t (dotted line) and (¢ (dashed line) for a simple f (thick solid line).

no use whatsoever for detecting minima of f. Requiring ¢ to be bounded away from
zero is less than ideal: many algorithms converge even if t; — 0, provided this happens
slowly enough [6]. Furthermore, Lemma 3.1 requires a converging sequence to start
with, which may not be trivial to attain in the context of a numerical algorithm. It is
possible to improve on both aspects if f is regular enough; one useful concept, already
used, e.g., in [1, 10], is the following.

DEFINITION 3.2. Let S5(f) = {x: f(x) < d} be the level set corresponding to the
f-value &: a function f is *-compact if for alll > 1> f* =v(1.1) > —o0

(3.12) e(l,l) = stwlp{dist(x,SL(f)) sz € Si(f)} < 0.

In a *-compact function the excess of any two level sets is bounded; many functions are
*-compact, e.g., all the inf-compact ones, as discussed in more detail in [10], where the
class was introduced to study the convergence of bundle methods with nonquadratic
stabilizing terms. Interestingly, the same concept can be used to extend Lemma 3.1
to nonconverging sequences, using the following technical lemma.

LEMMA 3.3. For each x and & such that f(Z) < f(x) and g € O-f(x), it holds
that

(3.13) 0t(x) > min { (f(z) = f(@)*t (f(z) - f(@) —¢)® } .

2% —xf[* 2t[|gl[?
Proof. By the very definition (1.4) we have

. 1
o) = 1) = oula) = f(o) =t { fa-+-0) + g |
To construct a lower estimate for d;, pick arbitrarily any & and consider the function

f(y):{ﬁf(j)+(1_ﬁ)f($) if y= B2+ (1 - B)xr and g € [0,1],

+00 otherwise.

By convexity of f it clearly holds f > f, and therefore
5e) 2 () —inf { fla+)+ ol
= {B(7(@) - Sa) + 18 - 05 € .11}

= max{d)(ﬁ) = BAf — %ﬁ2Aaj 1B € [0,1]},

1792 ASTORINO, FRANGIONI, FUDULI, AND GORGONE

where Af = f(z) — f(Z) > 0 and Az = || — z[|* > 0. The quadratic function 1 (5)
has maximum 3 = tAf/Az > 0 with ¢(3) = t(Af)?/(2Az); therefore, the optimal
solution to the maximization problem is

Bt — B=tAf/Azx ifB<1 < Af<Azx/t,
1 if3>1 < Af>Az/t,

which immediately gives that its optimal value is

W(B") = t(Af)?/(20z) if Af < Aw/t,

|l Af—Az/(2t) if Af > Ax/t.
For the case Af > Axz/t, we have that ¢(8*) = Af — Az/(2t) > Az/(2t) and we
need to bound this in terms of Af. To do that, pick any g € 0. f(z) and write the
e-subgradient inequality:

f@) = (@) + 9@ —2) —e = lgl| - [[o = 2 = Af —e.

This gives Az > (Af —€)?/||g]|? and hence the desired result. 0

LEMMA 3.4. Assume that f is *-compact: any sequence {Z;, B;, t;} such that
G = (B, 1. (T;) is monotone nonincreasing, 0 < t; <t < 0o, and
(314) lim inf 5[31.)151. (fl)/tl =0

71— 00
is an optimizing sequence, i.e., foo = iminf; o (fi = f(z)) = f*.

Proof. Because (; > f; and (; is nonincreasing, the sequence {f;} is bounded
above: f; <[< co. If fo, = —00, then the thesis is proved: clearly, f* = —oc and {Z;}
is an optimizing sequence. Otherwise, assume by contradiction that f; — f* >~ >0
and set —oo < [= inf{f;} — v <1 —~. Since (0; = 05,.+,(%:))/t: = ||27]2/2 + o /ts,
(3.14) implies that, at least on one subsequence, ||zf|| — 0 and af — 0. Hence we

can apply (on the subsequence) Lemma 3.3 with Z the projection of Z; over the level
set Si(f) (so that f; — f(%;) >), g = 2z, and € = a: using (3.12) in (3.13) gives

’thf (v —aj)?
2e(l,1)%7 2t;]] 2712

0, (Z;) > min{

Since af — 0, v — of is bounded away from zero; furthermore in the denominator
of the rightmost term ¢; is bounded above and ||z}|| goes to zero, so the whole term
eventually becomes large. Finally, divide by t; to get §; = d¢,(Z;)/t; > v?/(2e(1,1)?),
which contradicts (3.14) and hence proves the result. O

Under mild conditions on f, any sequence {Z;} that nullifies the gap function is
minimizing; ¢; can even go to zero, provided this happens “slowly enough w.r.t. ¢;”
so that §;/t; still goes to zero. In fact, a familiar way to obtain (3.14) is

(3.15) iti =00 and i&- < o0
i=1 i=1

if §; goes to zero fast enough, so that the series converges, then ¢; can even be allowed
to go to zero slowly enough, so that the series diverges. Condition (3.15) implies (3.14)
since liminf;_, o d;/t; > 0 implies that for some 0 > 0, a large enough h, and all ¢ > h
one has §; > dt;, hence Y .2, §; > 6> .2, ;, which contradicts (3.15). Alternatively, if

A NONMONOTONE PROXIMAL BUNDLE METHOD 1793

t; is bounded away from zero, then (3.14) just requires that §; vanishes. Indeed, if f is
inf-compact (hence clearly *-compact), then we can extract a converging subsequence
out of {Z;} C Sr(f) (that is compact) and therefore recover Lemma 3.1.

Thus, under appropriate conditions (z; can be used to construct a nonmono-
tone bundle method along the lines of section 2; at least it solves the f(z) = rx
counterexample. This first requires working with the approximate version of (3.11)

employing f,
(3.16) (V) = FO) +tlzV]P/2+ a(X) = (sa(z(N))

(as f(A) > f(z(\)) and @ > o). However, in the linear case f = f = a = «;
furthermore, z(A\) and a()) are independent on A. Yet, due to the extra term f(\)
in (3.16) w.r.t. (2.19), it is easy to see that the merit function approach correctly
assesses that * = 1, which could therefore lead to an algorithm capable of solving
this (very easy) problem. This algorithm is described in detail in the next section.

4. The algorithm. We now present the algorithm and discuss its main proper-
ties. To simplify the notation we will as much as possible avoid the iteration index
“4,” using the subscript “+ 7 for “i 4+ 1.” Differently from standard proximal bundle
algorithms, the sequence {Z;} of stability centers may be almost entirely unrelated
from that {z;} of iterates; as a consequence, the algorithm works with the upper
approximation f(z;) in place of the true value f(%;), and therefore the approximate
linearization errors &, the approximate merit function (g of (3.16), the correspond-
ing approximate gap function &5 of (3.6), and so on. Hence, all references, e.g., to
the master problems (2.5)—(2.6), their solutions (2.7) and (2.8), and so on, have to be
intended with the approximate quantities in place of the exact ones. These coincide
only when A* € {0,1}, which may (cf. section 4.1) or may not be true.

Choose any Z. Initialize 0 < t < < co. Set d* =0, B = 0. Goto 3.

Solve (2.6) for 6*. Find 2*, @*, and d* from (2.7) and (2.8). B = BU{(z*,a*)}.
If (2.10) holds, then stop (Z is e-optimal).

Compute x = T + d*, f(z), z € df(x), and a via (2.1). B=BU{(z,a)}.

For B’ C B, compute an approximately optimal solution A* € [0, 1] to

- b e o

(4.1) min { (g (z(N)) : A € [0,1]}.

5. Set Ty = ZII(*),
1

A, By € BU{(2(A*),a(A*))}, the linearization errors of By
according to (2

4), and 0 < t; <t. Goto 1.

A few comments on the algorithm are useful.
e In the first iteration, where d* = 0, z = z, f(z) = f(z), and B = {(2,0)},
(4.1) is “degenerate”: any A € [0, 1] is optimal.
e The fundamental property that we want from the algorithm is

(42) G = flag) +egllAlP/2+ay < f(@) +t])?/2+a" = (.
This is easy to obtain by requiring monotonicity of ¢
(4.3) ty <H(< D),

an ever-increasing bundle B C B, and complete information in (4.1), i.e., B =
B, since then (z*,@*) is feasible for (2.16) at A = 0, and therefore (4.1) can

1794 ASTORINO, FRANGIONI, FUDULI, AND GORGONE

only improve on it. However, some form of bundle management should be
allowed at step 4 (while choosing B’) and at step 5 (while choosing B), which
still can guarantee (4.2) provided that

— (z*,a@") is feasible for (2.16) at A = 0;

— (2(A*), a(A")) is feasible for (2.6) at the subsequent iteration.
This can be obtained by the well-known aggregation trick: just add the pair
one needs to preserve to B. In the standard case this needs to be done only
once per iteration, here—since there are two different bundles B and B'—it
must be done twice, at step 1 and at step 4. Doing that allows us to remove
any other pair from B/B’, provided the critical ones are retained; the most
aggressive application of this approach results in B’ = {(z*,a*),(z,a)} in
(4.1) and the “poorman’s bundle” By = {(z(*), a(A*))} [5], in which case
1 = 0% € R is the only feasible (hence optimal) solution to (2.6) at the next
iteration, and therefore

(4.4) (21.a%) = (2(A), a(A)).

A milder way to obtain the same result is to ensure that z(A*) and a(*)
are still feasible for (2.6) at the beginning of the next iteration by inhibiting
removal of any subgradient h € B such that 6} (A*) > 0.

e While the approach seems to solve two problems (2.6) and (4.1), this depends
on what exactly “approximately solve” means in step 4 and on the relation-
ships between B and B,. For instance, if By is the poorman’s bundle, then
(4.4) implies that step 1 can be skipped. Furthermore, note that (4.1) is a
difficult problem as (s ¢ is nonconvex; thus one in principle wants B as small
as possible in the former but not in the latter because working with a very
restricted bundle has in general dire consequences on the convergence speed
[5, 13]. This requires us to re-solve (2.6) once A* has been found, which is
why we present it as the default behavior of our algorithm.

e At step 5, one may compute f(z(A*)) (and some subgradient) to avoid using
the approximation f(*) (and possibly improve B,) and ensure & = «, (5, =
(B,: as in the standard bundle approach. Although this may be worth it if the
function computation is quick (e.g., [13]), in general one can work with the
approximate quantities, hence we prefer to develop our theory in the more
general setting; things can only improve if f = f. Of course, this is only
relevant if * ¢ {0, 1}, which may not happen often, if at all (cf. section 4.1).

e Obviously, (4.3) is somewhat harsh: it is well known that online tuning of ¢ is
important in practice. Besides, as discussed in section 3, some care is needed
to avoid t; going to zero too fast and thereby rendering ¢ useless (cf. (3.14)—
(3.15)). These issues require a better grasp of the convergence properties of
the approach, and this is why we postpone their discussion to section 5.1.

4.1. Finding A*. The solution of (4.1) clearly depends on the specific upper
model f% employed; the linear one (2.13) is very easy to compute and available for
any f, but it is also the worst-case upper model, and therefore the one relying on the
most conservative (hence least accurate) estimates. Furthermore, the corresponding
(4.1) is concave in X: indeed, §(A) (cf. (2.16)—(2.15)) is concave, and fZ is linear.
As a consequence, the use of (2.13) leads to A* € {0,1}, i.e., to only making either
NS or SS, although with different rules than in the traditional bundle method. This
also implies that (4.1) is then easy to solve: just optimize on § for A =0 and A =1
separately, then pick the solution giving the best (-value. While this would require

A NONMONOTONE PROXIMAL BUNDLE METHOD 1795

solving the master problem thrice (or twice if step 1 is skipped as already discussed)
at each iteration, one can employ the aggregation trick, in particular with

(4.5) B ={(z",a"), (2,)},

(“extreme aggregation”) so that the solution to (2.6) can be found by a closed algebraic
expression. It is useful to develop this approach in detail, which requires introducing
some notation; first and foremost, the two linear functions in A

f«(\) = A*d* —a* + f(2), fQA) = Xzd* —a+ f(z)
such that fg (z()\)) = max{f.(A\), f(A)}. In particular, (2.14) then gives

(N) = fo(N) = f(@) + AAf = A" +a" — f(2)
(Af —2*d*) +a* = \[(z — 2*)d* — a] + a*,
(
(

A) = fA) = F(Z) + MNAf — Azd* + a — f(2)

Af —zd*) +a=a(l—N).

One therefore is faced with the special version of (2.16),

(4.6) o(A) = min{%t 162* + (1 — 0)z||” + 6" + (1 — 0)a> : 0 € [0, 1]}

whose optimal solution has the closed-form expression

(4.7) 6" () = min {1, max {0, i\ = at — @ — a2t — 2) }}

tllz* — 2|2

blnce J(\) is the optimal solution of the relazation of (4.6) where the constraint
€ [0,1] is removed. Therefore, one can easily evaluate (an upper estimate of) ¢(0)
and ¢(1) in O(n) (O(1) once a few scalar products are computed once and for all),
solving (4.1) (under (4.5)) with the same complexity.
It is instructive to examine the result from a different viewpoint. A little algebra
(using in particular Af = —tz*z — a) shows that (4.1) under (4.5) can be written as

min {h(6,\) = h(0) + A(Af +t2*(z* —2)0 —a) : 0 € [0,1],A € [0,1]},
(4.8)

where () = t|0z* + (1 — 0)z|?/2 + 0a* + (1 —)«
is the objective function of (4.6) for A = 0. For the optimal solution (6*, A*), then,

Af +t2%(2" — 2)0* —a > 0= * =0,

4.9 _
(49) Af+tz*(z*—2)0" —a< 0= A" =1,

since h(0, \) is linear in A. This first confirms that (2.13) leads to A* € {0, 1}, except
for the vanishingly small chance that Af +tz*(z* — 2)0* —a = 0. More tellingly, (4.9)
can be interpreted as an ex-post NS/SS rule, to be contrasted to the standard one,
(4.10) Af <mlfs(x) - f(@)] = N\ =1,

for some arbitrary m € (0,1]. Of course, (4.9) can only be evaluated after (4.1) has
been solved; yet, one easily derives the sufficient conditions

Af > max{tz*(z — 2*),0} + a = * =
Af <min{tz*(z — 2*),0} +a = X =1

1796 ASTORINO, FRANGIONI, FUDULI, AND GORGONE

that can be evaluated early on to avoid solving (4.1). These conditions show that the
process is indeed nonmonotone: while (4.10) requires A f to be negative, and “sizably
s0,” to declare an SS, (4.9) only forces an NS when Af is “sizably positive,” allowing
for SS to be taken even when Af > 0, but “not too large.” This is also seen by
exploiting the fact that f(1) — f.(1) > 0 (f is convex) = tz*(2* —2) > a—a*: using
this (multiplied by 6*) in (4.9) gives the ex-post

Af>a"0" +a(l—0") = \"=0

(which can be made ex-ante using a*6* + a(1 — 6*) < max{a*, a}), showing once
again that A f need be large positive for an NS to be declared.

Using the simplified problem corresponding to extreme aggregation (4.5) would
make (4.1) solvable even when using nonlinear upper models. In fact, it is clear that

S(A) =0 (N2 4+ (1 — 0*(\)z]|2/2 + 0 (Va > + (1 — 6% (\)a

is a concave piecewise function with at most three pieces, since 6*(\) is linear function
of X inside one (not necessarily proper) subinterval of [0,1] and constant outside it.
Thus, §(A) is quadratic inside that interval and linear outside it, as is easy to verify
with somewhat tedious algebra. For any different f? that is piecewise in [0, 1] with
a small number of pieces, each one of them being a simple (say, smooth algebraic)
function (cf. section 5.3), (4.1) can still be solved by inspecting all intervals and
evaluating 6(A\)+ fZ()\) at all extremes and at all points where the derivative vanishes.

This approach could be generalized to B larger than (4.5), since the optimal
solution of (2.16) can be shown to be piecewise-linear in A as done in [9, section 6]
for ¢. Therefore, the analogue to 6*(\) could be constructed, and an explicit concave
piecewise form for §(\) could be devised; however, the number of pieces would grow
exponentially in |5|. While this might be useful for some specific applications, we will
concentrate on using the linear upper model (2.13) and the minimal bundle (4.5); all
improvements on these would a fortiori converge (hopefully, faster).

5. The convergence proof. The idea of the convergence proof is to show that
at all steps ¢ decreases enough. (In this section, too, we remove the iteration index 4
whenever possible.) That is, we need to monitor the crucial quantity

(5.1) AC=(—(y,

a nonnegative number due to (4.2), and prove that ¢; — f;(= f(Z;)): we will do that
by showing that A(is at least as large as a nonvanishing fraction of

(- ==t P2 +a" > t]"|*/2+a” =6,

While we aim at ultimately replacing the standard convergence arguments for prox-
imal bundle methods, we will exploit several of the ideas proposed there. The first,
as already discussed, is the aggregation technique leading to the simplified (4.6) of
section 4.1. Indeed, it is well known that convergence of a sequence of NS is retained
even with the poorman’s bundle, which allows us to prove convergence even if the
maximum size of the bundle is fixed to any number > 2. While the practical use-
fulness is debatable, here we are interested in the fact that studying A under the
extreme aggregation assumption (4.5) allows us to considerably simplify the conver-
gence proof.

A NONMONOTONE PROXIMAL BUNDLE METHOD 1797

The second idea one can exploit, somewhat counterintuitively (or maybe not,
given section 4.1), is that of NS/SS. While the algorithm is not—in principle—
restricted to these two dichotomic decisions, the fact that standard bundle methods
converge and our previous developments clearly suggest that one should be able to
prove convergence even if A* is restricted to belonging to {0, 1}, i.e., only NS and SS
are done. That is, one could interpret (4.10) as a heuristic for the solution of (4.1)
(taking A* when the condition does not hold). We note in passing that (4.10) can
usually be replaced with the weaker

Af < —mlt||[?/2+ "] = —m[Csu(@) — f(7)] = —md

(cf. (3.11)) because fp(x) — f(z) = v* = —t|[2*||?> —a* < —t||z*]|?/2 — a* (cf. (2.8)).
Since at each step either (4.10) holds or it doesn’t, we can bound A(from below
considering separately both cases. To simplify the treatment we assume t; = t;
needless to say, the analysis will a fortiori hold under (4.3), as d3 ¢ is increasing in ¢.

We start the case A* = 0 ((4.10) does not hold); this corresponds to bounding
the decrease in the master problem value during one regular NS, i.e.,

AC=C =G = f@) +t]"1?/2+a" = (f(2(0) + t][2(0)]*/2 + (0))
=tll"]?/2+ a* — tl|21]%/2 - a1,

k=%

where (27, @}) are the optimal solution to the standard master problem corresponding
to adding (z, @) to B while keeping all the rest untouched. Estimating A only requires
simple algebra using the results of section 4.1; indeed, for h(f) of (4.8) one has

RQ)=tz*(z* —2)+a" —a.

From (2.1) and tz* = —d* = & — x one has Af = f(z) — f(Z) = —tzz* — a; using this
in (the contrary of) (4.10) gives

W (1) > (1 —m)[t||z*[]> + a*] > (1 —m)s.

Hence, h/(1) is strictly positive (and large if § is), which implies that § = 1 cannot be
the optimal point. Thus, as in (4.7), 8* = 6*(0) is either the unconstrained minimizer
6(0) of h, or 0. (Note that the latter happens in particular if z = 2*, which means
that h(#) is linear and € is not well defined.) The former case gives

AQT > h(l) _ h(6‘~) _ (tz*(z — Z*) +a— 07*)2 B h/(1)2 ((1 . m)5)2

2t]|z* — z||? 2tz — 22 T 2tz — 2|2’

while the latter gives A > h(1) — h(0) = t||z*||?/2 + &* — t||2]|?/2 — . To further
develop this, combine A'(0) = ¢(z* — z)z + &* — a > 0 (since h is convex and 0 is the
constrained optimum) and (the contrary of) (4.10) to get

14+m

thzl?/2+a < (t]|z*)1?/2 + a*) and therefore

1-—- 1—m-
=t P2+) = —5.

AC > tll")?/2+ @ — (¢]2l*/2 + o) >

Combining the two cases we finally obtain

(5.2) AC > @min{l M}.

Ht|z - 2]

1798 ASTORINO, FRANGIONI, FUDULI, AND GORGONE

}(w = A= £.(1)
£ L

FIG. 5.1. Estimating &*!

Under (4.10), instead, one has
AC=C =G = f@) +t7P/2+a" = (f(z(1) + tzQ)IIP/2 + a(1))
(5.3) = AT IR+ @ — (D)2 — a(1).

Hence, in this case we do have the positive term —Af corresponding to the function
value improvement, but we have to estimate the possible increase in the value of the
master problem corresponding to the change in Z. To simplify this task we assume
that B’ = {(z*,@*)}, i.e., the newly obtained (z,) is discarded (this is indeed possible
in standard bundle methods, where B can be reset arbitrarily at each SS); clearly, this
corresponds to underestimating A{. Yet, this also gives

AC> —Af+t|"|P/24a — =" |?/2— 3" > —Af+a" —a™.

The useful relationship is that a*!' = f(z) + Af — f.(1) (see Figure 5.1), where
f(1) =v*+ f(z) = fr(z), which gives

A > 2Af +a* + f.o(1) — f(2).

Using a* > 0, ~AF > —m[f(1) — F@)] (cf. (4.10)) and fu(1) — f(z) = v* =
—t||]z*||? — &* < —t||z*]|?/2 — @* one finally obtains

AC> (1-2m)[£.(1) — f(@)] = @m— 1)({|="P/2 +a%) = @m — 1)

provided that 2m —1 > 0.
Since (4.10) either holds or not, we can conclude that

I 1-m (1-m)%
. > -
(5.4) ACémln{Qm 1, 5 ’2t||z—z*||2}

however chosen m € (1/2,1]; note that standard proximal bundle methods only re-
quire m € (0, 1], but here m is only a technicality in the proof, not an actual algorith-
mic parameter (possibly requiring tuning). With (5.4) it is easy to prove convergence
of the algorithm; to simplify the analysis let us do away first with the obvious case
where fo, = liminf; ,o, fi = —oo0, since then clearly f* = v(1.1) = —oc0: {Z;} is a
minimizing sequence, and there is nothing else to prove.

THEOREM 5.1. If (4.1) is solved by (4.10), (4.3) holds, fso > —00, and

(5.5) lall <L <oo Vi,

then iminf;_,oc 6; = 0 and

A NONMONOTONE PROXIMAL BUNDLE METHOD 1799

(i) if t >t > 0 and some subsequence of {Z;} converges to some x*, then x* is
an optimal solution to (1.1);

(ii) if f is *-compact and (3.14) holds, then fo = f*.

Proof. Since (; > f;, the sequence {(;} is bounded below and nonincreasing, hence
it converges to some (5, > —o0; thus, §; — 0. Indeed, ||2}|| is bounded above and
(5.5) implies that {z;} is also bounded: hence, so is t;||z; — z7||? in the denominator
of the rightmost term of (5.4) (given that t; < t). Therefore, if 6; > ¢ > 0 for infinitely
many indices, then (5.4) would give that > .~ A(; = oo, contradicting boundedness
of ¢;. This immediately gives part (i) via Lemma 3.1, which requires ¢+ bounded
away from zero, and part (ii) via Lemma 3.4, which requires f to be *-compact and
(3.14). O

Of course, (3.14) requires appropriate management of ¢; however, ¢ bounded away
from zero surely suffice, and more sophisticated strategies are discussed in section 5.1.

Clearly, Theorem 5.1 a fortiori holds if (4.1) is solved by any approach giving
a solution at least as good as (4.10); this includes (4.9) and/or any other approach
solving accurately enough (4.1) with larger B’ than (4.5). The same idea can also
be readily exploited for the announced extension to the constrained case X C R",
which means that one is minimizing the essential objective fx = f +1x, with 1x the
indicator function of X (1x(z) = +oo for x ¢ X and 0 otherwise). To simplify the
discussion consider the polyhedral case X = {& € R™ : v; > g;x i € V}, i.e., a finite
and fixed bundle of constraints V, although the concept generalizes. The standard
approach in this case is simple: just insert full knowledge of X in the master problems

1
min{v+2—t||d||2zv>zid—ai, i€ B,0> g;d— 7, iEV},
1 ? _ ,
mln{gt Zzﬂﬁ-Zgim +Zai&+2%ui:9€®,u20},

i€B =% i€B icy
where 7; = vF =7; — ¢;@. That is, fx is the sum of two components f and 1x, where
the latter, in the parlance of [13], is an “easy” one: it is completely known from the
start (although in practice dynamic handling of V is also possible).
COROLLARY 5.2. With the above modifications, Theorem 5.1 holds in the con-
strained case.
Proof. The primal-dual relationships of the modified master problems are

d* = —tz*, o' =—t||z*]|* - a*

(cf. (2.8)), where now Z* = 2" 4 g%, &* = &* +7*, ¢° = D oy gk, and ¥v* =
> icv Yiti - It is easy to realize that f+(\) = Az*d* — &* + f(Z) is a valid lower model
of fx on L: g* € 0y-1x(Z), since each g; is a ¥;-subgradient at Z (use, e.g., the very
definition) and it is possible to scale each constraint by any positive value so that
p* can be convex multipliers (if nonzero). Thus, together with f()) of section 4.1
they define a valid lower model fg = max{ f.«(}A), f(A\)}, which is weaker than the one
actually used by the algorithm, i.e., fgr < fir.x = max{f.(\), f(A)} +1x. Indeed, in
the constrained case aggregation should only happen in B, with the poorman’s bundle
still being {(z*,a*)} but all the bundle of constraints V' still in the master problems;
instead, fi’ linearizes 1x together with f. Note that the upper model does not change
(it only uses the value fx(x) = f(z) at feasible x), and indeed there is no need to
approximate 1x from above because its value (0) is known exactly. Therefore, all the
above development can be repeated with Z* and &* in place of z* and a*, showing

1800 ASTORINO, FRANGIONI, FUDULI, AND GORGONE

that even with full aggregation (f + 1x being treated as just one function instead of
exploiting the knowledge about X) the algorithm is convergent, a fortiori so if the
better model fg/ x is used. 0

To conclude this section, it must be remarked that Theorem 5.1 is somewhat
weaker than those available for standard bundle methods, in two main aspects. First,
the global boundedness condition (5.5) is usually not required. Something related is
needed to show that the denominator in the rightmost term of (5.4) does not grow
infinitely large, but this is only required for sequences of consecutive NS. Since T is
not changing, it is easy to obtain (5.5) as a natural consequence of the algorithm’s
workings: {zF} and {a}} are bounded since the objective function of (2.6) is nonin-
creasing, and hence {d}} is bounded (¢; is bounded above), and hence the {z;} all
belong to the image of a compact set through the e-subdifferential mapping of the
finite function f for some bounded e, which is compact. This line of reasoning fails
in our case since Z is changing in a less controlled way, and it does not seem to be
easy to directly extend the argument. Also, requiring f to be *-compact is usually
not necessary: for instance, [6, Proposition 1.2] guarantees convergence without any
assumption on f provided that (in our notation) ||z}|| — 0, o — 0, and

(5.6) i Aty = o0.
=1

While we do have the first two conditions, proving (5.6) for our algorithm, even in the
easy case where t; is bounded away from zero, is not easy. It is so in traditional bundle
methods in the case where infinitely many SS are done (the other, where a sequence of
infinitely many consecutive NS eventually starts, is dealt with separately): indeed, in
that case A} = 1 infinitely many times and the requirement is just that ¢; goes to zero
slowly enough, & la (3.15). One would guess that either (5.6) holds or “Z;” is moving
little and we are converging somewhere (so that Lemma 3.1 applies); however, this
would call for proving that > ;- t;||2}|| < co, while we only have the (much) weaker
S tillzf||* < oo. Again, a large part of this difference comes from the nonlinear
(rightmost) term of (5.4), which is not there in the standard convergence proof since
it appears only in the study of consecutive sequences of NS.

Thus, the convergence results for our approach are somehow less satisfactory than
these available for standard bundle methods, although they still cover many practical
applications; for instance, (5.5) holds when is f globally Lipschitz or inf-compact
(= *-compact) since all Z; belong to some level ({; > f; and (; is nonincreasing),
and more in general if f is globally Liptchiz when restricted to any sublevel set,
even if not compact (think e”). Allowing intermediate steps (between NS and SS),
while simplifying some of the arguments, leaves significantly more freedom to the
algorithm, rendering it somewhat more difficult to analyze. This could, however, just
be the consequence of an unrefined analysis: it is possible that (5.4) can be improved
to make some of these weakness disappear. Furthermore, (3.14) lends itself well to
algorithmic treatment, as discussed in the next section.

5.1. Management of t. The above development requires (4.3), which is un-
realistic since online tuning of ¢ is well known to be crucial. However, increasing
t can easily kill any monotonicity argument in ¢, so this is only going to be possi-
ble in a controlled way. Similarly, decreases of ¢ must be controlled, in that ¢ must
either remain bounded away from zero, or at least (3.14) has to hold. Going toward
practical implementations, one should therefore decide when ¢ should be decreased,

A NONMONOTONE PROXIMAL BUNDLE METHOD 1801

and how should exactly ¢4 be chosen in order for (3.14) to be satisfied. Standard
prozimity control techniques developed for the proximal bundle method [17] are not
immediately applicable here since they are mostly (although not entirely) based on
estimating and testing the decrease of f; that is, ¢ is (possibly) increased at SS and
decreased at NS, a strategy that cannot be easily replicated here.

As far as increasing t is concerned, the fundamental observation is that all our
analysis basically hinges upon (5.4) (which clearly implies (4.2)), so that as long
as that condition holds the algorithm converges. This implies that whenever AC is
large, we can sacrifice some of this decrease to allow increases of t. Thus, with two
appropriate constants k1 > ko > 0 we can define

e a very good step for which

(5.7) AC > K16

e a good step for which k10 > AL > kod;

e a not-so-good step for which A < kod.
Condition (5.7) gives global convergence as (5.4) does (and in particular linear con-
vergence). Hence, for ¢y > ¢ one has

A= FHtz*7/2+a* — (FONF) + tlz(A)[/2 + a(\))
> CNAF 48—ty]|2(A)]2/2 — a(A) > Kid,

and therefore one can keep (5.7) satisfied by choosing any ¢, such that
(5.8) 2((1 — K1)0 — NAF — a(X))/|[z(N)]]? > ¢4 > ¢,

picking the largest possible value being reasonable. Note that (except in the poorman’s
case) 64 < ti|lz(A*)||?> + a(*), but this is not an issue for (5.8), as a decreasing
5+ (and hence () can only help to attain (5.7). One can expect (5.7) to happen
mostly when * is large, so this process somewhat mirrors the standard approach to
increase t after a successful SS; however, nothing actually prevents ¢ increases from
happening after a successful NS that has consistently decreased the optimal value
of the master problem. It may be wise to introduce a further damping constraint
t+ < pt for some fixed p € [1,00) to avoid excessive changes of ¢, together of course
with the overarching ¢t < t. For good (but not very good) steps we are content with
the current convergence rate and we keep ¢ unchanged, while for not-so-good steps we
suspect that the algorithm is stuck in the “bad part with sublinear convergence” of the
estimate (5.4); we can then try to improve on this by decreasing ¢, whence obtaining
a smaller 0. Of course, this decrease of ¢ is somewhat fictitious, as discussed in
section 3; thus, we may want to only ensure the minimal target AC > k20 by

(5.9) te <2((1—£2)d = NAf — (X)) /2P <t,

where, similarly to (5.8), we may want to select the largest possible value in (5.9)
(the minimal possible change of t). The combination of this and (5.8) should ideally
produce a linearly convergent process with rate between k1 and ks, which could in
many cases be considered effective. However, we also need to ensure that the relevant
hypotheses of Theorem 5.1 hold, i.e., either ¢t > t > 0 or (3.14), and likely to also
impose the reasonable damping t; > pt for some fixed p € (0,1]. To ensure the
weakest hypothesis (3.14) one can select any increasing function 7 : Ry — R, such
that lim, .o+ s/7(s) =0 (e.g., 7(s) = v+/s for a fixed v > 0) and then require

(5.10) te > 7tz + (V) > 7(54).

1802 ASTORINO, FRANGIONI, FUDULI, AND GORGONE

In fact, this yields 64 /t; < &6, /7(64), so that 6/t — 0 as 6 — 0 (which it does).
Clearly, all this (and a fortiori ¢ > ¢ > 0) can in practice interfere with obtaining the
desired rate of convergence; this, if nothing else, justifies increasing ¢t “when the sun
shines,” in order to buy up some wiggle room to decrease it “when the rain comes.”

While (5.7) provides a sensible aspiration criterion for managing ¢ during the
process, and in particular increasing it against the natural requirement (4.3), it is
appropriate (if only for the links with the following section 5.2) to remark that it is not
the only one. In particular, our initial motivation for the development of the approach
(cf. section 2) was to attain the stopping condition (2.10) as quickly as possible. That
condition uses one parameter t* to weight the term ||2*||? in the z-space (or, better,
its dual) with the term &@* in the f-value space; while both these need be small, ¢t*
dictates the “relative importance” of the two, which is clearly related to the scaling of
the function. Indeed, assume for simplicity that dom f (or an appropriate level set) is
compact with D < oo its diameter: the term ¢*||z*||? = (t*2*)2* in (2.10) is a measure
of how much we can decrease at most traveling along the approximate subgradient
—z* by a step t*, since using ||z* — Z|| < D and (2.9) gives

f(@7) 2 f(2) + 272" —7) —a" = D27 +a" = f(z) = .

When (2.10) holds, one has a* < ¢ and ||z*|] < /(e — @*)/t* and therefore if t* is
chosen such that

e>Dy/(e—a*)/t*+a" > D|z*|+a" > f(z) - f*,
then Z is actually e-optimal at termination; a sufficient condition is
(5.11) t* > D?/e.

One could therefore fix ¢ = t*, so that the merit function (exactly weights ||z*|| as in
(2.10), thereby (hopefully) having the latter satisfied as quickly as possible. This is,
however, moot in more ways than one. First, (5.11)—assuming D can be estimated—
is likely to be a rather large value: fixing ¢ there would result in an almost unstabilized
approach, which is likely to be rather inefficient in practice. Furthermore, the initial
aim of reaching (2.10) as quickly as possible has had to be changed anyway, since
one needs to take into account the decrease of f as well. Indeed, ¢ is the sum two
terms, f(Z) + @ in the f-value space and ||z*|| in the dual space, with t* dictating
of the relative importance of having a small z* w.r.t. having a small f-value. During
the algorithm, this should arguably change: intuitively, reducing the f-value is more
important at the early stages, where Z is very far from being optimal, while reducing
|z*|| is more important at the final stages where Z is close to being optimal and one
only needs to prove it. Thus, ¢ should arguably be allowed to be (much) smaller
than t* during the course of the algorithm but it might be beneficial to have it grow
near t* toward the end; all this could suggest other sensible aspiration criteria for
management of ¢, but the details are left for future research.

Finally, let us remark that, since the theory refers to the asymptotic behavior,
everything that only happens finitely many times is allowed. That is, like, e.g., in
[10, (4.i1)], t+ can be set to whatever value one desires provided that some mechanism
ensures this stops happening at some point and (5.8)—(5.10) are satisfied from then
on, so that the convergence theory applies. In standard bundle methods this mostly
applies to sequences of NS: as soon as an SS is performed, everything, among which the
counters for allowing irregular behavior, can be reset. This is a convenient consequence

A NONMONOTONE PROXIMAL BUNDLE METHOD 1803

of the otherwise irritating characterization of bundle methods as composed by two
almost independent processes (cf. section 1) that is not shared by our approach, which
is analyzed in terms of a unique converging process. Yet, as shown in the next section,
this allows us to more easily derive efficiency estimates for the method than is possible
for the standard approach [18].

5.2. Efficiency estimates. We now turn to deriving efficiency estimates for the
method, that is, an upper bound on the number of iterations ¢ required to ensure that
fi—f* < e. Apart from the given (absolute) maximum error ¢ > 0, the bound typically
depends on a pair of other (often unknown in practice) constants: the maximum
norm of any subgradient encountered during the process, and the maximum distance
between any two iterates. The former is clearly smaller than L < oo of (5.5) (e.g.,
the global Lipschitz constant of f), while for the latter one can take D < oo of (5.11)
(e.g., the diameter of dom f or of an appropriate level set if f is inf-compact).

We need first to detail the relationships between the stopping condition (2.10)
(with &@* replacing o, of course), ¢, and the desired property f; — f* < e. As
previously discussed, the latter is implied by (2.10) whenever (5.11) holds, which we
will then assume in the following. Further, it is easy to verify that if 7, = ¢*/t; > 1,
then 26;7; > s} ; therefore, (2.10) surely holds if

(5.12) 20iT; <& =20;/t; < e/tt =25; < e(t;/tF).

(Note that, due to (3.14), this has to happen eventually.)
The estimate starts from the obvious f; — f* < LD, which, since ||27||* < L? and
af = a1 =0, leads to

(5.13) e(ty/t*) < 20, < t,L?
(for otherwise (5.12) would hold for ¢ = 1) and therefore
G-f<6=C—-f<LD+6 = (1 — f*<LD+t,L%)2

(note that f; = f; and ¢; = ¢;). Thus, we need to estimate the iteration k such that

E

-1
(5.14) AC' =1 — G > LD+ 61 —e(t:/t*)/2;
1

indeed, when this happens we get
b= o PP S Gom S G— fF = LD — 8y +e(ts/) /2 < e(ts)t7) /2

and therefore—via (5.12)—(2.10) holds, and hence f; — f* < ¢ due to (5.11). Note
that this not only accounts for the iterations required to reach an e-optimal point but
also for these required to certify its e-optimality by constructing the appropriate z*
and a*.

To simplify the notation we now fix m = 3/5, so that 2m — 1 = (1 — m)/2 and
the first two terms in (5.4) are equal; furthermore, we use ||z — 2*||? < 2L? to get

-0)
. > —mi — .
(5.15) A¢ > z mln{l, 5tL2}

The main issue here is that (5.15) does not say how the decrease in ¢ is subdivided

between its two components. That is, (5.15) may imply either that f decreases

1804 ASTORINO, FRANGIONI, FUDULI, AND GORGONE

(at least) by the given amount, or § does, or that both decrease by a fraction. Fortu-
nately, it is clear what the worst case is. Indeed, decreasing in f while not decreasing
§ (or even increasing it) will result in the same (or larger) right-hand side in (5.15)
at the next iteration, and therefore at least as large a decrease in (. Conversely, a
decrease in 0 results in a smaller right-hand side in (5.15), and therefore to a smaller
(estimate, worst-case) decrease in ¢ at the next iteration. Thus, from an adversarial
viewpoint the strategy leading to the slowest possible decrease of (is clear:

e first, has to be decreased (as slowly as possible) without changing f, until

no further decrease is possible least (5.12) be satisfied;

e then, ¢ is kept fixed and f is improved (as slowly as possible).
Clearly, any other strategy where ¢ is not decreased as fast as possible will lead to a
larger overall worst-case decrease of ¢, and therefore faster convergence.

We now estimate the performance corresponding of the above worst-case adver-

sarial strategy, separately for each of the two phases. Actually, the first phase is
subdivided into two subphases of large ¢ and small §; that is, until

(5.16) 6:/(5t,L*) > 1
the decrease is linear, (, < (; —6;/5 , and since we assume f, = f;(= f1) this means
ng < Si — 51/5 — 51 < 51(4/5)1_1

Unfortunately, (5.16) does not last long: combining it with (5.13) gives ¢1/(10¢;) > 1,

i.e., this subphase terminates immediately unless ¢; is reduced very quickly. Although

this provides an interesting rationale for some of the discussion in section 5.1, it is

compatible with the algorithm that this subphase terminates in O(1) iterations (e.g., if

t is constant during these) and to simplify the discussion we will assume this happens.
After that, the second subphase begins when instead

0 <e(ti/t*)/2 < 6; < 5t,L2
and therefore the rate of decrease is sublinear:
(5.17) Cy < G —07/(25t,L7%).

However, since &(t;/t*)/2 < §; we can estimate the rate of decrease with the linear

€

FL< (o — 5,
G+ S G~ gt

which, using again f, = fi(= f1) and (5.11), gives

)) B o o 1 /e \2

2N —1 2 2N —1
5 5 gl tiL gl
6 <o (11— < 1-— :
= 1< 50) =2 < 50)

where v = ¢/DL. Hence, the second subphase terminates for the smallest ¢ such that

t1L? 2\ ti
hWoo (2 <e—b
2 50 2t*

and therefore

A NONMONOTONE PROXIMAL BUNDLE METHOD 1805

which, using ¢; < t; and (5.11), gives

- , log(+?)
1—7%/50) "1 <? = i> =" +1.
(1=77/50)"" <~ i=&(v) Toe(l —12/50)
To estimate how quickly () — oo when its argument ¢/DL = v — 0, as is easy to
verify, one can use the fact that (as easy but tedious calculus shows)

lim &(v)/v F =0

~y—0*t

for all k > 2, i.e., that any superquadratic function goes to infinity faster than £(y)
does. This means that, at least for small values of ¢, the second subphase terminates
in at most O((DL/e)¥) iterations for any k > 2.

We are now left to estimate the length of the second (and last) phase, where
8; ~ e(t;/t*) is no longer reduced and f; is improved instead. Therefore, denoting by
h the last iteration of the first phase, we know that the second phase (and hence the
whole algorithm) must terminate when ¢, — ¢; < LD. We start again from (5.17),
but now we use 62 > (£(t;/t*)/2)? and (5.11) to get

2 3

=G,
100(DL)?

= - ti e
<(Ci-=2_——
C+ =G~ S loor e

where 7/ = t;/t*. Therefore

G<¢ - i*:i*%loo DLY’
i <Ch—) T, T, < —] .
h 100(DL)? & = e

To obtain the final estimate on i, we need to assume something on how quickly the
series of 7 diverges (which of course requires that it indeed diverges in the first place).
The simple assumption 7 > 7 > 0 (which implies ¢; bounded away from zero) gives

3
1
i < (30 (DL) ‘h
T 5

and hence all in all the algorithm has O((LD/¢)?) efficiency. This is much worse than
the optimal O((LD/e)?) efficiency, that is attained by level methods [21], but com-
parable to (although somewhat different from) the O(D*L?/e3) efficiency of proximal
bundle methods [18]. It is hard to say whether the latter difference really reflects a
different asymptotic behavior of the two algorithms rather than being a figment of
the different complexity analysis techniques; to gain some insight into this issue, the
next section is devoted to a preliminary computational comparison between the two.

5.3. Alternative upper models. All the development so far has used the linear
upper model (2.13); clearly, the results a fortiori hold for any tighter fZ. Intuitively,
an upper model which better reflects the behavior of f along A would lead to a better
estimate of the potential decrease of f and therefore to better choices. This is easily
seen with an example: consider the function f(z) = |z| with 21 = Z = —1, and
B ={(-1,0)}. For t = 2 one would have z = 2 with Af = 0 and the new pair (1,2)
added to B’. Simple symmetry arguments (or a little tedious algebra) show that both
A =0 and A\ = 1 are optimal for (4.1), but none of the points A € (0,1): ¢()\) is
concave (quadratic), with the mazimum in x = 0, precisely where the minimum of
f lies. Thus, the choice of A* is taken on a very bad estimate of the real behavior

1806 ASTORINO, FRANGIONI, FUDULI, AND GORGONE

of f, which is clearly due to f? assuming f to be constant while it actually has a
V-shape. This shows that better upper models may be useful to improve the algo-
rithm’s decisions. However, there are no standard ways to construct upper models for
convex functions (apart of course from (2.13) itself).

A first possibility could therefore be to rely on specific properties of f. For in-
stance, in many applications, such as in classification problems [2, 3], f is a polyhedral
max-function corresponding to an easy optimization problem, that is, either a convex
(linear) program [7, 11, 14] or a nonconvex one that can still be solved efficiently [12].
In this case, one can use sensitivity analysis techniques on the problem to determine
the minimum value A < 1 so that the optimal solution for the f-problem at z (A = 1)
is still optimal for A = A (and therefore for all values in between). This means that
(cf. section 4.1)

f@N) = f(N) =Azd* —a+ f(z) VAE[N]]
and therefore that one can use the piecewise-linear upper model

{(1—/\)f5(a:)+)\f()\) i0< <A,

B
o J(N) fA<A<IL
Of course, in the worst case A = 1 and this gives back (2.13). This approach is easily
extended to composite functions where an appropriate mapping is superimposed over
the max-function [22].

A different (not necessarily alternative) idea is to use an upper model that esti-
mates the shape of f without requiring f2 > f. A simple approach could be to mimic
a technique developed for heuristically adjusting ¢ [11, 17]: develop the quadratic
function ¢(\) so that ¢(0) =0, ¢(1) = f(1), and ¢’(1) = f'(1). (Note that g(A) — §(N)
can be convex, concave, or neither.) This possibly estimates the shape of f better
than (2.13), but it cannot be used alone because it may overestimate the decrease of
f, leading to a step that is actually nonmonotone in (. A possible workaround is to
combine this model with (2.13) by defining the subinterval of [0, 1] in which (2.13) en-
sures a sufficient decrease, e.g., in the sense of (5.7). Since one can arbitrarily choose
any value of A in the interval without compromising convergence, the heuristic upper
model can be used to drive the selection of A* in there.

6. Computational results. We emphasize that the results reported in this
section are only meant to be preliminary; the aim is to provide a first look at the
performances of the proposed approach as compared to existing ones, and in particular
the proximal bundle method. For this purpose we have implemented the proposed
approach, which we refer to as NMBundle, in C++; in particular we solve (4.1) under
(4.5) by means of the closed formulae of section 4.1, and we manage t with the
mechanism described in section 5.1. This is compared with the proximal bundle code
(which we refer to as PBundle) developed by the second author and already used with
success in several other applications [7, 11, 13, 14]. The structure of the code allows
for several useful features; for instance, once an oracle for a function f is implemented
it can be used by both approaches without modifications, and NMBundle can exploit
the efficient master problem solver of [9]. All the algorithms have been compiled with
GNU g++ 4.0.1 (with -03 optimization option) and run on an Opteron 246 (2 GHz)
computer with 2 GB of RAM, under Linux Fedora Core 3.

We have compared the two approaches on two different test sets. The first is
a set of 12 academic test functions with small n (up to 48) that have been used

A NONMONOTONE PROXIMAL BUNDLE METHOD 1807

TABLE 6.1
Results for standard test functions.

PBundle NMBundle
f n | iter gap iter gap

CB2 2 19 3.8e-7 23 1.5e-7
CB3 2 13 2.8e-7 16 8.9e-11

DEM 2 10 2.5e-12 11 6.9e-8

QL 2 17 6.2e-8 18 4.6e-8

LQ 2 11 3.1e-8 6 6.3e-8

Mifflinl 2 31 6.9e-7 26 8.2e-7

Rosen 4 35 3.7e-7 38 1.8e-7

Maxq 20 | 143 4.6e-7 118 1.4e-6
Maxl 20 32 1.8e-15 41 4.4e-16

Maxquad 10 | 129 3.3e-7 107 1.8e-7
TR48 48 | 141 0.0e4+0 | 198 4.7e-15

Shor 5 36 3.le-7 41 5.0e-7

many times to evaluate the performances of algorithms for (convex) nondifferentiable
optimization; one recent instance is [1], to which the interested reader is referred for
a detailed description. The results are reported in Table 6.1, where column “iter”
reports the number of iterations (function evaluations) and column “gap” returns the
relative gap between the best function value found by the algorithm at termination
and the true optimum of the function. For both approaches, extensive tuning of the
algorithmic parameters has been performed in order to find the single setting that
produces the best results across all functions. In particular, for both approaches the
initial value of ¢ is set to 0.1, and for NMBundle the two crucial parameters x; and
ko in (5.8) and (5.9) are set to 0.1 and 0.06, respectively. The stopping criterion was
set to a target relative accuracy of 1e-6 (¢ = 1075 . f(z)) in (2.10), with ¢* chosen
as small as possible to obtain (almost) ex-post satisfaction of the prescribed accuracy
(in particular, t* = 1 for all functions except TR48, where t* = 100 is required).

The table shows that the two approaches are roughly comparable; NMBundle
requires fewer iterations in 4 cases over 12, in two of them (Maxq and Maxquad)
somewhat significantly, while it is significantly slower in the largest TR48. (Note that
the cost per iteration of the two approaches is virtually identical, which is why we
report only iteration counts.) However, it is difficult to draw significant conclusions
out of a test set comprising a few very different test functions of low dimensional-
ity. Therefore we also compared the two approaches on a significant application: the
solution of Lagrangian duals for optimization problems with multicommodity flow
structure. These, in their many variants, are a staple in Lagrangian optimization;
see, e.g., [4, 7, 11, 13, 19] and the references therein. In particular here we employ
the simple weak flow relaxzation of the fixed-charge multicommodity Min-Cost flow
problem. We avoid delving into the details of the original problem and of the corre-
sponding Lagrangian relaxation, referring the interested reader to [7] and especially to
the recent [13] for the details (comprising a description of the freely available test in-
stances); here we only mention that, contrary to the academic test cases of Table 6.1,
these are larger-scale problems where n = m is the number of arcs in the underlying
graph, and the problems are constrained ones with (as often happens in Lagrangian
relaxation) X = R}

Also in this case we have performed accurate tuning for both approaches (for
PBundle we actually piggybacked on the tuning performed in [13]), which in
particular led to selecting k1 = 0.6 and k2 = 0.001 in (5.8) and (5.9), respectively
(now t = 1 at start). The stopping criterion has been set as in the previous case, and

1808 ASTORINO, FRANGIONI, FUDULI, AND GORGONE

TABLE 6.2
Results for multicommodity flows.

PBundle NMBundle
m k iter gap iter gap
300 100 | 2404 1.3e-13 773 7.6e-7
300 200 | 2109 2.9e-14 961 5.6e-7
300 400 | 1118 6.8e-7 940 2.0e-7
300 800 | 1644 6.6e-7 1217 1.6e-7
600 100 824 1.9e-7 753 4.6e-7
600 200 671 1.4e-6 640 1l.1e-6
600 400 | 3812 5.7e-7 1880 1.3e-7
600 800 | 2892 7.0e-7 2066 1.1e-7
1200 100 | 1598 1.le-6 1543 2.0e-6
1200 200 | 1302 7.2e-7 1024 2.1e-6
1200 400 | 1752 7.9e-7 1932 7.6e-7
1200 800 | 2980 7.8e-7 2691 3.0e-7

the meaning of the columns in Table 6.2 is the same as in Table 6.1; the number £ is
that of the commodities (different kinds of flows).

Table 6.2 shows that the two approaches are comparable. The results could be
showing a trend whereby NMBundle is more competitive with PBundle for smaller-
size problems, while the latter tends to be better on larger-size ones. While this would
need to be confirmed by further experiments, it could be explained by the fact that the
techniques developed for the management of ¢ in section 5.1 are all short-term; that
is, they consider only what is happening in the current iteration. For PBundle, long-
term strategies have been developed (see, e.g., [7] for the problem at hand) which have
been shown to be useful for large-scale, difficult problems. Hence, these preliminary
results may be an indication that appropriate long-term strategies for ¢ management
are required also in the nonmonotone approach.

7. Conclusions and future research. We have developed a new variant of
the proximal bundle approach for convex nondifferentiable optimization whose main
characteristic is that of being truly nonmonotone while staying very close to the
original proximal bundle idea, up to using the very same master problem. This is
obtained by employing, instead of the function value, an (apparently) novel merit
function, derived from the Moreau—Yoshida regularization, to drive the search toward
optimality. This approach would in general lead to a nondichotomic choice for the
stepsize, which is intuitively appealing; however, the simple choice of the upper model
as a linear function implies that one of the two extreme choices for the step is always
optimal, in fact bringing back the algorithm to performing either null steps or serious
steps. Yet, the convergence of the approach can now be studied as that of a single
process, which provides a much simpler way to deriving efficiency estimates.

These results may provide new insight on the theory of bundle methods for non-
differentiable optimization which may ultimately lead to the development of variants
of these algorithms that are actually more efficient in practice. For instance, the
efficiency estimates seem to indicate that the main culprit of the low theoretical con-
vergence rate of these algorithms lies in the “bad sublinear part” of the convergence
of sequences of consecutive null steps (cf. (5.2)), thus possibly highlighting a cru-
cial target for future improvements: if that part of the convergence could be made
faster, a theoretically (and, hopefully, practically) better algorithm would ensue. We
remark that that part of the convergence estimate is precisely the one where there is no
difference between using a large bundle or a poorman’s one, which is perhaps the main

A NONMONOTONE PROXIMAL BUNDLE METHOD 1809

reason behind the wide gap between the appalling worst-case theoretical performance
of the algorithm and the much better (at times) observed practical one; this may sug-
gest some direction for future research. Yet, there are several other possible research
directions, e.g., extending the results to generalized bundle methods [10] or developing
long-term strategies for ¢ management that result in theoretically and/or practically
more effective algorithms.

T

a a = ®» »®r »®R ¢«

REFERENCES

. ASTORINO, A. FRANGIONI, M. GAUDIOSO, AND E. GORGONE, Piecewise quadratic approxi-

mations in conver numerical optimization, SIAM J. Optim., 21 (2011), pp. 1418-1438.

. ASTORINO, A. FubpuLl, AND M. GAUDIOSO, DC models for spherical separation, J. Global

Optim., 48 (2010), pp. 657-669.

. AsTORINO, A. FubuLIl, AND M. GAUDIOSO, Margin mazximization in spherical separation,

Comput. Optim. Appl., 53 (2012), pp. 301-322.

. BABONNEAU AND J.-P. ViAL, ACCPM with a nonlinear constraint and an active set strategy

to solve nonlinear multicommodity flow problems, Math. Program., 120 (2009), pp. 179-
210.

. BrianT, C. LEMARECHAL, P. MEURDESOIF, S. MICHEL, N. PERROT, AND F. VANDER-

BECK, Comparison of bundle and classical column generation, Math. Program., 113 (2008),
pp. 299-344.

. CORREA AND C. LEMARECHAL, Convergence of some algorithms for conver minimization,

Math. Program., 62 (1993), pp. 261-275.

. CRAINIC, A. FRANGIONI, AND B. GENDRON, Bundle-based relaxation methods for multicom-

modity capacitated fized charge network design problems, Discrete Appl. Math., 112 (2001),
pp. 73-99.

. FACCHINEI AND S. Lucipi, Nonmonotone bundle-type scheme for convexr monsmooth mini-

mization, J. Optim. Theory Appl., 76 (1993), pp. 241-257.
FRANGIONI, Solving semidefinite quadratic problems within nonsmooth optimization
algorithms, Comput. Oper. Res., 21 (1996), pp. 1099-1118.
FRANGIONI, Generalized bundle methods, STAM J. Optim., 13 (2002), pp. 117-156.
FRANGIONI AND G. GALLO, A bundle type dual-ascent approach to linear multicommodity
Min Cost flow problems, INFORMS J. Comput., 11 (1999), pp. 370-393.
FRANGIONI AND B. GENDRON, 0-1 reformulations of the multicommodity capacitated network
design problem, Discrete Appl. Math., 157 (2009), pp. 1229-1241.

. FRANGIONI AND E. GORGONE, Generalized bundle methods for sum-functions with “easy”

components: Applications to multicommodity network design, Math. Program., to appear.

. FrRANGIONI, A. Lop1, AND G. RINALDI, New approaches for optimizing over the semimetric

polytope, Math. Program., 104 (2005), pp. 375-388.

. Hou AND W. SUN, On the global convergence of a nonmonotone prozimal bundle method

for convex nonsmooth minimization, Optim. Methods Softw., 23 (2008), pp. 227-235.

. KARAS, A. RIBEIRO, C. SAGASTIZABAL, AND M. SoLoDOV, A bundle-filter method for non-

smooth convex constrained optimization, Math. Program., 116 (2009), pp. 297-320.

. KiwieL, Proximity control in bundle methods for convex nondifferentiable minimization,

Math. Program., 46 (1990), pp. 105-122.

. KiwieL, Efficiency of proximal bundle methods, J. Optim. Theory Appl., 104 (2000),

pp. 589-603.

. KiwigEL, An alternating linearization bundle method for convex optimization and nonlinear

multicommodity flow problems, Math. Program., 130 (2011), pp. 59-84.

. KiwieL AND C. LEMARECHAL, An ineract bundle variant suited to column generation, Math.

Program., 118 (2009), pp. 177-206.

. LEMARECHAL, A. NEMIROVSKII, AND Y. NESTEROV, New variants of bundle methods, Math.

Program., 69 (1995), pp. 111-147.

. SAGASTIZABAL, Composite prozimal bundle method, Math. Program., 140 (2013), pp. 189—

233.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

