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Abstract The paper presents an enhanced beam-theory (EBT) model of the mixed-mode bending 

(MMB) test, whereby the specimen is considered as an assemblage of two sublaminates partly 

connected by an elastic–brittle interface. Analytical expressions for the compliance, energy release 

rate, and mode mixity are deduced. A compliance calibration strategy enabling numerical or 

experimental evaluation of the interface elastic constants is also presented. Furthermore, analytical 

expressions for the crack length correction parameters – analogous to those given by the corrected 

beam-theory (CBT) model for unidirectional laminated specimens – are furnished for 

multidirectional laminated specimens, as well. Lastly, an example application to experimental data 

reduction is presented. 
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1 Introduction 

Since 2001 the mixed-mode bending (MMB) test – introduced by Reeder and 

Crews in 1988 [1, 2] and later refined [3, 4] – has been adopted by ASTM as the 

standard test method for I/II mixed-mode interlaminar fracture toughness of 

unidirectional fibre-reinforced composite laminates [5]. The MMB test can be 

regarded as the superposition of pure mode I and mode II tests, namely, the 

double cantilever beam (DCB) and end-notched flexure (ENF) tests, respectively 

[6]. 

Several mechanical models of the MMB test have been proposed in the 

literature. Here we limit ourselves to recalling the main analytical models, 

whereas Part I [7] of this paper contains a more detailed review of the literature on 

the subject. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80232958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


S. Bennati, P. Fisicaro, P.S. Valvo. Meccanica (2013) 48:465–484. 

2 

In the simple beam-theory (SBT) model, the specimen is considered as an 

assemblage of three rigidly connected sublaminates, each of which is modelled as 

an Euler-Bernoulli beam [2], while the Timoshenko beam-theory (TBT) model 

accounts for the transverse shear deformability of the sublaminates as well. 

Kinloch et al. [8] have proposed a corrected beam-theory (CBT) model, whereby 

the effects of deflections and rotations at the crack tip are taken into account by 

considering increased delamination lengths. These are defined through crack 

length correction parameters, for which several expressions have been suggested 

in the literature. Williams [9] has obtained an analytical expression for the mode I 

correction parameter by starting with Kanninen’s solution for a DCB test 

specimen [10] and introducing some semi-empirical corrections to better match 

the results of finite element analyses. Subsequently, Wang and Williams [11] 

suggested calculating the mode II correction parameter simply as a fraction of the 

corresponding mode I correction parameter. The resulting definitions of the mode 

I and II crack length correction parameters yield good results for both isotropic 

and orthotropic homogeneous specimens as well as for unidirectional (UD) 

laminated specimens [12]. The current ASTM standard thus suggests using the 

CBT model for experimental data reduction when characterising UD laminates 

[5]. 

Subsequent studies have been devoted to more accurate estimation of the mode 

II crack length correction parameter. For orthotropic specimens, analytical 

expressions have been given by Wang and Qiao [13], de Morais [14], and Jumel 

et al. [15]. 

Developing a mechanical model of the MMB test for cases of multidirectional 

(MD) and asymmetric laminated specimens is thus still an open issue. For MD 

laminated specimens, Pereira and de Morais have proposed a modified beam-

theory (MBT) model, whereby an additional term accounts for the transverse 

shear deformability in the mode II compliance and the crack length correction 

parameters are computed by considering the homogenised flexural and shear 

moduli [16–18]. More recently, in an effort to model MD asymmetric specimens, 

the same authors have suggested using different crack length correction 

parameters for the upper and lower sublaminates [19]. 

Following a modelling approach already adopted for the asymmetric double 

cantilever beam (ADCB) test [20], we have formulated an enhanced beam-theory 
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(EBT) model of the MMB test. Accordingly, the laminated specimen is 

considered as an assemblage of two sublaminates – modelled as extensible, 

flexible, and shear-deformable beams – partly connected by an elastic–brittle 

interface. The EBT model can be applied to both UD and MD laminated 

specimens, as well as to adhesively bonded specimens, provided that the 

following general hypotheses are fulfilled: 

a) the delamination splits the specimen into two sublaminates having identical 

mechanical properties; 

b) the sublaminates behave as plane beams and exhibit neither shear-extension 

nor bending-extension coupling; 

c) non-linear effects are negligible. 

In Part I of this paper [7], the problem has been formulated using a set of 

differential equations for which a complete explicit solution has been deduced, 

including analytical expressions for the internal forces, interfacial stresses, and 

displacements. The solution obtained will now be applied to determine analytical 

expressions for an MMB test specimen’s compliance, energy release rate, and 

mode mixity. Furthermore, analytical expressions for the abovementioned 

quantities will also be given for the DCB and ENF test specimens, to which the 

proposed general solution applies as special cases. Comparisons are presented 

between the analytical predictions of the enhanced beam-theory model and 

simpler analytical models reported in the literature. Moreover, the predictions of 

the proposed model are compared with the results of numerical analyses 

performed via an expressly developed finite element model. The finite element 

model is also used to evaluate the elastic constants of the interface of the EBT 

model through a numerical compliance calibration strategy. Lastly, we present an 

application of the model to cases of UD and MD laminated specimens for which 

experimental and numerical results have been drawn from the literature. 

2 The EBT model of the MMB test 

We consider an MMB test specimen [1–5] of length L, width B and thickness H = 

2h, affected at one of its ends by a delamination of length a, which splits the 

laminate into two sublaminates having identical mechanical properties (Fig. 1). 

In the EBT model [7] the sublaminates may have any stacking sequence, 

provided that they behave as plane beams and exhibit neither shear-extension nor 
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bending-extension coupling [21]. This condition is fulfilled not only by 

homogenous and unidirectional laminated specimens, but also by symmetric 

cross-ply and angle-ply specimens, as well as more generic uncoupled 

multidirectional laminated specimens [22]. Global reference x- and z-axes are 

fixed, aligned with the specimen’s axial and transverse directions, respectively. 

An abscissa s measures the distances of the sublaminates’ cross sections from the 

crack tip. The specimen is simply supported and subjected to an upward load, Pu, 

and a downward load, Pd. We denote with d the distance between Pu and Pd and 

also define = −b L a  and L d= −ℓ . In conformity with the ASTM standard [5], 

the downward load, Pd, is applied at the specimen’s mid-span section, so that 

/ 2= =ℓ d L . 

 

 

Fig. 1 Enhanced beam-theory model of the MMB test 

 

In line with classical laminated plate theory [21], we denote with 1 2=A A , 

1 2=C C , and 1 2=D D  the sublaminates’ extensional stiffness, shear stiffness, and 

bending stiffness, respectively. For homogeneous orthotropic specimens, by 

denoting xE , yE , zE  and xyG , yzG , zxG  as the elastic moduli in the fixed 

reference system, the sublaminates’ stiffnesses are 1A = xE h , 1 5 / 6C = zxG h , and 

3

1 /12D = xE h . 

The sublaminates are partly connected by a deformable interface, which is 

regarded as a continuous distribution of linearly elastic–brittle springs acting 

along the normal and tangential directions with respect to the interface plane. 

Correspondingly, we denote with kz and kx the elastic constants of the distributed 

springs. 
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Fig. 2 Loading lever 

3 Compliance 

3.1 Definition 

Assuming a linearly elastic load-deflection response, the compliance of a test 

specimen is conventionally defined as /δ=C P , where P is the load applied to 

the specimen and δ is the displacement of the load application point [6]. In the 

MMB test, the load P is applied by the testing machine to a loading lever of 

weight W (Fig. 2), which in turn transfers the loads Pu and Pd to the specimen. 

The intensities of Pu and Pd are controlled by suitably adjusting the lengths of the 

lever arms, c and d. Accordingly, the compliance is 

RC
R

δ= , (1) 

where = +R P W  is the resultant force, and δR is the displacement of its 

application point. Under the usual assumption that the lever behaves as a rigid 

body, we have 

(1 )R R
R u d

c c

d d
δ δ δ= + + , (2) 

where uδ  and dδ  are the displacements of the application points of Pu and Pd, 

respectively, and Rc  is distance between the application points of Pd and R. 

The lever weight W is generally considered negligible with respect to P, so we 

may put R P≅ , Rc c≅ , and Rδ δ≅  (according to ASTM standard [5], W would 

have to be less than 3% of P to be negligible). In this case, the loads applied to the 

specimen are 

and (1 )u d

c c
P P P P

d d
= = + , (3) 

and the compliance becomes 
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2 2( ) (1 )u d

u d

c c
C

P d P d P

δ δδ≅ = + + . (4) 

 

Fig. 3 Displacement superposition for the MMB test 

 

As discussed in Part I [7], from the static point of view the MMB test can be 

regarded as the superposition of the double cantilever beam (DCB) and end-

notched flexure (ENF) tests (respectively corresponding to mode I and II fracture). 

As far as kinematics is concerned, however, one should bear in mind that different 

constraints are used in the DCB and ENF tests. Thus, in order to add the 

displacements of the DCB test to those of the ENF test and obtain the correct 

displacements of the MMB test, it is necessary to also consider an infinitesimal 
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rigid-body rotation (RBR) of an angle RBR

C /θ = w L  around the specimen’s left-

hand end hinge (Fig. 3). 

Consequently, by denoting with A and B the application points of Pu and Pd, 

respectively, the corresponding displacements are 

DCB DCB RBR ENFandu A d B B Bw w w wδ δ= − = + + , (5) 

where w denotes the transverse displacement (positive if downwards). The 

specific contributions to Eqs. (5) can be evaluated as follows. Denoting with DCBC  

and ENFC  the compliances of the DCB and ENF test specimens, respectively, we 

can write 

DCB ENF

I DCB II ENFandA Bw P C w P C= − = , (6) 

where, recalling Eqs. (13) in Part I [7], 

I II

1
( 1) and (1 )

2

c d c c
P P P P

L d d

+= + − = +  (7) 

are the loads responsible for fracture modes I and II, respectively. Furthermore, 

supposing that the deformation of the specimen in the thickness direction is 

negligible, we have 

DCBDCB
DCB RBRand

2 2 2

u C uA
B B

ww d
w w d d

L L

δ δθ≅ = − = ≅ − ≅ . (8) 

Hence, by substituting Eqs. (6) and (8) into (5), we obtain 

I DCB I DCB II ENFand
2

u dP C P C P C
L

δ δ= = − +ℓ
, (9) 

and the compliance of the MMB test specimen becomes 

2 2I II
MMB DCB ENF( ) ( )

P P
C C C

P P
= + . (10) 

By substituting equations (7) into (10), we obtain 

2 2

MMB DCB ENF

1
( 1) (1 )

4

c d c c
C C C

L d d

+= + − + +  (11) 

and for a standard MMB test (where / 2d L= =ℓ ) [23] 

2 2

MMB DCB ENF

3
( ) ( )

4

c c
C C C

− += +ℓ ℓ

ℓ ℓ
. (12) 
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Eqs. (4), (10), (11) and (12) represent alternative ways to compute the 

compliance of the MMB test specimen according to any analytical or numerical 

model, provided that suitable expressions or values of uδ  and dδ , or DCBC  and 

ENFC , are used. However, it should be observed that Eqs. (10)–(12) strictly hold 

only as long as the approximations behind Eqs. (8) are acceptable. 

3.2 Beam-theory models 

In the simple beam-theory (SBT) and Timoshenko beam-theory (TBT) models [2, 

3] the specimen is considered as an assemblage of three rigidly connected 

sublaminates (Fig. 4). The extensional stiffness, shear stiffness, and bending 

stiffness of the unbroken part of the specimen are 3 12=A A , 3 12=C C , and 

2

3 1 12 / 2h= +D D A , respectively. 

 

 

Fig. 4 SBT and TBT models of the MMB test 

 

In the SBT model the sublaminates are modelled as Euler-Bernoulli beams, so 

that 1 2 3, , → ∞C C C . Thus, considering a standard MMB test (where 

/ 2d L= =ℓ ), the compliances of the DCB and ENF test specimens are 

respectively 

23 3 3
SBT SBT 1
DCB ENF 2 2

1 1 1 1 1

2 1 8
and ( )

3 24 4

ha a
C C

B B h h
= = +

+
ℓA

D A D D A
. (13) 

Thus, from equation (12), the compliance of the MMB test specimen is 

23 3 3
SBT 2 2 1
MMB 2 2

1 1 1 1 1

1 3 8
[( ) ( ) ( )]

24 4

hc a c a
C

B h h

− += + +
+

ℓ ℓ ℓ

ℓ ℓ

A

D A D D A
, (14) 

and in particular for orthotropic specimens we have [5] 

3 3 3
SBT SBT

DCB ENF3 3

8 3 2
and

8x x

a a
C C

BE h BE h

+= = ℓ
, (15) 
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and 

SBT 2 3 2 3 3

MMB 3

1 3 1
[( ) ( ) (3 2 )]

2 4x

c c
C a a

BE h

− += + +ℓ ℓ
ℓ

ℓ ℓ
. (16) 

In the TBT model the contributions to the displacements stemming from the 

sublaminates’ shear stiffnesses are considered at the first order [24], hence 

suitable correction terms are introduced into expressions (13), 

TBT SBT TBT SBT

DCB DCB ENF ENF

1 1

2
and

4

a
C C C C

B B
= + = + ℓ

C C
, (17) 

and from Eq. (12) the specimen’s compliance becomes 

TBT SBT 2 2

MMB MMB

1

1 1 3
[ ( ) ( ) ]

4 2

c c
C C a

B

− += + +ℓ ℓ
ℓ

ℓ ℓC
. (18) 

3.3 Corrected beam-theory model 

Kinloch et al. [8] have proposed a corrected beam-theory (CBT) model, whereby 

the effects of deflections and rotations at the crack tip – ignored in the SBT and 

TBT models – are taken into account approximately by considering the increased 

delamination lengths, 

CBT CBT

I I II IIanda a h a a hχ χ= + = + , (19) 

where Iχ  and IIχ  are the respective correction parameters for fracture modes I 

and II. 

For unidirectional laminated specimens, the ASTM standard [5] suggests: 

2

I II I[3 2( ) ] and 0.42
11 1

x

zx

E

G
χ χ χΓ= − =

+ Γ
, (20) 

where 1.18 /x z zxE E GΓ = . Accordingly, the compliance is obtained by properly 

introducing the increased delamination lengths (19) into Eq. (15) [4], 

CBT 2 3 2 3 3

MMB I II3

1 3 1
{( ) ( ) ( ) [3( ) 2 ]}

2 4x

c c
C a h a h

BE h
χ χ− += + + + +ℓ ℓ

ℓ
ℓ ℓ

. (21) 

Note that the mode I crack length correction parameter, Iχ , already includes a 

term for the transverse shear deformability through the elastic shear modulus zxG  
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[9], while for the mode II contribution an additional term should be introduced 

into the expression for ENFC  [16]. 

For laminates with generic stacking sequences, Eqs. (20) cannot be used. Thus, 

de Morais and Pereira [18] propose evaluating the correction parameters by 

considering the homogenised flexural and shear moduli in place of Ex and Gzx, 

respectively. 

3.4 Enhanced beam-theory model 

In the enhanced beam-theory (EBT) model, the crack-tip deflections and rotations 

are taken into account by considering a deformable interface connecting the 

sublaminates. In order to deduce an expression for the compliance, we first 

determine the expressions for the displacements of the application points of the 

upward and downward loads, uδ  and dδ . Starting with the analytical solution 

given in Section 4.4.2 of Part I [7], after some calculations omitted here for 

brevity, we obtain the upward load displacement 

EBT TBT interface

u u u
δ δ δ= + , (22) 

where 

3
TBT I

1 1

2 3
( )

3
u

P a a

B
δ = +

D C
 (23) 

is the displacement predicted by the Timoshenko beam-theory model and 

interface 3 5I 2 4

2 2

1 2 1 1 2

2
[ ( )]

u

b bP b b
a

B
δ

λ λ λ λ
= − + + +

D
 (24) 

is the additional contribution due to deformation of the elastic interface. In Eq. 

(24), 

2 2

1 1
1 2

1 1 1 1

2 2
(1 1 ) and (1 1 )z z

z z

k k

k k
λ λ= + − = − −C C

C D C D
 (25) 

are roots of the characteristic equation of the governing differential problem, and 

b2, b3, b4, and b5 are constants characterising the analytical solution, whose exact 

expressions are given in Part I [7]. However, for the geometry and material 

properties of typical fibre-reinforced laminated specimens, the following 

approximate expressions can be used: 
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2 2 1 1
2 3 4 5

1 2 1 2 1 2 1 2

1 1 1 1
, , , .

a a a a
b b b b

λ λ λ λ
λ λ λ λ λ λ λ λ
+ + + +≅ − ≅ ≅ ≅ −
− − − −

 (26) 

Hence, by substituting Eqs. (23), (24) and (26) into (22), we obtain 

3
EBT 2I I I

1 2

1 1 1 1 2 1 2

2 2 2 1 1 1
[( ) 2 ].

3
u

Pa Pa P
a a

B B B
δ λ λ

λ λ λ λ
≅ + + + + + +

D C D
 (27) 

Likewise, the downward load displacement turns out to be the sum of four 

contributions: 

EBT TBT TBT interface interface

,I ,II ,I ,II
+

d d d d d
δ δ δ δ δ= + + , (28) 

where 

23 3 3
TBT TBTI II 1
,I ,II 2 2

1 1 1 1 1 1 1

3 1 8 3
( ), and [ ( ) ]

6 12 2 4
d d

P P ha a a

B B h h
δ δ= − + = + +

+
A

D C A D D A C

ℓ ℓ
 (29) 

are the contributions predicted by the TBT model, related to the loads responsible 

for fracture modes I and II, respectively, and 

interface 3 5I 2 4
,I 2 2

1 2 1 1 2

2
interface 2II 1
,II 52 2

1 1 1 5 5

5
5

5 5

1 1
[ ( )] ,

2 2 4

1 1
{ 2

8 4 tanh

sinh 1
4 [ sinh ( )]}

sinh

d s a s b

d

b bP b b
a w w

B

P h
a a

B h b

a b
b

δ
λ λ λ λ

δ λ
λ λ

λ λ
λ λ

= − =
= + + + − ∆ + ∆

= + + +
+

− + −

D

A

D A D

ℓ

ℓ

ℓ
ℓ

 (30) 

are the additional contributions due to deformation of the elastic interface, again 

related to 
I

P  and 
II

P , respectively. In Eqs. (30), 

2

5

1 1

1
2 ( )

4
x

h
kλ = +

A D
 (31) 

is a root of the characteristic equation of the governing differential problem, and 

∆w  is the transverse relative displacement at the interface, whose expression is 

given by Eqs. (54) in Part I [7]. The terms that depend on ∆w , computed at 

sections far from the crack tip, turn out to be negligible for values corresponding 

to common composite laminates. Consequently, from comparison of Eqs. (23)–

(24) and (29)–(30), it follows that 

TBT TBT interface interface

,I ,I

1 1
and

4 4
d u d uδ δ δ δ= − ≅ − . (32) 
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Therefore, except for the negligible contribution of ∆w , the contributions to EBT

dδ  

related to 
I

P  correspond to the infinitesimal rigid-body rotation discussed in 

Section 3.1. 

To sum up, by substituting Eqs. (29), (30) and (32) into (28), and considering 

the same simplifying assumptions that lead to Eq. (27), we obtain 

3
EBT 2

I 1 2

1 1 1 1 2 1 2

2 3 3

1
II 2 2

1 1 1 1 1

2
21

52 2

1 1 1 5 5 5

1 2 2 2 1 1 1
{ [( ) 2 ]}

4 3

1 8
{ ( ) +

24 4 4

1 1 2 4
+ [ 2 ]}.

8 4 exp ( )

d

a a
P a a

B B B

h a
P

B h h B

h a
a a

B h a

δ λ λ
λ λ λ λ

λ
λ λ λ

≅ − + + + + + + +

+ + +
+

+ + − −
+ −

D C D

A

A D D A C

A

D A D

ℓ ℓ

ℓ
ℓ

 (33) 

By comparing Eqs. (27) and (33) with Eq. (9), it follows that 

3
EBT 2

DCB 1 2

1 1 1 1 2 1 2

2 3 3
EBT 1
ENF 2 2

1 1 1 1 1

2
21

52 2

1 1 1 5 5 5

2 2 2 1 1 1
[( ) 2 ],

3

1 8
( )

24 4 4

1 1 2 4
[ 2 ]

8 4 exp ( )

a a
C a a

B B B

h a
C

B h h B

h a
a a

B h a

λ λ
λ λ λ λ

λ
λ λ λ

≅ + + + + + +

≅ + + +
+

+ + + − −
+ −

D C D

A

A D D A C

A

D A D

ℓ ℓ

ℓ
ℓ

 (34) 

are the compliances predicted by the EBT model for the DCB and ENF test 

specimens, which can be considered as special cases of our general solution 

corresponding to 
II

0=P  and 
I

0=P , respectively. 

In particular, for orthotropic specimens, the expressions for the compliances of 

the DCB and ENF test specimens become 

3
EBT 2

DCB 1 23 3

1 2 1 2

3 3
EBT 2

ENF 53 3 2

5 5 5

8 12 24 1 1 1
[( ) 2 ],

5

3 2 3 9 1 2 4
[ 2 ].

8 10 8 exp ( )

x zx x

x zx x

a a
C a a

BE h BG h BE h

a a
C a a

BE h BG h BE h a

λ λ
λ λ λ λ

λ
λ λ λ

≅ + + + + + +

+≅ + + + + − −
−

ℓ ℓ
ℓ

ℓ

 (35) 

The MMB specimen’s compliance can then be obtained by substituting Eqs. 

(34) or (35) into (12). It is worth noting that the expression for 
EBT

DCB
C  depends on 

z
k  (through 

1
λ  and 

2
λ ) and not on 

x
k  and, conversely, the expression for 

EBT

ENF
C  

depends on 
x

k  (through 
5

λ ) and not on 
z

k . Such observations prepare the ground 
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for applying the compliance calibration strategy, illustrated in the following 

Section. 

3.5 Finite element model and compliance calibration strategy 

In order to have an additional basis for comparison of the analytical models 

presented in previous Sections, we have built a plane-stress finite element model 

of a test specimen (Fig. 5a), using the 8-node isoparametric quadrilateral elements 

QUAD8 available in the Strand7 software [25]. The material has been defined as 

linearly elastic and orthotropic. Suitable nodal loads and translational restraints 

have been introduced in order to model the DCB, ENF, and MMB test conditions. 

Linear static analysis has been carried out. The same geometrical and mechanical 

properties of the numerical example presented in Part I [7] have been considered. 

The specimen has span 2 100 mmL = =ℓ , width 25.4 mmB = , and thickness 

2 3 mmH h= = ; the initial delamination length is 32 mma = . The elastic moduli 

of the material are 129 GPa=
x

E , 10.1 GPa= =
y z

E E , and 5.5 GPa= =
xy zx

G G . 

Apart from the purposes of comparison, the finite element model has also been 

exploited to numerically implement a compliance calibration strategy, which 

enables accurate estimation of the values of the interface elastic constants to be 

used in applying the EBT model. As a first step, two analyses corresponding to a 

DCB (Fig. 5b) and an ENF (Fig. 5c) test have been performed, and the 

corresponding values of compliance, FEM

DCB
C  and FEM

ENF
C , computed. Then, these 

values were made equal to the analytical predictions, EBT

DCB
C  and EBT

ENF
C , given by 

Eqs. (35), which were numerically solved to yield 
x

k  and 
z

k . For the specimen 

under examination, the numerical analyses yielded FEM

DCB
0.0301 mm/N=C  and 

FEM

ENF
0.0041 mm/N=C , whence the constants 331550 N/mm=xk  and 

323150 N/mm=zk  were then determined. The strategy is illustrated in figures 6a 

and 6b, where EBT

DCB
C  and EBT

ENF
C  are plotted as functions of 

z
k  and 

x
k , respectively. 

Section 6 of this paper describes how this compliance calibration strategy can be 

applied to experimental results. 
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(a) 

 

(b) 

 

(c) 

 

Fig. 5 Finite element model: (a) MMB test; (b) DCB test; (c) ENF test (displacements are 

exaggerated for clarity) 
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Fig. 6 Compliance calibration strategy: (a) determination of kz; (b) determination of kx 
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3.6 Comparison 

The analytical models presented in the foregoing are now compared with each 

other and with the finite element model, with specific regard to their predictions 

of the compliance. 
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Fig. 7 Compliance vs. delamination length 

 

Figure 7 shows the compliance, C, as a function of the delamination length, a, 

as predicted by the SBT, TBT, CBT, and EBT models. The compliance values 

computed via the finite element analysis for discrete values of delamination length 

are also shown. The same plot shows three values (1/4, 1, and 4) of the SBT 

mixed-mode ratio, SBT SBT

SBT I II
/G Gα =  (see Section 5). The SBT model markedly 

underestimates the compliance with respect to the finite element analysis. The 

TBT model yields better predictions, especially for short delamination lengths, 

when the delaminated sublaminates behave as ‘thick’ beams. The CBT model 

improves on the predictions of the SBT model, but still underestimates the finite 
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element results because it does not consider the sublaminates’ shear deformation 

appropriately. Only the EBT model takes into account both the local deformation 

at the crack tip and shear deformation of the sublaminates, thus closely matching 

the finite element results throughout the entire range of delamination lengths. 

4 Energy release rate 

4.1 Definition 

The energy release rate is defined as /= −G dV dA , where V is the total potential 

energy of the system and =dA B da  is the area of the new surface created by 

crack advancement [6]. For a linear mechanical model, 

2

2
= P dC

G
B da

, (36) 

where suitable expressions or values of C should be used, depending on the 

mechanical model adopted. 

Under I/II mixed-mode fracture conditions, the energy release rate, G, is the 

sum of two contributions, 
I

G  and 
II

G , related to fracture modes I and II, 

respectively. Several alternative, albeit non-equivalent, methods have been 

proposed to compute the modal contributions to the energy release rate in general 

delamination fracture problems [26]. For a symmetric MMB test specimen, 

however, the mode I and II contributions to the energy release rate can be 

obtained simply by regarding the test as the superposition of DCB and ENF tests. 

Within the EBT model, this approach is equivalent to computing 
I

G  and 
II

G  

based on the peak values of the interfacial stresses at the crack tip, which is the 

general method to be used in the case of asymmetric delaminations [20]. 

Substituting Eq. (10) into (36), and observing that from Eqs. (7) 
I
/P P  and 

II
/P P  are independent of a, we obtain 

I II
= +G G G , (37) 

where 

2 2

DCB ENFI II
I IIand

2 2

dC dCP P
G G

B da B da
= = . (38) 
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Note that in the first of Eqs. (38) only positive values of 
I

P  should be 

considered, as negative values produce compressive normal stresses at the crack 

tip and closure of the crack faces. Thus, for 
I

0P ≤  the mode I contribution is 

I
0G = . 

4.2 Beam-theory models 

In the SBT model [2, 3], the expressions for the modal contributions to the energy 

release rate are obtained by substituting Eqs. (13) into (38), 

2 2 2 2 2
SBT SBTI II 1
I II2 2 2

1 1 1 1

and
16 4

P a P a h
G G

B B h
= =

+
A

D D A D
. (39) 

In particular, for orthotropic specimens, from Eqs. (15) we have 

2 2 2 2
SBT SBTI II
I II2 3 2 3

12 9
and

16
x x

P a P a
G G

B E h B E h
= = . (40) 

Likewise, in the TBT model, the modal contributions to the energy release rate 

are obtained by substituting Eqs. (17) into (38), 

2 2 2 22
TBT SBTI II 1
I II2 2 2

1 1 1 1 1

1
( ) and

16 4

P P a ha
G G G

B B h

ΤΒΤ
ΙΙ= + = =

+
A

D C D A D
. (41) 

It is interesting to note that transverse shear deformability does not influence 

the mode II contribution to the energy release rate. This is not surprising 

considering that the correction term for TBT

ENF
C  in Eq. (17) is independent of a. 

Nevertheless, a shear correction term for GII is commonly given in the literature 

[6]. This shear correction term, introduced for the ENF test specimen by Carlsson 

et al. [27] and later uncritically reported by a number of authors, has recently been 

proved incorrect by Fan et al. [28] (see also Valvo [29] for a more detailed 

discussion of this topic). 

4.3 Corrected beam-theory model 

Now, introducing the increased crack lengths (19) into Eqs. (40) yields the CBT 

model expressions for the energy release rate contributions [8], 

2 2
CBT 2 CBT 2I II
I I II II2 3 2 3

12 9
( ) and ( )

16
x x

P P
G a h G a h

B E h B E h
χ χ= + = + , (42) 
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where 
I

χ  and 
II

χ  are given by Eqs. (20). In an effort to extend the CBT model to 

MD laminates, the crack length correction factors can be introduced into Eqs. 

(39), yielding 

2 2 2
CBT 2 CBT 2I II 1
I I II II2 2 2

1 1 1 1

( ) and ( )
16 4

P P h
G a h G a h

B B h
χ χ= + = +

+
A

D D A D
, (43) 

where, however, Eqs. (20) cannot be used to compute 
I

χ  and 
II

χ , and the same 

considerations reported at the end of Section 3.3 apply.  

4.4 Enhanced beam-theory model 

In the EBT model, the mode I and II contributions to G can be computed from 

[20] 

2 2
EBT EBT0 0
I IIand

2 2
z x

G G
k k

σ τ= = , (44) 

where 
0

σ  and 
0

τ  are respectively the normal and tangential interfacial stresses at 

the crack tip (note that only positive tensile 
0

σ  contribute to 
I

G , hence 
0

0σ <  

implies 
I

0G = ). By recalling Eqs. (36) and (52) in Part I [7], we find 

2 2

I 1 2 1 2 2 1
0 2 20

1 2 1 2 1 2 1 2

2 2

1 2 1 2 1 2 1 2
1 2 2 2

1 2 1 2 1 2 1 2

0 0

( )( tanh tanh )
[
( ) tanh tanh 2 (1 sech sech )

( )(1 sech sech ) 2 tanh tanh
],

( ) tanh tanh 2 (1 sech sech )

s

s

P b b

B b b b b

b b b b
a

b b b b

λ λ λ λ λ λσ σ
λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λλ λ
λ λ λ λ λ λ λ λ

τ τ

=

=

− −= = +
+ − −

+ − −+
+ − −

= =
2

5II 1
5 52

1 1 5

sinh1
[ (1 coth ) ].

4 2 sinh

P h
a b

Bh h b

λλ λ
λ

+ −
+

ℓA

A D

 (45) 

Now, by substituting Eqs. (45) into (44), the modal contributions to the energy 

release rate are obtained as 

EBT SBT EBT SBT

I I I II II IIandG G G Gµ µ= = , (46) 

where 

2 2

1 2 1 2 1 2 1 2
I 2 2

1 2 1 2 1 2 1 2

2 2
21 2 1 2 2 1

2 2

1 2 1 2 1 2 1 2 1 2

( )(1 sech sech ) 2 tanh tanh
[
( ) tanh tanh 2 (1 sech sech )

tanh tanh1
] ,

( ) tanh tanh 2 (1 sech sech )

b b b b

b b b b

b b

a b b b b

λ λ λ λ λ λ λ λµ
λ λ λ λ λ λ λ λ

λ λ λ λ λ λ
λ λ λ λ λ λ λ λ λ λ

+ − −= +
+ − −

− −+
+ − −

 (47) 
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25
II 5

5 5

sinh1
[coth (1 2 )]

sinh
b

a b

λµ λ
λ λ

= + − ℓ
 

are correction factors with respect to the SBT model. 

Figure 8 shows in semi-logarithmic scale the mode I and II correction factors, 

µI and µII, as functions of the interface elastic constants, kz and kx, respectively. 

The blue, dashed curves in figure 8a show how µI (hence EBT

IG ) decreases with 

increasing 1C . Instead, µII (hence EBT

IIG ) turns out to be independent of the 

sublaminates’ shear deformability, as in the TBT model. Both correction factors 

are decreasing functions of the elastic constants and approach finite limits as the 

elastic constants go to infinity. The circles in figure 8 denote points corresponding 

to the values of the elastic constants estimated through the numerical compliance 

calibration strategy described in Section 3.5, for which I 1.086=µ  and 

II 1.056=µ . As apparent from the enlarged views of the plots, both µI and µII 

depend only weakly on the interface constants in rather wide ranges close to the 

estimated values. Thus, presumably, even rough estimates of the interface 

constants may enable determination of EBT

IG  and EBT

IIG  with acceptable precision 

in many cases. For instance, following Corigliano [30], 

2
and ,zx z

x z

G E
k k

e e
≅ ≅  (48) 

where e is a fictitious thickness about one order of magnitude smaller than the 

laminate’s thickness. If we assume 2 /10e h= , from (48) we obtain 

336666 N/mmxk ≅  and 333666 N/mmzk ≅ . The EBT model in this case 

furnishes I 1.079µ ≅  and II 1.051µ ≅ , which deviate by less than 1% from the 

values corresponding to the accurate estimates of the interface constants. The 

points corresponding to the correction factors computed using Eqs. (48) are 

represented by the triangles in figure 8. 
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(a) 

 

(b) 

Fig. 8 energy release rate correction factors vs. interface elastic constants: (a) mode I; (b) mode II 

 

In practice, instead of using the exact but complicated Eqs. (46–47), the 

previously adopted simplifying assumptions (namely, that the arguments of the 

hyperbolic functions are very large) enable using the following approximate 

expressions for the modal contributions to the energy release rate without 

significant loss of accuracy: 

2 2 2
EBT 2 EBT 2I II 1
I II2 2 2

1 1 2 1 1 1 5

1 1 1
( ) and ( ) ,

16 4

P P h
G a G a

B B hλ λ λ
≅ + + ≅ +

+
A

D D A D
 (49) 

and for orthotropic specimens 

2 2
EBT 2 EBT 2I II
I II2 3 2 3

1 2 5

12 121 1 1
( ) and ( ) .

x x

P P
G a G a

B E h B E hλ λ λ
≅ + + ≅ +  (50) 

Expressions similar to Eqs. (50) have been given for the mode I contribution by 

Reeder and Crews [2] and for the mode II contribution by Wang and Qiao [13], de 

Morais [14] and Jumel et al. [15]. Moreover, Budzik et al. have furnished an 

experimental validation and highlighted the correlation between 51/ λ  and the 

length of the process zone in mode II fracture [31]. Likewise, 1 21/ 1/λ λ+  can be 

interpreted as the length of the process zone in mode I fracture. We can shed 

further light on the role played by these parameters by considering the limit case 

of a rigid interface, for which  

1

1 2 1 5

1 1 1
lim 0, lim , and lim 0.
z z xk k kλ λ λ→∞ →∞ →∞

= = =D

C
 (51) 
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Note that by substituting Eqs. (51) into (49), we retrieve Eqs. (41) of the TBT 

model, except for an additional term in the mode I contribution, which accounts 

for the different rotations of the upper and lower sublaminates’ cross sections. In 

fact, though connected by a rigid interface, the two sublaminates behave as a 

‘monolithic’ beam only for 1 → ∞C , in which case the EBT model reduces to the 

SBT model. 

By comparing Eqs. (49) with (43), we obtain crack length correction 

parameters analogous to those introduced in the CBT model: 

EBT EBT

I II
2

1

1 1

12 5

1 1

21
and

1 1 1 1 1 1 1
( ) .

1
2 ( )

4

z

x

h h h h
k

h k
χ χ

λ λ λ
= + = =

+
+ =D D

C

A D

 (52) 

Eqs. (52) offer the significant advantage that they can be used for generic 

laminated specimens, not only orthotropic specimens, for which they become 

EBT EBT

I II .
10

a d
8

n
6

x x

z

x

zx x

E

G

E E

k h k h
χ χ =+=  (53) 

With the estimates of the interface elastic constants given by Eqs. (48), we 

obtain 

EBT EBT

I II .
10 6

a
1

d
6

nx x x

zx z zx

Ee e

G E h

E E

G h
χ χ ≅+≅  (54) 

Figure 9 shows a plot of the crack length correction parameters computed 

according to the CBT and EBT models – through Eqs. (20) and (54), respectively 

– as functions of the elastic moduli of the laminate. Comparison shows excellent 

agreement for Iχ , despite the apparently different analytical expressions. Higher 

discrepancies can be observed for IIχ , for which we furnish a distinct definition, 

while the CBT model simply considers it a fraction of Iχ . It is worth noting that 

according to the EBT model IIχ  does not depend on 
z

E . The circles in figure 9 

denote points corresponding to the elastic constants of the UD laminated 

specimen given in Section 3.5. 
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Fig. 9 Crack length correction parameters vs. elastic moduli: (a) longitudinal Young’s modulus; 

(b) transverse Young’s modulus; (c) shear modulus 

4.5 Comparison 

In order to compare the analytical models presented in previous Sections with 

each other, we consider an MMB test specimen having the geometrical and 

mechanical properties listed in Section 3.5. 

Figure 10a shows the energy release rate, G, as a function of the delamination 

length, a, as predicted by the SBT, TBT, CBT, and EBT models. Similarly, 

figures 10b and 10c show the mode I and II contributions, GI and GII, 

respectively. Three values (1/4, 1, and 4) of the SBT mixed-mode ratio, 

SBT SBT

SBT I II/G Gα = , have been considered. For all models compared, the energy 

release rate and its modal contributions appear as increasing functions of the 
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delamination length. Both the SBT and TBT models underestimate the energy 

release rate with respect to the CBT and EBT models. The latter two models are 

for the most part in agreement, except for very large values of a (i.e. when the 

delamination crack tip approaches the downward load application point), for 

which the EBT model shows some boundary effects related to the mode II 

contribution. These boundary effects disappear if the approximate Eqs. (49) are 

used instead of the exact Eqs. (46)–(47). 
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Fig. 10 Energy release rate vs. delamination length: (a) total; (b) mode I; (c) mode II 
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Table 1 Relationships between alternative measures of mode mixity 

 Iγ  
IIγ  α  ψ  

Iγ  – II1− γ  
1

1 1/ α+
 

2cos ψ  

IIγ  I1− γ  – 
1

1 α+
 

2sin ψ  

α  

I

1

1/ 1−γ
 

II1/ 1−γ  – 
2cot ψ  

ψ  
Iarctan 1/ 1−γ  

II

1
arctan

1/ 1−γ
 

1
arctan

α
 – 

 

5 Mode mixity 

Under I/II mixed-mode fracture conditions, the relative contributions of the two 

fracture modes are characterised through a conventional measure of mode mixity 

[26]. In the MMB test, the mode mixity is usually specified through the I/II 

mixed-mode ratio [5], 

I I

II II

G

G

γα
γ

= = , (55) 

where 

I II
I IIand

G G

G G
γ γ= = , (56) 

are the relative mode I and II contributions to the energy release rate, which, 

recalling Eq. (31), satisfy I II 1γ γ+ = . Since the energy release rate contributions 

are positive quantities, we may put 2

I cosγ ψ=  and 2

II sinγ ψ= , where 

II II

I I

arctan arctan
G

G

γψ
γ

= =  (57) 

is the mode-mixity angle [26]. The relationships between alternative measures of 

mode mixity are given in Table 1. 

From Eqs. (46) and recalling Eqs. (7) and (39), the mixed-mode ratio predicted 

by the EBT model for the MMB test specimen is 

SBT
2I I I 1

SBT 2

II II II 1

4 3
(1 )( )

G c

G h c

µ µα
µ µ

−= = +
+
ℓ

ℓ

D

A
. (58) 
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Eq. (58) can be solved with respect to c to obtain the lever arm length value to 

use in tests to obtain a desired value of the mode mixity, 

1

2

1

1

2

1

4
1

4
3 1

h
c

h

β α

β α

+ +
=

+ −
ℓ

D

A

D

A

. (59) 

where 

I I 1 2

II II 5

1/ 1/

1/

a h a

a h a

χ µ λ λβ
χ µ λ

+ + += = ≅
+ +

. (60) 

In particular, for orthotropic specimens, we have 

2 3

6 3
c

β α
β α

+=
−

ℓ , (61) 

which is equivalent to Eq. (5) of the ASTM standard [5]. 

By inspecting Eq. (58), it can be deduced that pure mode I fracture (α → ∞ ) 

would require a lever arm length c = −ℓ , together with a negative value of load P 

(see Eqs. (3)). Such conditions cannot however occur in practice, hence pure 

mode I tests cannot be performed using MMB testing equipment. Conversely, 

pure mode II fracture ( 0α = ) can be obtained by choosing / 3c = ℓ . It is 

worthwhile noting that lever arm lengths below such value also result in pure 

mode II fracture because the mode I load acts by closing the delamination crack 

instead of opening it. Actually, Eq. (7) yields negative values of IP , hence there is 

no mode I contribution to the energy release rate. In experimental practice [2, 3, 

6], pure mode II is often obtained by setting 0c = , though the measured fracture 

toughness may be overestimated because of contact and friction between the 

specimen’s two arms [23]. 

Since the lever arm lengths are fixed during any particular test, the mode 

mixity computed according to the SBT model does not change with crack 

propagation, hence the MMB test is commonly referred to as a constant mixed-

mode fracture test. However, it is a well-known fact that if a more complex model 

is used to interpret test results, the mode mixity turns out to be dependent on 

delamination length and differs slightly from the ‘nominal’ value predicted by the 

SBT model. Figure 11 shows the mixed-mode ratio, α, as a function of the 
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delamination length, a, as computed according to the SBT, TBT, CBT, and EBT 

models. The SBT model underestimates α with respect to the other models. The 

TBT model is mostly in agreement with the SBT model, except for short 

delamination lengths, when the delaminated sublaminates behave as ‘thick’ 

beams. The CBT and EBT models yield similar predictions, which differ from 

those of the SBT and TBT models especially in the case of prevailing mode I 

fracture. Indeed, this is when the crack-tip relative displacements and rotations – 

not taken into account by the simpler models – exert the utmost influence on the 

specimen’s response. 
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Fig. 11 Mixed-mode ratio vs. delamination length 

6 Application to experimental data reduction 

The concepts illustrated in the foregoing enable application of the EBT model of 

the MMB test to experimental data reduction, which essentially means extracting 

information about interlaminar fracture toughness from experimentally measured 

quantities. As a first step, the specimen’s geometrical and mechanical properties 

should be determined as in the standard test procedure [5]. 

Next, it is necessary to estimate the values of the interface elastic constants, 

which can be accomplished by applying the compliance calibration strategy 
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described in Section 3.5 with reference to the experimental results, instead of 

numerical simulations. To this aim, preliminary DCB and ENF tests should be 

carried out on the type of specimen in question. Then, the experimentally 

measured compliances, EXP

DCBC  and EXP

ENFC , should be entered into Eqs. (34), which 

are then numerically solved to obtain 
x

k  and 
z

k . 

From this point on, the MMB test is carried out as usual. The load values 

related to crack initiation are recorded and used in Eqs. (49) to yield the critical 

mode I and II contributions to the energy release rate, IcG  and IIcG , according to 

the EBT model. Equivalently, the crack length correction parameters can be 

computed from Eqs. (52) and used in the CBT relationships Eqs. (43). 

By way of illustration, we consider an experimental study by Ducept et al. 

[32], who report on the results of MMB tests on glass/epoxy unidirectional 

laminated specimens. The considered specimen has span L = 130 mm, width B = 

20 mm, and thickness H = 2h = 5 mm; the initial delamination length is 

a = 35 mm. The elastic moduli of the material are 25.7 GPa
x

E = , 6.5 GPa
y

E = , 

and 2.5 GPa
xy

G = . Preliminary DCB and ENF tests were performed, from which 

the compliances EXP

DCB 2.8 mm / 49 N 0.057 mm/NC = =  and 

EXP

ENF 6.5 mm / 600 N 0.011 mm/NC = =  were determined. Calibration with the 

corresponding predictions of the EBT model yields the values of the interface 

constants 317500 N/mmxk =  and 31675 N/mmzk = . 

 

Table 2 Interlaminar fracture toughness values [J/m2] deduced from DCB, MMB, and ENF tests 

for unidirectional laminated specimens [32] 

 DCB MMB MMB MMB MMB ENF 

αSBT ∞ 3 1 1/3 1/8 0 

c [mm] – 108.3 56.8 39 31.5 – 

Pc [N] 49 60 145 256 355 600 

 GIc GIc GIIc GIc GIIc GIc GIIc GIc GIIc GIIc 

SBT 220 329 110 317 317 240 720 149 1192 1510 

TBT 221 331 110 319 317 241 720 150 1192 1510 

CBT 259 388 118 373 340 283 772 175 1279 1620 

EBT 267 400 114 385 329 291 748 181 1239 1569 
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Fig. 12 Mixed-mode interlaminar fracture initiation envelopes 

 

Table 2 shows the loads related to crack initiation (deduced using the values 

and expressions reported in the original study [32]), together with the values of 

GIc and GIIc as predicted by the SBT, TBT, CBT, and EBT models. Figure 12 

represents the corresponding mixed-mode interlaminar fracture initiation 

envelopes in the plane of GI and GII. The SBT and TBT models yield nearly 

coincident envelopes. Instead, the envelopes of the CBT and EBT models – both 

markedly less conservative than the simpler models – are comparable with each 

other, except for some minor discrepancies. 

As a first example application to multidirectional laminated specimens, we 

consider the numerical and experimental results presented by Pereira and de 

Morais for DCB, ENF, and MMB tests on glass/epoxy [17] and carbon/epoxy [19] 

composites. All the considered specimens have stacking sequence 

[(02/90)6/02//(02/90)6/02], where // denotes the position of the delamination. The 

elastic moduli of each lamina are listed in Table 3. The extensional stiffness, shear 
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stiffness and bending stiffness of the laminates have been computed according to 

classical laminated plate theory [21] and are given in Table 4. All specimens have 

width B = 20 mm and thickness H = 2h = 6 mm, while the remaining geometric 

properties are given in Table 5. The finite element analyses performed by Pereira 

[33] for the glass/epoxy specimens furnished FEM

DCB 0.551939 mm/NC =  and 

FEM

ENF 0.002492 mm/NC = , whence 36146.8 N/mmxk =  and 34578.0 N/mmzk =  

were determined. Likewise, for the carbon/epoxy specimens the values of 

compliance FEM

DCB 0.063001 mm/NC =  and FEM

ENF 0.000809 mm/NC =  yielded 

312735.5 N/mmxk =  and 37764.8 N/mmzk = . Table 6 reports the crack length 

correction parameters computed according to the CBT model, using Eqs. (20) 

with the homogenised flexural and shear moduli [18], and according to the EBT 

model, using Eqs. (52). 

 

Table 3 Elastic moduli of a single lamina [33] 

Material 
E1 

[GPa] 

E2 

[GPa] 

G12 

[GPa] 

glass / epoxy 33 19 4.8 

carbon / epoxy 130 8.2 4.1 

 

 

Table 4 Laminates stiffnesses for multidirectional laminated specimens 

Material 1
A  

[N/mm] 

1
C  

[N/mm] 

1
D  

[N mm] 

glass / epoxy 86400.0 10169.5 66784.5 

carbon / epoxy 280380.0 9129.9 227550.2 

 

 

Table 5 Geometric properties of multidirectional laminated specimens [33] 

Material Test 
ℓ  

[mm] 

a 

[mm] 

glass / epoxy 

DCB 135 100 

ENF 50 25 

carbon / epoxy 

DCB 135 70 

ENF 50 25 
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Table 6 Crack-length correction parameters for multidirectional laminated specimens 

Material Model I
χ  

II
χ  

glass / epoxy 

CBT 1.051 0.441 

EBT 1.153 0.447 

carbon / epoxy 

CBT 1.857 0.780 

EBT 1.903 0.569 

7 Conclusions 

The analytical solution to the enhanced beam-theory model of the MMB test 

formulated in Part I of this paper [7] has been applied to deduce analytical 

expressions for the specimen’s compliance, energy release rate, and mode mixity. 

The specimen’s compliance, C, has been defined, and alternative expressions 

for it have been deduced and discussed. Particular attention has been devoted to 

illustrating how the displacements of DCB and ENF tests should be superimposed 

to correctly determine the displacements of the MMB test. The compliance 

predictions of the EBT model have been compared with those of the SBT, TBT, 

and CBT models, as well as with the results of finite element analyses. Only the 

EBT model has proved capable of furnishing a close match with the finite element 

results by taking into account crack-tip deflections and rotations (thanks to the 

deformable interface), as well as shear deformation of the sublaminates. 

The energy release rate, G, has also been defined and analytical expressions for 

it deduced. The presence of an elastic–brittle interface connecting the 

sublaminates in the EBT model has allowed for straightforward evaluation of the 

modal contributions, GI and GII, based on the peak values of the interfacial 

stresses at the crack tip. The energy release rate predictions of the EBT model 

have been compared with those of the SBT, TBT, and CBT models, and turn out 

to be in very good agreement with the last. The CBT model, however, is based on 

crack length correction parameters, which are strictly defined only for 

homogenous orthotropic specimens. Instead, the EBT model can be applied to 

laminated specimens having generic stacking sequences. Thus, it has been 

possible to deduce analytical expressions for the crack length correction 

parameters that hold for both unidirectional and multidirectional laminated 

specimens. 
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Lastly, the mode mixity characterising the relative amount of fracture modes I 

and II during crack propagation has been defined, and expressions have been 

deduced for the mode-mixity angle, ψ, and mixed-mode ratio, α. The conditions 

necessary for pure fracture modes have also been discussed. The mode mixity 

predictions of the EBT model have been compared with those of the SBT, TBT, 

and CBT models, and turn out to be in good agreement with the last. 

The enhanced beam-theory model has proved capable of furnishing accurate 

predictions for the main quantities involved in the interpretation of MMB test 

results. The predictive effectiveness of the model, however, rests crucially on 

reliable estimation of the interface elastic constants. In the paper, we have 

explained first how the interface constants can be evaluated through a compliance 

calibration strategy implemented through a finite element model and then shown 

how the same strategy can be employed to determine the interface parameters 

from experimental results. 
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