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Cell survival and proliferation are central to carcinogenesis, involving various mechanisms among which those
that impede apoptosis are important. In this, the role of the molecular chaperone Hsp60 is unclear since it has
been reported that it can be both, pro- or anti-apoptotic. A solution to this riddle is crucial to the development
of anti-cancer therapies targeting Hsp60. We addressed this question using a tumor cell line, NCI-H292, and
[Cu(3,5-bis(2’-pyridyl)-1,2,4-oxadiazole ),(H,0),](ClO4),, CubipyOXA, a copper-containing compound with cy-
totoxic properties. We treated cells with various doses of the compound and measured cell viability; apoptosis

Iézg,gj;q indicators; and levels of Hsp60, pro-Caspase-3 (pC3), Caspase-3 (C3), and complex Hsp60/pC3, with comple-
Cancer mentary methods. The quantitative dose-response curves of the levels of Hsp60, activated C3, inactivated pC3,
Apoptosis Hsp60/pC3 complex and indicators of cell apoptosis, and cell death, all coincided to show that CubipyOXA has
Hsp60 pro-apoptotic activity and promotes cell death. The curves also indicate that the pro-apoptotic effects of
Pro-caspase-3 (pC3) CubipyOXA could likely be due to a lowering of Hsp60 levels and to its blocking the formation of the Hsp60/
Hsp60/pC3 complex

pC3 complex and/or its dissociating the complex when already formed, thus, interfering with the anti-apoptotic
action of Hsp60. These findings shed some light on how a tumor cell may avert apoptosis using Hsp60 and point
to the anti-cancer potential of drugs, such as CubipyOXA, which interfere with Hsp60/pC3 complex formation, and
thus allow the apoptotic cascade to proceed. In view of these findings it becomes clear that the novel compound
CubipyOXA should be considered a potential, high-efficiency antitumor agent deserving further testing.

© 2017 Published by Elsevier Inc.

_— 1. Introduction
Abbreviations: CubipyOXA, [Cu(3,5-bis(2’-pyridyl)-1,2,4-oxadiazole),(H,0),](Cl04)>;

ZnbipyOXA, [Zn(bipyOXA);(H20),]?*(Cl04),; Hsp60, heat shock protein 60; pC3,

procaspase-3; NCI-H292, mucoepidermoid carcinoma cell line; HepG2, liver
hepatocellular cell line; HT29, human colon adenocarcinoma cell line; RPMI medium,
Roswell Park Memorial Institute medium; FCS, fetal calf serum; MTT, 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; RIPA,
radioimmunoprecipitation assay; TRITC, tetramethylrhodamine; DTT, dithiothreitol; BSA,
Bovine Serum Albumin; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel
electrophoresis.
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Cancer cells live longer and proliferate more than normal counter-
parts because they overexpress specific proteins and receptors needed
for tumor growth. Among other mechanisms that also favor carcinogen-
esis, cancer cells undergo less apoptosis. Therefore, one objective in the
development of therapies for cancer is to find ways to favor apoptosis,
for example by blocking the mechanism which, in cancer cells, inter-
feres with it.

Inorganic compounds have attracted increasing attention for bio-
medical applications, such as detection and treatment of cancer and
other diseases, drug delivery, and in vitro bio-sensing applications [1].
These compounds are taken into consideration because of their
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cytotoxic activity toward human cancer-cell lines [2], for example, by
disrupting protein homeostasis [3].

The molecular chaperone Hsp60 assists protein folding in prokary-
otes and in eukaryotic cells in order to maintain protein homeostasis
and tissue physiology [4]. Hsp60 has been implicated in carcinogenesis
via its interaction with components of the Caspase cascade that leads to
apoptosis. However, opinions about the role of this chaperone in carci-
nogenesis, and in apoptosis in particular, differ and it is not yet clear
when and how Hsp60 is pro-apoptotic (i.e., it acts as an anti-cancer fac-
tor) or the contrary, namely it works in favor of the tumor by interfering
with apoptosis [5-10].

Our recent studies have shown that the induction of stress on cancer
cells affects the Hsp60 levels [6,11,12] and it is known that this chaper-
one plays a crucial role in apoptosis. Furthermore, we found that Hsp60
interacts with Pro-Caspase-3 (pC3) in the mucoepidermoid carcinoma
cell line NCI-H292 and this association persists after the induction of ox-
idative stress [5]. In a previous work, we investigated the antitumor ac-
tivity of a new copper complex, capable to reduce the vitality of two
cancer-cell lines: HepG2 and HT29 [13], probably by interacting with
the DNA [14]. These and other similar results lead us to postulate that
while oxidative stress induces apoptosis in NCI-H292 cells, Hsp60
might have an anti-apoptotic effect in the same cells. The aim of the
work reported here was to investigate the effect of two new pro-apo-
ptotic compounds, CubipyOXA  ([Cu(3,5-bis(2’-pyridyl)-1,2,4-
oxadiazole),(H,0),](Cl04),) and ZnbipyOXA
([Zn(bipyOXA),(H20),]? T(Cl04),) [15], in NCI-H292 cells, and to ex-
amine the levels of Hsp60 and Hsp60/pC3 complex.

CubipyOXA induced apoptosis in HepG2 and HT29 cells in a dose-
and time-dependent manner [13]. As of today, very few copper com-
plexes have been described that induce apoptosis through the involve-
ment of the Caspase 3 (C3) [16-17]. The mechanism of C3 activation in
copper-mediated cell death has not been fully elucidated [18]. It was
found that copper-containing molecules and molecular complexes
that trigger apoptosis have an impact on the levels of proteins involved
in the apoptotic cascade, determining either an increase of pro-apopto-
tic or a decrease of anti-apoptotic molecules [18-21]. In view of these
contrasting data and considering the similarly contrasting views on
whether Hsp60 has a pro- or anti-apoptotic role in tumor cells, we set
out to do experiments aiming at clarifying the connections between
Hsp60, pC3, C3, and apoptosis. We examined the effects of the
CubipyOXA and ZnbipyOXA on the tumor cell line NCI-H292 and moni-
tored cell viability and apoptosis indicators, and the levels of Hsp60,
pC3, €3, and their interactions.

2. Experimental section
2.1. Chemicals and synthesis

All chemicals and solvents were commercial and used as received,
without further purification. Proton and carbon nuclear magnetic reso-
nance spectra were recorded with a Bruker AC300 spectrometer, and
solvent residual peaks were used as reference. Flash chromatography
was performed by using silica gel (0.040-0.063 mm, Merck, Darmstadt,
Germany) and mixtures of ethyl acetate and petroleum ether (fraction
boiling in the range of 40-60 °C) in various ratios. Melting points were
determined with a Reichart-Thermovar hot-stage apparatus and are
shown uncorrected. Synthesis was performed according to published
procedures [13].

2.1.1. 3,5-bis(2'-pyridyl)-1,2,4-oxadiazole (bipyOXA)

1.00 g of 2-cyanopyridine (8.14 mmol) and 0.56 g of 2-
picolinamidoxime (4.07 mmol) were mixed in a sealed tube and heated
at 120 °C for 8 h. The residue was chromatographed, yielding 0.59 g of
3,5-bis(2’-pyridyl)-1,2,4-oxadiazole (65%): mp 173-176 °C (from
EtOH) (lit. 173-175 °C [13]); "H NMR (300 MHz, CDCl3) & (ppm):
7.44-7.58 (m, 2H); 7.87-7.98 (m, 2H); 8.28-8.31 (d, 1H); 8.42-8.44

(d, 1H); 8.84-8.89 (m, 2H). Elemental analysis: Anal. Calcd for
CqoHgN40: C, 64.28; H, 3.60; N, 24.99. Found: C, 64.36; H, 3.53; N, 25.02.

2.1.2. Complex CubipyOXA [Cu(bipyOXA),(H,0), *(ClO,),

A light blue solution of Cu(ClO,4), 6H,0 (0.09 g, 0.24 mmol) in abso-
lute ethanol was added dropwise and under constant stirring to a color-
less solution of 3,5-bis(2’-pyridyl)-1,2,4-oxadiazole (0.11 g, 0.50 mmol)
in absolute ethanol and at 23 °C. The mixture was let under stirring for
12 h, the precipitate filtered, washed by cold absolute ethanol and dried
under vacuum (0.152 g; 85%). The solid was recrystallized from acetoni-
trile. Blue crystals of CubipyOXA, suitable for biological tests, were ob-
tained. Identity of the obtained complex was confirmed through
comparison of the IR spectrum with that reported in the literature
[13]. Elemental analysis: Anal. Calcd for C;4H»oCl,CuNgOq5: C, 38.59;
H, 2.70; N, 15.00. Found: C, 38.53; H, 2.67; N, 15.09.

2.1.3. Complex ZnbipyOXA [Zn(bipyOXA)>(H20),P *(ClO4)-

A solution of Zn(ClO,4), 6H,0 (0.14 g, 0.4 mmol) in absolute ethanol
was added dropwise and under constant stirring to a colorless solution
of 3,5-bis(2’-pyridyl)-1,2,4-oxadiazole (0.179 g, 0.8 mmol) in absolute
ethanol and at 23 °C. The mixture was let under stirring for 12 h in the
dark, the white precipitate filtered, washed by cold absolute ethanol
and dried under vacuum (0.215 g; 72%). The solid was recrystallized
from acetonitrile giving colorless crystals of ZnbipyOXA. Identity of the
obtained complex was confirmed through comparison of the IR spec-
trum with that reported in the literature [15]. Elemental analysis:
Anal. Calcd for Cy4H,0Cl,Ng012Zn: C, 38.50; H, 2.69; N, 14.97. Found: C,
38.46; H, 2.71; N, 14.86.

2.2. Cell culture and treatment protocols

The NCI-H292 (human mucoepidermoid bronchial carcinoma) cell
line was obtained from the American Type Culture Collection and main-
tained in RPMI 1640 with 10% heat-inactivated fetal calf serum (FCS)
and supplemented with 2 mM glutamine, 50 U/ml penicillin, and 50
mg/streptomycin. Cells were grown as monolayers attached to the cul-
ture vessel and cultured at 37 °C, 5% CO, in a humidified incubator. The
passage number of cells used in this study ranged from 12 to 35. Unless
otherwise stated, cell culture reagents were purchased from GIBCO BRL
LIFE Technologies (Invitrogen, Milan, Italy). Before starting each exper-
iment, confluent cell monolayers were incubated in serum-free medium
for 24 h. Cells were treated for 24 h with various concentrations of
CubipyOXA or ZnbipyOXA dissolved in 1 mM Tris-HCl pH 7.4.

2.3. MTT test

Cytotoxicity was determined by the MTT [3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide] cell viability test. MTT was ob-
tained from Sigma (Milan, Italy), and the assay was performed as de-
scribed [22]. Briefly, 5 x 10> cells were plated in 200 pl of complete
(with FCS, fetal calf serum) medium per well in 96-well plates. After
24 h, cells were treated with various concentrations of CubipyOXA or
ZnbipyOXA (0 to 320 uM) for 24 h. At the end of the treatment period,
the medium containing the compound was replaced by MTT dissolved
in fresh medium and then it was added to the cell cultures at a final con-
centration of 0.5 mg/ml. After 4 h incubation, cells were solubilized in
200 pl DMSO/well and the optical density (OD) was measured with a
plate reader (Titertek Multiskan MCC/340, Flow Laboratories, Basel,
Switzerland) at 570 nm (630 nm as reference). Cell viability was
expressed as the percentage of the OD value of treated cells compared
with untreated controls, according to the following equation: Viabili-
ty = (OD SAMPLE/OD CONTROL) x 100. Each experiment was carried
out in duplicate and a total of three experiments were performed in
every case. GI50 values were calculated at 24 h of treatment as follows:
GI50 = 100 x (T — T0)/(C — TO) = 50.
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24. Cell lysate preparation and protein quantification

Treated and untreated cells were lysed by submersion into ice-cold
lysis solution containing radioimmunoprecipitation assay (RIPA) buffer,
as previously described [23]. Cell lysates were then incubated for 30 min
on ice and then centrifuged at 16,000 x g for 30 min at 4 °C. Proteins
were quantified using the Bio-Rad DC assay kit (Bio-Rad Laboratories,
Milan, Italy) according to the manufacturer's instructions. Briefly, pro-
tein concentrations were determined by comparing the absorbance
value with a known value based on a calibration curve for Bovine
Serum Albumin (BSA). The absorbance was measured at 750 nm using
a plate reader.

2.5. Antibodies

Anti-Hsp60 (clone LK1) monoclonal antibody was purchased from
Sigma (Sigma-Aldrich, St. Louis, MO, USA) and used diluted 1:1000;
anti pro-Caspase-3/Caspase-3 (CPP32) polyclonal antibody was pur-
chased from Cell Signaling Technology (Cell Signaling Technology, Dan-
vers, MA, USA) and used diluted 1:1000; anti (3-actin (sc-47,778)
monoclonal antibody was purchased from Santa Cruz (Santa Cruz Bio-
technology Inc., Santa Cruz, CA, USA) and used diluted 1:500. Horserad-
ish peroxidase (HRP)-conjugated sheep anti mouse antibody and anti-
rabbit antibody and protein A sepharose were purchased from
Amersham Biosciences (Ge Healthcare Life Science, Milan, Italy).
Mouse IgG antibody conjugated with tetramethyirhodamine (TRITC)
was from Sigma-Aldrich.

2.6. Immunofluorescence

Immunofluorescence was performed as described [24]. Briefly, NCI-
H292 cells were deposited on an 8-well microscope-chamber slide at
the density of ten thousand cells/well, cultured for 24 h at 37 °Cin a hu-
midified atmosphere containing 5% CO, and then treated with various
doses (within the range 0-160 uM) of CubipyOXA for 24 h. Cells were
fixed with ice cold methanol for 30 min, washed in phosphate buffered
saline (PBS) pH 7.4 and then were incubated with unmasking solution
(tri-sodium citrate 10 mM, 0.05% Tween 20, pH 6) for 10 min at 23 °C.
After rinsing twice with PBS, the cells were blocked with 3% (w/v) Bo-
vine Serum Albumin (BSA, Sigma Aldrich) for 30 min at 23 °C and incu-
bated with the primary antibody, anti-HSP60, overnight at 4 °C. The day
after, the cells were incubated with the TRITC-conjugated fluorescent
secondary antibody for 1 h at 23 °C in a moist chamber. The nuclei
were counterstained with Hoechst (Sigma-Aldrich) for 15 min at
23 °C. Finally, the slides were covered with drops of PBS and mounted
with coverslips. Imaging was immediately performed with a Leica
DM5000 upright fluorescence microscope (Leica Microsystems, Heidel-
berg, Germany).

2.7. Immunoprecipitation

Immunoprecipitation was performed as previously described
[14]: 500 pg of proteins were incubated with 5 pg of anti-Hsp60 at
24 °C for 2 h, followed by incubation with 20 pl protein-A Sepharose
(Amersham Biosciences, Milan, Italy) at 4 °C for 12 h. Subsequently,
the incubation mixture was centrifuged in a microcentrifuge at
14,000 x g for 30 s at 4 °C and the collected pellet was resuspended
in lysis buffer and centrifuged again: this procedure was repeated
three times. The last pellet was solubilized by boiling into 2 x sample
buffer (2% SDS, 10% glycerol, 100 mM DTT, 60 mM Tris-HCI [pH 6.8]
and 0.001% bromophenol blue) and used for SDS-PAGE as described
under Western Blotting. The same protocol was used for the anti-
pro-Caspase-3 antibody.

2.8. Western blotting

Western Blotting analyses of protein cell lysates and immunoprecip-
itates were performed as previously described [25]. Briefly, 40 g of pro-
teins from cell lysates or 500 pg from immunoprecipitates were added
to 4x Laemmli buffer and heated for 5 min at 95 °C. Proteins were re-
solved by 12% SDS-PAGE along with molecular weight marker (Bio-
Rad). Then proteins were transferred to nitrocellulose membranes and
blocked with 5% fat milk, and probed for 12 h at 4 °C. Then membranes
were incubated with horseradish peroxidase-conjugated secondary an-
tibody. Blots were detected using the Supersignal West Femto, accord-
ing to the manufacturer's instructions (Pierce, Milan, Italy) and
chemiluminescent signals were recorded with a ChemiDoc XRS imager
(Bio-Rad). Densitometric analysis of blots was performed using the NIH
Image ] 1.40 analysis program (National Institutes of Health, Bethesda,
MD, USA).

2.9. Determination of apoptosis by flow cytometry

Fifty thousand NCI-H292 cells/well were plated into 24-well plates
and grown until 80% confluence. Growth medium was replaced with
FCS-free medium for 24 h and then cells were treated with CubipyOXA
(various doses within the range 0 to160 uM) for 24 h. These times and
doses were chosen based on the information given by the MTT assay
on cell viability. Then NCI-H292 cells were harvested for apoptosis anal-
ysis according to a previously published technique [26], in which bind-
ing of Annexin V (AxV) is used to detect phosphatidylserine that is
externalized on the outer leaflet of the plasma membrane of apoptotic
cells. AxV-FITC (1 pg/ml) and propidium iodide (PI, 2.5 pg/ml) were
added to tubes containing 1 x 10° cells/100 pl binding buffer. Cells
were incubated in the dark for 15 min at 4 °C prior to flow cytometry
analysis and then analyzed using a FACScan flow cytometer (Becton
Dickinson, Oxford, UK). Control tubes lacking either AxV-FITC or P, or
both, were included to complete the controls. Analysis of dot-plots of
fluorescence detector FL1 (AxV-FITC) versus FL2 (PI) was performed
using Win MDI 2.8 (Flow Cytometry Software, University of Massachu-
setts, MA, USA). The degree of early apoptosis was expressed as the
number of AxV +/PI - cells shown as the percentage of total cells. The
late apoptotic cells were characterized as AxV +/PI+, and necrotic
cells as PI +. Each experiment was carried out in duplicate and three ex-
periments were performed in every instance.

2.10. Statistical analysis

Each experiment was ran in duplicate and was repeated three times.
One-way ANOVA followed by Bonferroni post-hoc test for multiple
comparisons were used for statistical evaluation. All statistical analyses
were performed using the program GraphPad PrismTM 4.0 (GraphPad
Software Inc., San Diego, CA, USA). All data are presented as arithmetic
mean 4 SD, and the threshold level of statistical significance was set
at p £0.05.

3. Results
3.1. Synthesis

The synthesis of the copper and zinc complexes [11] was performed
by mixing a solution of the metal as perchlorate salt, with the bipyOXA
ligand in ethanol (Fig. 1A). In turn, the ligand bipyOXA was synthesized
through a solvent-free reaction between 2-cyanopyridine and 2-
picolinamidoxime, by following the amidoxime-route (Fig. 1B) [27,28].

3.2. CubipyOXA is cytotoxic at various doses

The cytotoxicity of CubipyOXA and ZnbipyOXA on NCI-H292 cells
was determined by MTT assay. Exposure for 24 h to increasing
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Fig. 1. A. Chemical structure of CubipyOXA and ZnbipyOXA. B. In the upper panel it is shown the ligand bipyOXA synthesis using a solvent-free reaction between 2-cyanopyridine and 2-
picolinamidoxime, by following the amidoxime-route. In the lower panel it is shown the synthesis of bipyOXA and its Cu and Zn complexes, performed by mixing a solution of the metal as

perchlorate salt, with the bipyOXA ligand in ethanol.

concentrations within the range 0-320 puM of CubipyOXA caused a sig-
nificant diminution of cell viability, particularly at doses of 30 UM or
higher (Fig. 2). GI50 was calculated at 30 uM as follows: GI50 =
100 x (T — T0)/(C — TO) = 50. From the data obtained, we chose for
further experiments the following doses: 0, 30, 80, and 160 uM of
CubipyOXA. ZnbipyOXA did not show significant cytotoxicity (data not
shown) and was not studied further.

3.3. Hsp60 and C3 levels after CubipyOXA treatment

To evaluate the effect of CubipyOXA on Hsp60 and C3 levels, we per-
formed Western blotting analyses and immunofluorescence. Exposure
of the cells for 24 h to CubipyOXA diminished the levels of Hsp60 in a
dose-dependent manner as shown by Western blotting data (Fig. 3A
and B) and immunofluorescence (Fig. 3C and D). A significant decrease
of Hsp60 levels began after treating cells with 80 uM of CubipyOXA (Fig.
3B). By contrast the levels of activated C3 were increased in comparison
to the inactivated form (pC3) (Fig. 4A and B). Western blotting showed

100

75+

50

% cell survival

25+

UT 25 5 10 15 20 30 40 60 80 160 320
CuBipyOXA (uM)

Fig. 2. CubipyOXA effect on cell viability. MTT Assay: the NCI-H292 cell line was treated for
24 h with CubipyOXA at various concentrations as indicated in the horizontal axis. Cell
viability (vertical axis; arithmetic mean 4 SD (N = 3)) significantly decreased with the
higher doses. (*, significantly different from untreated (UT) cells; p < 0.001).
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Fig. 3. CubipyOXA effect on Hsp60 levels. A. Representative Western blot showing a dose-dependent decrease in the levels of Hsp60 in cells treated with CubipyOXA. B. Densitometric
quantification of Western blot bands showing the dose-dependent decrease in the levels of Hsp60 in cells treated with CubipyOXA. (*, significantly different from 80, and 160 pM;
p < 0.001; # significantly different from 80, and 160 pM; p < 0.001). C. Representatives images and semi-quantitative evaluation of immunofluorescence, showing a distribution of the
chaperonin and its decrease of Hsp60 after CubipyOXA treatment in a dose-dependent manner (Bar = 30 pm). D. Histogram showing the decrease of Hsp60 level after the treatment
(§, significantly different from untreated (UT) cells; p < 0.001) (magnification 40x).

a dose-dependent decrease of pC3 accompanied by a simultaneous in- before and after treatment with CubipyOXA (Fig. 4C and D). The
crease of activated C3 levels after CubipyOXA treatment (Fig. 4A). Hsp60/pC3 complex was present in untreated cells but its levels

decreased in cells treated with CubipyOXA. Western blotting
3.4. Hsp60/pC3 complex decreases in cells treated with CubipyOXA showed a significant diminution in the levels of the Hsp60/pC3

complex when cells were treated with 160 uM of CubipyOXA.
In order to investigate the possible interaction between Hsp60 Thus, a parallelism became evident between decreased levels of
and C3, we tested for the presence of the Hsp60/pC3 complex Hsp60 and apoptotic activation by the C3 pathway.
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Fig. 4. Hsp60/pC3 interaction and its dissociation after CubipyOXA treatment. A. CubipyOXA affects the levels of pro-Caspase-3 and Caspase-3. Representative Western blots showing a dose-
dependent decrease of pro-Caspase-3 (pC3; 32 kDa) and increase of Caspase-3 (C3; 17 kDa) in cells treated with various doses of CubipyOXA, as indicated on top. 3-actin (42 kDa) is shown
as the basal reference. B. Histogram showing the densitometric evaluation of the Western-blot bands for pro-Caspase-3 and Caspase-3. (*, significantly different from 30, 80, and 160 pM;
p <0.001; #, significantly different from 160 puM; p < 0.05; §, significantly different from 80, and 160 uM; p <0.001; A, significantly different from 80, and 160 uM; p < 0.001). C. The complex
Hsp60/pro-Caspase-3 (Hsp60/pC3) decreases in cells treated with CubipyOXA in a dose-dependent manner. Representative Western blots showing a dose-dependent decrease of complex
Hsp60/pC3 (32 kDa) in cells treated with various doses of CubipyOXA, as indicated on top. D. Histogram showing the densitometric evaluation of the Western-blot bands for the complex
Hsp60/pC3. (%, significantly different from untreated cells (UT) or cells treated with 30 or 80 uM; p < 0.01).

3.5. CubipyOXA induces apoptosis

We measured the effects on viability/apoptosis of CubipyOXA in NCI-
H292 cells. After 24 h of exposure to increasing concentrations within
the range 0-160 pM of CubipyOXA, there was an increase of apoptotic
events with diminution of surviving cells. The percentage of early and
late apoptotic cells (PI~ AnV *and PI™ AnV™") began to increase signif-
icantly at 30 uM (17%) with respect to untreated cells (UT) and this per-
centage increased at 80 and 160 UM to 40% and 50%, respectively (Fig.
5). The MTT test revealed that the percentage of cell death increased
with increasing does of CubipyOXA and cell death correlated with apo-
ptosis activation (Fig. 5). In addition, CubipyOXA induced the appear-
ance of highly condensed nuclei which represents a typical apoptotic
hallmark, as demonstrated by morphological analyses performed with
fluorescence microscopy after staining with Hoechst (Supplementary
Fig. S1).

4. Discussion

Data obtained in the last decade indicate that Heat shock proteins
(Hsps) have anti-apoptotic and, consequently, pro-tumor properties
[29,30,31]. Apoptosis contributes to tumor demise following chemo-
therapy but, in patient management, it is still unclear how to achieve a
healthy balance between cell proliferation and death [32]. In some

instances, elevated levels of Hsps protect tumor cells against therapy-in-
duced apoptosis [33]. Hsps can block both the intrinsic and the extrinsic
apoptotic pathways through the interaction with proteins involved in
the apoptotic process [30,31,33]. For example, high levels of Hsp27, or
Hsp70, or Hsp90 inhibit apoptosis by preventing Caspase activation in
a variety of cellular models [34-36]. However, the molecular mecha-
nism of this anti-apoptotic effect mediated by Hsps is still unclear and
it is possible that, under certain circumstances, may be due by a variety
of different modulators [34]. It has been shown that Hsp70 can inhibit
apoptosis by interacting with a member of the Fas death-inducing sig-
naling upstream of Caspase-8 [37,38]. Hsp70, during oxidative stress,
can stabilize Bcl-2, protecting the cell against apoptosis [39]. Also
other Hsps, such as Hsp27 and Hsp72, are involved in protection against
stress-induced apoptosis, depending on the cellular context, by interac-
tion with components of the apoptotic cascade [40,41].

Current strategies for the development of anticancer drugs include
the identification of molecules that are crucial for tumor progression
and can be used as targets for blocking agents. Along this line of thought,
inhibition of certain Hsps known to be involved in carcinogenesis has
been proposed as a potential anti-cancer treatment strategy worth test-
ing [42-44,35]. Furthermore, monitoring the levels of Hsps can be a use-
ful way of following up the response to therapy [6].

In the search for new pharmaceuticals and bioactive compounds,
oxadiazoles are useful scaffolds [45,46]. For instance, the biological ac-
tivity of a copper complex with oxadiazoles has been studied in two
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Fig. 5. Evaluation of apoptosis indicators by flow cytometry. After 24 h exposure to increasing concentrations (indicated in the horizontal axis) of CubipyOXA there was an increase of
apoptotic indicators (vertical axis) which correlated with the decrease in cell viability. The percentage of apoptotic cells (PI~ AnV*and PI* AnV™) significantly increased at 30 uM by
comparison with the untreated (UT) cells. (*, significantly different from 30, 80, and 160 uM; p < 0.001; #, significantly different from 30, 80, and 160 uM; p < 0.001; *, significantly
different from 30, 80, and 160 pM; p < 0.001; §, significantly different from 30, 80, and 160 puM; p < 0.001).

cancer-cell models [11]. A copper complex reduced the viability of
HepG2 and HT29 cells in a dose- and time-dependent manner and the
cells showed signs of apoptosis. In the work reported here, the copper
complex CubipyOXA was tested to assess its chemotherapeutic potential
on NCI-H292 cells. CubipyOXA lowered the cells viability in a dose- and
time-dependent manner. Moreover, after 24 h of exposure to increasing
concentrations of CubipyOXA, there was an increase in the apoptotic fea-
tures that paralleled the drop in cell viability. The percentage of apopto-
tic cells (PI-AnV + and PI + AnV +) significantly increased in cells
exposed to the compound in comparison with untreated controls.
CubipyOXA most likely acts as a DNA-condensing agent as indicated by
its spectroscopic and hydrodynamic features that are compatible with
a DNA groove binder [13] and coincide with the nuclei condensation
we found at high doses of CubipyOXA, all of which is directly correlated
with the antiproliferative effect of the compound.

It has already been reported that Hsp60 has a pro-apoptotic role
favoring activation of Caspase-3 (C3) [10,47] but others claim that
Hsp60 is cytoprotective because it stabilizes the levels of survivin
and inhibits p53, thus keeping the cell alive [9]. It is also known
that Hsp60 forms a stable complex with pro-Caspase-3 (pC3)
with the consequent anti-apoptotic effect [5]. Accordingly, we
tried to answer the question whether CubipyOXA, capable of induc-
ing death in cancer cells, would have an effect on the Hsp60/pC3
complex and on Hsp60 levels: the aim was to develop an effective
drug for anticancer therapy [48]. We found that in CubipyOXA-
treated cells, Hsp60 levels decreased by comparison with untreat-
ed cells, in a dose-dependent manner as demonstrated by Western
blotting and immunofluorescence. Concomitantly, the levels of ac-
tivated C3 (17 kDa) increased while the levels of inactivated pC3
(32 kDa) decreased. The complex Hsp60/pC3 was present in un-
treated cells but it decreased progressively with increasing doses

of CubipyOXA to finally become undetectable in cells exposed to
160 uM of the copper compound.

Various data support the hypothesis that Hsp60 favors carcinogene-
sis and show a close correlation between high levels of Hsp60 and dif-
ferent types of cancer, thus the immunopositivity for Hsp60 can be
considered a biomarker useful for the diagnosis and monitoring these
types of malignancies [33,49-50]. Frequently, the immunopositivity
for Hsp60, in cancerous tissue or circulating cancer cells, correlates
with a poor prognosis [49,51-53]. In contrast to these findings, we pre-
viously found that the loss of Hsp60 immunopositivity can be related to
development and progression of bronchial cancer [54], which reflects
the variety of roles that Hsp60 can play.

In our experimental model, the high levels of Hsp60 likely cause the
inhibition of the pC3 activation and the resistance to apoptosis. The
compound CubipyOXA determines the decrease of the Hsp60 levels,
probably due to DNA binding by CubipyOXA [13], and the separation of
the complex Hsp60/pC3 and consequently the C3 activation of the cas-
pase cascade, associated with a tumor-cell growth arrest. These findings
suggest that the reduction of Hsp60 levels might have various causes, as
it has been already demonstrated, in which Hsp60 could be tagged by
post-translational modifications, such as hyperacetylation and
ubiquitination. This could regulate the degradation of the chaperone
by the ubiquitin-proteosome system [12,55]. Otherwise, the post-trans-
lational modifications could constitute a signal for extracellular secre-
tion through the lipid raft pathway [11,49,56]. The function of
extracellular Hsp60 is still under discussion. For instance, it may medi-
ate interactions with the immune cells and other body tissues and
alter the tumor microenvironment [11,12,55,57].

As far as we know, no previous studies have shown the activity of a
compound able to interfere with the interaction between Hsp60 and
pC3 as CubipyOXA seems to do. Therefore, CubipyOXA represents a
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new candidate for developing novel anti-tumor treatment strategies di-
rected against the pro-cancer activity of Hsp60.

5. Conclusion

The quantitative dose-response curves of the levels of Hsp60, acti-
vated C3, inactivated pC3, Hsp60/pC3 complex and indicators of cell ap-
optosis, and cell death, all coincided to show that CubipyOXA has pro-
apoptotic activity and promotes death of NCI-H292 cells. We have pro-
posed the possible mechanism underlying this effect. Most likely, the
pro-apoptotic effects of CubipyOXA are due to its lowering the Hsp60
levels and to its blocking the formation of the Hsp60/pC3 complex,
and/or its dissociating the complex when already formed, thus, interfer-
ing with the anti-apoptotic action of Hsp60, without affecting the Hsp60
functions in normal cells. Therefore, CubipyOXA represents a novel can-
didate drug for cancer treatment targeting Hsp60 that merits further
studies in vivo.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jinorgbio.2017.02.004.
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