
 
 

i 
 

Controller Design for Magnetic Levitation 

System 

 

A Thesis Submitted in Partial Fulfillment 

Of the Requirements for the Degree Of 

MASTER OF TECHNOLOGY 

In 

Control and Automation 

By 

Abhishek Nayak 

M.Tech  

Roll No: 213EE3309 

 

 

Under the Guidance of 

Prof.Bidyadhar Subudhi 

 

 
 
 
 
 
 
 
 
 
 

Department of Electrical Engineering 

National Institute of Technology, Rourkela 

Rourkela-769008, Odisha, India 

2013-2015 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/80148227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

ii 
 

 

 

 

 

 

 

 

 

 

Dedicated to my family 

and my friends 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

iii 
 

 

 

 

 

 

 

 

 

 
 

 

 

Certificate 
  

This is to certify that the work in the thesis entitled “Controller Design for Magnetic 

Levitation System” by Abhishek Nayak is a record of an original research work carried out 

by him under my supervision and guidance in partial fulfillment of the requirements for the 

award of the degree of Master of Technology with the specialization of Control & 

Automation in the department of Electrical Engineering, National Institute of Technology 

Rourkela. Neither this thesis nor any part of it has been submitted for any degree or academic 

award elsewhere. 

 

 

 

Place: NIT Rourkela          Prof. Bidyadhar Subudhi 

Date:     May 2015      Dept. of Electrical Engineering 

 NIT Rourkela  

 

 

Department of Electrical Engineering 

National Institute of Technology Rourkela 

Rourkela-769008, Odisha, India. 



 
 

iv 
 

ACKNOWLEDGEMENTS 

 

I am grateful to numerous local and global peers who have contributed towards shaping 

this thesis. At the outset, I would like to express my sincere thanks to Prof. Bidyadhar 

Subudhi for his advice during my thesis work. As my supervisor, he has constantly 

encouraged me to remain focused on achieving my goal. His observations and comments 

helped me to establish the overall direction of the research and to move forward with 

investigation in depth. He has helped me greatly and been a source of knowledge.  

 

I am really thankful to my all friends and especially Abhilash, Manas, Deepthi ,Pavan, 

Sudipta, Upasana, Karmila and Debasis. My sincere thanks to everyone who has provided me 

with kind words, a welcome ear, new ideas, useful criticism or their invaluable time, for 

which I am truly indebted.  

 

I must acknowledge the academic resources that I have got from NIT Rourkela. I would 

like to thank administrative and technical staff members of the Department who have been 

kind enough to advise and help in their respective roles.  

 

Last, but not the least, I would like to dedicate this thesis to my family, for their love, 

patience, and understanding. 

 

 

Abhishek Nayak 

213EE3309 

 

 

 



 
 

v 
 

Contents 
CHAPTER 1 .............................................................................................................................................. 1 

INTRODUCTION ....................................................................................................................................... 1 

1.1 INTRODUCTION .................................................................................................................. 2 

1.2 HISTORY OF EVOLUTION ................................................................................................. 2 

1.3 TYPES OF MAGNETIC MATERIAL ................................................................................... 3 

1.3.1 Ferromagnetic material: .................................................................................................. 3 

1.3.2 Anti Ferromagnetic material: .......................................................................................... 3 

1.3.3 Diamagnetic material: ..................................................................................................... 3 

1.3.4 Paramagnetism: ............................................................................................................... 3 

1.3.5 Ferrimagnetism: .............................................................................................................. 4 

1.4 MAGNETIC FIELD BASICS ................................................................................................ 4 

1.5 MAGNETIC LEVITATION CONCEPT ............................................................................... 5 

1.6 TYPES OF MAGNETIC LEVITATION ............................................................................... 5 

1.7 APPLICATION OF MAGNETIC LEVITATION ................................................................. 6 

1.7.1) Magnetic Levitation train: ............................................................................................... 6 

1.7.2) Magnetic Bearing: ........................................................................................................... 7 

1.7.3) Launching Rocket: .......................................................................................................... 7 

1.7.4) Electromagnetic Aircraft launch system: ........................................................................ 7 

1.7.5) MagLev wind turbine: ..................................................................................................... 8 

1.7.6) MagLev Microrobot ........................................................................................................ 8 

1.8 SCOPE OF WORK ................................................................................................................. 9 

1.9 MOTIVATION ....................................................................................................................... 9 

1.10 LITERATURE REVIEW ..................................................................................................... 10 

1.11 OBJECTIVE ......................................................................................................................... 11 

1.12 THESIS ORGANISATION .................................................................................................. 11 

1.13 CHAPTER SUMMARY ....................................................................................................... 11 

CHAPTER 2 ............................................................................................................................................ 12 

SYSTEM DESCRIPTION AND MODELING................................................................................................ 12 

2.1 INTRODUCTION ................................................................................................................ 13 

2.2 FEEDBACK MAGNETIC LEVITATION SETUP ............................................................. 13 

2.3 SET OF EQUIPMENT ......................................................................................................... 14 

2.4 BLOCK DIAGRAM ............................................................................................................. 15 



 
 

vi 
 

2.5 MODELING OF MAGLEV SYSTEM ................................................................................ 15 

2.6 CHAPTER SUMMARY ....................................................................................................... 21 

CHAPTER 3 ............................................................................................................................................ 22 

CONTROLLER DESIGN FOR MAGNETIC LEVITATION SYSTEM ............................................................... 22 

3.1 INTRODUCTION: ............................................................................................................... 23 

3.2 CONTROLLER DESIGN..................................................................................................... 23 

3.2.1: Adaptive backstepping controller: ...................................................................................... 23 

3.2.2: Nesic Backstepping on Euler approximate model of MagLev system ......................... 29 

3.5 CHAPTER SUMMARY ....................................................................................................... 36 

CHAPTER 4 ............................................................................................................................................ 37 

SIMULATION AND RESULTS .................................................................................................................. 37 

4.1 INTRODUCTION ..................................................................................................................... 38 

4.2 SIMULATION OF ADATIVE BACKSTEPPING CONTROLLER ON MAGLEV 

SYSTEM ........................................................................................................................................... 38 

4.3 SIMULATION OF NESIC BACKSTEPPING CONTROLLER ON MAGLEV SYSTEM ....................... 40 

4.4 SIMULATION OF MAGLEV SYSTEM WITH 2DOF PID CONTROLLER .................... 42 

4.5 COMPARISION OF THREE CONTROLLERS.................................................................. 43 

4.6 EXPERIMENTAL RESULT OF 2DOF CONTROLLER ................................................... 45 

4.6.1: 2DOF PID with P1 values: .................................................................................................. 46 

4.6.2: Comparison of 2DOF PID with 1DOF PID in experimental setup .................................... 46 

4.7 SUMMARY OF CHAPTER ................................................................................................. 47 

CHAPTER 5 ............................................................................................................................................ 48 

CONCLUSION AND SUGGETION OF FUTURE WORK ............................................................................. 48 

5.1 CONCLUSION ..................................................................................................................... 49 

5.2 FUTURE WORK .................................................................................................................. 49 

Reference .............................................................................................................................................. 50 

 

 

 



 
 

i 
 

 

Magnetic Levitation is a method by which an object is suspended in air by means of magnetic 

force. Earnshaw stated that static arrangements of magnet cannot levitate a body. The 

exception comes in case of diamagnetic and superconducting materials and by controlling 

magnetic field by control method. Diamagnetic materials or superconducting materials when 

placed in magnetic field produce magnetic field in opposite direction. 

Here the problem of controlling the magnetic field by control method is taken up to levitate a 

metal hollow sphere. The control problem is to supply controlled current to coil such that the 

magnetic force on the levitated body and gravitational force acting on it are exactly equal. 

Thus the magnetic levitation system is inherently unstable without any control action. It is 

desirable to not only levitate the object but also at desired position or continuously track a 

desired path. 

Here a linear and two nonlinear controllers are designed for magnetic levitation system. First 

a robust adaptive backstepping controller is designed for the system and simulated. The 

simulation results shows tracking error less than 0.0001m. The immeasurable state present is 

estimated by Kreisselmeier filter. The Kreisselmeier filter is a nonlinear estimator as well as 

preserves the output feedback form. However the control output is too high. To counteract 

the above problem Nesic backstepping controller is designed for the system by taking Euler 

approximate model of the system. The controller output is well within the range of 0.5~1 

voltage. The reference tracking is also verified in simulation and the tracking error comes in 

range of 0.00015m. A linear controller is also designed for MagLev system as the region of 

operation of magnetic levitation setup is too small. A two degree freedom (2DOF) PID 

controller is designed satisfying a desired characteristics equation. The controller parameters 

are obtained by pole placement technique. The 2DOF PID controller is simulated and 

experimentally validated and it is seen that better result are obtained in 2DOF PID than 

1DOF PID controller. 
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1.1 INTRODUCTION 

Magnetic Levitation is a method by which an object is suspended in the air with no 

support other than the magnetic field. Difficulty in stably levitating an object by using 

inverse square law was studied by Samuel Earnshaw in 1842 [1]. Earnshaw‟s 

Theorem states that a point charge cannot have stable equilibrium position when a 

static force is applied following the inverse square law. This theorem is also 

applicable to the magnetic force of the permanent magnet. Werner Braunbeck 

extended the analysis to uncharged dielectric bodies in electrostatic fields and 

magnetic bodies in magnetostatic fields in 1939. The same analysis was also done by 

Papas (1977). It was observed that for diamagnetic material, super conducting body 

and conducting body with eddy current induced on them can have stable equilibrium 

point.  

1.2 HISTORY OF EVOLUTION 

Work on using permanent magnet can be date back to 1890. Application to shafts of 

wattmeter or spindles was carried out by S.Evershed (1900) [2];Faus (1943) and 

Ferranti (1947) [3,4]. The first demonstration of levitating bodies by using 

superconducting effect is studied by Arkadiev (1945, 1947) [5,6]. Kemper (1937, 

1938) suspended an electromagnet using active control [7]. Holmes in 1937 

developed controlled ac supply electromagnet to suspend rotor of ultra-high using 

speed centrifuges and Beams in 1937 [9][10] developed electromagnetic suspension 

system using control ac electromagnet. Magnetically levitated gyroscope was 

demonstrated by Simon (1953) [11] and levitating a superconducting sphere over 

different arrangement of electromagnets was demonstrated by Culver and Davis 

(1957) [12][13]. Levitation of a vehicle over a superconducting rail was proposed by 

James R. Powell (1963).James R. Powell and Gordon T. Danby (1966) proposed 

attaching a super conductor to base of a vehicle and levitate it over a conducting rail 

[14]. The duo were granted U.S patent for their magnetic levitation train model. There 

were several proposal of using transportation mode by using magnetic levitation was 

proposed in 1960s and 1970s. Japan and Germany are two countries which actively 

took research on mass transportation using magnetic levitation. Germany model 

basically suspends the train on the underside way of guideway using attraction 

between the electromagnet on the train and the rail plate on the underside of the 

carriage. However in Japanese model the train surrounded by guideway wall and 
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track, where the center of guideway is above the superconductor situated under the 

train. In April 2004 Shanghai Transrapid system began commercial operational which 

uses the German method and in March 2005, HSST “Linimo” started commercial 

operational. 

1.3 TYPES OF MAGNETIC MATERIAL 

Classification is made depending on the different type of material behavior towards 

the magnetic field. 

1.3.1 Ferromagnetic material: 

These are the materials in which magnetic moments of atoms or molecules 

align in a regular pattern with all moments pointing in same direction in the 

magnetic field. 

Example: Iron, Nickel, Cobalt, Steel etc. 

1.3.2 Anti Ferromagnetic material: 

These materials have magnetic moments of atom or molecules align in a 

regular pattern with all moments pointing in the opposite direction to 

neighboring moments. 

Example: transition metal compounds especially oxides, Hematite, Chromium, 

Iron Manganese etc. 

1.3.3 Diamagnetic material: 

Diamagnetic materials, when applied to magnetic field create a field in the 

opposite direction to the applied field. Diamagnetism is a quantum mechanical 

effect that occurs in all materials. When only contribution of magnetism is 

considered then it is called as diamagnetic material. 

Example: Copper, Carbon Graphite, Lead etc. 

1.3.4 Paramagnetism: 

Paramagnetic materials are attracted towards the magnetic field and magnetic 

fields induced are in direction of magnetic field when applied with magnetic 

field are. The magnetic property is lost when magnetic field is removed. 

Example: Sodium, Manganese, Lithium etc. 
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1.3.5 Ferrimagnetism: 

Ferrimagnetic materials have magnetic moments opposite as in 

antiferromagnetism but the opposing moments are unequal in ferromagnetic 

materials. 

Example: Yttrium iron garnet, Cubic ferittes composed of iron oxide etc. 

1.4 MAGNETIC FIELD BASICS 

The magnetic field at a certain point can be given by Biot Savart law (1820). The law 

state that a current carrying element „ dl ‟ carrying current „ i ‟ contributes magnetic 

field „ B ‟ at a point „ P ‟ which is normal to plane of „ dl ‟ with vector „ r ‟ is given by 

P

i

dB

dl

r

 

Figure 1.1 Current carrying wire exerting magnetic field at point P

 
0

2

 i dl sin  

4
dB

r

 


   

Where  

0  is permeability constant in free space 

i is current in the element 

B is magnetic field 

dl  small section of wire carrying current 

r  vector from the element to the point „P‟ 

 

 

 

Whereas in magnetic levitation system electromagnetic coil are used to produce the 

magnetic field. Magnetic field inside solenoid is given by 
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R

r

P

x

X

Figure 1.2 Magnetic force exert by solenoid at appoint P 
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      

  

Where  

B, 
0 , i  stands same as above 

n  number of turn in per unit length in solenoid 

,R r   outer and inner radii of solenoid respectively 

,X x    distance between the ends of solenoid to point where the magnetic 

field is measured. 

However we use directly energy balance concept to find out the force acting on the 

levitating body [26]. The magnetic force is derived latter on. 

1.5 MAGNETIC LEVITATION CONCEPT 

Magnetic levitation is an electromechanical coupling concept [35]. The magnetic field is 

created by electromagnet coil which is electrical part attracts the magnetizable material 

or object. The magnetic force is controlled by controlling the current in the coil. When 

the object moves to close the magnet the current in the coil is decreased and vice versa. 

1.6 TYPES OF MAGNETIC LEVITATION 

Magnetic Levitation can be classified according to magnetism as  

a) Levitation by attraction: 

This works on the principle that when two magnets are placed end to end with 

opposite pole facing each other. 

b) Levitation by repulsion 

This works on the principle that when two magnets are place end to end with same 

pole facing each other. 
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Magnetic Levitation can be classified according to principle by which levitation is 

made as [41] 

i) Levitation by repulsive force between magnets of fixed strengths 

ii) Levitation by magnetic field on diamagnetic materials 

iii) Levitation by superconducting surface 

iv) Levitation by eddy current induced on conducting surface due to magnetic 

field 

v) Levitation by force acting on current carrying conductor in magnetic field 

vi) Levitation by controlled DC or AC supply to electromagnetic coil by control 

algorithm 

vii) Mixed   systems where   system are materials where some place the 

permeability is less than 1 and in some place more than 1. 

1.7 APPLICATION OF MAGNETIC LEVITATION 

Magnetic levitation systems have advantages of friction less movement, isolation of 

environment and high precision. Some of the applications of magnetic levitation are 

stated below: 

1.7.1) Magnetic Levitation train: 

Magnetic Levitation (MagLev) train has been the most important usages of 

magnetic levitation technology. The train moves along the guide way with the 

help of magnetic field which helps the train to levitate and propel. In March 2004 

first MagLev commercially implemented was Sanghai‟s Transrapid system which 

uses German model and in April 2005 Japan implemented its own HSST 

„Limino‟.at relatively slow speed than Shanghai one. The fastest train „Lo‟ Japan 

is the fastest train till recorded of speed 603km/hr. 

 

Figure 1.3 Two different model of MagLev train concepts [36].  
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1.7.2) Magnetic Bearing: 

Magnetic bearing use rotor to levitate and rotate with magnetic flux interaction 

from stator mounted electromagnet. Since no contact thus no friction, no drag and 

no wear and tear of parts. Magnetic bearing are used in flywheel as energy storage 

device, as blood pump, micro positioning system and semiconductor industries. 

 

Figure 1.4 Magnetic bearing with controller and position sensing sensor [37] 

1.7.3) Launching Rocket: 

NASA‟s Marshall Space Flight Center at Huntsvhill, Alabama has developed a 

track to magnetically levitate a space craft and give initial velocity to reach escape 

velocity of earth. The project is to make space transportation with less cost. The 

space craft will be able to have 964km/hr when launched from the track without 

having any fuel consumption. 

 

Figure 1.5 Marshall Space Flight Center at Huntsvhill, Alabama. track of 15 meter long [38]. 

1.7.4) Electromagnetic Aircraft launch system: 

Electromagnetic Aircraft launch system uses magnetically levitated based catapult 

to launch aircraft in aircraft carrier. This system achieved better acceleration than 

conventional linear motor as well the stress on air frame of aircraft is also less. 
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Figure 1.6  U.S Navy model MagLev catapult [39] 

1.7.5) MagLev wind turbine: 

Guangzhou Energy Research Institute researcher have estimated that magnetically 

levitated wind turbine can as much 20% more efficient than traditional wind 

turbine. The proposal is given for colossal wind turbine with vertical blades and 

supported by neodymium magnets. Since the efficiency is more thus area required 

to generate same power is much less here than traditional wind turbine. 

 

Figure 1.7 MagLev wind turbine as proposed by Guangzhou Energy Research Institute [17] 

 

1.7.6) MagLev Microrobot 

MagLev microrobots are being studied in University of Waterloo for possible 

application in hazardous environment, for dust free application and micro 

assembly of hybrid microsystems. Behrad Khamesee have presented a paper on it 

[42]. 
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Figure 1.8  Khamesee MagLev microrobot [40] 

There are many more application areas which are continuously being explored. 

MagLev is a new technology which has been an actively research area. 

1.8 SCOPE OF WORK 

Magnetic Levitation is an open loop unstable system. The whole system is an 

elctromechanical coupled system. Thus modeling of the system is difficult task which 

is first carried out. Since the system is nonlinear and unstable thus control problem is 

challenging. Nonlinear and linear control techniques are derived to satisfy certain set 

of performance. The control techniques are then simulated and applied in 

experimental setup to verify their effectiveness. 

1.9 MOTIVATION  

MagLev is a non-contact technology thus finds application in high speed 

transportation system as there is no friction, since there is no friction it can applied to 

high precision system, also absence of friction gives way to no wear and tear of 

moving parts which results in high longevity e.g MagLev bearing and also no dust 

pollution thus creates a clean environment where very high purity is required e.g 

semi-conductor industry. MagLev also creates environment separation thus one can 

operate from one environment to another environment eg. Heart pump, in medical 

industry and in hazardous places. Thus MagLev can be said to be a future technology 

and it has a vast area of application to be uncovered. All this applicability comes at 

the cost of either a good design of superconducting magnet (which is inherently 

stable) or good controller design because fundamentally the levitation by 

electromagnet is unstable. Here we consider for designing a controller which 
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stabilizes the levitated object through continues monitoring of position and feed 

backing it. The MagLev system is a nonlinear and open loop unstable system. Thus it 

provides an exciting opportunity for controller designer to explore different control 

algorithm for the system. 

1.10 LITERATURE REVIEW 

In recent years there has been active research in control of both attractive and 

repulsive type magnetic levitation. Huang(2000) proposed adaptive backstepping 

controller for repulsive magnetic force of a MIMO system. The adaptive backstepping 

controller proposed for decoupling nonlinearities and eliminating uncertainties[3]. 

Yang et al (2000) controller design method was to stabilizing the position error of 

levitated object by a PI controller and adaptive robust nonlinear controller 

(backstepping method) is designed to attenuate the effects of parameter uncertainties, 

so that a small velocity error is ensured[4]. Lepetic et al(2001) applied a method of 

fuzzy predictive functional control to MagLev system. First a lead compensator was 

designed to stabilize the system then fuzzy controller is applied based on TS rule [5]. 

Nesic et al proposed a method to implement backstepping in realtime where plant is in 

continuous form and the controller is implemented though computer or digitally, here 

an Euler approximate model of system is considered and controller is designed 

accordingly [18]. Dan Cho et al (1993) Jalili-Kharaajoo (2003, 2004), and Fallaha et 

al. (2005) proposed sliding mode controllers (SMC) for magnetic levitation system [6, 

7, 8]. In all previous case the velocity state is obtained by psodifferentiation of 

position state. Z-J Yang et al (2008) consider K-filter approach to observer the 

unmeasured state and apply backstepping to the new dynamics. The velocity state is 

estimated by Kreisselmeier filter as it is not measurable [14, 15]. Yang et al. (2011) 

investigate controller via a disturbance observer based control (DOBC) approach to 

address the mismatched uncertainties in system. The author also proposed disturbance 

compensation based on estimated disturbance. The disturbance estimated are 

considered as lumped disturbance and the plant considered is a linearized plant [9]. 

Ghosh et al (2014) designed by using 2-DOF PID controller, the PID parameters are 

obtained by using pole placement techniques [10]. .Beltran-Cabajal et al (2015) 

presented an application of MagLev in a mass spring damper system. The tracking of 

reference is achieved by output feedback controller. The system states are also 

estimated by an estimator [19].  
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Thus a brief conclusion is achieved as there is active research going on adaptive, 

robust control and linear control on Magnetic Levitation system by linearizing plant 

or taking direct nonlinear plant. Thus MagLev provides a test bed to test different type 

controllers. 

1.11 OBJECTIVE 

The objective of the work can be directed to design controller considering the linear 

model as well as nonlinear model. The controller designed is validated by simulating 

and implementing on real time system. 

1.12 THESIS ORGANISATION 

The thesis is organized into five chapters with each chapters has its own subsection. 

The chapters are briefly described as below 

Chapter 1: This chapter briefly introduces the magnetic levitation technology, 

history of development, some application, and motivation of taking the 

project, literature review of some previous works and objective of 

work. 

Chapter 2: This chapter describes the Magnetic Levitation setup on which the 

controller is tested and mathematical modeling of the system. 

Chapter 3: In this chapter controller is designed based on the model achieved. 

Chapter 4: In this chapter the controller designed is simulated and the result are 

discussed. The experiment validation of proposed controller is also 

carried out. 

Chapter 5 Conclusion part and future work are discussed in this chapter. 

1.13 CHAPTER SUMMARY 

This chapter briefly describes the MagLev system working principle, gives a brief 

history of how the MagLev system explored from time to time, some application of 

the MagLev system. The chapter also describes the motivation of author to take the 

project and also the objective which the author set to achieve. 
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2.1 INTRODUCTION 

This chapter gives an idea of the magnetic levitation system provided by “Feedback” 

company and other set of equipment required to perform the experiment. The later 

part of chapter deals with modeling of a magnetic levitation system. In modeling a 

linear and nonlinear model of the MagLev system is derived. Here magnetic force 

causing the levitation is also derived. 

2.2 FEEDBACK MAGNETIC LEVITATION SETUP 

 Magnetic levitation setup plant consists of three important parts 

a) Electromagnetic coil 

b) Infrared light sensors 

c) Metal object 

d) Analogue and Digital interface 

e) Controller from computer 

a) Electromagnetic coil: The electromagnetic coils gives necessary magnetic field 

when current is passed through it. The produced field interacts with the metallic 

object to produce the necessary lifting force. A heat sink is provide to regulate 

the temperature of coil after prolong current supply is provided. 

b) Infrared light Sensor: There are two parts in IR sensor. One is the transmitter of 

IR light and other is receiver of IR light. Base on the amount of light fall on the 

receiver voltage is produced. When object is in levitation position then the 

some part of the lights are blocked and correspondingly voltage is produced. 

The amount of the voltage produced gives the position of the object. 

c) Metal Object: Here a hollow metallic ball is considered as object. The weight 

of the ball is around 20 grams.  

d) Analogue and Digital interface: The Maglev plant is the interface with a 

computer via Analogue and Digital interface as the plant is in continuous time 

domain whereas the computer works in the digital domain. Thus to couple both 

an interface is needed. Sensor output is feed to analogue to digital converter pin 

and the control input from the controller in computer feed to digital to analogue 

converter pin. 

e) Controller: The maglev plant is open loop unstable. Thus to perform levitation 

a controller is needed. The necessary controller is designed in MATLAB or 
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Simulink and connected to MagLev system via Advantech PCI1711 card. The 

control output is bounded to be within +5V and -5V [27]. 

 

Figure 2.1 Magnetic Levitation mechanical unit 

 

Figure 2.2 Analogue control interface unit 

2.3 SET OF EQUIPMENT  

 Set of equipment required for experiment are as follows [27] 

i) Feedback Magnetic Levitation setup 

ii) Hollow metallic ball 

iii) Feedback Analogue control interface 

iv) PC with Windows 2000 or Window XP 

v) MATLAB V7.3(R2006b) or later version 

vi) MATLAB Toolbox required: 

Analogue to digital interface 

Digital to analogue interface 
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 Real Time Workshop with real time target 

 System Identification tool box 

 Control tool box 

vii) Advantech PCI17111 card 

viii) Installation software 

2.4 BLOCK DIAGRAM 

 The block diagram of whole system is given as 

MagLev 

Plant
Controller

Ref
Ball position  

Current to 

magnetic coil

Computer Unit

Feedback by IR sensor

External disturbance

Sensor noise

 

Figure 2.3 Block diagram of Maglev system with controller 

 

Figure 2.4 Schematic diagram of closed loop system 

2.5 MODELING OF MAGLEV SYSTEM 

The metallic ball dynamics under equilibrium position, when applied with 

electromagnetic field is given by Newton law as 
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. . em x m g f                     (2.1) 

Where,  

m = mass of the ball  

x = position of ball 

g = gravitational acceleration 

ef  = magnetic force 

 

 

  

The magnetic force is derived by given J.L Kirtley Jr [26]. 

There are basically two approach of finding the magnetic force i.e Thermodynamic 

argument (conservation of energy approach) and Field method (Maxwell's field 

Tensor) method. 

Here energy approach is used to find the electromagnetic force. The magnetic field 

system is considered as conservative system i.e input energy to the system is same as 

output energy of the system. In the magnetic field system the input is electrical and 

output is mechanical i.e movement of the object. There no loss of energy in the form 

of heat or friction. 

Magnetic field 

system

V

+

-

x

Figure 2.6  Conservative magnetic field system 

Since there is no energy loss the energy stored in the magnetic field system. The 

energy stored in the system depends on two states only i.e flux (   ) or current ( i  ) 

and mechanical position ( x  ) as seen from Figure 2.6. 

 

Metallic 

ball

m.g

 

ef   

Figure 2.5  Net force acting on metallic ball 

ef   
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Electrical power input the conservative system is 

. .e

d
P v i i

dt


    

Mechanical power out of system can be written as 

m e

dx
P f

dt
   

The difference of two is rate of change of energy stored in system 

m
e m

dW
P P

dt
    

e

mdW d dx
i f

dt dt dt


                    (2.2) 

For taking the system from one sate to another, we may write 

( ) ( ) . .

b

m m e

a

W a W b i d f dx    

where  

two states are  
( , )

( , )

a a

b b

a x

b x








 

Now the energy stored the system can be written in term of two state variables i.e 

& x  as  

m m
m

W W
dW d dx

x




 
 

 
                 (2.3) 

Comparing (2.2) and (2.3) we get 

m
e

W
f

x


 


                   (2.4) 

mW
i







                   (2.5) 

Now for multiple electrical terminals or multiple mechanical terminals (2.2) can be 

written as 
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.m k k e

k

dW i d f dx    

. .m edW i d f dx                    (2.6) 

Considering inductance as only function mechanical position (x) 

( ) ( ).x L x i                     (2.7) 

Now integrating equation (2.6) from  = 0 to   and integral over dx is zero we get  

0

.m kW i d



    

From (2.7) 

2

0 0

( ) 1 1 ( )
( ). ( )

( ) ( ) ( ) 2
m

x x
W x d x

L x L x L x

 
 

       

21
. . ( )

2
mW i L x                    (2.8) 

From (2.4) 

m
e

dW
f

dx
    

21 ( )
. .

2
e

L x
f i

x


 


                  (2.9) 

Now total inductance in the system can be written as 

0
1 0( )

x
L x L L

x
                  (2.10) 

Where 

0x  = denote equilibrium position of system 

0L  = denote incremental inductance of ball 

1L  = denote inductance of the coil 

From (2.9) & (2.10) 
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2 2

0 0. 2 2

1

2
e

i i
f L x k

x x
                   (2.11) 

Where k is constant which depends on system 

 Now plant dynamics can be written from (2.1) & (2.11) as 

 
2

1 2

i
x g k

x
                    (2.12) 

 Linearization (2.12) around equilibrium point 0 0,x i   

 ( , )x F i x   

 
0 0 0 0( , ) ( , )| |i x i x

F F
x x di dx

i x

 
   

 
  

  
0 0 0 0( , ) ( , )| |e e
i x i x

f f
di dx

i x

  
   

  
  

  0 0
1 2 3

0 0

2. .
i i

k i x
x x

 
     

 
              (2.13) 

 at equilibrium point from (2.12) 

 

2

1 2

0

0 oig k
x

    

 

2

0
1 2

0

i
g k

x
                   (2.14) 

 From (2.13) and (2.14) 

 
0 0

2 2
g g

x i x
i x

        

Taking  
0

2
i

g
K

i
  and 

0

2
x

g
K

x
    

. .i xx K i K x        

Taking Laplace transform 

2. . .i xs X K I K X        
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2
( ) i

x

KX
G s

I s K


 
 

                 (2.15) 

By substituting equilibrium point as 
0 00.8 & 1.5 (0.009 )i A x V m     

Transfer function of linearized system around equilibrium point is given as 

2

24.525
( )

2180
G s

s





                 (2.16) 

The Feedback MagLev system provided has internal circuit to make voltage 

proportional to current 

1.05i V                    (2.17) 

The output from sensor (
mx  ) is given by 

143.48 2.8v mx x                   (2.18) 

Where  

mx   is actual position in meter, with electromagnet endpoint is considered as 0 meter  

The state space model is given as 

1 2

2

2 1 2

1

x x

i
x g k

x



 
                  (2.19) 

 

where 

 
1x  is given as position state 

 
2x  is given by velocity state 
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2.6 CHAPTER SUMMARY 

This chapter describes the overall system. First the hardware setup description is 

given by Feedback is discussed. Then the set of equipment is described and block 

diagram of the overall system with the controller is shown. Lastly, the mathematical 

model of the system is derived. 
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CHAPTER 3 

CONTROLLER DESIGN FOR MAGNETIC 

LEVITATION SYSTEM 

 

 INTRODUCTION 

 ADAPTIVE BACKSTEPPING CONTROLLER 

 DISCRETE MODEL BACKSTEPPING CONTROLLER 

 TWO DEGREE FREEDOM (2DOF) PID 

 COMPARISION OF THREE CONTROLLERS 

 EXPERIMENTAL RESULT 

 CHAPTER SUMMARY 
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3.1 INTRODUCTION: 
Since MagLev system is an open loop unstable thus controller design is very critical part of 

the close system. Since the system is nonlinear, controller design can be carried out by taking 

nonlinear model as well as linearized model. Since all the states are not measurable a 

nonlinear estimator is also designed. Here three controller are designed 

1) Adaptive Backstepping controller. 

2) Backstepping on Euler approximate of MagLev system. 

3) Two degree freedom (2DOF)PID controller. 

3.2 CONTROLLER DESIGN 

3.2.1: Adaptive backstepping controller: 

Backstepping control design method was by “Krstic, Kanellakopoulos, and 

Kokotovic” circa 1990. Backstepping is a non linear controller which can be applied 

to nonlinear system having strict feedback form. The control technique is to reduce 

the system into subsystem and each system is controlled by an auxiliary control. The 

auxiliary control follows the stabilizing function. The stabilizing function forms the 

control Lyapunov function. The original control is achieved by stepping backing from 

subsystems to last subsystem. Thus the control technique is called backstepping 

control. 

Let a system is given as 

( ) ( )x f x g x                     (3.1) 

u    

Where  , ,nx u     

Note 
1n

x



 
 

 
 are state of system 

u  is control input. 

Assumptions: 

 , : nf g D  are smooth 

 (0) 0f    

   is auxiliary input to (3.1). Stabilizing function is given as ( )x  where 

(0) 0   . Also   a Lyapunov function 
1 :V D   such that 

 1
1( ) ( ) ( ). ( ) ( ) x D

T

a

V
V x f x g x x V x

x


 
      

 
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Where ( ) :aV x D   is positive definite function 

Now the error dynamics is defined as  

Z

Z u

 



 

 
  

Where „u‟ satisfying 21

2
V Z   

Thus control input is derived. 

 

Objective of controller: The design objective to stabilize the error dynamic. Error 

dynamic state are of two states. 1st is error between the plant output(i.e) Ball position 

and reference. 2nd is error between the virtual control and stabilizing function. The 

actual control is backstep by virtual control. 

 

 

Figure 3.1 Schematic diagram of controlsystem with adaptive backstepping controller 

Now from system (2.19) 1x  is only measurable by position sensor but 2x is not 

measurable as an extra sensor to measure accurate velocity may not be cost effective 

and differentiation of 1x  may give noisy output. So we estimate the 2x by 

Kreisselmeier filter [28]. 

 

Kreisselmeier Filter is given by: 

For a system 
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. ( ) ( , )Tx A x y F y u      

1 .Ty e x   

Where 
b

a


 
  
 

 are unknown parameters of system. 

( 1) ( 1)

1

0
( , ) ( ). ( )

p mT

m

F y u y u y
I

 
  



  
   

  
  are the nonlinear terms multiplied with 

parameter uncertainties 

1[ ,......., ]T

nk k k  is chosen such that the matrix 
0

TA A k e    is Hurwitz. 

The observed state will be governed by system 

0x A x   where ˆx x x    

Estimated state is given by 

ˆ Tx                       (3.2) 

Filter is 

 
0

0

( )

( , )T T

A ky y

A F y u

    

   
                  (3.3) 

 

Now Kreisselmeier Filter deign for the system (2.19) 

2 2
ˆe x x    is the error between the estimated velocity and the actual velocity. 

The filter is constructed such that  

2 2x k x    where 2 2 2
ˆx x x    

Now here we estimate 2x  as  

2 1x̂ A kx                     (3.4) 

Where  

2

1k k x g                      (3.5) 

2

2

1

i
k

x
   

                 

(3.6) 

 

The step response for different values of „k‟ in shown in Figure 3.2 .It can be seen that 

as „k‟ increases the tracking error decreases but the initial value of 2x  increases by a 

factor of 10 as k is increased by factor of 10. Thus a oscillatory response is observed 
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in starting in closed loop system with step input. The effect is more prominent in fast 

changing reference signal like square wave, sine wave. Thus „k‟ is taken as 10 

 

 

Figure 3.2  Estimation of state 2x  in closed loop for different k with step reference for different k 

In system (2) we cannot apply backstepping as 2x is not measurable 

Thus new system is formed as to which we apply backstepping 

1 2x x
                    (3.7)  

2

2

1

i
k

x
   

          
          (3.8) 

Design of Backstepping controller for MagLev System 

The design objective is to regulate 1x  to a given set point ry . In the above equations (5) the 

1
st
 equation has   as virtual control, 2

nd
 equation i  is virtual control Thus our goal is to 

stabilize the error co-ordinate as below. 

 Error co-ordinate 

1 1 rZ x y   

2 1Z                          (3.9) 

Taking CLF as 
1 1

1

2
V Z   

Finding 1Z  and stabilizing function 1   

1 1 1 2 rZ kx A AZ y       
      

         (3.10) 

Taking  1 1â   
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Where 
1

a
A

   

 ˆa a a    

 

Thus taking first stabilizing control as  

1 1 1 1 1 1kx c Z d Z                      (3.11) 

  

Thus resulting 1Z   

  1 2 1 1 1 1 rZ AZ c Z d Z Aa y                      (3.12) 

The term - 1  and 1kx  cancels the same term in (3.12) 1 1c Z  produces CLF to be negative ,

1 1d Z  is introduce to give damping as  is present. Here 1 1â   because an unknown term (

A )  is multiplied with 1  in 1Z expression .The term 1Aa  get cancelled in updating law 

2AZ  is canceled in 2Z which we will get later (3.13). 

 

Now  

2 2

2 1 2

1 1

2 2
V x x    

2Z =

2

1 1 1
12

1 1 1

ˆ
ˆ

i
k x

x x

  
  

 

  
    

  
               (3.13) 

 

Here we get control input as  i  as 

 

2 21 1 1 1
1 2 2 1 1 1 2 2

1 1

ˆ ˆ ˆ( ( ) ( ) ( ) )
ˆ

i x k c Z A kx k k x g AZ d Z a
x x a

   
   



   
            

   

                    

(3.14) 

 

 

Where  

1 1 1
1

1

ˆk x a
x a

  
 



  
   

  
 terms are used to cancel the same in (3.13), 2 2c Z  is used to 

produce negative CLF, 1ÂZ  get canceled while considering 2Z   matrix 
21

2 2

1

( )d Z
x





 is 

used to produce damping which is produce to counteract  term. 
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While placing 1Z  2Z  in 2V   

We get extra terms of unknown terms 

Now  

2 2

2

1 2

1 1

2 2
V V a A

 
  

 
 

Finding V  such that it is 
2 2

1 2x x    

Thus tuning law is obtained as  

1 1 1â Z     

1
2 1 2 2

1

Â Z Z Z
x


 
 

  
 

              (3.15) 

Substituting 1, i in 1Z , 2Z  we get 

1 1

1 1

2 11
2 2 22

11

( ) 1

( )

c d A
Z Z

A c d ZZ
xx



    
                              

1

1
1

1

0

0

A
a

Z A
x






 
        

    

                (3.16) 

From the above we note that the 1
st
 matrix is a skew symmetric which is a property of 

backstepping controller, 2
nd

 matrix is error term of 2x  and the last term comes as parameter 

error terms , from the last term we design the tuning laws as transpose of it.as can be seen 

in[28].

 

 

Assumption 

i) Here we consider for modeling plant the internal inductance 0( )L  to 5.518125 mH , 

the initial position 0( )x  to be 0.009m . Thus „A‟ (the unknown parameter) in model comes to 

be 31.241578125 10  (for mass ( )M  =20g). 

0  
k

A
M

   where 0 0
0

2

L x
k    

ii) The initial values of ˆˆ &a A   are taken as 1000 and 31 10  , considering  „A‟ to be in 

310  range. 

Now taking 1 1000c  , 2 2000c  , 1 2 1 22, 2, 100, 100d d       
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The constants value are taken in the guide lines as  1c  less than 2c   because 1c   represents 

rate of decrease of 1Z  (tracking error)and 2c  represent rate of decrease of 2Z  (auxiliary 

controller and stabilizing function error), thus for a fast convergence of auxiliary control with 

stabilizing function the auxiliary controller will control the tracking error. It is seen that with 

less 1c  value initial error is more. However with more value of 1c  the control action is 

increased. Thus a tradeoff is made by choosing 1 1000c  , 2 2000c  , 1d  , 2d  are taken 

small so that the control action will be less. For  „k‟ value should be large as it decides the rate 

of convergence of   but too large will allow more band width thus filter output becomes 

noisy. Thus value of 10k   is taken. The values of 
1 2,   are taken as 100 each as the initial 

values of tuning parameter values are taken too close to the actual values. Taking high values 

of 
1 2,   will increase computational burden and thus increases the response time. 

3.2.2: Backstepping on Euler approximate model of MagLev system 

Backstepping controller technique has very well understood when the plant and the 

controller both are in continuous form. However for digital implementation of 

controller the either of two approach can be taken. One is designing controller for 

continuous time and implementing it directly using sample and hold. A shortcoming 

of the direct implementation of controller is ignoring the sampling completely. Where 

as the other method is to design a controller considering the sampling time by using 

discrete time model of system. However obtaining exact discrete model in strict 

feedback form is unrealistic as the plant is in continuous form. Thus sampling 

destroys strict feedback structure which is necessary for backstepping. Euler 

approximate model however preserves the .strict feedback structure. Dragan.Nesic 

proposed a backstepping controller using an Euler approximate model for a nonlinear 

system[33]. 

 

Let a system given as 

 

( ) ( )x f x g x

u





 


                 (3.17) 

Euler approximate model 

( 1) ( ) ( ( ( )) ( ( )) ( ))x k x k T f x k g x k k                  (3.18) 

( 1) ( ) ( )k k Tu k                     (3.19) 
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Where  

 T is sampling time 

 

Now considering the Theorem given by D.Nesic [33]. 

 

Theorem: Consider the Euler approximate model (3.18). Suppose that there exist 

ˆ 0T   and a pair ( , )T TW  that is defined for all ˆ(0, )T T  and that is a SPA stabilizing 

pair for the subsystem (3.19) ,with    regarded as its control. Moreover suppose 

that the pair ( , )T TW   

has the following properties: 

i) 
T  and 

TW  are continuously differentiable for any ˆ(0, );T T   

ii) there exist K   such that 

( ) ( )T x x   

iii) for any 0   there exist a pair of strictly positive numbers ( , )T M  such that 

for all  0,T T  and x    we have 

,T TW
max M

x x

  
 

  
  

Then there exists a SPA stabilizing pair  ,T Tu V  for the Euler model (3.18),(3.19). In 

particular, we take: 

 ( ) ( ( )) T T
T T

W
u x c x

T T


 

 
                   (3.20) 

where 0c   is arbitrary, 

( ( )) ( )T T Tx T f g x          

 

( )
( )

( ( ( ) ( ) ) ( ) ( )

T
T

T
T

T
T

W
x

W
W

T x T f x d x g x x
x

 
 

  

 



  

   
 

           (3.21) 

 ( ( )) ( ( ))T T T TW W x T f g W T f g                     (3.22) 

 And 21
( ) ( ) ( ( ))

2
T T TV x W x                    (3.23) 

 Thus control law is formulated as above from Theorem. 
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Objective of Controller: For control law obtained above the control output are too 

high, so practical implementation is bit difficult as the actuator input are limited. Thus 

here a controller is designed whose control outputs are bounded. The controller design 

takes into consideration of Euler approximate model. 

 

Figure 3.3  Schematic diagram of Backstepping on Euler approximate model 

The stabilizing function ( ) remains same as derived in (3.11),the K-Filter also 

remains same as in (3.4),(3.5) and (3.6) and error dynamics also remains same (3.9). 

2 2

1 1 1 1

1 1ˆ ˆ[ ( ) ] [ ( ) ]
2 2

T r r r rW x T kx A y Ty x T kx A y Ty                          (3.24) 

 After solving we get. 

2 2
2 2 2 2 2 2 2 2 2

1 1 1 1

ˆ
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) 2 ( ) 2 ( ) 2 ( )

2
T

T A
W T A T kx A x T A kx AT x T A                          

 

21 1ˆ ˆ( ) ( )
2 2

r rTAy T Ay     
           (3.25) 

 Where 2 2

1 1

1 1
( )

2 2
T rW Z x y    is the second stabilizing function. 

( ( 1)) ( ( ))x k x k       

Now we form 
TW  as given by expression (3.21) 
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1 1

1

 

ˆ ˆ( ( ))  =

T

T

T

W
for

W
W

T x T A kx A for
x

 
 

   

 
 

 
   

   
  

            (3.26) 

Equivalent input (
eU )is given by  

 2 1( ) T
e

W
U c AZ

T T


 

 
                    (3.27) 

Solving we get 

2 2
2 2 2

2 1 1 1 1 1 1 2 1

2 1 1 1 1 1 1 1 1

ˆ1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( 2 2 ) ( )( ) ( )
2 2 2

ˆ ˆ ˆ( ) ( )( ( )) ( ( ))( ) =

r r

e

r

T A
c T A Tkx A Tx A x T A Ay TAy x T A a c d x AZ

U

c x x y x T A kx A a k c d A kx AZ

       

       

 
               

  
               

                 (3.28) 

The actual control is given as 

 

2

1

2

1

( )  

( )  =

e

e

x
g U for

A
U i

x
g U for

A

 

 

 
  

 
   

 
 

 

               (3.29) 

Constants 
1 2, 50c c   .,

1 2d   and 0.001T    

3.2.3: 2DOF PID compensation design for MagLev system 

PID controller also called as „three term controller was introduced by Taylor 

Instrument Company in 1936. PID controller can be interpreted as „P‟ depends on 

„present error‟, „I‟ depend on „accumulated past error‟ and „D‟ depends on „Future‟ 

error. The weighted sum of these three elements is control signal which is applied to 

plant control input. 

Plant
PID 

Controller

Ref Output

 

Figure  3.3 Schematic PID controller. 

Above controller act only on the error term, thus can be referred as one degree of 

freedom (1DOF). Whereas if we shift the controller to left of summing point, we will 

have two controllers i.e one acting plant output and other on reference signal. Thus we 
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have two parameters to control and can be said as two degree of freedom (2DOF). In 

2DOF PID we have two section, one controller in the feedback deals with process 

uncertainties and disturbance and other in feedforward deals with fastness of response 

to reference signals. 

Feed forward 

control

Feedback

control 

Plant

 

Figure 3.5  Schematic diagram of 2DOF controller 

Objective of controller: Previously nonlinear controllers designed are too 

complicated. Moreover the Magnetic Levitation setup has very small region of 

operation thus a linear controller can rightfully be applied. Two degree of freedom (2 

DOF) has advantage over single degree freedom(1 DOF) as we can separate control 

problem into two section, one controller in the feedback deals with process 

uncertainties and disturbance and other in feedforward deals with response to 

reference signals [25]. 

2DOF PID design for MagLev system: 

Taking the transfer function from (2.16), current and voltage relationship from (2.17) 

and senor output from (2.18) we obtain the overall transfer function as 

2

3694.78935
'( )

2180

vx
G s

u s

 
 
 

               (3.30) 

 

 

Overall plant 

Reference Output 
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Figure 3.6  Schematic diagram of linear model

 

Figure 3.7  Schematic diagram of 2DOF PID 

The Plant of Figure is (3.30). 

From (3.30) it is found that open loop poles are located at 46.69   

1 2

3 2

.( . )

( 2180)

v

d p i

x N s P P

r s k Ns k N s k N

 


    
             (3.31) 

Where 3694.78935N    

Character equation 

 
3 2 ( 2180)eq d p iCR s k Ns k N s k N    

             (3.32) 

Values of , &p i dk k k  value are obtain by pole placement  

Desired characteristic equation is designed considering damping ration as 0.9   and 

settling time as 1 second. 

2 2( )( 2 )des n nCR s a s s    
 

Settling time from eqnCR  is   

= min(time constant of ( )s a  ,time constant of 

2 2( 2 )n ns s   ) 

   = 1 1
4 min( , )

na



    

Therefore 
1

a
 1

n
  

na    

4
1secs

n

t


    

4.44 / secn rad    

Now the desired characteristic equation becomes 
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2( )( 8 19.75)desCR s a s s     

Loop transfer function is given 
2

2

( )
( ) ( ). ( )

2180

d p ik s k s k N
L s G s C s

s s

 
  


  same for 

1DOF of PID. 

S is sensitivity of function 
1 1

1 ' 1
S

G C L
 

  
  

T is complementary sensitivity function 
'

1 ' 1

G C L
T

G C L


 

  
  

Now pole „a‟ is selected such that 2 & 2S T
 
   thus ensuring good robustness 

and disturbance rejection 

Pole „a‟ should be placed far from 
n  . 

Taking a=1000 the sensitivity and complimentary sensitivity less than 2 is achieved. 

 

Figure 3.8 (a)  Bode plot of sensitivity function. showing magnitude maximum of 0db 

 

 

Figure 3.8(b)  Bode plot of complementary sensitivity function. The maximum value is 2.1db 
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Thus the desired characteristic equation becomes 

 
2( 1000)( 8 19.75)desCR s s s       

Now for tracking at t   i.e s=0, x r    

0

1
s

x

r 


 


  

2

i

Px

r k





  

2 iP k    

Now comparing the desired 
desCR  with plant eqnCR  we obtain 

2

5

2.76

0.2728

5

i

p

d

i

k

k

k

P k

 

 

 

  

  

Now 
1P  is fine-tuned so that we can obtain quick response. 

The controller is validated with 
1P  values as 0,1,-1,-2. 

3.5 CHAPTER SUMMARY 

In this chapter three different controllers has been designed based on nonlinear 

continuous model, nonlinear discrete model and linear continuous model. A detailed 

derivation of controllers has been presented. 
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CHAPTER 4 

SIMULATION AND RESULTS 

 
 INTRODUCTION 

 SIMULATION OF ADATIVE BACKSTEPPING CONTROLLER 

ON MAGLEV SYSTEM  

 SIMULATION OF BACKSTEPPING ON EULLER 

APPROXIMATE MODEL OF MAGLEV SYSTEM 

 SIMULATION OF TWO DEGREE FREEDOM (2DOF) PID ON 

MAGLEV SYSTEM 

 COMPARISION OF RESULT OF ALL CONTROLLER 

 EXPERIMENTAL RESULT OF 2DOF CONTROLLER 

 CHAPTER SUMMARY 
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4.1 INTRODUCTION 
While apply a designed controller to real world system it better to study the controller 

effect on a model which replicate real world system because if some consideration in 

designing controller is not taken then great damage may made to system. MATLAB 

Simulink is a tool on which a real world model can be represented and studied the 

result of controller. If any required changes are required then appropriate changes can 

be made. 

4.2 SIMULATION OF ADATIVE BACKSTEPPING CONTROLLER 

ON MAGLEV SYSTEM 

 The Figure 4.1 shows tracking performance of MagLev system for different 
1 2 and c c  

values. It is observed that with increase of 
1 2 and c c  values the tracking error reduces. 

However it is found that with increase of 
1 2 and c c  values the control signal values 

also increases. Thus a tradeoff is taken between tracking error and control signal 

values. Thus 
1 2 and c c  values are set to 1000 and 2000. 

 

Figure 4.1  Showing tracking response with step as reference for different
1 2&c c  values  

 

It is also observed from above Figure 4.1  that the there is a baising as the state 1x  

doesnot converge with the reference.This can be explained as, from (3.12)it is seen 

that in the stabilizing function ( 1 1â   ) the â  doesnot converge exactly to a  .The 

tunning function (3.15) can give us an idea that, as the initial value of â  is taken as 

1000 then the rate of change of â  comes in range of 510 . 
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Now the MagLev model is tested with different mass of ball and simulated. Mass of 

ball considered in designing the controller is 20g. Now to test the adaptive nature of 

controller we test the sytem for double mass of ball i.e 40g and for half mass of ball 

i.e 10g.  

 

Figure 4.2  Simulation plot for different mass of ball  

Now from Figure 4.2 it is observed that there is undershoot for mass 20g & 10g but 

there is an overshoot for mass 40g.because form(3.12) it is seen that the 
1Z  depends 

directly on .For mass 40g  is positive thus the slope i.e  rises until the term 

 is greater than  but for mass 20g and 10g is negative thus slope 

initially decreases until  is greater. 

Simulation result of MagLev system with different reference with

1 2 1 2 1 21000, 2000, 2, 2, 100, 100c c d d         : 

 

Figure 4.3  Simulation plot of MagLev system with sqaure wave reference 

 is –ve after  , 

but value too small 

 is +ve after  , 

but value too small 



 
 

40 
 

 

Figure 4.4  Simulation plot of MagLev system with Sine wave reference 

However control signal values comes out to be very high in this controller as shown 

in Figure 4.5 for step reference. During the time of parameter estimating and state 

estimating the control values comes out to be very high. 

 

Figure 4.5  Control signal values for step reference. 

 

4.3 SIMULATION OF NESIC BACKSTEPPING CONTROLLER ON MAGLEV 

SYSTEM 

 The Figure 4.6 shows tracking performance of MagLev system for different 
1 2 and c c  

values. It is observed that with increase of 
1 2 and c c  values the tracking error reduces. 

However it is found that with increase of 
1 2 and c c  values the control signal values 

also increases. Thus a tradeoff is taken between tracking error and control signal 

values. Here 
1 2 and c c  values are set much less than previous controller method. The 

control values also come out to be very less as seen in Figure 4.7. 
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Figure 4.6  Simulation plot for step reference with different 
1 2&c c  values 

It is observed that there is an undershoot initially which is reasoned out as the time 

taken by filter parameter „ ‟ to be same with auxiliary control „ ‟ . 

 
Figure 4.7  Plot of error between auxiliary control and stabilizing function 

 

Now simulation is done for different reference inputs. 

 

Figure 4.8  Simulation result for square wave reference  
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Figure 4.9  Simulation result for Sine wave as reference  

4.4 SIMULATION OF MAGLEV SYSTEM WITH 2DOF PID 

CONTROLLER 

 The 
1P  gain of forward loop PI controller is set so as to achieve fast response. Thus for 

different values of 
1P  the Maglev model with 2DOF PID is run. 

 

Figure 4.10  Simulation results of MagLev model with different value of 
1P   

It is seen  from Figure 4.10 that there is an initial overshoot which can be reasoned out 

as sensor offset. 

With increase of 
1P  value in positive direction the overshoot increases and with 

increase in negative direction the overshoot decreases but it is seen there is an 

undershoot as for large negative value of
1P . 
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Thus 
1P  value is set as -1 

Tracking for different reference signal is shown in figure   

 

Figure 4.11  Simulation result of MagLev system with square wave reference 

 

Figure 4.12  Simulation result of MagLev system with Sine wave reference 

 

4.5 COMPARISION OF THREE CONTROLLERS 

It is observed from Figure 4.13 that all three controllers have very good tracking 

performance. However settling time of 2DOF PID is more than other. There is an 

initial overshoot for 2DOF PID and undershoot for backstepping on Euler 

approximate model. 
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Figure 4.13  Plot of all controller for square wave reference 

 

Figure 4.13  Plot of all controller for sine wave reference  

The desirable control output from controller is from -5V to +5V. However the control 

output from backstepping controller is in range of 200 and during parameter tuning 

the controller output comes in range of 2000. However backstepping based on Euler 

approximate model it is observed that the controller output comes in range of 0.5. For 

2DOF PID also it is observed that the controller output comes in range of 1. 
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Figure 4.15  Plot of all controller control values 

Table 4.5.1 Comparison of all controller performance 

CONTROLLER 
SETTLING TIME 

(Seconds) 

TRACKING ERROR 

(millimeter) 

CONTROLLER OUTPUT 

 

Adaptive backstepping 0.2 0.1 2000 

Nesic backstepping 0.3 0.1 .5 

2DOF PID 1 0.1 1 

 

4.6 EXPERIMENTAL RESULT OF 2DOF CONTROLLER 

 

Figure 4.16  Experimental setup 

Control algorithm implementation 

Analogue control interface 

Magnetic Levitation system Levitated ball by controller 
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4.6.1: 2DOF PID with P1 values: 

2DOF PID is tested with different forward path proportional control values. It is 

observed that for P1 values greater than -1 in negative value the undershoot is not 

being able to control as a result the levitated ball falls down. Similarly for P1 value 

higher than 1 , the overshoot is not able to being contained and is attracted to magnet. 

The Figure 4.17 shows for different P1 values the MagLev setup response for square 

wave reference. It is observed that for P1 =-1 best result is achieved. 

 

Figure 4.17  2DOF PID with different P1 values 0,-1,1 

4.6.2: Comparison of 2DOF PID with 1DOF PID in experimental 

setup 

Now a 2DOF PID is compared with 1DOF PID where it is observed that for 2DOF 

apart from the initial overshoot there is no overshoot. However for 1DOF PID it is 

observed that the overshoots are present. With overshoot the system robustness is also 

decreased. Thus 1DOF is more venerable to instability than 2DOF PID in case of 

disturbance. A comparison 1DOF PID is done with 2DOF PID is shown in Figure 

4.18. 

 

Figure 4.18  Comparison  of 2DOF PID and 1DOF PID 

With different P1 values speed of response changes 

Shows 1DOF PID has high overshoot and 

2DOF PID has very less overshoot. The P1 

value is taken as -1 and rest all values are 

same for both 
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Table 4.6.1 Comparison of experimental results of 2DOF PID and 1DOF PID. 

CONTROLLER 
RISE TIME 

(Seconds) 

SETTLING TIME 

(Seconds) 

TRACKING 

ERROR 

(millimeter) 

OVERSHOOT 

(millimeter) 

2DOF PID 1 1.5 0 0.5 

1DOF PID 0.4 1.5 0 1.3 

 

4.7 SUMMARY OF CHAPTER 

In this chapter simulation results of all three controllers are presented. Experimental 

validation of 2DOF PID controller is done and a comparison with 1DOF PID is done. 

A detail analysis of performance of all controllers has been done in chapter. 
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CHAPTER 5 

CONCLUSION AND SUGGETION OF 

FUTURE WORK 
 

 CONCLUSION 

 SUGGESTION OF FUTURE WORK 
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5.1 CONCLUSION 

In this thesis a detailed modeling and controller design for MagLev system was 

carried out. Validation of controller was done in simulation and experiment. 

Firstly adaptive backstepping controller was designed. The only output of MagLev 

system is position of levitated body. Since all sates are not available in output a state 

estimator was designed. However for backstepping strict output feedback form is 

required. Kreisselmeier filter was implemented to estimate the immeasurable state. 

Kreisselmeier filter also preserves the strict feedback form. The filter was able to 

estimate the state in 0.5 seconds. The simulation result shows excellent tracking 

performance of the proposed controller. The error in tracking comes out to be less 

than 0.1milimeter. 

It was observed that adaptive backstepping controller has control output more than 

that of our required control signal i.e +5V and -5V, thus a modification was made to 

backstepping controller. Backstepping on Euler approximate model shows excellent 

tracking with control value less than 1V. The error value here comes out be 0.5 

millimeter. However it was observed that the controller could not be applied to real 

time experiment as the real time implementation can be only carried by running the 

Simulink on “fixed time” solver type with constrain on sampling time as 0.001sec. 

The proposed controller runs finely with variable time  

For real time experiment implementation 2DOF PID controller was proposed. The 

controller was tested on magnetic levitation setup. The experimental result shows 

excellent tracking with tracking error of 0.5 millimeter. The controller was also tested 

with small external disturbance to the levitated ball. 

5.2 FUTURE WORK 

 . 

The magnetic levitation hardware which is provided can be interfaced with computer 

with Simulink model. The Simulink model has to be run with „fixed time type solver‟. 

At present the backstepping based on Euler approximate model is running finely in 

„variable time type solver‟ but in „fixed time type solver‟ the controller is not being 

able to track the reference. The controller is only being able to show proper tracking 

with sampling time of 0.00001 seconds. The problem might be due the estimator 

which is designed according to continuous time system and the taking Euler 

approximate of the estimator model. The estimator approximation is not taken into 

account in designing the controller.The possible solution can be designing the 

controller which takes the estimator Euler approximation into account or by designing 

a new estimator which preserves strict feedback form of backstepping. 
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