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ABSTRACT 

Keywords: OMRF, SMRF, Response Reduction Factor, Pushover, Ductility, Confinement 

models 

Moment resisting frames are commonly used as the dominant mode of lateral resisting 

system in seismic regions for a long time. The poor performance of Ordinary Moment 

Resisting Frame (OMRF) in past earthquakes suggested special design and detailing to 

warrant a ductile behaviour in seismic zones of high earthquake (zone III, IV & V). Thus 

when a large earthquake occurs, Special Moment Resisting Frame (SMRF) which is specially 

detailed with a response reduction factor, R = 5 is expected to have superior ductility. The 

response reduction factor of 5 in SMRF reduces the design base shear and in such a case 

these building rely greatly on their ductile performance. To ensure ductile performance, this 

type of frames shall be detailed in a special manner recommended by IS 13920. The objective 

of the present study is to evaluate the R factors of these frames from their nonlinear base 

shear versus roof displacement curves (pushover curves) and to check its adequacy compared 

to code recommended R value. 

The accurate estimation of strength and displacement capacity of nonlinear pushover curves 

requires the confinement modelling of concrete as per an accepted confinement model. A 

review of various concrete confinement models is carried out to select appropriate concrete 

confinement model. It is found that modified Kent and Park model is an appropriate model 

and it is incorporated in the modelling of nonlinearity in concrete sections. The frames with 

number of storeys 2, 4, 8, and 12 (with four bays) are designed and detailed as SMRF and 

OMRF as per IS 1893 (2002). The pushover curves of each SMRF and OMRF frames are 

generated and converted to a bilinear format to calculate the behaviour factors. The response 

reduction factors obtained show in general that both the OMRF and SMRF frames, failed to 

achieve the respective target values of response reduction factors recommended by IS 1893 

(2002) marginally. The components of response reduction factors such as over-strength and 

ductility factors also evaluated for all the SMRF and OMRF frames. It was also found that 

shorter frames exhibit higher R factors and as the height of the frames increases the R factors 

decreases. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 CONCRETE CONFINEMENT 

Column shear failure has been identified as the frequently mentioned cause of concrete 

structure failure and downfall during the past earthquakes. In the earthquake resistant 

design of reinforced concrete sections of buildings, the plastic hinge regions should be 

strictly detailed for ductility in order to make sure that severe ground shaking during 

earthquakes will not cause collapse of the structure. The most important design 

consideration for ductility in plastic hinge regions of reinforced concrete columns is the 

provision of adequate transverse reinforcement in the form of spirals or circular hoops 

or of rectangular arrangements of steel. The cover concrete will be unconfined and will 

eventually become ineffective after the compressive strength is attained, but the core 

concrete will continue to carry stress at high strains. Transverse reinforcements which 

are mainly provided for resisting shear force, helps in confining the core concrete and 

prevents buckling of the longitudinal bars. The core concrete which remains confined 

by the transverse reinforcement is not permitted to dilate in the transverse direction, 

thereby helps in the enhancement of its peak strength and ultimate strain capacities. 

Thus confinement of concrete by suitable arrangements of transverse reinforcement 

results in a significant increase in both the strength and the ductility of compressed 

concrete.  

Confining reinforcements are mainly provided at the column and beam ends and beam-

column joints. The hoops should enclose the whole cross section excluding the cover 

concrete and must be closed by 135° hooks embedded in the core concrete, this prevents 

opening of the hoops if spalling of the cover concrete occurs. Seismic codes recommend 

the use of closely spaced transverse reinforcement in-order to confine the concrete and 

prevent buckling of longitudinal reinforcement.  

Ductile response demands that elements yield in flexure and shear failure has to be 

prevented. Shear failure in columns, is relatively brittle and can lead to immediate loss 

of lateral strength and stiffness. To attain a ductile nature, special design and detailing 

of the RC sections is required. IS 13920 recommends certain standards for the provision 

of confining reinforcements for beams and columns. The code suggests that the primary 
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step is to identify the regions of yielding, design those sections for adequate moment 

capacity, and then estimate design shears founded on equilibrium supposing the flexural 

yielding sections improve credible moment strengths. The probable moment capacity 

is considered using methods that give a higher estimate of the moment strength of the 

planned cross section. Transverse reinforcement provision given in IS 13920 is given 

in Figures 1.1 a, 1.1 b and 1.2 for Columns and beams. 

 

 

Fig 1.1 (a) 

 

Fig 1.1 b 

Transverse Reinforcement in columns (Reference: IS 13920(2002)) 
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Fig 1.2 – Shear Reinforcement in beams (Reference: IS 13920(2002)) 

1.2 CONFINEMENT MODELS FOR CONCRETE 

Various models for the stress-strain relation of concrete have been suggested in the past. 

Though the performance of concrete up to the peak concrete strength is well established, 

the post-peak part and the behaviour of high-strength concrete have not been explored. 

A proper stress-strain relation for confined concrete is required. Confinement in 

concrete is attained by the suitable provision of transverse reinforcement. At small 

intensities of stress, transverse reinforcement is barely stressed; the concrete behaves 

much like unconfined concrete. At stresses near to the uniaxial strength of concrete 

interior fracturing leads the concrete to expand and bear out versus the transverse 

reinforcement which causes a confining action in the concrete. This occurrence of 

confining concrete by appropriate arrangement of transverse reinforcement grounds a 

significant hike in the strength and ductility of concrete. The improvement of strength 

and ductility by confining the concrete is a significant feature that needs to be reflected 

in the design of structural concrete elements particularly in areas susceptible to seismic 

activity. Again, several models are available for the stress-strain relation of confined 

concrete.  

In this study different models are taken into account and studied. IS code provides a 

stress-strain relation which does not consider any effect of confinement. Other models 

that were developed which evaluated the stress strain relation considering the 

confinement effect were Kent and Park model (1971), Modified Kent and Park model 

(Scott 1982), Mander’s model (Mander 1988a, 1988b), Razvi Model (Saatcioglu and 

Razvi 1992) etc. Detailed explanations of each model are given in Chapter 3. In this 
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project Modified Kent and Park model is used, as this model shows the highest 

percentage increase in column capacity and ductility and is more close to Indian 

conditions.  

1.3 SPECIAL AND ORDNARY MOMENT RESISTING FRAMES (SMRF AND 

OMRF) 

According to Indian standards moment resisting frames are classified as Ordinary 

Moment Resisting Frames (OMRF) and Special Moment Resisting Frames (SMRF) 

with response reduction factors 3 and 5 respectively. Another main difference is the 

provision of ductile detailing according to IS 13920 as explained in Section 1.1 for the 

SMRF structures. The differences between these two are given in Table 1.1. Different 

international codes classify buildings in different ways which are elaborated in Section 

2.2. 

Table 1.1 Differences between SMRF and OMRF 

SMRF OMRF 

It is a moment-resisting frame specially 

detailed to provide ductile behaviour and 

comply with the requirements given in 

IS 13920. 

 

It is a moment-resisting not meeting 

special detailing requirement for ductile 

behavior. 

 

Used under moderate-high earthquakes Used in low earthquakes 

R = 5 R = 3 

Low design base shear. High design base shear. 

It is safe to design a structure with 

ductile detailing. 

It is not safe to design a structure 

without ductile detailing. 
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1.4 RESPONSE REDUCTION FACTOR (R)  

It is the factor by which the actual base shear forces, that would be generated if the 

structure were to remain elastic during its response to the Design Basis Earthquake 

(DBE) shaking, shall be reduced to obtain the design lateral force (IS 1893 Part 1, 

2002).This factor permits a designer to use a linear elastic force-based design while 

accounting for non-linear behaviour and deformation limits. Response reduction factor 

of 3 is used for OMRF and 5 for SMRF during the building design. In this project four 

different RC plain frames designed as both OMRF and SMRF is considered and its 

response reduction factors are calculated by using non-linear static analysis. Detailed 

steps involved in calculation of R are given in Chapter 4. 

 

1.5 MOTIVATION AND OBJECTIVES OF THE PRESENT STUDY 

Moment-resisting frames are commonly used in urban areas worldwide as the dominant 

mode of building construction. However, documented poor performance of ordinary 

moment frames in past earthquakes warned the international community that this 

structural system required special design and detailing in order to warrant a ductile 

behaviour when subjected to the action of strong earthquake. When large earthquake 

occurs, SMRF is expected to have superior ductility and provide superior energy 

dissipation capacity. Current design provisions assigned the highest R factor to SMRF. 

The elastic forces are reduced by a response reduction factor to calculate the seismic 

design base shear. The building shall be detailed as Special Moment Resisting Frames 

(SMRF) if the value of R assumed is 5. Once the design is being done, it is required to 

ensure that the designed building exhibit the adequate behaviour factors or response 

reduction factors. Present study is an attempt to evaluate the response reduction factors 

of SMRF and OMRF frames and to check the adequacy of R factors used by IS code. 

The broad objectives of the present study have been identified as follows: 

 To review various existing Confinement Models for concrete  

 To find response reduction factors (R) for frames designed as SMRF and OMRF 

according to IS 1893 (2002). 

 To determine the over-strength and ductility factors for SMRF and OMRF 

frames  



6 | P a g e  
 

 

1.6 SCOPE OF WORK 

The present study is limited RC plane frames without shear wall, basement, and plinth 

beam. The stiffness and strength of Infill walls is not considered. The soil structure 

interface effects are not taken into account in the study. The flexibility of floor 

diaphragms is ignored and is considered as stiff diaphragm. The column bases are 

assumed to be fixed in the study. OpenSees platform (McKenna et al., 2000) is used in 

the present study. The non-linearity in the material properties are modeled using fiber 

models available in OpenSees platform. 

1.7 ORGANISATION OF THE THESIS 

Following this introductory chapter, the organisation of further Chapters is done as 

explained below.  

i. A review of literature conducted on various fields like confinement models, 

ductility, pushover, and response reduction factor are provided in Chapter 2. 

ii. Review of existing confinement models, details of various SMRF and OMRF 

frames and parametric study are discussed in Chapter 3. 

iii. Modelling and nonlinear static pushover analysis of the SMRF and OMRF 

frames and calculation of response reduction factors are covered in Chapter 4. 

iv. Finally in Chapter 5, discussion of results, limitations of the work and future 

scope of this study is dealt with. 
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Chapter 2 

LITERATURE REVIEW 

 

2.1 GENERAL 

An extensive literature review was carried out prior to the project. The survey of 

literature includes classification of RC framed buildings, SMRF and OMRF, response 

reduction factor, various stress strain models and pushover analysis.  

 

2.2 SMRF and OMRF 

 

IS 1893 (Part 1), 2002.Criteria for earthquake resistant design of structures Part 1 

General provisions and buildings, Bureau of Indian Standards (BIS) classifies RC frame 

buildings into two classes, Ordinary Moment Resisting Frames (OMRF) and Special 

Moment Resisting Frames (SMRF) with response reduction factors 3 and 5 

respectively. Response Reduction Factor (R) is the factor by which the actual base 

shears that would be generated if the structure were to remain elastic during its response 

to the Design Basis Earthquake (DBE) shaking, shall be reduced to obtain the design 

lateral force.  

 

ACI 318: Building code requirements for reinforced concrete and commentary, 

published by American Concrete Institute. ASCE 7 classifies RC frame buildings into 

three ductility classes: Ordinary Moment Resisting Frame (OMRF), Intermediate 

Moment Resisting Frames (IMRF) and Special Moment Resisting Frames (SMRF) and 

corresponding reduction factors are 3, 5 and 8, respectively. 

Euro-code 8: Design of structures for earthquake resistance - Part 1: General rules, 

seismic actions and rules for buildings, European Committee for Standardization, aims 

to ensure the protection of life during a major earthquake simultaneously with the 

restriction of damages during more frequent earthquakes. Euro-code 8 (EN 1998-1) 

classifies the building ductility as Ductility Class low (DCL) that does not require 

delayed ductility and the resistance to seismic loading is achieved through the capacity 

of the structure and reduction factor q = 1.5, Ductility Class Medium (DCM) that allows 

high levels of ductility and there are responsive design demands with reduction factor 

1.5 <q <4  and Ductility Class High (DCH) that allows even higher levels of ductility 
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and there are responsive strict and complicated design demands and reduction factor 

q>4. 

Khose et al. (2012) performed an overview of ductile detailing requirements for RC 

frame buildings in different seismic design codes. The results obtained were as shown 

in Table 2.1.  

Table 2.1: Ductile detailing Criteria as per different codes 

               ○ Provision is not available  

                                                                   ● Provision is available 

 

 

Ductile Detailing Criteria 

ASCE 7 Euro-code 8 IS 1893 
O

M
R

F
 

IM
R

F
 

S
M

R
F

 

D
C

L
 

D
C

M
 

D
C

H
 

O
M

R
F

 

S
M

R
F

 

Capacity 

Design 

Strong column 

Weak beam 

○ 

 

○ 

 

● 

 

○ 

 

● 

 

● 

 

○ 

 

○ 

 

Capacity shear 

for column 

○ 

 

● 

 

● 

 

○ 

 

● 

 

● 

 

○ 

 

● 

 

Capacity shear 

for beam 

○ 

 

● 

 

● 

 

○ 

 

● 

 

● 

 

○ 

 

● 

 

Special 

Confinement 

Reinforcement 

Column 

○ 

 

● 

 

● 

 

○ 

 

● 

 

● 

 

○ 

 

● 

 

Beam 

○ 

 

● 

 

● 

 

○ 

 

● 

 

● 

 

○ 

 

● 

 

Special 

Anchorage 

Reinforcement 

Interior joint 

○ 

 

○ 

 

● 

 

○ 

 

● 

 

● 

 

○ 

 

● 

 

Exterior joint 

○ 

 

○ 

 

● 

 

○ 

 

● 

 

● 

 

○ 

 

● 

 

Joint shear design 
○ 

 

○ 

 

● 

 

○ 

 

○ 

 

● 

 

○ 

 

○ 
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 Han and Jee (2005) investigated the seismic behavior of columns in Ordinary Moment 

Resisting Frames (OMRF) and Intermediate Moment Resisting Frames (IMRF). In their 

study two three-story OMRF and IMRF were designed as per the minimum design and 

reinforcement detailing requirements suggested by ACI 318-02. The IMRF interior 

column specimens exhibited superior drift capacities compared to the OMRF column 

specimens. According to the test results, the OMRF and IMRF column specimens had 

drift capacities greater than 3.0% and 4.5%, respectively. Ductility capacity of OMRF 

and IMRF specimens exceeded 3.01 and 4.53, respectively. 

 

Sadjadi et al. (2006), conducted an analytical study for assessing the seismic 

performance of RC frames using non-linear time history analysis and push-over 

analysis. A typical 5-story frame was designed as ductile, nominally ductile and GLD 

structures. Most of the RC frame structures built before 1970 and located in areas prone 

to seismic actions were designed only for gravity loads without taking into account the 

lateral loads. These structures were referred to as Gravity Load Designed (GLD) 

frames. The lack of seismic considerations in GLD structures resulted in non-ductile 

behavior in which the lateral load resistance of these buildings may be insufficient for 

even moderate earthquakes. It was concluded that both the ductile and the nominally 

ductile frames behaved very well under the considered earthquake, while the seismic 

performance of the GLD structure was not satisfactory. After the damaged GLD frame 

was retrofitted the seismic performance was improved. 

 

 Uma and Jain (2006) conducted a critical review of recommendations of well-

established codes regarding design and detailing aspects of beam column joints. The 

codes of practice considered are ACI 318M-02, NZS 3101: Part 1:1995 and the Euro-

code 8 of EN 1998-1:2003. It was observed that ACI 318M-02 requires smaller column 

depth as compared to the other two codes based on the anchorage conditions. NZS 

3101:1995 and EN 1998-1:2003 consider the shear stress level to obtain the required 

stirrup reinforcement whereas ACI 318M-02 provides stirrup reinforcement to retain 

the axial load capacity of column by confinement. ACI requires transverse 

reinforcement in proportion to the strength of the concrete whereas NZS sets limits 

based on the level of nominal shear stress that is experienced by the joint core. EN 

provides shear reinforcement to confine the joint and to bring down the maximum 

tensile stress to design value. NZS and EN codes emphasize on provision of 1350 hook 
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on both ends of the cross-ties; whereas ACI code accepts 1350 at one end and 900 hooks 

at the other end and insists on proper placement of stirrups to provide effective 

confinement. In general, the provisions of the NZS are most stringent, while the ACI 

code provisions are most liberal. The EN code has followed a somewhat middle path: 

in some respects it is more conservative like the NZS code, while in other respects it is 

closer to the ACI provisions. Therefore it was concluded that the EN code provisions 

are more likely to offer a good model to follow for the countries in the process of 

developing their own codes. 

 

 

2.3 DUCTILITY 

 

V. Gioncu (2000) performed the review for ductility related to seismic response of 

framed structures. The required ductility was determined at the level of full structure 

behaviour, while the available ductility was obtained as local behaviour of node (joint 

panel, connections or member ends). The checking for ductility of columns is generally 

a difficult operation. For SMRF structures, the column sections are enlarged to achieve 

a global mechanism. This over-strength of the column may reduce the available 

ductility of columns. At the middle frame height a drastic reduction of available 

ductility was observed.  Since the required ductility is maximum at this height, the 

collapse of the building may occur due to lack of sufficient ductility. This was 

commonly observed during the Kobe earthquake, where many building were damaged 

on the storeys situated at the middle height of structure. It was observed that the factors 

regarding seismic actions, such as velocity and cycling loading, reduce the available 

ductility. 

 

Sungjin et al. (2004) studied different factors affecting ductility. Evaluation of the 

distortion capacity of RC columns is very important in performance-based seismic 

design. The deformation capacity of columns is generally being expressed in numerous 

ways which are curvature ductility, displacement ductility or drift. The influence of 

concrete strength, longitudinal reinforcement ratio, volumetric ratio of confining 

reinforcement, shear span-to-depth ratio and axial load on various ductility factors were 

evaluated and discussed. 
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Saatcioglu & Razvi (1992) suggested that there is a direct relationship between lateral 

drift and concrete confinement grounded on their investigations. They resolved that the 

shear span to depth ratio (L/h) did not show a noticeable effect on drift capacity when 

the P-delta effect was taken into account and that the quantity of longitudinal 

reinforcement had an insignificant influence. They also illustrated that a rise in the 

concrete strength leads to reduced displacement ductility and drift capacities for a 

specified curvature ductility. To attain the same level of displacement ductility or drift 

capacity in a high strength concrete column, the usage of a greater amount of confining 

reinforcement was mandatory. As the quantity of longitudinal reinforcement amplified, 

the lateral load carrying ability, the yield displacement and the ultimate displacement 

capacity increased. However, the increase in the yield displacement was more distinct 

than the upsurge in the ultimate displacement capacity. 

Moehle et al. (2008), conducted study on the principles of seismic design of reinforced 

concrete Special Moment Framesas per ACI 318. The proportioning and detailing 

requirements for special moment frames were provided to ensure that inelastic response 

is ductile. The major principles were to achieve a strong-column/weak-beam design 

that distributes the inelastic response over several storeys, to prevent shear failure and 

to provide details that enable ductile flexural response in yielding regions. When a 

building sways during an earthquake, the distribution of damage over height depends 

on the distribution of lateral drift. If the building has weak columns, drift tends to 

concentrate in one or a few stories (Fig: 2.1 a), and may exceed the drift capacity of the 

columns. On the other hand, if columns provide a stiff and strong spine over the 

building height, drift will be more uniformly distributed (Fig: 2.1 c), and localized 

damage will be reduced. It is important to recognize that the columns in a given story 

support the weight of the entire building above those columns, whereas the beams only 

support the gravity loads of the floor of which they form a part; therefore, failure of a 

column is of greater consequence than failure of abeam. Recognizing this behavior, 

building codes specify that columns be stronger than the beams that frame into them. 

Studies (Kuntz and Browning, 2003) have shown that the full structural mechanism of 

Fig: 2.1 can only be achieved if the column-to-beam strength ratio is relatively large 

(on the order of four). As this is impractical in most cases, a lower strength ratio of 1.2 
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is adopted by ACI 318. Thus, some column yielding associated with an intermediate 

mechanism (Fig: 2.1 b) is to be expected, and columns must be detailed accordingly. 

 

 

            (a)                                              (b)                                              (c)  

Fig: 2.1: Story mechanism Intermediate mechanism Beam mechanism 

(Reference: Moehle et al., 2008) 

 

Beams in SMRF structures must have transverse reinforcement in the form of either 

hoops or stirrups throughout the length. Hoops must fully enfold the beam cross section 

and are provided to confine the concrete, prevent buckling of longitudinal bar, improve 

bond between reinforcing bars and concrete, and prevent shear failure. Stirrups are 

generally used where only shear resistance is required. Beams of special moment 

frames can be divided into three different zones when considering where hoops and 

stirrups can be placed: the zone at each end of the beam where flexural yielding is 

expected to occur; the zone along lap-spliced bars, if any; and the remaining length of 

the beam. The zone at each end, of length 2h, needs to be well confined because this is 

where the beam is expected to undergo flexural yielding and this is the location with 

the highest shear. Therefore, closely spaced, closed hoops are required in this zone, as 

shown in Fig: 2.2. Note that if flexural yielding is expected anywhere along the beam 

span other than the end of the beam, hoops must also extend 2h on both sides of that 

yielding location. This latter condition is one associated with non-reversing beam 

plastic hinges and is not recommended. Subsequent discussion assumes that this type 

of behaviour is avoided by design. Hoop reinforcement may be constructed of one or 

more closed hoops. Alternatively, it may be constructed of typical beam stirrups with 

seismic hooks at each end closed off with crossties having 135° and 90° hooks at 

opposite ends. Using beam stirrups with crossties rather than closed hoops is often 
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preferred for constructability so that the top longitudinal beam reinforcement can be 

placed in the field, followed by installation of the crossties.  

 

 

Fig: 2.2 Hoop and stirrup location and spacing requirements. 

 

2.4 CONFINEMENT MODELS 

Strain capacity of RC sections can be enhanced many folds by confining the concrete 

with reinforcing spirals or closed hoops. The hoops act to restrain dilation of the core 

concrete as it is loaded in compression, and this confinement helps in enhancement of 

strength and strain capacity. At low levels of stress, the behaviour of confined core 

concrete is similar to that of unconfined concrete. As the stress increases, the core 

concrete expands against the transverse reinforcement which results in a confining 

action in concrete. This increase of strength and ductility of core concrete by proper 

confinement of transverse reinforcement is an important design consideration of 

structural RC members in areas prone to seismic activity. Various models has been 

proposed for the stress-strain relation of confined concrete. The more accurate the 

stress-strain model, the more consistent is the assessment of strength and deformation 

behaviour of concrete members. An extensive review of the various existing 

confinement models is given below. 
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In Kent and Park (1971) model of stress-strain relations it was expected that concrete 

can tolerate some stress at indeterminately large strains. In this model the strength 

enhancement factor due to confinement was not considered. It was suggested that the 

collapse of the member would happen before the strains in concrete become unfeasibly 

high. Hence, for this model it was taken that the concrete can take up to a stress of 20% 

of peak stress. 

Scott et al. (1982) conducted experiments on a number of square concrete columns 

reinforced with either 8 or 12 longitudinal bars and transversely reinforced with 

overlapping hoop sets. They conducted tests at rapid strain rates, distinctive of seismic 

loading. Unlike the Kent and Park (1971) model which was standardized against small 

gauge tests, they found substantial strength improvement due to the presence of good 

confining reinforcement details. Thus simple modifications were made to the Kent and 

Park (1971) model in order to incorporate the increase in the compressive strength of 

confined concrete at high strain rates (Fig: 2.3).The strength enhancement factor K is 

expressed in terms of volumetric ratio of confining reinforcement. The maximum 

concrete stress attained is assumed to be 𝐾𝑓𝑐
′ and the strain at maximum concrete stress 

is0.002𝐾. This model of stress strain is called Modified Kent and Park model in this 

study.  

 

Fig: 2.3 Stress-strain behaviour of compressed concrete confined by rectangular steel 

ties- Modified Kent and Park (Scott et al. 1982) model.  

 

Mander et al. (1988a) first tested circular, rectangular and square full scale columns at 

seismic strain rates to investigate the impact of diverse transverse reinforcement 
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arrangements on the confinement efficacy and overall performance. Mander et al. 

(1988b) went on to model their experimental results. It was detected that if the peak 

strain and stress coordinates might be found (𝜀𝑐𝑐 , 𝑓𝑐𝑐
′ ), then the performance over the 

complete stress-strain range was alike, irrespective of the arrangement of the 

confinement reinforcement used. Thus they accepted a failure criteria based on a 5-

parameter model of William and Warnke (1975) laterally with data from Schickert and 

Winkler (1979) to produce a comprehensive multi-axial confinement model. Then to 

designate the entire stress-strain curve they implemented the 3-parameter equation 

suggested by Popovics (1973). Due to its generality, the Mander et al. (1988b) model 

is used widespread in design and research. In this study this model is termed as 

Mander’s Model. Typical Mander’s Model stress strain curve for confined and 

unconfined concrete is shown in Fig: 2.4 

 

Fig: 2.4 Stress-strain relation for confined and unconfined concrete – Mander et al. 

(1988b). 

 

Saatcioglu and Razvi (1992) proposed an analytical model to build a stress-strain 

connection for confined concrete. The model entails of a parabolic ascending segment, 

followed by a linear descending part. It was founded on computation of lateral 

confinement pressure produced by circular and rectilinear reinforcement, and the 

consequential improvements in strength and ductility of confined concrete. Confined 

concrete strength and corresponding strain were conveyed in terms of equivalent 

uniform confinement pressure delivered by the reinforcement enclosure. The 

descending part was calculated by defining the strain corresponding to 85% of the peak 

stress. This strain level is stated in terms of confinement parameters. A constant residual 

strength was expected beyond the descending branch, at 20% strength intensity. Stress-
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strain curve obtained using this model is given in Fig: 2.5. The name Razvi model is 

used for this particular stress strain relation throughout this study.  

 

Fig: 2.5 Stress-strain relation – Saatcioglu and Razvi model(1992)  

 

2.5 RESPONSE REDUCTION FACTOR 

Mondal et al. (2013) conducted a study to find R for reinforced concrete regular frame 

assemblies designed and detailed as per Indian standards IS 456, IS 1893 and IS13920. 

Most seismic design codes today comprise the nonlinear response of a structure 

obliquely through a ‘response reduction/modification factor’ (R). This factor permits a 

designer to use a linear elastic force-based design while accounting for nonlinear 

behaviour and deformation limits. This research was aimed on the estimation of the 

actual values of this factor for RC moment frame buildings designed and detailed as per 

Indian standards for seismic and RC designs and for ductile detailing, and comparing 

these values with the value given in the design code. Values of R were found for four 

designs at the two performance levels. The results showed that the Indian standard 

suggests a higher value of R, which is potentially hazardous. Since Indian standard IS 

1893 does not provide any clear definition of limit state, the Structural Stability 

performance level of ATC-40 was used here, both at the structure level and at the 

member levels. In addition to this, actual member plastic rotation capacities, were also 

calculated. Priestley recommended an ultimate concrete compression strain for 

unconfined concrete = 0.005. The ultimate compressive strain of concrete confined by 

transverse reinforcements as defined in ATC-40 was taken in this work to obtain the 

moment characteristics of plastic hinge segments. In order to prevent the buckling of 



17 | P a g e  
 

longitudinal reinforcement bars in between two successive transverse reinforcement 

hoops, the limiting value of ultimate strain was limited to 0.02. Suitable modelling of 

the preliminary stiffness of RC beams and columns is one of the important aspects in 

the performance evaluation of reinforced concrete frames. Two performance limits 

(PL1 and PL2) were considered for the estimation of R for the study frames. The first 

one resembled to the Structural Stability limit state defined in ATC-40. This limit state 

is well-defined both at the storey level and at the member level. The second limit state 

was based on plastic hinge rotation capacities that were found for each individual 

member depending on its cross-section geometry. The global performance limit for PL1 

was demarcated by a maximum inter-storey drift ratio of 0.33Vi/Pi. The R values 

attained were ranging from 4.23 to 4.96 for the four frames that were considered, and 

were all lesser than specified value of R (= 5.0) for SMRF frames in the IS 1893. The 

taller frames exhibited lower R values. Component wise, the shorter frames (two-storey 

and four-storey) had more over-strength and Rs, but slightly less ductility and Rμ 

compared to the taller frames. According to Performance Limit 1 (ATC-40 limits on 

inter-storey drift ratio and member rotation capacity), it was found that the Indian 

standard overestimates the R factor, which leads to the potentially dangerous 

underestimation of the design base shear. Based on Performance Limit 2 the IS 1893 

recommendation was found to be on the conservative side. 

Krawinkler et al. (1998) studied the advantages  and disadvantages of Pushover analysis 

and suggested that element behaviour cannot be  assessed in  the  state of  currently  

employed  global  system  quality  factors  such as  the  R and  Rw factors  used  in  

existing  US  seismic  codes. They also recommended that pushover analysis will 

deliver insight into structural aspects that control performance during severe 

earthquakes. For  structures that  vibrate  chiefly  in  the  fundamental  mode,  the  

pushover  analysis  will  very  probably  provide  good  estimations  of global,  as  well  

as  local  inelastic,  deformation  demands. This  analysis  will  also  expose  design  

weaknesses  that  may remain  hidden  in  an  elastic  analysis.  Such  weaknesses 

include  story mechanisms,  excessive deformation demands, strength  irregularities  

and  overloads  on  potentially  brittle elements  such  as  columns  and  connections. 

Asgarian and Shokrgozar (2008) evaluated over-strength, ductility and response 

modification factor of Buckling Restrained Braced frames. Seismic codes consider a 
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decrease in design loads, taking benefit of the fact that the structures possess substantial 

reserve strength (over-strength) and capacity to disperse energy (ductility). The over-

strength and the ductility are incorporated in structural design through a force reduction 

or a response modification factor. This factor represents ratio of maximum seismic 

force on a structure through specified ground motion if it was to remain elastic to the 

design seismic force. Thus, seismic forces are reduced by the factor R to obtain design 

forces. The basic fault in code actions is that they use linear methods not considering 

nonlinear behaviour. The structure can engross quiet a lot of earthquake energy and 

repels when it enters the inelastic zone of deformation. Over-strength in structures is 

connected to the fact that the maximum lateral strength of a structure usually beats its 

design strength. It was perceived that the response modification factor drops as the 

height of building increases. This result was outward in all type of bracing outline.  

Mendis et al. (1998) reviewed the traditional force-based (FB) seismic design method 

and the newly proposed displacement-based (DB) seismic assessment approach. A case 

study was done for reinforced concrete (RC) moment-resisting frames designed and 

detailed according to European and Australian earthquake code provisions, having low, 

medium and high ductility capacity. Response reduction factor (R) for Ordinary 

Moment Resisting frame is ‘4’ as per AS 3600 while for Special Moment Resisting 

frame, R= 8 as per ACI 318–95. It was observed that OMRF developed plastic hinges 

in the columns under the El Centro earthquake and SMRF generally developed plastic 

hinges in the beams rather than the columns. This was consistent with the ACI 318–95 

strong column-weak beam detailing philosophy used in the design of this SMRF. The 

displacement ductility and rotation ductility demands of the SMRF during the El Centro 

earthquake were some 3 times that of the OMRF. 

2.6 PUSH-OVER 

Jianguo et al. (2006), investigated the seismic behavior of concrete-filled rectangular 

steel tube structures. A push-over analysis of a 10-story moment resisting frame (MRF) 

composed of CFRT columns and steel beams were conducted. The results show that 

push-over analysis is sensitive to the lateral load patterns, so the use of at least two load 

patterns that are expected to bound the inertia force distributions was recommended. 
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Push-over analysis was found useful in estimating the following characteristics of a 

structure: 1) the capacity of the structure as represented by the base shear versus top 

displacement graph; 2) the maximum rotation and ductility of critical members; 3) the 

distribution of plastic hinges at the ultimate load; and 4) the distribution of damage in 

the structure, as expressed in the form of local damage indices at the ultimate load. In 

frame structures plastic hinges usually form at the ends of beams and columns under 

earthquake action. For beam elements, plastic hinges are mostly caused by uniaxial 

bending moments, whereas for column elements, plastic hinges are mostly caused by 

axial loads and biaxial bending moments. Therefore it was concluded that, in push-over 

analysis different types of plastic hinges should be applied for the beam elements and 

the column elements separately. 

 

Chugh (2004) explained the validity of non-linear analysis for seismic design of 

structures. He suggested that  

 The linear performance is restricted to the area of small response. 

 When the stresses are excessive, material nonlinearity reveals. 

 When the displacements are large, geometric nonlinearity manifests. 

If the loading is removed in the large response domain, there will be a residual response. 

Once yielding takes place (at any section), the behaviour of a statically indeterminate 

structure enters an inelastic phase, and linear elastic structural analysis is no longer 

valid. It would be too expensive to design a structure based on the elastic spectrum, and 

the code (IS 1893) allows the use of a response reduction factor (R), to reduce the 

seismic loads.  But this reduction will be possible, without collapse of the structure, 

provided sufficient ductility is in-built through proper design of the structural elements. 

To get a correct response, we must resort to non-linear analysis.  This is also called limit 

analysis. 

Sadjadi et al (2006) proposed a nonlinear static analysis, also acknowledged as a push-

over analysis, which involves laterally pushing of the structure in one direction with a 

certain lateral force or displacement distribution until either a specified drift is attained 

or a numerical instability has occurred. Push-over analysis is an effective way to study 

the behaviour of the assembly, emphasizing the order of member cracking and yielding 

as the base shear value increases. This information then can be used for the estimation 
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of the performance of the structure and the sites with inelastic deformation of over-

strength and to get a sense of the general capacity of the structure to withstand inelastic 

deformation. Pushover analysis finds the locations that are expected to be endangered 

to large inelastic deformations, which helps in the evaluation of the performance of the 

structure, and design of component detailing. As was mentioned earlier, the pushover 

inter-storey drift distributions are basically first mode while the dynamic inter-storey 

drift distributions contain substantial second mode influences. This implies that the 

static pushover examination for irregular structures cannot be accurate. 

Bansal (2011) preferred Pushover analysis as the method for seismic performance study 

of structures by the major restoration guidelines and codes as it is theoretically and 

computationally easy. Pushover analysis allows drawing the order of yielding and 

failure on element and structural level as well as the development of overall capacity 

curve of the arrangement. It is a method by which a computer model of the building is 

exposed to a lateral load of a certain shape. The intensity of the lateral load is gradually 

increased and the sequence of cracks, yielding, plastic hinge formation, and failure of 

various structural components is recorded. 

Mehmet et al. (2006), explained that due the easiness of Pushover analysis, the 

structural engineers have been using the nonlinear static method or pushover analysis. 

Pushover analysis is performed for various nonlinear hinge characters available in 

certain programs based on the FEMA-356 and ATC-40 guidelines and he pointed out 

that Plastic hinge length has significant effects on the displacement capacity of the 

structures. The alignment and the axial load degree of the columns cannot be considered 

properly by the default-hinge properties. 

Shuraim et al. (2007) utilized the nonlinear static analytical procedure (Pushover) as 

introduced by ATC-40 for the estimation of existing design of a fresh reinforced 

concrete frame. Possible structural shortages in reinforced concrete frame, when 

exposed to a moderate seismic loading, were assessed by the pushover tactics. In this 

method the design was valued by redesigning under nominated seismic blend in order 

to show which elements would require added reinforcement. Most columns demanded 

significant additional reinforcement, signifying their weakness when subjected to 

seismic forces. The nonlinear pushover procedure displays that the frame is adept of 
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enduring the reputed seismic force with some significant yielding at all beams and one 

column.  

Kadid and Boumrkik (2008), proposed use of Pushover Analysis as a feasible method 

to judge damage liability of a building designed rendering to Algerian code. Pushover 

analysis was a Series of incremental static analysis carried out to improve a capacity 

curve for the structure. Based on capacity curve, a target displacement which was an 

estimate of the displacement that the design earthquake would produce on the building 

was obtained. The extent of damage suffered by the structure at this target displacement 

is counted representative of the Damage experienced by the structure when subjected 

to design level ground shaking. Since the behaviour of reinforced concrete structures 

could be highly inelastic when subjected to seismic loads, the total inelastic 

performance of RC constructions would be conquered by plastic yielding effects and 

consequently the exactness of the pushover analysis would be affected by the ability of 

the analytical models to arrest these effects 

Khose et al. (2012), conducted  a case study of seismic performance of a ductile RC 

frame building designed using four major codes,  ASCE7, EN1998,NZS 1170 and IS 

1893 . The performance of the test building was evaluated using the Displacement 

Modification Method (DMM) as well as the guidelines of ASCE-41. The variation in 

capacity curves is a result of combined effect of the differences in design spectra, 

effective member stiffness, response reduction factors, load and material factors, as well 

as load combinations. The buildings designed for other codes (New Zealand and Euro-

code) have significantly lower strengths than the buildings of comparable ductility 

classes designed for Indian and American codes. In case of DBE, all the considered 

codes result in Life Safety (LS) or better performance levels in both the directions, 

except in case of Euro-code 8 in both the directions and NZS 1170.5 in transverse 

direction. 
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2.7 SUMMARY 

This chapter dealt with the numerous numbers of papers and journals that has been 

found helpful for carrying out the work. An extensive literature review is done and the 

inference is noted down. It is well established from various studies that ductile detailing 

is necessary to resist earthquakes. SMRF buildings exhibit higher ductility and 

resistance to seismic loading through proper confinement of transverse reinforcement 

compared to OMRF buildings. A detailed review of the above models in addition to IS 

456 model is done in this study. In-order to study the ductility, response reduction 

factors are to be calculated which can be obtained using non-linear static pushover 

analysis. For obtaining a much reliable pushover curve of frames, a stress-strain 

confinement model which actually distinguishes the behaviour of confined and 

unconfined concrete has to be used. From the study of literature, it has been observed 

that Mander’s model, Razvi model and Modified Kent and Park model can be 

considered for the present study.   
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CHAPTER 3 

REVIEW OF EXISTING CONFINEMENT MODELS FOR 

CONCRETE 

 

3.1 GENERAL 

First part of this Chapter deals with various confinement models for the stress-strain 

relationship of concrete. The confinement in the concrete plays a major role in the 

strength and ductility of the RC members. In order to show the effect of considering the 

confinement in the stress-strain curve and its effects in the strength and ductility, 

various sections specially detailed for confinement has to be designed. Hence a number 

of building frames are considered and designed as both Special Moment Resisting 

Frames (SMRF) and Ordinary Moment Resisting Frames (OMRF). The configuration 

of the frames and the reinforcement details of RC sections are also presented in this 

Chapter. Confinement stress-strain curves for various SMRF and OMRF sections are 

also developed as per various available models.  

3.2 CONFINEMENT CHARACTERISTICS OF CONCRETE 

 

Provision for ductility is of utmost importance in the design and detailing of RC 

structures subjected to seismic loads. To accomplish this, IS 13920 specifies the use of 

transverse reinforcement or stirrups in structural members like columns. The effects of 

confinement completely affect magnitude of stress- strain curve of concrete which leads 

to an increase in compressive force of concrete. But IS code design is completely based 

on the simplified stress block of unconfined concrete and it does not consider the gain 

in strength due to confinement. To study the effects of lateral confinement on column 

capacity an investigative study is carried out. The more accurate the stress-strain model, 

the more consistent is the assessment of strength and deformation behavior of concrete 

members. It is to be noted that concrete exhibits different performance in the confined 

and unconfined conditions. Confined concrete exhibits enhanced strength as well as 
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greater ductility compared to unconfined concrete. This necessitates the use of a stress-

strain model that distinguishes the behavior of confined and unconfined concrete. The 

stress-strain diagrams for concrete are developed by considering various confinement 

models and compared with the stress-strain diagram as per the IS 456 (2000). 

3.2.1 Review of Existing Confinement Models 

IS 456 (2000) 

The stress- strain curve as per IS 456 assumes a parabola in the ascending branch with 

strain of 0.002 corresponding to peak strength and then the stress remains constant until 

the strain reaches an ultimate value of 0.0035. The descending branch in the post-peak 

region is not accounted for and the strength and ductility enhancement due to 

confinement is not considered. Thus IS 456 (2000) proposes the same strength and 

ductility for confined and unconfined concrete which may underestimate the strength 

and ductility of the sections and the building frame as a whole. In real case, the post-

peak behavior is a descending branch, which is due to ‘softening’ and micro-cracking 

in the concrete.The stress strain relations as per IS code is given below. 

For   𝜀𝑐 ≤ 𝜀𝑐𝑜       𝑓𝑐 = 𝑓𝑐𝑜
′ [

2𝜀𝑐

0.002
− (

𝜀𝑐

0.002
)

2

]  (3.1) 

 

For  𝜀𝑐𝑜 < 𝜀𝑐 < 0.0035 𝑓𝑐 = 𝑓𝑐𝑜
′      (3.2) 

 

where  𝑓𝑐  is the stress in  concrete corresponding to the strain 𝜀𝑐 and 𝑓𝑐𝑜
′  is the 

strength  concrete corresponding to the strain 0.002 (𝜀𝑐𝑜). 

 

Mander’s model 

Mander et al. (1988a) suggests that confinement reinforcement increases the ductility 

as well as column strength. The model incorporates a strength enhancement factor due 

to confinement effect. But a single equation is used for both the ascending and 

descending branches in this model. The stress strain curve for confined concrete 

approaches to that of unconfined when the confinement is negligible. It requires four 

coordinates to define the stress strain curve. The four coordinates are peak stress, 

corresponding strain, ultimate strain and corresponding stress. In many cases, the 

ultimate strain predicted by this model is found to be less than that of the strain 
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corresponding to peak stress, which makes the representation incomplete. This model 

may require some modification due to this draw back as also pointed out by Durga et 

al. (2013). The governing equations for this stress strain model are given below. 

 

The peak strength,                𝑓𝑐𝑐
′ = 𝑓𝑐𝑜

′ [1 + 3.7 (
0.5𝑘𝑒𝜌𝑠𝑓𝑦ℎ

𝑓𝑐𝑜
′ )

0.85

]               (3.3) 

Where 𝑓𝑐𝑜
′  is unconfined compressive strength equal to 0.75𝑓𝑐𝑘, 𝑘𝑒  is the confinement 

effectiveness coefficient having a typical value of 0.95 for circular sections and 0.75 

for rectangular sections, 𝜌𝑠 = Volumetric ratio of confining steel, 𝑓𝑦ℎ= Grade of 

confining steel,  

Strain corresponding to peak stress,      𝜀𝑐𝑐 = 𝜀𝑐𝑜 [1 + 5 (
𝑓𝑐𝑐

′

𝑓𝑐𝑜
′ − 1)]              (3.4) 

The ultimate compressive strain,           𝜀𝑐𝑢 = 0.004 +
0.6𝜌𝑠𝑓𝑦ℎ𝜀𝑠𝑚

𝑓𝑐𝑜
′             (3.5) 

Where 𝜀𝑠𝑚= Steel strain at maximum tensile stress, 

The stress at any strain,                                 𝑓𝑐 =
𝑓𝑐𝑐

′ 𝑥𝑟

𝑟−1+𝑥𝑟                (3.6) 

Where, 𝑥 =
𝜀𝑐

𝜀𝑐𝑐
,  𝑟 =

𝐸

𝐸𝑐−𝐸𝑠𝑒𝑐
, 𝐸𝑐 = 5000√𝑓𝑐𝑜

′ ,  𝐸𝑠𝑒𝑐 =
𝑓𝑐𝑐

′

𝜀𝑐𝑐
           (3.7) 

 

Kent-Scott-Park Model - Modified Kent and Park Model (1982) 

Strength enhancement factor in this model depends on the ratio of volume of confining 

reinforcement to the volume of the confined core concrete and also on the unconfined 

compressive strength of concrete. In this model the ascending and descending branches 

are characterised by different equations. 

The peak strength,                               𝑓𝑐𝑐
′  = 𝐾𝑓𝑐

′                           (3.8) 

                                                       𝐾 = 1 +
𝜌𝑠𝑓𝑦ℎ

𝑓𝑐
′              (3.9) 

                                                             𝜌𝑠 =
2(𝑏′′+𝑑′′)𝐴𝑠

′′

𝑏′′𝑑′′𝑠
              (3.10) 

𝜌𝑠 = Volumetric ratio of confining steel, 𝑓𝑦ℎ= Grade of confining steel 
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𝑠 = vertical spacing of hoops measured centre to centre , 𝐴𝑠
′′ is the area of the 

transverse reinforcement, 𝑏′′ 𝑎𝑛𝑑 𝑑′′are the core dimensions measured outer to outer 

of ties in x and y directions respectively. 

 

Strain corresponding to peak stress,𝜀0 = 0.002𝐾              (3.11) 

For 𝜀𝑐 ≤ 0.002𝐾  𝑓𝑐 = 𝐾𝑓𝑐
′ [

2𝜀𝑐

0.002𝐾
− (

𝜀𝑐

0.002𝐾
)

2

]           (3.12)  

For 𝜀𝑐 > 0.002𝐾  𝑓𝑐 = 𝐾𝑓𝑐
′[1 − 𝑍𝑚(𝜀𝑐 − 0.002𝐾)]<0.2𝐾𝑓𝑐

′         (3.13) 

𝑍𝑚 =
0.5

𝜀50ℎ+𝜀50𝑢−𝜀0
                                       (3.14)         

𝜀50ℎ =
3

4
𝜌𝑠√

𝑏′′

𝑠
                                         (3.15) 

𝜀50𝑢 =
3+0.29𝑓𝑐

′

145𝑓𝑐
′−1000

   (𝑓𝑐
′ 𝑖𝑛 𝑀𝑃𝑎)            (3.16) 

 

Saatcioglu and Razvi Model (1992) 

The stress-strain curve of confined concrete is characterised by a parabolic ascending 

portion then continues with a linear descending branch and a constant residual strength 

at 20% of peak stress. In this model the peak strength of confined concrete is expressed 

as a function of lateral confining pressure. As the confining pressure increases, the 

strength as well as the ductility of the confined concrete increases. 

The peak strength,  𝑓𝑐𝑐 = 𝐾3𝑓𝑐𝑘 + 𝐾1𝜎2𝑒    (3.17) 

Where  𝐾1 =
6.7

(𝜎2𝑒)0.17 , 𝐾3 = 0.85      (3.18) 

The strain corresponding to the peak stress 𝑓𝑐𝑐, 𝜀𝑐𝑜𝑐 = 𝜀𝑐𝑜[1 + 5𝜆]  (3.19) 

Where  𝜀𝑐𝑜 = 0.002,      𝜆 =
𝐾1𝜎2𝑒

𝐾3𝑓𝑐𝑘
      (3.20) 

For a square section 𝜎2𝑒 is expressed as, 𝜎2𝑒 = 𝛽𝜎2    (3.21) 

where; 

𝜎2 =
Σ𝐴0𝑓𝑦𝑤𝑘(sin 𝛼)

𝑠∗𝑏𝑘
    (3.22) 
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𝛽 = 0.26√(
𝑏𝑘

𝑎
) (

𝑏𝑘

𝑠
) (

1

𝜎2
)   (3.23) 

𝑠 = vertical spacing of hoops measured centre to centre , 𝑏𝑘𝑥 𝑎𝑛𝑑 𝑏𝑘𝑦are the core 

dimensions measured centre to centre of ties in x and y directions respectively. 

Ascending portion: 

𝜎𝑐 = 𝑓𝑐𝑐 [(
2𝜀𝑐

𝜀𝑐𝑜𝑐
) − (

𝜀𝑐

𝜀𝑐𝑜𝑐
)

2

]

1

1+2𝜆

≤ 𝑓𝑐𝑐  (3.24) 

Descending portion: 

𝜀𝑐85 = 260𝜌𝜀𝑐𝑜𝑐 + 𝜀𝑢85   (3.25) 

𝜀𝑢85=0.0038 (for unconfined concrete) (3.26) 

𝜌 =
Σ𝐴𝑜𝑥𝑦 sin 𝛼

𝑠(𝑏𝑘𝑥+𝑏𝑘𝑦)
     (3.27) 

𝑏𝑘𝑥 𝑎𝑛𝑑 𝑏𝑘𝑦 are the core dimensions measured centre to centre of ties  in x and y 

directions respectively. Σ𝐴𝑜𝑥𝑦 is the summation of cross-sectional areas of the ties on 

sections taken in x and y directions 

The confinement models considered in the present study is summarised above. The 

comparison between various models requires RC sections designed as SMRF and 

OMRF. Following section explains the details of building frames. 
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3.3 BUILDING CONFIGURATIONS AND DESIGN DETAILS 

A total of 4 plane frames are selected with number of storeys 2, 4, 8 and 12, keeping 

the same number of bays as shown in Fig 3.1. The storey height and bay width of all 

the frames are 3 m and 5 m respectively. The frames are assumed to be located in 

seismic zone IV, the soil type chosen is medium and importance factor of 1.0 is 

assumed. The dead and live loads are calculated using IS 875 Part 1 (1987) and lateral 

loads are calculated as per IS 1893(2002).  

 

Fig 3.1 Elevation of frames considered 

Each plane frame is designed as both SMRF and OMRF. OMRF frames are designed 

with a response reduction factor of 3 and SMRF with a response reduction factor of 5 

in compliance with IS 1893 (2002). The design of RC sections are done as per IS 456 

for OMRF frames and the design and ductile detailing of SMRF frames are done 

conforming to IS 13920 specifications. For convenient and easy presentation of frames, 

a naming standard has been used. The frame designated as 4S4B-SMRF represents 

SMRF building with four storeys and four bays. The designation, type of design, R 

factor and analysis, design and detailing provisions followed are tabulated in the Table 

3.1. 
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Table 3.1: Details of the Moment Resisting Frames considered 

Sl 

No: 

Frame Tag No. of 

storey 

No. of 

bays 

Frame 

type 

R Analysis Design & 

Detailing 

1 2S4B- SMRF 2 4 SMRF 5 IS 1893 & IS 13920 

2 2S4B- OMRF 2 4 OMRF 3 IS 1893 & IS 456 

3 4S4B- SMRF 4 4 SMRF 5 IS 1893 & IS 13920 

4 4S4B- OMRF 4 4 OMRF 3 IS 1893 & IS 456 

5 8S4B- SMRF 8 4 SMRF 5 IS 1893 & IS 13920 

6 8S4B- OMRF 8 4 OMRF 3 IS 1893 & IS 456 

7 12S4B- SMRF 12 4 SMRF 5 IS 1893 & IS 13920 

8 12S4B- OMRF 12 4 OMRF 3 IS 1893 & IS 456 

 

 

Moment resisting frame structures of different heights are selected to characteristically 

represent short, medium and long period structures.In the present study, the grade of 

steel used is Fe 415.compressive strength of the cube (fck)is considered as 25 

MPawhich corresponds to a cylinder strength (fc')of 21.25 MPa. The modulus of 

elasticity of steel considered is 200 GPa and that of concrete is 25 GPa (5000 ckf ). The 

live load is taken as 3 kN/m2. The unit weight of concrete and brick masonry infill is 

taken as 25 kN/m3 and 19 kN/m3 (including the floor finishes) respectively. The 

thickness of slab is assumed as 175 mm and that of infill wall is taken as 230 mm. The 

reinforcement details for the RC sections are given in Table 3.4 and Table 3.5. A 

naming convention has been done for the RC sections used in frames as shown in Table 

3.4 and Table 3.5. A section designated as 450C-4S4B-SM indicates a column section 

of size 450 x 450 in the four storey four bay SMRF frame. Similarly, for a section 

designated as 350B-2S4B-SM indicates a beam section of depth 350 mm in the two 

storey four bay SMRF frame. The value of the various factors considered for the 

estimation of design horizontal seismic co-efficient,𝐴ℎ is given in Table 3.2 and Table 

3.3. 
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Table 3.2: Response Spectrum Factors Considered for the Frames 

Factors SMRF OMRF 

Seismic Zone IV IV 

Zone Factor 0.24 0.24 

Type of Building, Z Regular office Building Regular office Building 

Importance Factor, I 1 1 

Response Reduction 

Factor, R 
5 3 

Type of Soil Medium Medium 

Damping 5% 5% 

 

Table 3.3: Details of time periods, seismic weight and design base shear  

Frame 

Type 

Height 

(m) 

Time 

Period, 

T (sec) 

𝑺𝒂
𝒈⁄  𝑨𝒉 

Seismic 

Weight, W 

(kN) 

Design 

Base 

Shear, 

𝑽𝒅(kN) 

2S4B-

SMRF 
6.0 0.2875 2.5 0.06 3537.3 212 

2S4B-

OMRF 
6.0 0.2875 2.5 0.1 3804.7 380.4 

4S4B-

SMRF 
12.0 0.483 2.5 0.06 5356.11 321.36 

4S4B-

OMRF 
12.0 0.483 2.5 0.1 5408.9 540.89 

8S4B-

SMRF 
24.0 0.813 1.672 0.04 10790.02 431.613 

8S4B-

OMRF 
24.0 0.813 1.672 0.0668 11156.45 745.25 

12S4B-

SMRF 
36.0 1.1022 1.233 0.0295 17146.31 505.87 

12S4B-

OMRF 
36.0 1.1022 1.233 0.0493 17649.81 853.035 
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It can be noted from Table 3.3 that as the height of the building increases, the time 

period also increases and the spectral acceleration co-efficient ,
𝑆𝑎

𝑔⁄ decreases. This 

variation of   
𝑆𝑎

𝑔 ⁄   and time period with number of storeys is shown in Fig: 3.2.  

 
 

Fig: 3.2: Variation in Time Period and Spectral Acceleration Co-efficient with 

number of storeys 

 

Table 3.4: Reinforcement Details for Columns 

Section Tag Building 

Configuratio

n 

Section Size 

(mm x mm) 

Longitudinal 

Reinforceme

nt 

Shear Reinforcement 

400C-2S4B- 

SM 
2S4B-SMRF 400 x 400 8 # 16 mm 

2 legged 10mm @ 85mm  

c/c 

450C-2S4B- 

OM 2S4B-OMRF 450 x 450 4 # 25 mm 
2 legged 8mm @ 230mm  

c/c 

450C-4S4B- 

SM 
4S4B-SMRF 450 x 450 4 # 25 mm 

2 legged 12mm @ 85mm  

c/c 

500C-4S4B- 

OM 4S4B-OMRF 500 x 500 8 # 20 mm 
2 legged 8mm @ 190mm  

c/c 

550C-8S4B- 

SM 
8S4B-SMRF 550 x 550 8 # 20 mm 

2 legged 12mm @ 75mm  

c/c 

650C-8S4B- 

0M 8S4B-OMRF 650 x 650 8 # 25 mm 
2 legged 8mm @ 190mm  

c/c 

600C-

12S4B- SM 
12S4B-SMRF 600 x 600 12 # 20 mm 

2 legged 10mm @ 75mm  

c/c 

700C-

12S4B- OM 
12S4B-

OMRF 
700 x 700 8 # 25 mm 

2 legged 8mm @ 190mm  

c/c 
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Table 3.5: Reinforcement Details for Beams 

Section 

Tag 

Building 

Configuratio

n 

Section 

Size 

(mm x 

mm) 

Longitudinal 

Reinforceme

nt Shear Reinforcement 

Top 
Botto

m 

350B-

2S4B- SM 
2S4B-SMRF 

300 x 

350 

7 # 

20 

mm 

5 # 16 

mm 

2 legged 10mm @ 100mm  

c/c 

350B-

2S4B- OM 
2S4B-OMRF 

300 x 

350 

8 # 

20 

mm 

5 # 16 

mm 

2 legged 8mm @ 230mm  

c/c 

375B-

4S4B- SM 
4S4B-SMRF 

300 x 

375 

6 # 

20 

mm 

2 # 20 

mm 

2 legged 10mm @ 100mm  

c/c 

375B-

4S4B- OM 
4S4B-OMRF 

300 x 

375 

6 # 

20 

mm 

3 # 20 

mm 

2 legged 8mm @ 230mm  

c/c 

400B-

8S4B- SM 
8S4B-SMRF 

300 x 

400 

6 # 

20 

mm 

3 # 20 

mm 

2 legged 10mm @ 100mm  

c/c 

400B-

8S4B- OM 
8S4B-OMRF 

300 x 

400 

5 # 

25 

mm 

8 # 12 

mm 

2 legged 8mm @ 230mm  

c/c 

600B-

12S4B- SM 

12S4B-

SMRF 

300 x 

600 

6 # 

20 

mm 

10 # 

12 

mm 

2 legged 10mm @ 100mm  

c/c 

600B-

12S4B- 

OM 

12S4B-

OMRF 

300 x 

600 

5 # 

25 

mm 

10 # 

12 

mm 

2 legged 8mm @ 230mm  

c/c 

 

3.4 COMPARISON OF STRESS-STRAIN CURVES FOR THE DESIGNED 

SECTIONS 

The stress-strain curve of concrete depends on the amount of confinement. In order to 

show the comparison of stress-strain curve using various models, the RC sections of 

the building frames discussed in the previous section are considered.  

The parameter for strength enhancement as per the two confinement models are 

calculated for each sections and tabulated in the table 3.6. The values of stress strain 

data are calculated using the strength enhancement parameter as per various 

confinement models discussed in the above section for selected RC sections. The 

obtained stress-strain curves are plotted in the Fig 3.3, Fig 3.4, Fig 3.5 and Fig 3.6.  
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Table 3.6: Confinement Factors for Column Sections as per Kent and Park Model 

Section  
Column Section 

(mm x mm) 

Hoop Volumetric 

Ratio ( 𝝆𝒔) 

Strength 

Enhancement 

Factor (K) 

400C-2S4B-SM 400 x 400 0.0238 1.4654 

450C-2S4B-OM 450 x 450 0.0048 1.0940 

450C-4S4B-SM 450 x 450 0.0297 1.5803 

500C-4S4B-OM 500 x 500 0.0051 1.1002 

550C-8S4B-SM 550 x 550 0.0263 1.5141 

650C-8S4B-OM 650 x 650 0.0037 1.0730 

600C-12S4B-SM 600 x 600 0.0104 1.3206 

700C-12S4B-OM 700 x 700 0.0034 1.0670 

 

 

 

Fig: 3.3: Comparison of stress-strain curves using two confinement models (Razvi 

and Modified Kent models) for the RC section 400C-2S4B-SM (K1 = 6.47, K = 1.47)  
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Fig: 3.4:  Comparison of stress-strain curves using two confinement models (Razvi 

and Modified Kent models) for the RC section 450C-4S4B-SM (K1 = 6.67, K = 1.58) 

 

 

 

Fig: 3.5: Comparison of stress-strain curves using two confinement models (Razvi 

and Modified Kent models) for the RC section 550C 8S4B SM (K1 =6.16, K = 1.51) 
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Fig: 3.6: Comparison of stress-strain curves using two confinement models (Razvi 

and Modified Kent models) for the RC section 600C 12S4B SM (K1 = 6.13, K = 1.47) 

 

3.4.1 Parametric study 

A parametric study is conducted to understand the variation of stress – strain curve of 

concrete when the parameters such as spacing of stirrups, grade of concrete and grade 

of transverse steel. Fig: 3.7 shows the variation of stress-strain curve of concrete with 

the variation in spacing of transverse reinforcement from 75 mm to 120mm. As the 

spacing is decreased from 120mm to 75mm the peak strength of confined stress-strain 

curve is increased by 16.7% and the ultimate strain increased by about 90%. 

Fig: 3.8 shows the variation of stress-strain curve of concrete with the variation in grade 

of transverse reinforcement from 250 MPa to 500 MPa. As the grade of steel is 

increased from 250MPa to 500MPa the peak strength of the confined stress-strain curve 

is increased by 22.6% while the ultimate strain remained same. 

Fig: 3.9 shows the variation of stress-strain curve of concrete with the variation in grade 

of concrete from 15 MPa to 30 MPa. As the grade of concrete is increased from 15 MPa 

to 30 MPa the peak strength is increased by 50% and the ultimate strain decreased by 

7%. 
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It can be seen that the ultimate strain is more dependent on the spacing of transverse 

reinforcement than any other parameter. Hence the spacing of stirrups shall be treated 

as an important factor to be ensured in the special detailing of RC sections. 

Strength enhancement factor is the measure of increase in lateral confining pressure due 

to the transverse steel. Strength enhancement factor depends on many parameters such 

spacing of stirrups, grade of transverse steel, grade of unconfined concrete, dimension 

of confinement core. Fig: 3.10 shows the variation of stress-strain curve of concrete 

with the variation in strength enhancement factor (obtained value for specific cases of 

design) from 1.32 to 1.58. As the strength enhancement factor changes from 1.32 to 

1.58 the peak strength is increased by 18.5% and the ultimate strain is increased by 

46.89%. 
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Fig: 3.7: Variation in stress-strain curve with the spacing of stirrups for the RC section 450C-

4S4B-SM with the parameters, Fe415 steel and M25 concrete 

Fig: 3.8: Variation in stress-strain curve with the grade of transverse reinforcement for the RC 

section 450C-4S4B-SM with the parameters, spacing 100mm, and M25 concrete 

Fig: 3.9: Variation in stress-strain curve with the grade of concrete for the RC section 450C-

4S4B-SM with the parameters, spacing 85mm, and Fe415 transverse steel  
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3.4.2 Comparison of confinement models with IS 456 (2000) Model 

IS 456 (2000) recommends a stress-strain curve which does not consider the effect of 

confinement. In order to study the difference between the stress-strain curves prescribed 

by IS code and modified Kent model and Razvi model, the corresponding stress-strain 

curves are plotted in single graph as shown in Fig: 3.11. Percentage increase in concrete 

strength according to Modified Kent model is about 58% while it is 32% for Razvi 

model compared to that of IS code.  

Rajeev and Tesfamariam (2012), Alam and Kim (2012), Durga et al. (2013) used 

modified Kent and Park model for seismic response study of RC frames. 

Based on the experimental study conducted by Sharma et al. (2009) it was concluded 

that response estimations using the Modified Kent and Park model closely matched the 

experimental results in the Indian scenario. This model is used further in the present 

study for the estimation of ductility parameters. 

 

Fig: 3.10: Variation in stress-strain curve with strength enhancement factor K 
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Fig: 3.11: Comparison of Stress Strain Curves Of Confined Concrete of 450C-4S4B-

SM (K = 1.58, K1 = 6.67) Section between Razvi Model, Kent Model and IS 456 

 

The details of the stress strain values for the unconfined and confined RC sections of 

the frames studied using Modified Kent and Park model is shown in Table 3.7 and Table 

3.8. 

The experimental study conducted by Hoshikuma et al. (1996) suggested that as the 

compressive stress falls below 50% of peak strength, the core concrete crushes and the 

buckling of longitudinal reinforcement occurs. Since this damage is not repairable and 

beyond limit, it is reasonable to assume the ultimate strain as the strain corresponding 

to 50% of peak strength. 

 

Table 3.7: Stress Strain Values of Unconfined Column Sections as per Modified Kent 

and Park Model 

Peak 50 % of Peak Ultimate 

Stress 

(Mpa) 
Strain 

Stress 

(Mpa) 
Strain 

Stress 

(Mpa) 
Strain 

21.25 0.002 10.625 0.0044 4.25 0.00585 
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Table 3.8: Stress Strain Values of Confined Column Sections as per Modified Kent 

and Park Model  

Section Tag K 

Peak 50% of Peak Ultimate 

Stress 

(MPa) 
Strain 

Stress 

(MPa) 
Strain 

Stress 

(MPa) 
Strain 

400C 2S4B SM 1.4654 31.1407 0.002931 15.57 0.0365 6.228 0.059 

450C 2S4B OM 1.0940 23.25 0.00218 11.62 0.008 4.651 0.013 

450C 4S4B SM 1.5803 33.58 0.00316 16.796 0.0492 6.72 0.0783 

500C 4S4B OM 1.1002 23.38 0.0022 11.69 0.0101 4.6761 0.01476 

550C 8S4B SM 1.5141 32.175 0.00302 16.087 0.052 6.435 0.08321 

650 C 8S4B 0M 1.0730 22.812 0.00214 11.406 0.0094 4.5624 0.0135 

600 C 12S4B SM 1.3206 28.06 0.002641 14.031 0.0365 5.6127 0.05681 

700 C 12S4B OM 1.0670 22.684 0.0021 11.34 0.0091 4.5368 0.0132 

 

3.4.3 Limiting Values of Stress and Strain 

Taking into account the spalling of the concrete cover if in case the strain outside the 

confined core exceeds the ultimate compressive strain of unconfined concrete, Priestley 

(1997) suggested an ultimate concrete strain of unconfined concrete,  𝜀𝑐𝑢= 0.005. This 

limiting value is adopted in present study. The ultimate compressive strain of confined 

concrete as defined in ATC-40 is given below. 

𝜀𝑐𝑢 = 0.005 +
0.1𝜌𝑠𝑓𝑦ℎ

𝑓𝑐𝑜
′ ≤ 0.02  (3.28) 

From the research conducted by Mondal et al. (2012), it was suggested that in-order to 

avoid the buckling of longitudinal reinforcement bars in between two successive 

transverse reinforcement hoops, ultimate compressive strain of confined concrete can 

be restricted to the limiting value of 0.02 as per the ATC-40 specifications. Thus in the 

present study an ultimate concrete strain of unconfined concrete, 𝜀𝑐𝑢= 0.005 and 

ultimate compressive strain of confined concrete, 𝜀𝑐𝑐 = 0.02 is adopted. 



41 | P a g e  
 

3.5 SUMMARY AND CONCLUSIONS 

First part of this Chapter deals with various confinement models for the stress-strain 

relationship of concrete. The confinement in the concrete plays a major role in the 

strength and ductility of the RC members. In order to show the effect of considering the 

confinement in the stress-strain curve and its effects in the strength and ductility, 

various sections specially detailed for confinement has to be designed. Hence a number 

of building frames are considered and designed as both Special Moment Resisting 

Frames (SMRF) and Ordinary Moment Resisting Frames (OMRF). The configuration 

of the frames and the reinforcement details of RC sections are also presented in this 

Chapter. Confinement stress-strain curves for various SMRF and OMRF sections are 

also developed as per various available models. 

A review of various confinement models used for the stress-strain relation of concrete 

is also done later in this Chapter. The details of the building configuration, 

reinforcement details and the nomenclature assigned are shown in tabular form.  

The various existing stress-strain models are studied in-order to evaluate their relative 

differences in representing the actual strength and deformation behaviour of confined 

concrete. It has been noted that the stress-strain model suggested by IS 456 does not 

consider the strength enhancement due to confinement while in reality concrete exhibits 

different performance in the confined and unconfined conditions. The model proposed 

by Mander et al (1988a) included the strength enhancement factor achieved through 

confinement, but it does not control the descending branch of the stress strain curve 

well. While comparing Razvi model (1992) and Modified Kent and Park model (1982) 

it was observed that the latter shows higher percentage increase in column capacity and 

deformation.  

It was found that many research conducted show that the Modified Kent and Park model 

is close to the experimental results. In the present study Modified Kent and Park model 

(1982) has been used. Percentage Strength enhancement due to  confinement in 

Modified Kent and Park model for various column sections is in the range of 32% –

58%. ATC-40 suggested a limiting value of ultimate strain for confined concrete as 

0.02. The limiting value of ultimate strain for unconfined concrete is 0.005 as suggested 

by Priestly (1997). 
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The parametric study on Modified Kent and Park model showed that the ultimate strain 

is more dependent on the spacing of transverse reinforcement than the grade of 

transverse steel and concrete. Hence to ensure the ductile detailing, the spacing of 

stirrups shall be treated as an important factor. 

The increase in strength enhancement factor (that define the measure of confinement) 

by 1.2 times increases the ultimate strain by 46.89%.  
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CHAPTER 4 

RESPONSE REDUCTION FACTORS FOR SMRF AND OMRF 

FRAMES 

 

4.1 GENERAL 

The second objective of the present study is to evaluate the response reduction factors 

for buildings designed and detailed as per IS code. The elastic forces are reduced by a 

response reduction factor to calculate the seismic design base shear. The building shall 

be detailed as special moment resisting frames (SMRF) if the R factor assumed is 5. 

Once the design is being done, it is required to ensure that the designed building exhibit 

the adequate behaviour factors or response reduction factors. The actual response 

reduction factors can be calculated using a pushover analysis, modelling the 

nonlinearity in the materials. This chapter discusses the nonlinear modelling, static push 

over analysis of the designed RC frames (SMRF and OMRF) and the estimation of 

response reduction factors.  

 

4.2 RESPONSE REDUCTION FACTOR  

 

Chugh (2004) conducted ductility studies on RC beams using several confinement 

models.The response of a statically determinate structure to stress will be linear until 

yielding takes place. But as soon as the yielding occurs at any section, the behaviour of 

the structure becomes inelastic and linear elastic structural analysis can no longer be 

applied. As per the above study, it is mentioned that during an earthquake, yielding of 

the reinforcement can be expected at many sections. It would be too costly to design a 

structure based on the elastic spectrum. To reduce the seismic loads, IS 1893 introduces 

a “response reduction factor” R. But this reduction can be made, only if adequate 

ductility is developed through proper design and ductile detailing of the elements. So 

in-order to obtain the exact response, it is recommended to perform Non-Linear 

Analysis. 
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4.3 MODELLING OF RC MEMBERS FOR NONLINEAR STATIC ANALYSIS 

OpenSees (Open System for Earthquake Engineering Simulation) platform is used for 

modelling of the structure.OpenSees is an object oriented open-source software 

framework used to model structural and geotechnical systems and simulate their 

earthquake response. It is primarily written in C++ and uses some FORTRAN and C 

numerical libraries for linear equation solving, and material and element customs. The 

progressive capabilities for modelling and analysing the nonlinear response of systems 

using a wide range of material models, elements, and solution algorithms makes this 

open source platform more popular.  

Concrete behaviour is modelled by a uniaxial modified Kent and Park model with 

degrading, linear, unloading/reloading stiffness no tensile strength. Steel behaviour is 

represented by a uniaxial Giuffre–Menegotto–Pinto model. The strain hardening ratio 

is assumed as 5%. Fiber Section modelling of element is done according to Spacone et. 

al, (1996).The ultimate strain for confined concrete is taken as 0.02 as per ATC-40 

specifications and that for unconfined concrete is considered as 0.005 as per Priestley 

(1997). 

4.4 PUSHOVER ANALYSIS 

Pushover analysis is a static, nonlinear procedure to analyse the seismic performance 

of a building where the computer model of the structure is laterally pushed until a 

specified displacement is attained or a collapse mechanism has occurred as shown in 

Fig: 4.1.The loading is increased in increments with a specific predefined pattern such 

as uniform or inverted triangular pattern. The gravity load is kept as a constant during 

the analysis. The structure is pushed until sufficient hinges are formed such that a curve 

of base shear versus corresponding roof displacement can be developed and this curve 

known as pushover curve. A typical Pushover curve is shown in Fig 4.1. The maximum 

base shear the structure can resist and its corresponding lateral drift can be found out 

from the Pushover curve.  
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Fig: 4.1: Lateral Load Distribution and a Typical Pushover Curve 

4.4.1 Bilinear Approximation of Pushover Curve 

Most pushover methods adopt a bilinear approximation of the actual push-over curve 

to obtain an idealized linear response curve, as shown in Fig: 4.2. This is done in such 

a way that the area under the actual curve will be equal to the area under the bilinear 

approximate curve. 

 

 
Fig: 4.2: Bilinear Approximation of Pushover Curve 

 

 

4.4.2 Pushover Curves 

Pushover analysis is conducted for all the frames considered in the study in-order to 

evaluate their seismic performance in terms of ductility capacity and over-strength. The 

computational model of the structure was created using the software framework, 

OpenSees. The gravity loads are applied as load controlled procedure and subsequently 

a lateral pushover analysis is conducted using a displacement controlled procedure until 
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the maximum compressive strain in any of the members reach a value suggested by 

ATC-40 (Equation 3.8).  

4.4.3 Effect of confinement model for concrete in lateral load behaviour 

It can be seen from the previous Chapter that the effect of confinement significantly 

change the peak strength and ultimate strain of the stress-strain curve of concrete. In 

order to study the effect of concrete confinement in the pushover curve, pushover 

analysis of the 12 storeyed SMRF frame is conducted by modelling the concrete in the 

confined core using the two concrete stress-strain models namely, modified Kent and 

Park model and also the unconfined stress-strain model suggested by IS 456 (2000). 

Fig. 4.3 shows the pushover curves for the selected frame in both cases. It can be seen 

that difference in strength between the two pushover curves is only marginal but the 

change in the displacement capacity is significant. The pushover curve that uses the 

unconfined stress-strain model underestimates the displacement capacity of 12 storey 

SMRF frames by 83%. As the accuracy of displacement capacity estimation plays a 

major role in the estimation of response reduction factors, the SMRF and OMRF frames 

are modelled by the confinement model and subsequent sections explains the further 

details. 

 

Fig: 4.3: Effect of confinement in lateral load behaviour of 12 storeyed SMRF frames 
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4.4.4 Comparison of Pushover curves for SMRF and OMRF buildings 

The pushover curves obtained for the eight study frames are shown in Fig: 4.4(a), 

4.4(b), 4.4(c), and 4.4(d). Fig. 4.4(a) shows the comparison of pushover curve for 

OMRF and SMRF frames for 2S4B frame. The strength capacity of OMRF frame is 

about 33.88 % more than that of an SMRF frame. The displacement capacity for the 

two storey frame detailed as SMRF frame is about 47.44% higher than that of the 

OMRF frame. The difference in the strength capacity is due to the increase in 

longitudinal reinforcement of the OMRF frame compared to that of SMRF frame. The 

SMRF is designed for a lower design base shear as the response reduction factor 

assumed is 5 instead of 3 for the OMRF frame. The same trend is followed other frames 

also as seen in the Figs. 4.4(b), 4.4(c), and 4.4(d). OMRF structures possess 10-34% 

more capacity than SMRF in resisting base shear. This is because of the fact that OMRF 

frames are designed with R factor ‘3’ and the amount of longitudinal reinforcement is 

higher compared to SMRF. It can also be noted from the curves that the maximum 

displacement shown by SMRF frames is higher in all the cases compared to their 

corresponding OMRF frames as a result of the enhanced confinement achieved through 

special design and ductile detailing. SMRF buildings exhibit about 30-65% more 

deformation capacity than OMRF buildings.  

Table 4.1 summarizes the percentage increase in roof displacement capacity and base 

shear of both SMRF and OMRF frames. In order to show the trend of increase in 

strength and displacement capacity of OMRF/SMRF compared to each other a trend-

line graph is plotted in Fig: 4.5 and Fig:4.6. The trend-line show that (Fig: 4.5), as the 

number of storeys increases the strength increase of OMRF compared to SMRF 

decreases. Similarly, as the displacement capacity increase in SMRF frame compared 

to an OMRF frame decreases as the number of storeys increases (Fig: 4.6). 
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Fig: 4.4: Pushover curve of SMRF and OMRF frames 

 

Table 4.1: Comparison of strength and deformation capacity for SMRF and OMRF 

frames 

 

 

No. of 

storeys 

Roof 

Displacement 

(mm) 

Percentage 

Increase in Roof 

Displacement 

Capacity of 

SMRF 

Base Shear 

(kN) 

Percentage 

Increase in Base 

Shear of OMRF 

OMRF  SMRF OMRF SMRF 

2 135.82 200.23 47.44 % 569.41 425.5 33.88 % 

4 316.02 520.284 64.64 % 689.04 572.4 20.45 % 

8 483.369 626.36 29.59 % 876.02 692.8 26.58 % 

12 505.212 684.76 35.64 % 914.47 825.87 10.736 % 

(a) 2S4B 
(b) 4S4B 

(c) 8S4B (d) 12S4B 

OMRF 

SMRF 
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4.4.5Effect of number of stories and frame type on seismic performance 

In order to study the effect of number of storeys in the strength and displacement 

capacity of frames considered, their respective pushover curves are being compared. 

Fig. 4.6a and 4.6b display the pushover curves of SMRF and OMRF frames 

respectively.  

SMRF frames 

With respect to SMRF frames, the strength of the 12 storeyed frames is about 24.9% 

more than that of 8 storeyed frame, which is about 20.55% more than that of 4 storeyed 

frame, which is about 34.5% more than that of 2 storied frames. When the number of 

storeys is increased by 4 storeys the base shear capacity is increased by 20-25%. The 

displacement capacity of the 12 storeyed frames is about 13.7% more than that of 8 

storeyed frame, which is about 15.8% more than that of 4 storeyed frame, which is 

about 16% more than that of 2 storied frames. For an SMRF frame, when the number 

of stories increased by 4 storeys the displacement capacity is increased by 13-15%. 

OMRF frames 

With respect to OMRF frames, the strength of the 12 storeyed frames is about 8.7% 

more than that of 8 storeyed frame, which is about 27.1% more than that of 4 storeyed 

frame, which is about 23% more than that of 2 storied frames. The displacement 

capacity of the 12 storeyed frames is about 4.6% more than that of 8 storeyed frame, 

which is about 53% more than that of 4 storeyed frame, which is about 185% more than 

that of 2 storied frames. For an OMRF frame, when the number of stories increased by 

4 storeys the displacement capacity is increased by 4-53%. 

Fig: 4.5: Strength increase of OMRF 

compared to SMRF 

Fig: 4.6: Displacement increase of 

SMRF compared to OMRF 
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Fig: 4.7: Effect of number of storeys on the pushover curves 

 

 

 

4.5 RESPONSE REDUCTION FACTOR as per IS 1893 (2002) 

As per the IS 1893 definition, “it is the factor by which the actual base shear force, that 

would be generated if the structure were to remain elastic during its response to the 

Design Basis earthquake (DBE ) shaking, shall be reduced to obtain the design lateral 

force”.  

When a structure is subjected to seismic loads, a base shear which is prominently higher 

than the actual structure response is created. Thus it possess a significant amount of 

reserve strength or over-strength. Over-strength is developed because the maximum 

lateral strength of a structure always exceeds its design strength. Once it enters the 

inelastic phase, it is capable of resisting and absorbing a large amount of seismic energy. 

Hence seismic codes introduce a reduction in the design loads, taking benefit of the fact 

that the structure possesses over-strength and ductility as per Asgarian and Shokrgozar 

(2009).This force reduction factor is called Response Reduction Factor, R.  

4.5.1 Behaviour factors (Performance parameters) 

The response modification factor or response reduction factor is a measure of the over 

strength and ductility of the structure in inelastic phase. This is also called as behaviour 

factor in Inter-national codes, and it can be expressed as a function of various 

(a) SMRF 
(b) OMRF 
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parameters of the structural system, such as strength, ductility, damping and redundancy 

as per Whittaker et al. (1999). 

𝑅= 𝑅𝑠𝑅𝜇𝑅𝑅𝑅ξ      (4.1) 

 

Where 𝑅𝑠 is the strength factor,𝑅𝜇 is the ductility factor, 𝑅ξ is the damping factor, and 

𝑅𝑅 is the redundancy factor. The over-strength factor𝑅𝑠 is a measure of the reserve 

strength in the structure. It is defined as the ratio of maximum base shear in the actual 

non-linear behaviour Vu to the design base shear Vd. The ductility factor𝑅𝜇 is a measure 

of the deformation capacity of the structure. It is obtained as the ratio of the elastic base 

shear (Ve) to the ultimate base shear of the inelastic response (Vu).The damping factor, 

𝑅ξbalances the effect of supplementary viscous damping and is mainly applicable in the 

case of structures with additional energy dissipating devices. In the absence of such 

devices the damping factor is generally assumed as 1.0.From the studies conducted by 

Mondal et al. (2013) redundancy factor 𝑅𝑅  can be assumed as unity following the 

ASCE7 guidelines. The ductility capacity 𝝁 is defined as the ratio of the maximum 

deformation to the displacement corresponding to yield strength of the idealized elastic 

response.The governing equations for the estimation of behaviour factors used in the 

current study are given below. 

 

𝑅=
Ve

Vd
   = 

 Vu  

Vd
× 

Ve

Vu
      (4.2) 

=  𝑅𝑠𝑅𝜇      (4.3) 

μ = Δu / Δy       (4.4) 

The details of the behaviour factors are calculated for the SMRF buildings as shown in 

Table 4.2 and Table 4.3. 
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Table 4.2: Parameters of the pushover curves for SMRF and OMRF Frames 

Frame 𝜟𝒖(mm) 𝜟𝒚(mm) 𝑽𝒖(kN) 𝑽𝒅(kN) 𝝁 =
𝜟𝒖

𝜟𝒚
 𝜴 =

𝑽𝒖

𝑽𝒅
 

SMRF Frames 

2S4B 200.23 50.02 425.52 212.02 4.00 2.01 

4S4B 520.28 110.02 572.41 321.36 4.73 1.78 

8S4B 626.36 200.12 692.8 431.6 3.13 1.61 

12S4B 612.93 155.64 861.64 505.87 3.94 1.70 

OMRF Frames 

2S4B 135.02 43 569.41 380.47 3.139 1.49 

4S4B 316.02 106 689 540.8 2.981 1.27 

8S4B 483.369 180 876.029 745.26 2.55 1.36 

12S4B 505 190 952.5 853.03 2.65 1.116 

 

Table 4.3: Response reduction factors and the components (Behaviour factors)  

Frame 𝑹𝒔 𝑹𝝁 𝑹𝑹 R 

SMRF frames 

2S4B 2.007 2.42 1 4.856 

4S4B 1.781 2.71 1 4.827 

8S4B 1.605 2.63 1 4.229 

12S4B 1.703 2.52 1 4.305 

OMRF frames 

2S4B 1.49 2.007 1 2.99 

4S4B 1.27 2.062 1 2.63 

8S4B 1.176 1.893 1 2.226 

12S4B 1.116 1.974 1 2.202 
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4.5.2 Performance parameters versus number of storeys (SMRF and OMRF 

frames) 

Variation of over-strength factors for SMRF and OMRF frames with number of 

storeys 

In order to understand the variation of each performance parameter with number of 

storeys of each SMRF and OMRF frame, the data in the presented in the Table 4.3 is 

expressed graphically. With reference to Figs: 4.7(a) & 4.7(b), as the number of storeys 

increases the over-strength factor, 𝑅𝑠 show a decreasing trend for both SMRF and 

OMRF frames. Thus the shorter frames possess higher over-strength factor compared 

to the taller frames. This type of behaviour is also observed by Mondal et al. (2013) and 

Asgarian and Shokrgozar (2009). 

Variation of ductility factor for SMRF and OMRF frames with number of storeys 

Figs: 4.7(c) and 4.8(d) show the variation in ductility, Rμ with the number of storeys for 

both the frames. It looks like there is no definite trend for ductility factor as the number 

of stories increases in both SMRF and OMRF frames.  

Variation of response reduction factor for SMRF with number of storeys 

Fig: 4.7(e) and 4.7(f) show the variation in Response Reduction Factor, R with the 

number of storeys. It can be seen that as the number of storeys increases the response 

reduction factor decreases for both SMRF and OMRF frames.  

Two storey SMRF frame shows the highest R factor of 4.86while eight storey SMRF 

frame shows the lowest value of 4.23, the values being close to the design R factor of 

5. The R values vary within the range 4.23 to 4.86 for the SMRF frames considered 

which is 2.8 to 15.6 % less than the assumed value of R during the design. 

Variation of response reduction factor for OMRF with number of storeys 

Two storey OMRF frame shows the highest R factor of 2.99while twelve storey OMRF 

frame shows the lowest value of 2.2, the values being slightly less than the design R 

factor of 3 for OMRF frames. The R values vary within the range of 2.2 to 2.99 for the 

OMRF frames considered which is 0.33% – 26 % less than the assumed value of R 

during the design. 
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Fig: 4.8: Variation of Performance parameters for SMRF and OMRF frames with 

number of stories 

 

  

(a) Over-strength factor -SMRF 

(e) Response reduction factor -SMRF 

(b) Over-strength factor -OMRF 

(f) Response reduction factor -OMRF 

(c) Ductility factor -SMRF (c) Ductility factor -OMRF 
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4.6 CONCLUDING REMARKS 

 

The objective of this Chapter is to estimate the response reduction factors for the 

specially and ordinary moment resisting frames. All the RC frames are modelled for 

nonlinearity using the Modified Kent and Park confinement model. Nonlinear Static 

Pushover Analysis is carried out for all the frames considered to evaluate the 

performance factors.  

The pushover analysis of the 12 storeyed SMRF frame modelling the concrete in the 

confined core using the two concrete stress-strain models namely, modified Kent and 

Park model shows that the unconfined stress-strain model underestimates the 

displacement capacity of 12 storey SMRF frames by 83%. 

The pushover curves of SMRF buildings are compared with that of their corresponding 

OMRF buildings. It is observed that the drift capacity of SMRF buildings is higher than 

OMRF buildings in all the cases. The percentage increase of displacement capacity of 

SMRF over OMRF varies in the range 29-65%. This validates the fact that SMRF 

buildings which are specially designed and detailed as per IS 13920 guidelines exhibits 

more ductility compared to the less stringently designed OMRF buildings. While 

considering the base shear capacity, OMRF buildings exhibit higher values than SMRF 

buildings of about 10-34%.The provision of R factor ‘3’ increases the design base shear 

in OMRF buildings. Due to the higher design base shear, the RC sections in the OMRF 

building will be heavier. This is the reason for the higher base shear capacity. 

The behaviour factors of the frames are evaluated from the pushover curve and a story-

wise comparison is carried out. For both SMRF and OMRF buildings it is found that 

the over-strength factors exhibits a decreasing trend as the number of stories increases. 

The shorter frames show higher over-strength value compared to taller frames. 

It was found that the ductility factors do not show any specific trend with variation in 

the number of stories for both SMRF and OMRF frames.  

A study of the variation of response reduction factor with number of stories is done. In 

SMRF buildings it is observed that as the number of storeys increases the R factor tends 

to decrease. The shorter frames exhibits higher R values compared to taller frame. 2- 

storey. SMRF building shows the highest R factor of 4.856 which is almost close to the 

IS 1893(2002) suggested value of ‘5’. The R factor for SMRF buildings varies in the 
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range of 4.23 to 4.86. OMRF buildings also exhibit decrease in R factor with increase 

in number of storeys. The value varies in the range 2.2 to 2.99 which is less than the 

suggested R value of ‘3’ as per IS 1893 guidelines. 

In general, the present study shows that both the OMRF and SMRF frames failed to 

achieve the respective target values of response reduction factors recommended by IS 

1893 (2002). Further research is required in this direction by considering more spectrum 

of frames designed as per the two approaches (SMRF and OMRF) in IS code, before 

reaching any specific conclusions about the adequacy of the codal requirements.  

The effect of number of storeys in the base shear strength and displacement capacity of 

the SMRF and OMRF frames is studied. It is found that for addition of every 4 storeys 

in the SMRF frames, it showed about 20-25% increase in base shear capacity while 

about 13-15% increase in displacement capacity. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 

5.1 REVIEW OF EXISTING CONFINEMENT MODELS FOR CONCRETE 

Objectives of the thesis are to review the existing confinement models for concrete and 

to apply an appropriate confinement model to SMRF and OMRF buildings designed as 

per IS 1893 (2002). A literature is conducted that discusses the various topics such as 

the confinement models, response reduction factors or behaviour factors and various 

confinement models for the stress-strain relationship of concrete and pushover analysis.  

The confinement in the concrete plays a major role in the strength and ductility of the 

RC members. In order to show the effect of considering the confinement in the stress-

strain curve and its effects in the strength and ductility, various SMRF and OMRF 

frames (2, 4, 8 and 12 storeys with 4 bays) are designed and detailed as per IS code.  

The various existing stress-strain models are studied in-order to evaluate their relative 

differences in representing the actual strength and deformation behaviour of confined 

concrete. It has been noted that the stress-strain model suggested by IS 456 does not 

consider the strength enhancement due to confinement while in reality concrete exhibits 

different performance in the confined and unconfined conditions. 

A parametric study is conducted to understand how the various parameters such as 

spacing transverse reinforcement, grade of transverse reinforcement and grade of 

concrete influence the stress-strain curve.  

 It was found that Razvi model and Modified Kent and Park model it was 

observed that the latter shows higher percentage increase in column capacity 

and deformation. Percentage Strength enhancement due to  confinement in 

Modified Kent and Park model for various column sections is in the range of 

32% –58%.  

 The parametric study on Modified Kent and Park model showed that the 

ultimate strain is more dependent on the spacing of transverse reinforcement 

than the grade of transverse steel and concrete. Hence to ensure the ductile 

detailing, the spacing of stirrups shall be treated as an important factor. The 



58 | P a g e  
 

increase in strength enhancement factor (that define the measure of 

confinement) by 1.2 times increases the ultimate strain by 46.89%.  

5.2 PUSHOVER CURVES FOR SMRF AND OMRF FRAMES 

The second objective is to estimate the response reduction factors for the specially and 

ordinary moment resisting frames. The designed RC frames are modelled for 

nonlinearity using the Modified Kent and Park confinement model. Nonlinear Static 

Pushover Analysis is carried out for all the frames to generate the pushover curves. 

 The pushover analysis of the 12 storeyed SMRF frame modelling the concrete 

in the confined core using the two concrete stress-strain models namely, 

modified Kent and Park model shows that the unconfined stress-strain model 

(IS code) underestimates the displacement capacity of 12 storey SMRF frames 

by 83%. 

 The pushover curves of SMRF buildings are compared with that of their 

corresponding OMRF buildings. It is observed that the drift capacity of SMRF 

buildings is higher than OMRF buildings in all the cases.  

 The percentage increase of displacement capacity of SMRF over the 

corresponding OMRF is in the range of 29-65%. This validates the fact that 

SMRF buildings which are specially designed and detailed as per IS 13920 

guidelines exhibits more ductility compared to the less stringently designed 

OMRF buildings.  

 While considering the base shear capacity, OMRF buildings exhibit higher 

values than SMRF buildings of about 10-34%.The provision of R factor ‘3’ 

increases the design base shear in OMRF buildings. Due to the higher design 

base shear, the RC sections in the OMRF building will be heavier. This is the 

reason for the higher base shear capacity. 

 The behaviour factors of the frames are evaluated from the pushover curve and 

a story-wise comparison is carried out. For both SMRF and OMRF buildings it 

is found that the over-strength factors exhibits a decreasing trend as the number 

of stories increases. The shorter frames show higher over-strength value 

compared to taller frames. 
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 It was found that the ductility factors do not show any specific trend with 

variation in the number of stories for both SMRF and OMRF frames.  

5.3 RESPONSE REDUCTION FACTORS FOR SMRF AND OMRF FRAMES 

A study of the variation of Response Reduction Factor with number of stories is 

conducted. In SMRF buildings it is observed that as the number of storeys increases the 

R factor tends to decrease. The shorter frames exhibits higher R values compared to 

taller frame. 2- storey SMRF building shows the highest R factor of 4.856 which is 

almost close to the IS(1893) code suggested value of ‘5’.  

 The R factor for SMRF buildings varies in the range of 4.23 to 4.86. OMRF 

buildings also exhibit decrease in R factor with increase in number of storeys. 

The value varies in the range 2.2 to 2.99 which is less than the suggested R value 

of ‘3’ as per IS 1893 guidelines. 

 In general, the present study shows that both the OMRF and SMRF frames, 

failed to achieve the respective target values of response reduction factors 

recommended by IS 1893 (2002).  

 The study of effect of number of storeys in the base shear strength and 

displacement capacity of the SMRF and OMRF frames show that for addition 

of every 4 storeys in the SMRF frames, it showed about 20-25% increase in 

base shear capacity while about 13-15% increase in displacement capacity. 

5.4 LIMITATION OF PRESENT STUDY AND SCOPE FOR FUTURE WORK 

The present study considered frames with number of storeys varying from two, four, 

eight and twelve with four number of bays. The aspect ratios of (ratio of height to width) 

of each frames considered is not the same. The trend of R factors and the components 

of R factors show some exceptions in the decreasing rend in some cases. The selection 

of frames with same aspect ratio may yield variation of R factors with some specific 

trend. The present study can be extended to frames with same aspect ratios. 

The present study does not consider the effect of strength and stiffness of infill walls 

in the frames. This approach can be extended to frames modelling the infill walls. 
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