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ABSTRACT 

 

As there are many potential benefits by integrating the distributed generation (DG) 

units in a distribution network over conventional system, DG plays a vital role in a power 

system network. Renewable energy based DG units are located close to the consumers or 

load centers in order to improve voltage profile, reduce the network power losses and 

improves substation capacity release etc. Thus, while allocating DG units care has to be taken 

in order to maximize the benefits. In this thesis, by installing DG, an optimal way of 

managing real and reactive power and improving the nodal voltages in primary distribution 

network explained. Optimal location of DG is identified by using voltage stability index 

(VSI). The optimal rating of DG is computed by using Particle Swarm Optimization (PSO) 

technique to ensure reduction in power losses and to attain better voltage regulation. To 

demonstrate the efficiency of proposed techniques a clear and detailed analysis of 

performance has been carried out on IEEE-33 & 69 bus systems. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview: 

An Electric power system comprises of a generating system, a transmission 

system and a distribution system. Generating station convert fuel energy into electricity, 

transmission system connects the generating stations and distribution substations and 

distribution system distribute power to consumers. In view of network structure, 

transmission and distribution systems are different .Generally, transmission system will 

have loop structure and distribution system tends to have a radial structure. 

 Distribution Systems: 

Distribution systems are employed with radial structure in order to obtain 

operational simplicity. By means of an interconnected transmission network, primary 

distribution substation receives power from generating stations. Radial Distribution 

System (RDS) network is passive in nature and transfers power to consumers from the 

substation. Thus, in RDS the power flow is unidirectional. In case of distribution lines, 

due to high R /X ratio, high voltage drops, large power loss will occur. Everyday 

distribution networks are experiencing many changes in the load. At most of the nodes, 

RDS experience a sudden collapse in the voltage during critical load conditions because 

of low voltage stability index. In this thesis, for RDS a voltage stability index (VSI) is 

proposed for all the nodes. It is observed that node with minimum VSI value is more 

sensitive and leads to collapse in voltage.  

During past years, several techniques were implemented by placing dispersed 

sources injecting reactive power like capacitor banks in order to obtain improvement in 

voltage and to reduction in power losses. Even through the implementation of capacitor 

placing method which is promising in nature, the voltage profile improvement obtained 

is below desired voltage level (1.0 p.u.). As RDS is passive in nature, it is less reliable. 

Many solutions are suggested recently by incorporating electrical sources based on 

renewable energy technology to overcome the passiveness of RDS and also to improve 

reliability of the system and voltage profile. These embedded generations in RDS are 

called as Distributed or Dispersed Generation (DG). 
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 Distributed Generation (DG): 

In recent years, alternate solutions to traditional power stations have been given a 

high priority due to the limited presence of fuel resources and also to meet electric 

energy demands. Thus, the renewable resources of energy are considered as the 

alternative solution to existing fuels. When compared with large fossil fuel based power 

plants, the sizes of renewable energy based generators are small. They are well suited for 

low voltage RDS. 

Originally power systems are designed based on power flow in single direction, 

but the DG concept has led to new considerations concerning the distribution networks. 

The penetration of Dispersed Generation impacts the distribution system operation in a 

beneficial way or it may increase line losses which is a negative effect. Positive aspects 

of DG are: provides Voltage Support, reduces Power Loss, and the negative aspects of 

DG are Dynamic Stability and Protection Coordination. So, for adopting the DG into 

distribution network, care should be taken for technical constraints and penetration 

levels, in such a way that the benefits should be maximised.  

Dispersed generation is a power source directly connected to customer site or to 

distribution network. It consists of two aspects: 

1.  DG located on customer side or directly to distribution system  

2. Demand-side resources, such as load management systems and energy efficiency    

     options. 

Interesting aspect of DG resources is, it acts as a means for customer demand and 

also generate the power on the customer side. Now-a-days distributed capacity includes 

all impacts of DG and distributed resources and reserve capacity for minimizing 

requirements for over dimensioning of distribution/ transmission system.  

Many approaches are proposed for placing and sizing of Dispersed Generators. In 

this paper, an easy technique for reducing the real power loss, improving the voltage 

profile is presented. Power flow analysis is done by using forward-backward sweep 

technique. In RDS, the optimal locations for placing the DG units are identified by VSI 

technique. The optimal sizing of the DG units is computed by using Particle Swarm 

Optimisation (PSO). 
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 Particle Swarm Optimization(PSO): 

Optimization is referred as both minimizing and maximizing the tasks. Since the 

minimization of any function is same as maximizing its additive inverse , the 

terminology minimization and optimization can be used interchangeably [12]. Because 

of this reason, optimization became very important in many fields. 

Kennedy and Eberhart proposed a solution to the non-linear and complex 

optimization problem by observing behaviour of flock of birds. They developed the 

concept of optimizing the function using swarm of particles. In order to solve the 

optimization problems, PSO algorithm is inspired by the animal’s activity. In PSO, 

swarm means population, particle represents each member of the population. Each 

particle searches through the entire space by randomly moving in different directions and 

remembers the previous best solutions of that particle and also positions of its neighbour 

particles. Particles of a swarm adjust their position and velocity dynamically by 

communicating best positions of all the particles with each other. In this way, finally all 

particles in the swarm tries to move towards better positions until the swarm reaches an 

optimal solution. 

The Particle Swarm Optimization (PSO) technique is a parallel search method 

which utilizes multi-agents (a swarm of particles). Each agent in the swarm represents a 

solution. All agents goes through entire search space and updates its position and 

velocity based on their own experience and on experience of other agents. 

Thus, in PSO technique, all agents are initialized randomly and the fitness value 

is computed by updating personal best (best value of each agent) and global best (best 

value of all agents in the entire swarm). The loop will get started by assuming initial 

values of position of the particles as personal best and then updates every particle 

position by using the updated velocity. When the stopping criterion is met, loop will be 

ended [17]. Basically, PSO algorithms are classified into two types. They are Global 

Best (gbest) and Local Best (lbest) PSO methods. These two algorithms are different 

when their neighborhood agents are considered. 
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1.2 Literature Review: 

 During the present years, demand for power has been increasing drastically. But 

the power generation stations and transmission system expansion is limited severely due 

to the limited availability of resources. Distributed Generation became a research topic 

for the past twenty years. Lot of study is carried out in this area. Dugan, R.C. and 

McDermott, T.E. [1] defined the DG system as follows. Dispersed Generators that are 

interconnected to utility distribution systems will be smaller than 10MW. Generally 

larger units are directly connected to transmission facilities. The DG units installed in 

general will not be more than 1 or 2 MW and they are majorly installed by utility. This 

technique of generating power is called as “Dispersed Generation (DG)”.   

The main use of a load flow analysis is to get network operational conditions like 

phasor voltages of every bus, reactive and real power flows by considering known 

network topology. Several efficient algorithms have been developed for solving power 

flow problem of a transmission network. However, these algorithms may not maintain 

their efficiency and reliability when applied to a low voltage distribution network. 

Augusto Cesar dos Santos and Marcelo Nanni presented Forward and Backward Sweep 

(FBS) methods for the power flow analysis because of its ease of implementation and 

robustness. They consider unique feature distribution network (radial structure) [2]. 

Using them, load flow solution can be attained without solving the equations. 

 Because of increase in load demand the distribution system is facing problems. 

They   are experiencing many changes from a low level to high level of load. M. 

Chakravorty, D.Das [3] proposed a voltage stability index technique for radial 

distribution systems. Voltage stability index represents a numerical solution to identify 

the sensitive node of the system. It also helps to check the system to prevent from 

voltage collapse by initiating automatic remedial actions. Main aim of VSI is to find the 

distance between the current working point and stable point. Voltage collapse generally 

starts at most sensitive node in the system and then passes to all other nodes which are 

sensitive. 

 Kyu-Ho Kim, Yu-Jeong Lee [4] presented a Fuzzy-GA technique to solve DG 

placing for RDS. Its objective is to reduce the costs of power loss of RDS. Original 

objective function and constraints are transformed into the unconstrained multi-objective 

function using fuzzy logic. 
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 An analytical method for calculating optimal size of DG and an efficient 

methodology for identifying optimum location for DG was proposed by Caisheng Wang 

[5] in order to reduce the losses. For three distributed networks the proposed technique is 

applied and tested with different sizes and complexities. Obtained results are compared 

with exhaustive power flow techniques. 

 Optimal Dispersed Generation unit placing by using fuzzy logic was discussed by 

A. Lakshmi Devi in paper [6]. The analytical method of finding optimal size of DG is 

computed.  Node for placing DG is identified by using approximate reasoning technique. 

Power loss indices and voltages of RDS nodes are designed by using fuzzy membership 

function values and the DG is placed at the node with high suitability index.  

1.3. Objectives and Scope of the Project: 

 The objectives of the project are: 

 Developing an optimal way for managing the reactive and real power and also 

improving the voltages of the nodes in RDS with DG.  

 Implementation of voltage stability index technique for optimal placing of DG 

units.  

 Implementing the PSO algorithm to obtain the optimal size of the DG and 

thereby reducing the losses. 

 A detailed analysis of the performance of these methods is to be carried out on 

IEEE-33 & 69 bus systems to explain the effectiveness of the proposed 

techniques. 

1.4. Organization of the Thesis: 

This thesis is organized into 7 units: 

Chapter 1 

Provides an outline of thesis and determines the objectives and scope of project. 

Chapter 2 

Discusses about modelling of radial distribution network and various techniques 

available to perform the load flow analysis of RDS  

Chapter 3 

Measure the voltage stability level of RDS by using Voltage Stability Index. 
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Chapter 4 

Presents optimal placing and sizing of DG without implementing Optimisation 

techniques. 

Chapter 5 

Discusses a conceptual overview of the PSO algorithm and its parameters selection 

strategies, geometrical illustration and neighbourhood topology, advantages and 

disadvantages of PSO, and mathematical explanation. 

Chapter 6 

This chapter discusses simulation results of the optimal placing and sizing of DG using 

PSO and discusses in details. 

Chapter 7 

Conclusion of the thesis and future scope of this work is discussed. 
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CHAPTER 2 

LOAD FLOW ANALYSIS 

Real-time applications such as optimization of network, switching, estimation of 

the state, and so on, requires an efficient and standard power flow technique. Due to 

special features of distribution systems such as Radial structure, high ratio of R/X and 

wide-ranging reactance and resistance values. Newton Raphson (NR) and Gauss Seidel 

(GS) techniques may become ineffective. In particular, in standard fast-decoupled NR 

method, the assumptions that are used for the simplifications are not valid in RDS. This 

makes the transmission systems power flow computation different from distribution 

systems. Hence, for distribution networks, an efficient power flow algorithm is desired.  

In order to carry out the unbalanced and balanced RDS analysis various methods 

are proposed. Basically they are divided into two types. The first type includes 

modification of traditional techniques such as GS and NR. Second type is based on 

forward and backward sweep process using Kirchhoff’s laws. For distribution networks 

power flow analysis, backward and forward sweep based techniques gained more 

popularity because of its high computational efficiency, low memory requirements and 

strong convergence characteristic. In this, load flow study is carried by using backward 

and forward sweep method. 

In this algorithm, bus-branch oriented data is the only input. Solving the power 

flow for RDS directly and developing the formulation that includes advantages of 

topological characteristics of the distribution networks are the main goals of this chapter. 

It means in the new method, forward/backward substitute of Jacobian matrix and time-

consuming LU decomposition are not performed as in the traditional NR and GS 

methods. In this new method, to get the load flow solution, BIBC, bus-injection to 

branch-current matrix and simple matrix operations are performed. Compared to all 

conventional methods, this method is very efficient and robust. The results explain the 

validity and feasibility of the proposed method. 
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2.1. Mathematical Model for Radial Distribution Systems: 

Assuming a three phase RDS is balanced and can be represented by a single line 

diagram. A simple radial distribution system with source at one end and loads at the 

different nodes is shown in the Figure 2.1. 

 

                                                                    Bus4              Bus5 

                     Bus1        Bus2        Bus3                   B4 

                            B3 

                                          B1            B2                        B5                  Bus6 

  

 

Figure 2.1.Simple Distribution System 

Calculations of Node Currents: 

 For distribution systems, the current-injection based model is more practical. For 

node or bus, the load Si is expressed by 

 iii QPS 
                      

i=1,2,3…….N             (2.1) 

And corresponding current at the m-th iteration is 

 

*













 


m

i

iim

i
V

QP
I   (2.2) 

Where Vi
m

  and Ii
m

 are the bus voltage and current of bus i at the m-th iteration, 

respectively. 

Calculations of Branch Currents: 

 An example of simple RDS shown in Figure 2.1. The power injected at the buses 

can be converted to current injections by eq. (2.2). By applying KCL to distribution 

system, relationship between the branch and bus current injections can be attained. The 

branch currents are represented as function of current injections. For example, branch 

currents IB1,IB2, IB3, IB4 and IB5 can be expressed as 
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Thus, relation between the branch and bus current injections is represented as 
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Branch currents are calculated as 

      nB IBIBCI      (2.4b) 

Here BIBC is the bus-injection to branch-current matrix. BIBC matrix contains only 0’s 

and 1’s. 

2.2. Development of BIBC Matrix: 

          Observing eq. (2.3), an algorithm for BIBC matrix can be designed as: 

 Step 1) For RDS with n-buses and m-branches, the dimension of BIBC 

                              matrix is m x(n-1). 

 Step 2) If a branch (Bk) is located between i bus and j bus, copy the  

                          column of i-th bus to the column of the j-th bus and mark +1 in  

                          position of kth row and jth column.   

 Step 3) Until all branch sections are included in the BIBC repeat step2. 
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Based on the bus-branch database, the building algorithm is developed. Thus, 

integration of proposed method into the existent DA is easy and the time for preparing 

the data can be reduced  

2.3. Calculation of Branch Voltage drops and Node Voltages: 

Assume that for the RDS a flat voltage such that,    

Vn= (1+j0) p.u 

 The voltage drop for all branches is obtained and the voltage at other nodes can be 

calculated by using KVL 

ZIV B   

Considering branch B1, 

The receiving node voltage is: V12 VV  

                                               112 1
ZIVV B                                                               (2.5) 

Similarly for branch 2,          
223 2

ZIVV B
                                                             

(2.6) 

          As voltage 
1V  is known and if Ib1 is known, i.e. branch current, 

2V  can be 

calculated from equation. 2.5. Once if 
2V  is known, 3V  can be calculated easily from 

equation. 2.6. Similarly, calculation of voltages of other nodes 4, 5... NB  is easy if the 

currents of branches are known. Hence, a normalised equation for voltages of receiving 

and sending-end, branch currents and branch impedances are 

                                  )()()1()2( kkZkkInVnV                                                  (2.7) 

The above eq. (2.7) can be calculated for      kk = 1, 2... NB. 

By knowing the branch currents, the real and reactive power losses are obtained as:

  

                         
)()( 2

)( mRImPloss mb 
 
for m = 1,2,3...NB                                        (2.8) 

                         
)()( 2

)( mXImQloss mb 
 
for m = 1,2,3...NB                                      (2.9) 
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The total real as well as reactive power loss TPL and TQL is given by: 

                              




NB

k

mPlossTPL
1

)(                                                                         (2.10) 

                              




NB

k

mQlossTQL
1

)(

                                                                      

 (2.11) 

where 

N  number of buses 

NB  number of branches   i.e.  NB=N-1 

kk  branch number 

n1  Sending end nodes 

m2  Receiving end nodes 

In  Load currents at each bus 

Z  Impedance for all branches 

    Voltage at receiving end node 

    Voltage at sending end node 

∆V  Voltage drops in each branch. 

TPL               Total real power loss 

TQL               Total reactive power loss 

Ploss(m)         Real power loss for branch k 

Qloss(m)         Reactive power loss for branch k 

 

The mathematical model is presented in this section considering the impact of 

load growth and realistic static load model into account. The load flow algorithm used in 

this paper consists of forward sweep and BIBC formulation methods. The forward sweep 

is a voltage drop calculation from sending to receiving end of a lateral. BIBC is a current 

summation technique based on voltage updates. Then by using Kirchoff’s law we can 

obtain voltage drop.                                             

Initially, assume a constant voltage to all nodes and compute the load currents 

using equation.2.2. After computing load currents, compute the branch currents using 

eqn. 2.4.  Calculate node voltages by using eqn.2.7. Real and reactive power losses of 

each branch are computed by using equations. 2.8 and 2.9 respectively. After computing 

the nodal voltage values, convergence criteria are to be verified. By using recent voltage 
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values load currents are calculated and the entire process is repeated until convergence is 

satisfied. The convergence criterion of method is that the maximum voltage difference is 

less than 0.00001P.U.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

CHAPTER 3 

VOLTAGE STABILITY INDEX (VSI) 

Voltage stability index represents a numerical solution to identify the sensitive 

node of the system. It also helps the operator to check the system to prevent from voltage 

collapse by initiating automatic remedial actions. Main aim of VSI is to find the distance 

between the current working point and stable point. Voltage collapse generally starts at 

most sensitive node in the system and then passes to all other nodes which are sensitive. 

The node with most sensitivity to voltage collapse exhibits any one of the below 

features:  

1)  Highest critical point  

2)  Low margin of reactive power.  

           3)  More deficiency of reactive power. 

3.1. Mathematical Formulation: 

 

                    |V(n1)| δ(n1)                                                                               |V(n2)| δ(n2) 

                              1                                Ib1                                      2 

  

                                                              r1 + j x1                                                            P2 + j Q2 

Figure 3.1.Simple 2 bus system 

From figure: 

                 
)()(

)2()2(|)1()1(|
)(

kkxkkr

nnVnnV
kkI








                                                       (3.1) 

                 )()2()2()2( * kkInVnjQnP                                                             (3.2) 

From equations (3.1) & (3.2), we get  

 

                 
)2(*

)2()2(

)()(

)2()2(|)1()1(|

nV

njQnP
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                                    (3.3)
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By solving eq. (3.3), we get the expression given below, 

                                                                 .0)}()({

)}2()2({|)2(|)}()2(2)()2(2|)1({||)2(|

22

22224





kkxkkr

nQnPnVkkxnQkkrnPnVnV
 

(3.6) 

Let 

         )()2(2)()2(2|)1(|)( 2 kkxnQkkrnPnVkkb                                              (3.5) 

         )}()()}{2()2({)( 2222 kkxkkrnQnPkkc                                                    (3.6) 

From equations (3.4),(3.5),(3.6) we get, 

            0)(|)1(|)(|)2(| 24  kkcnVkkbnV                                                                (3.7) 

From Eq. (3.7), voltage of receiving end V(n2)  has 4 solutions and they are: 

 5.05.02 ])}(4)({)([707.0.1 kkckkbkkb   

 5.05.02 ])}(4)({)([707.0.2 kkckkbkkb   

 5.05.02 ])}(4)({)([707.0.3 kkckkbkkb   

 5.05.02 ])}(4)({)([707.0.4 kkckkbkkb   

When P, Q, r, x and V are expressed in per unit, b(kk) is always positive because 

the term  2{P(n2)r(kk)+Q(n2)x(kk)}  is small when compared with 2|)2(| nV and also the 

term 4c(kk) is very small when compared with )(2 kkb . 

 Therefore 5.02 )}(4)({ kkckkb   is approximately equal to  )(kkb  and therefore 

two solutions of |)2(| nV  are equal to zero and are not feasible. Third solution is negative 

and hence not feasible. Fourth solution is feasible and positive. Thus, the solution of Eq. 

(3.7) is unique. 

                     i.e. |)2(| nV
5.05.02 ])}(4)({)([707.0 kkckkbkkb                                          

(3.8)
 

P(n2)  is the sum of all real power loads at all nodes beyond node n2 and at node 

n2 itself and sum of the real power losses of all branches beyond node n2. 

Q(n2)  is the sum of all reactive power loads at all nodes beyond node n2 and at 

node n2 itself and sum of the real reactive losses of all branches beyond node n2. 
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From Eq. (3.8), it is seen that, a feasible load flow solution of radial distribution 

networks will exist only if 

                                       0)(4)(2  kkckkb                                                             (3.9) 

After simplification we get 

0|)1(|)}()2()()2({4)}()2()()2({4|)1(| 224  nVkkxnQkkrnPkkxnQkkrnPnV .                                                                           

(3.10) 

Let 

224 |)1(|)}()2()()2({4)}()2()()2({4|)1(|)2( nVkkxnQkkrnPkkxnQkkrnPnVnSI 
                                                                                                                           (3.11) 

where 

SI(n2) =  Voltage Stability Index of Node  n2. (n2=2, 3, 4....., NB)
 

For stable operation of the RDS, 

SI(n2)  0; for n2=2, 3, 4....., NB. 

By using VSI, stability level of radial distribution networks can be measured and 

an suitable action can be taken if VSI represents a poor stability level. All nodal voltages 

and branch currents will be obtained after the load flow study, and hence P(n2) and 

Q(n2) can be calculated easily. Thus one can calculate the voltage stability index easily 

at each node. Node with minimum VSI value is more sensitive to collapse in voltage. 

The effectiveness of this technique has been explained using 33&69- node RDS. 
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CHAPTER 4 

PLACING AND SIZING OF DG WITHOUT 

IMPLEMENTING OPTIMISATION TECHNIQUES 

In order find the optimum location for placing DG units a number of methods are 

developed. In this thesis, a technique based voltage stability index (VSI) has been 

developed for optimal placing of DG units. A node with minimum value of VSI is 

considered as the optimum location for placement of DG.  

In order to obtain optimal DG size, below steps should be followed: 

1) A node with minimum VSI should be found first and then he DG is placed at that 

node. 

2) Assuming Distributed generation power factor as constant, size should be varied 

in constant steps from a minimum value to a maximum value (feeder loading 

capacity) till minimum losses are obtained 

3) The size of DG which produces minimum loss is considered as optimal size. 

The system considered here is an IEEE-33 bus system. It has an voltage of 12.66 

kV and total real power demand of 3.715 MW and reactive power demand 2.3 MVAr. In 

the first case load flow without DG is analysed and bus voltages magnitudes and total 

power loss of the network in RDS are computed. VSI at various buses is also calculated. 

From the analysis, we found that the bus 18 is having lowest VSI value of 0.66721. 

Hence, bus 18 is optimal location for placing DG. 

For analysis, the following two cases are considered: 

  Case 1:   DG operating at 0.9 power factor lagging 

  Case 2:  DG operating at unity power factor 

 For finding the optimal size of DG in both the cases, the DG size is varied from 

0.5 MVA to 4.0 MVA in step of 0.5 MVA. From the test result we observe that power 

losses are non-linearly varying with capacity of generator. First the power losses are 

decreased up to some minimum values and then start increasing with DG capacity 

increment. Hence from the test results, it is observed that in the base case without DG, 

total respective real and reactive power losses are 210.99 kW and 143.03 kVAr. Whereas 

the losses after placing a DG with 1 MVA at a lagging power factor of 0.9 produces 
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more loss reduction when compared with the DG size of 0.85 MVA at unity power 

factor. Hence, optimal placing and sizing of DG reflects the power loss reduction in 

radial distribution system. We can also note that substation capacity release is more for 

case 1 compared to case 2. As DG injects real and reactive power to the load centres 

locally, it helps in improving the bus voltages and also reduce the losses at the load side.  

Comparison of the voltage variation for different cases viz. base case (without DG), Case 

1 and Case 2 proves that improvement in voltage for case 1 is more compared to case 2. 

Similarly analysis is done for IEEE-69 bus network. It has an voltage of 12.66 kV 

and total real power demand of 3.802 MW and reactive power demand 2.694 MVAr. 

From the analysis, we found that the bus 65 is having lowest VSI value of 0.68345. 

Hence, bus 65 is the optimal location for placing DG. 
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CHAPTER 5 

PARTICLE SWARM OPTIMISATION 

Optimization technique is used to find the best solution for any given 

circumstances. For example, in a company if it is required to improve its rating, 

technological and managerial plans have to be taken many times. Here, the goal of the 

plans is to either maximize the profits or to minimize the spending effort. Optimization is 

referred as both minimizing and maximizing the tasks. Since the minimization of any 

function is same as maximizing its additive inverse , the terminology  minimization and 

optimization can be used interchangeably [12]. Because of this reason, optimization 

became very important in many fields.  

Basically, in order to solve the optimization problems, PSO algorithm is inspired 

by the animal’s activity. In PSO, swarm means population; particle represents each 

member of the population. Each particle searches through the entire space by randomly 

moving in different directions and remembers the previous best solutions of that particle 

and also positions of its neighbor particles. Particles of a swarm adjust their position and 

velocity dynamically by communicating best positions of all the particles with each 

other. In this way, finally all particles in the swarm try to move towards better positions 

until the swarm reaches an optimal solution 

Thus, due to its easy implementation and its ability to obtain fast convergence, 

PSO technique is becoming very popular. Moreover PSO uses only basic mathematics 

and it does not involve any derivative or gradient information. 

5.1. The Basic Model of PSO Algorithm  

Kennedy and Eberhart proposed a solution to non-linear and complex 

optimization problem by observing the behavior of flock of birds. They developed the 

concept of optimizing the function using swarm of particles. Consider a function of n 

dimension which is defined by  

)()...,,( 321 xfxxxxf n   

wherexi is the optimizing variable, which represents the set of variables for a given 

function f(x). Here, the goal is to get an optimum value x* so that the function  f(x*)can 

become either a maximum value or a minimum value. 
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The Particle Swarm Optimization (PSO) technique is parallel search technique 

which utilizes multi-agents (swarm of particles). Each agent in the swarm represents a 

solution. All agents go through entire search space and updates its position and velocity 

based on their own experience and on experience of other agents. Suppose xi
t
 denote the 

agent or particle ‘i’ position vector search space at time step t, then each agent  position 

is updated in the search space by  

11   t

i

t

i

t

i vxx  

where,  vi
t
 is the particle velocity vector which is used to update the own experience and 

other particles experience and also drives the optimization process  

Thus, in PSO technique, all agents are randomly initialized and fitness value is 

computed by updating the personal best (best value of each agent) and global best (best 

value of all agents in the entire swarm). The loop starts by assuming initial values of 

position of the particles as personal best and then updates every particle position by 

using the updated velocity. When the stopping criterion is met, loop will be ended [17].  

Basically, PSO algorithms are classified into two types. They are Global Best 

(gbest) and Local Best (lbest) PSO algorithms which differ in the size of their 

neighborhood particles. These algorithms are explained in 5.1.1 and 5.1.2 respectively.  

5.1.1. Global Best PSO  

The global best PSO (or gbest PSO) is a technique in which position of each 

agent is influenced by best agent in the whole swarm. In this method, information is 

obtained from all the agents in the swarm and thus it makes use of a star network 

topology [8] [10]. Here, xi is the current position of each agent in search space , vi is the 

current velocity and a Pbest,i is personal best position of each agent in search space. If a 

minimization problem is considered, the personal best position Pbest,i represents the 

position of particle “i” in search space with smallest fitness function value. Gbest is the 

position of particle which yields the lowest value among all personal best positions [10].  

Personal best Pbest,i  at next step, t+1 ,where tϵ[0,…..N], for a minimization 

problem is calculated as  

1

,

t

ibestP ={
       
         (  

   )         
 

  
        (  

   )              
  

 Where f is the fitness function. 
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 The global best position Gbest at time step for a minimization problem is 

calculated as  

)min( ,

t

ibestbest PG  , where iϵ[1,…..,n] and n>1 

 Thus we can note that personal best is best position of each agent among all time 

steps that each agent traversed. Global best is best position of all agents in the entire 

swarm. [10].  

For gbest PSO method, velocity of agent is obtained by  

)()( 22,11

1 t

ijbest

t

j

t

ij

t

ibest

t

j

t

ij

t

ij xGrcxPrcvv   

Where, 

   
 is the velocity of agent at time t; 

   
 is the position of agent at time t;  

       
 is the personal best position of agent starting from initialization through time t;  

     ,is the global best position of agent starting from initialization through time t;  

c1 and c2 are positive acceleration constants which are used to determine contribution 

level of the cognitive and social components respectively;  

   
 and   

  are random numbers generated at time t. 
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Figure5.1: Flowchart for Global best PSO 
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5.1.2 Local Best PSO  

In local best PSO (or lbest PSO) technique each agent will be influenced by the 

best agent among its neighbor agents, and thus it resembles a ring social topology 

described in Section 5.4. In this method the social information that is exchanged within 

neighborhood of agents denotes local knowledge of environment [8] [10]. In this case, 

the velocity of agent is computed by  

)()( ,22,11

1 t

ijibest

t

j

t

ij

t

ibest

t

j

t

ij

t

ij xLrcxPrcvv   

where,         is the best position that anagent has had in the neighborhood of particle i 

obtained from initialization through time t. 
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Figure5.2: Flowchart for Local best PSO 
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Therefore, from 5.1.1 and 5.1.2 respectively, we can notice that in gbest PSO 

technique every agent gathers the information from the best agent in the entire swarm, 

whereas in the lbest PSO technique each agent gathers the information from only its 

immediate neighbours in the swarm [7]. 

5.2. Comparison of ‘gbest’ to ‘lbest’  

Mainly, there are two differences between ‘gbest’ and ‘lbest’ PSO techniques: 

One is that convergence of gbest PSO will be faster than lbest PSO because of the larger 

agent interconnectivity. Second is, lbest PSO is less susceptible of being trapped in local 

minima due to the larger diversity.   

5.3. PSO Algorithm Parameters  

For any given optimization problem, some of the parameters in PSO algorithm 

may affect its efficiency. Some of these parameter’s values and their choices have major 

impact on the performance of the PSO technique, and other parameters have small or no 

effect [9]. The basic parameters of PSO are  

1. size of the swarm 

2. number of iterations 

3. components of velocity, and  

4. acceleration coefficient. 

 In addition to these parameters, PSO technique is also influenced by inertia 

weight, velocity clamping, and velocity constriction.  

5.3.1. Swarm size  

Swarm size is defined as the number of agents n in swarm. A huge swarm 

generates more particles and most of the search space is to be covered per iteration. 

Number of iterations may be reduced in order to achieve best optimization value using 

large number of agents. But the computational complexity per iteration will be increased 

by using more amounts of agents and also it is more time consuming. From most of the 

studies, it is identified that PSO use swarm size in the interval of n ϵ [20,60]. 
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5.3.2. Iteration numbers  

Obtaining a best result depends on number of iterations which in turn depends on 

problem. If the number of iterations is too low, then the search process may stop 

prematurely. If the number of iterations is large, it may add computational complexity 

and thereby consumes more time. 

5.3.3. Velocity Components  

While updating agent’s velocity, the velocity components plays a vital role. There 

are three terms in agent’s velocity. They are inertia component, cognitive component, 

social component. 

1. The term t

ijv is called inertia component. It gives the information of the movement in    

     the immediate past. This component is used to prevent sudden changes in the agents  

     direction and provides tendency to move towards the current direction. 

2. The term  )( ,11

t

ij

t

ibest

t

j xPrc   is called cognitive component. It is used to measure the  

     performance of the agents with respect to their past performances. It acts like an  

     individual memory of the best position for an agent. The effect of this component is to  

     make the agents to positions which satisfied them the most in past.  

3. The term )(22

t

ijbest

t

j xGrc  for gbest PSO or )( ,22

t

ijibest

t

j xLrc  for lbest PSO is called  

     social component. It is used to measures the performance of the agents with respect to  

     a group of agents. It makes each agent to move towards best position found by agent’s  

     neighborhood.  

5.3.4. Acceleration coefficients  

The stochastic influence of the social and cognitive components of the agent’s 

velocity depends upon acceleration coefficients c1 and c2, together with the randomly 

generated numbers r1 and r2, respectively. The confidence that an agent has in itself is 

represented by c1andthe confidence that an agent has in its neighbors is represented by 

c2[10]. The properties of c1 and c2 : 

When c1 =c2 =0, until search space’s boundary is met, all the agents will continue 

to move with their current speed. Thus, the velocity equation is updated as 

 

 

t

ij

t

ij vv 1
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2. When c1 >0 and c2 =0, all agents become independent. The velocity equation is   

     updated as                          

)( ,11

1 t

ij

t

ibest

t

j

t

ij

t

ij xPrcvv   

3. When c1 =0 and c2 >0 , all agents in the swarm will get attracted towards a single  

     point  and the velocity equation is updated as                          

)(22

1 t

ijbest

t

j

t

ij

t

ij xGrcvv  for gbest PSO 

)( ,22

1 t

ijibest

t

j

t

ij

t

ij xLrcvv  for lbest PSO 

4. When, c1 = c2 all agents will get attracted towards average of t

ibestP , and bestG .  

5. When, c1 >> c2 each agent is greatly influenced by its personal best position, which  

     results in excessive wandering. 

6. When c2 >> c1 then all agents in the swarm are greatly influenced by the global best  

     position which makes all agents to run prematurely to the optima [10] [11]. 

Initialization of c1and c2 plays a role in obtaining the optimum values. Wrong 

assumption of c1and c2 results in cyclic behaviour[10]. From many researches, the values 

of two acceleration constants should be c1 =c2 =2. 

5.4. Neighborhood Topologies  

For each agent a neighborhood must be defined [7]. The extent of social 

interaction within swarm is computed by the neighborhood. When the size of 

neighborhoods in the swarm is small, it leads to less interaction [10]. Even though the 

convergence is slower, the quality of solutions will be improved for small neighborhood. 

The risk involving earlier convergence will be occurred in case of larger neighborhood 

[7]. In order to solve this earlier convergence problem, search process should be started 

with small size of neighborhoods and later over the time, the size can be increased. As 

the agents move towards near to optimum region, this technique ensures faster 

convergence [10].  

In the swarm, the social interaction among the agents is dealt in PSO technique. 

Each agent in the swarm exchanges the information about their success with other agents 

through communication. All agents tend to move towards the agent when that agent find 

a better position. Agents neighbourhood determine the performance of the [10]. Different 

types of neighbourhood topologies are developed by many researchers [15]. Some of 

them are discussed below: 
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(a) Star or gbest                                                  (b)Ring or lbest 

 

 

 

 

 

 

 

         (c) wheel 

Figure 5.3: Neighbourhood Topologies 

Figure 5.3 (a) explains the star topology. Here each agent is connected with every 

other agent. This has an advantage of converging faster than other topologies and 

disadvantage of being trapped in local minima. As all the agents in this topology know 

about each other, it is referred as the gbest PSO.  

Figure 5.3 (b) explains the ring topology. Here each agent is connected with its 

immediate neighbors only. In this topology, if anyone agent finds a good result, then it 

passes the information to its immediate neighbors, and they pass that information to their 

immediate neighbors. This process continues till the last agent is reached. Hence, 

spreading of the best result is very slow in this topology compared to star topology. It is 

referred as the lbest PSO.  

Figure 5.3 (c) explains the wheel topology. Here all agents are connected to only 

one agent (a focal agent), and through this agent information is communicated. By 

comparing the best performance of all agents in the swarm, focal agent adjusts its 
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position towards best performance. The focal agent informs the new position to all the 

agents.  

5.5. Advantages and Disadvantages of PSO  

PSO technique is a powerful technique for solving the non-linear optimization 

problems. It has its own advantages and disadvantages.  

The advantages and disadvantages of PSO are discussed below:  

Advantages of the PSO algorithm: 

1. PSO technique is a gradient-free technique.  

2. It is applied both in scientific research and engineering problems as the 

implementation of  this algorithm is easy. 

3. Compared to other optimization techniques, this algorithm has less impact of 

parameters to the optimal solution as it has only less number of parameters.  

4. Simple calculation.  

5. Optimum value can be obtained easily within short time. 

6. Compared to other optimization techniques, this algorithm has less dependence 

on set of initial values.  

7. Simple concept is involved here.  

Disadvantages of the PSO algorithm: 

1) Here the speed and direction may be degraded as this technique suffers from 

partial optimism.  

2) Non-coordinate system exit problem may occur.  

5.6. Applications of PSO  

Kennedy and Eberhart developed the first realistic application in the field of 

neural network training using Particle Swarm Optimization in 1995. The following are 

some of applications of PSO that are successfully used: 

1. Telecommunications 

2. System control 

3. Data mining 
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4. Power systems design 

5. Signal processing 

6. Network training. 

PSO algorithm was used mainly to solve unconstrained and single-objective 

optimization problems. But, in the present days, they are used to solve many problems 

like constrained problems, dynamically changing landscapes problems, multi-objective 

optimization problems. 

5.7. Implementation of PSO Algorithm to determine the size of DG 

        Algorithm: 

    Considering Objective Function:  f = Min (Total Real Power Loss) 

  Where the total real power loss is given by the expression 
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1. Choose the parameters that are to be optimized by using PSO. Here the 

parameters are real and reactive power that are injected through DG into 

distributed system i.e size of DG in order to minimize the losses and improve 

voltage. 

2. Choose the size of swarm. 

3. Generate the random values for DG size.  

4. Run the load flow and obtain the voltage profile and losses of the system.  

5. Also obtain the location of the DG to be placed by using VSI(Voltage 

Stability Index). 

6. Assume the fitness function as the real loss as we need to find the optimal DG 

size that minimize the losses to a maximum extent. 

7. Randomly initialize the position and velocity of swarm. 

8. By placing different sizes of DG in the location obtained by VSI, compute 

and store the fitness function of all particles in the swarm.  

9. Assume the initial randomly generated sizes of DG as pbest. 

10. Iterate through all the values of fitness function and the particle with 

minimum loss is considered as the gbest. 

11. Initialize the acceleration coefficients as c1=2 and c2=2 . 
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12. Initialize the loop and iteration count. For each particle calculate and update 

the velocity and position. 

)()( 22,11
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13. Run the load flow after placing DG and obtain the new fitness function for 

each particle. If the new fitness value for any particle is better than previous 

pbest value then pbest value for that particle is set to present fitness value. 

Similarly gbest value is identified from the latest pbest values. 

14. If it reaches maximum iteration count then terminate the loop and plot the 

results. Otherwise increment the iteration count and go to step 12. 

15. gbest value gives the size of DG 

From the result, we can conclude the losses are reduced to a large extent and voltage 

profile is improved by placing the suitable size of DG which is obtained by using PSO 
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CHAPTER 6 

Simulation Results and Discussion 

 

6.1. PERFORMANCE OF 33 BUS SYSTEM WITH OUT    

       INSTALLATION OF DG: 

 

Total Real Power Loading    : 3715 kW 

Total Reactive Power Loading  : 2300 kVAr 

 

LOSSES IN THE NETWORK  

 

    Total Real Power Loss                    : 210.99 kW                        

   Total Reactive Power Loss             : 143.03kVAr 

   Minimum Bus Voltage                    : 0.9038 p.u. 

  Corresponding  Bus No.                  :18 

 

 

Figure 6.1: IEEE 33 bus voltage profile without installation of DG 
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Table 6.1: IEEE 33 Bus voltage profile without installation of DG 

 

 

 

6.2. PERFORMANCE OF IEEE-69 BUS SYSTEM WITHOUT  

       INSTALLATION OF DG: 

Total Real Power Loading               :      3801.9 kW 

Total Reactive Power Loading         :     2694.1 kVAr 

BUS 

NO. 
VOLTAGE(p.u.) 

BUS 

NO. 
VOLTAGE(p.u.) 

1 1.00000 18 0.90380 

2 0.99703 19 0.99650 

3 0.98289 20 0.99292 

4 0.97538 21 0.99221 

5 0.96796 22 0.99158 

6 0.94948 23 0.97931 

7 0.94596 24 0.97264 

8 0.93231 25 0.96931 

9 0.92598 26 0.94756 

10 0.92011 27 0.94499 

11 0.91925 28 0.93355 

12 0.91774 29 0.92534 

13 0.91158 30 0.92179 

14 0.90931 31 0.91763 

15 0.90790 32 0.91672 

16 0.90655 33 0.91645 

17 0.90454   
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LOSSES IN THE NETWORK 

Total Real Power Loss                     :        225.0028 kW 

Total Reactive Power Loss               :       102.1659kVAr 

Minimum Bus Voltage                     :       0.90925 p.u. 

Corresponding  Bus No.                   :       65 

 

 

 

 

Figure 6.2: IEEE 69 Bus voltage profile without installation of DG 
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Table 6.2: IEEE 69 Bus voltage profile without installation of DG 

BUS NO. VOLTAGE(p.u.) BUS NO. VOLTAGE(p.u.) 

1 1.00000 36 0.99992 

2 0.99997 37 0.99975 

3 0.99993 38 0.99959 

4 0.99984 39 0.99954 

5 0.99902 40 0.99954 

6 0.99009 41 0.99884 

7 0.98080 42 0.99855 

8 0.97858 43 0.99851 

9 0.97745 44 0.99850 

10 0.97245 45 0.99841 

11 0.97135 46 0.99840 

12 0.96819 47 0.99979 

13 0.96527 48 0.99854 

14 0.96238 49 0.99470 

15 0.95952 50 0.99415 

16 0.95899 51 0.97855 

17 0.95811 52 0.97854 

18 0.95810 53 0.97466 

19 0.95764 54 0.97142 

20 0.95735 55 0.96695 

21 0.95688 56 0.96695 

22 0.95688 57 0.94011 

23 0.95682 58 0.92905 

24 0.95668 59 0.92478 

25 0.95655 60 0.91976 

26 0.95652 61 0.91236 

27 0.95655 62 0.91208 

28 0.99993 63 0.91170 

29 0.99985 64 0.90981 

30 0.99973 65 0.90925 

31 0.99971 66 0.97129 

32 0.99961 67 0.97130 

33 0.99935 68 0.96786 

34 0.99901 69 0.96786 

35 0.99895   
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6.3: Voltage Stability Index Without Installation of DG: 

 

Table 6.3: IEEE 33 Bus Voltage Stability Index Without DG 

BUS NO. 

VOLTAGE 

STABILITY 

INDEX 

BUS NO. 

VOLTAGE 

STABILITY 

INDEX 

2 0.98814 18 0.66721 

3 0.93292 19 0.98606 

4 0.90500 20 0.97195 

5 0.87776 21 0.96922 

6 0.81211 22 0.96673 

7 0.80069 23 0.91974 

8 0.75516 24 0.89487 

9 0.73511 25 0.88276 

10 0.71666 26 0.80614 

11 0.71403 27 0.79745 

12 0.70936 28 0.75931 

13 0.69042 29 0.73304 

14 0.68360 30 0.72193 

15 0.67937 31 0.70899 

16 0.67531 32 0.70621 

17 0.66931 33 0.70537 

 

Minimum Voltage Stability Index      :     0.66721 

Corresponding Bus No.  :      18 

 

 

 

 

 

 

 

Figure 6.3: IEEE 33 Bus Voltage Stability Index Without DG 
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Table 6.4: IEEE 69 Bus Voltage Stability Index Without DG 

BUS NO. 
VOLTAGE 

STABILITY INDEX 
BUS NO. 

VOLTAGE 

STABILITY INDEX 

2 0.99987 36 0.99968 

3 0.99973 37 0.99899 

4 0.99936 38 0.99836 

5 0.99609 39 0.99817 

6 0.96077 40 0.99816 

7 0.92520 41 0.99538 

8 0.91703 42 0.99422 

9 0.91280 43 0.99406 

10 0.89422 44 0.99403 

11 0.89023 45 0.99364 

12 0.87869 46 0.99364 

13 0.86813 47 0.99916 

14 0.85779 48 0.99418 

15 0.84762 49 0.97892 

16 0.84576 50 0.97682 

17 0.84266 51 0.91691 

18 0.84265 52 0.91687 

19 0.84102 53 0.90242 

20 0.83999 54 0.89047 

21 0.83833 55 0.87416 

22 0.83833 56 0.85847 

23 0.83811 57 0.78013 

24 0.83761 58 0.74477 

25 0.83708 59 0.73134 

26 0.83694 60 0.71557 

27 0.83703 61 0.69280 

28 0.99970 62 0.69202 

29 0.99942 63 0.69086 

30 0.99893 64 0.68514 

31 0.99885 65 0.68329 

32 0.99842 66 0.89003 

33 0.99740 67 0.89003 

34 0.99606 68 0.87751 

35 0.99579 69 0.87751 
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Figure 6.4: IEEE 69 Bus Voltage Stability Index Without DG 

 

Minimum Voltage Stability Index     :      0.68329 

Corresponding  Bus No.                    :      65 

 

6.4. Sizing of DG for IEEE 33 Bus Without implementing Optimisation  

       Techniques 

 

Table 6.5: Optimal Size of DG for different cases for 33 bus 

Case DG Size 

Case I                1 MVA at 0.9 power factor lag 

Case II 0.85 MVA at unity power factor 

 

Table 6.6: Improvement in system performance for different cases 

Parameters Base case Case I Case II 

Active power losses 

(in p.u) 
0.211 0.1242 0.1457 

Reactive power 

losses (in p.u) 
0.143 0.0875 0.1007 
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substation (in p.u) 
3.715 2.7282 2.7997 

Reactive power from 

substation (in p.u) 
2.3 1.8085 2.2577 

 

 

 

 

 

Figure 6.5: Variation of Voltage Profile In Different Cases For 33 Bus 

 

 

 

Figure 6.6: Variation of Power Losses for Different Cases for 33 Bus 
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DG of 1.75 MVA at 0.9 pf lag

6.5. Sizing of DG for IEEE 69 Bus Without implementing     

       Optimisation Techniques (By Sequential Search) 

Table 6.7: Optimal Size of DG for different cases for 69 bus 

Case DG Size 

Case I 1.75 MVA at 0.9 power factor lag 

Case II 1.5 MVA at unity power factor 

 

Table 6.8: Improvement in system performance for different cases 

Parameters Base case Case I Case II 

Active power losses 

(in p.u) 
0.225 0.0655 0.1122 

Reactive power 

losses (in p.u) 
0.102 0.0356 0.0553 

Real power from 

substation (in p.u) 
3.802 2.0675 2.1892 

Reactive power from 

substation (in p.u) 
2.694 1.8646 2.6473 

 

 

 

 

 

 

 

 

 

Figure 6.7: Variation of Voltage Profile In Different Cases For 69 Bus 

 

 



40 
 

0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4
50

100

150

200

250

300

350

400

DG Capacity (in MVA)

R
e

a
l 
P

o
w

e
r 

lo
s
s
e

s

Variation of power losses for different cases

 

 

DG with power factor 0.9 lag

DG with unity power factor

0 5 10 15 20 25 30 35
0.9

0.92

0.94

0.96

0.98

1

BUS NUMBER

V
O

L
T

A
G

E
(P

.U
)

 VOLTAGE PROFILE WITHOUT AND WITH INSTALLATION OF DG

 

 

without DG

with DG

 

 

 

 

 

 

 

Figure 6.8: Variation of Power Losses for Different Cases For 69 Bus 

 

6.6. PERFORMANCE OF33 BUS SYSTEM WITH INSTALLATION    

       OF DG BY USING PSO 

CASE-1: Here DG will inject only real power 

LOSSES IN THE NETWORK 

Total Real Power Loss   : 145.89 kW 

Total Reactive Power Loss  : 100.31kVAr 

  Total Loss after DG placement     : 246.20 kVA 

Size of DG is    : 0.8061 MVA 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Voltage profile without and with installation of DG 

(injecting only real power) for IEEE 33 bus system 
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Table 6.9: Bus Voltages of IEEE 33 bus system after installation of  

                  DG (injecting only real power) 

Bus No Voltage(p.u) Bus No Voltage(p.u) 

1 1.0000 18 0.9689 

2 0.9975 19 0.9970 

3 0.9859 20 0.9934 

4 0.9802 21 0.9927 

5 0.9747 22 0.9921 

6 0.9605 23 0.9823 

7 0.9580 24 0.9757 

8 0.9528 25 0.9723 

9 0.9516 26 0.9586 

10 0.9509 27 0.9567 

11 0.9510 28 0.9448 

12 0.9513 29 0.9366 

13 0.9523 30 0.9331 

14 0.9527 31 0.9290 

15 0.9541 32 0.9281 

16 0.9563 33 0.9278 

17 0.9604   

 

CASE-2: 

Here DG will inject both real and reactive power 

 

LOSSES IN THE NETWORK 

Total Real Power Loss   :   123.72 kW 

Total Reactive Power Loss   :   87.027kVAr 

  Total kVA Loss after DG placement :   210.99 kVA 

Size of DG is    :   0.8489+j0.4914 MVA 
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Figure6.10: Voltage profile without and with installation of D ( injecting 

both real and reactive power) for IEEE 33 bus system 

 

Table 6.10: Bus Voltages of IEEE 33 bus system after installation of DG 

(injecting both real and reactive power) 

Bus No Voltage(p.u) Bus No Voltage(p.u) 

1 1.0000 18 1.0000 

2 0.9978 19 0.9973 

3 0.9881 20 0.9937 

4 0.9838 21 0.9930 

5 0.9797 22 0.9924 

6 0.9698 23 0.9845 

7 0.9701 24 0.9779 

8 0.9726 25 0.9746 

9 0.9759 26 0.9679 

10 0.9797 27 0.9654 

11 0.9803 28 0.9542 

12 0.9817 29 0.9461 

13 0.9895 30 0.9427 

14 0.9935 31 0.9386 

15 0.9978 32 0.9377 

16 1.0000 33 0.9374 

17 1.0000   
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6.7. PERFORMANCE OF 69 BUS SYSTEM WITH INSTALLATION   

       OF DG BY USING PSO 

CASE-1: 

                Here DG will inject only real power 

LOSSES IN THE NETWORK 

Total Real Power Loss   :     112.12 kW 

Total Reactive Power Loss  :     55.13kVAr 

  Total Loss after DG placement :     167.25 kVA 

Size of DG is    :     1.4276 MVA 

 

 

 

 

 

 

 

 

 

 

Figure 6.11: Voltage profile without and with installation of 

DG(injecting only real power) for IEEE 69 bus system 
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Table 6.11: Bus Voltages of IEEE 69 bus system after installation of  

DG (injecting only real power) 

Bus No Voltage(p.u) Bus No Voltage(p.u) 

1 1.0000 36 0.9999 

2 1.0000 37 0.9998 

3 0.9999 38 0.9996 

4 0.9999 39 0.9996 

5 0.9993 40 0.9996 

6 0.9940 41 0.9989 

7 0.9884 42 0.9986 

8 0.9871 43 0.9985 

9 0.9865 44 0.9985 

10 0.9815 45 0.9984 

11 0.9804 46 0.9984 

12 0.9773 47 0.9998 

13 0.9744 48 0.9986 

14 0.9715 49 0.9947 

15 0.9687 50 0.9942 

16 0.9682 51 0.9871 

17 0.9673 52 0.9871 

18 0.9673 53 0.9854 

19 0.9668 54 0.9841 

20 0.9665 55 0.9825 

21 0.9660 56 0.9809 

22 0.9660 57 0.9740 

23 0.9660 58 0.9707 

24 0.9658 59 0.9694 

25 0.9656 60 0.9682 

26 0.9656 61 0.9658 

27 0.9656 62 0.9664 

28 0.9999 63 0.9674 

29 0.9999 64 0.9721 
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30 0.9997 65 0.9805 

31 0.9997 66 0.9804 

32 0.9996 67 0.9804 

33 0.9994 68 0.9770 

34 0.9990 69 0.9770 

35 0.9990   

 

CASE-2: 

Here DG will inject both real and reactive power 

 

LOSSES IN THE NETWORK 

Total Real Power Loss   : 61.6789 kW 

Total Reactive Power Loss   : 33.9811kVAr 

 Total Loss after DG placement : 95.66 kVA 

Size of DG is    : 1.4081+j 0.9907 MVA 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12: Voltage profile without and with installation of DG(  

injecting both real and reactive power) for IEEE 69 bus system 
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Table 6.12: Bus Voltages of IEEE 69 bus system after installation of DG 

                  (injecting both real and reactive power) 

 

Bus No Voltage(p.u) Bus No Voltage(p.u) 

1 1.0000 36 0.9999 

2 1.0000 37 0.9996 

3 1.0000 38 0.9996 

4 0.9999 39 0.9996 

5 0.9995 40 0.9996 

6 0.9954 41 0.9989 

7 0.9911 42 0.9986 

8 0.9901 43 0.9985 

9 0.9896 44 0.9985 

10 0.9847 45 0.9984 

11 0.9836 46 0.9984 

12 0.9805 47 0.9999 

13 0.9776 48 0.9986 

14 0.9747 49 0.9948 

15 0.9719 50 0.9942 

16 0.9714 51 0.9901 

17 0.9705 52 0.9901 

18 0.9705 53 0.9891 

19 0.9701 54 0.9885 

20 0.9698 55 0.9878 

21 0.9693 56 0.9871 

22 0.9693 57 0.9835 

23 0.9692 58 0.9817 

24 0.9690 59 0.9810 

25 0.9689 60 0.9805 

26 0.9688 61 0.9797 

27 0.9688 62 0.9806 

28 1.0000 63 0.9819 
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29 0.9999 64 0.9887 

30 0.9998 65 1.0000 

31 0.9997 66 0.9836 

32 0.9996 67 0.9836 

33 0.9994 68 0.9802 

34 0.9990 69 0.9802 

35 0.9990   
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CHAPTER 7 

 

               CONCLUSIONS & SCOPE OF FUTURE WORK 

7.1. CONCLUSIONS: 

In this thesis, an algorithm for improving voltage profile and reducing power 

losses in RDS is designed by placing DG in an optimal location using VSI. The optimal 

size of DG is obtained using PSO technique. The merits of placing DG in voltage profile 

improvement and power loss reduction is analysed in a detailed manner. Several test case 

studies are carried out on IEEE 33 and 69 bus radial distribution networks. 

 

7.2. SCOPE OF FUTURE WORK: 

 Algorithm for finding both optimal location and rating of DG should be designed 

by using PSO 

 The optimal ratings of DG can be analysed by using advanced optimization 

techniques. 

 Simultaneous placement of multiple DG’s and their ratings for voltage profile 

improvement should be developed using PSO. 
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APPENDIX 

 

Figure a: IEEE 33- Bus Radial Distribution Network 

 

 

 

Figure b: IEEE 69- Bus Radial Distribution Network 
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Table a: Line Data and Load Data of IEEE 33-Bus Test System 

 

Branch 

No. 

Sending 

End 

Node 

Receiving 

End Node 

Resistance 

R(Ω) 

Reactance 

X(Ω) 

Real 

load 

(kW) 

Reactive 

 Load 

(kVAr) 

1 1 2 0.0922 0.0470 100 60 

2 2 3 0.4930 0.2511 90 40 

3 3 4 0.3660 0.1864 120 80 

4 4 5 0.3811 0.1941 60 30 

5 5 6 0.8190 0.7070 60 20 

6 6 7 0.1872 0.6188 200 100 

7 7 8 1.7114 1.2351 200 100 

8 8 9 1.0300 0.7400 60 20 

9 9 10 1.0440 0.7400 60 20 

10 10 11 0.1966 0.0650 45 30 

11 11 12 0.3744 0.1238 60 35 

12 12 13 1.4680 1.1550 60 35 

13 13 14 0.5416 0.7129 120 80 

14 14 15 0.5910 0.5260 60 10 

15 15 16 0.7463 0.5450 60 20 

16 16 17 1.2890 1.7210 60 20 

17 17 18 0.7320 0.5740 90 40 

18 2 19 0.1640 0.1565 90 40 

19 19 20 1.5042 1.3554 90 40 

20 20 21 0.4095 0.4784 90 40 

21 21 22 0.7089 0.9373 90 40 

22 3 23 0.4512 0.3083 90 50 

23 23 24 0.8980 0.7091 420 200 

24 24 25 0.8960 0.7011 420 200 

25 6 26 0.2030 0.1034 60 25 

26 26 27 0.2842 0.1447 60 25 
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27 27 28 1.0590 0.9337 60 20 

28 28 29 0.8042 0.7006 120 70 

29 29 30 0.5075 0.2585 200 600 

30 30 31 0.9744 0.9630 150 70 

31 31 32 0.3105 0.3619 210 100 

32 32 33 0.3410 0.5302 60 40 

 

 

Table b: Line Data and Load Data of IEEE 69-Bus Test System 

Branch 

No. 

Sending 

End 

Node 

Receiving 

End Node 

Resistance 

R(Ω) 

Reactance 

X(Ω) 

Real 

load 

(kW) 

Reactive 

Load 

(kVAr) 

1 1 2 0.0005 0.0012 0 0 

2 2 3 0.0005 0.0012 0 0 

3 3 4 0.0015 0.0036 0 0 

4 4 5 0.0251 0.0294 0 0 

5 5 6 0.3660 0.1864 2.60 2.20 

6 6 7 0.3811 0.1941 40.40 30.00 

7 7 8 0.0922 0.0470 75 54 

8 8 9 0.0493 0.0251 30 22 

9 9 10 0.8190 0.2707 28 19 

10 10 11 0.1872 0.0619 145 104 

11 11 12 0.7114 0.2351 145 104 

12 12 13 1.0300 0.3400 8 5.5 

13 13 14 1.0440 0.3450 8 5.5 

14 14 15 1.0580 0.3496 0 0 

15 15 16 0.1966 0.0650 45.4 30 

16 16 17 0.3744 0.1238 60 35 

17 17 18 0.0047 0.0016 60 35 

18 18 19 0.3276 0.1083 0 0 

19 19 20 0.2106 0.0696 1 0.6 
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20 20 21 0.3416 0.1129 114 81 

21 21 22 0.0140 0.0046 5.3 3.5 

22 22 23 0.1591 0.0526 0 0 

23 23 24 0.3463 0.1145 28 20 

24 24 25 0.7488 0.2475 0 0 

25 25 26 0.3089 0.1021 14 10 

26 26 27 0.1732 0.0572 14 10 

27 3 28 0.0044 0.0108 26 18.6 

28 28 29 0.0640 0.1565 26 18.6 

29 29 30 0.3978 0.1315 0 0 

30 30 31 0.0702 0.0232 0 0 

31 31 32 0.3510 0.1160 0 0 

32 32 33 0.8390 0.2816 14 10 

33 33 34 1.7080 0.5646 19.5 14 

34 34 35 1.4740 0.4673 6 4 

35 3 36 0.0044 0.0108 26 18.55 

36 36 37 0.0640 0.1565 26 18.55 

37 37 38 0.1053 0.1230 0 0 

38 38 39 0.0304 0.0355 24 17 

39 39 40 0.0018 0.0021 24 17 

40 40 41 0.7283 0.8509 1.2 1 

41 41 42 0.3100 0.3623 0 0 

42 42 43 0.0410 0.0478 6 4.30 

43 43 44 0.0092 0.0116 0 0 

44 44 45 0.1089 0.1373 39.22 26.30 

45 45 46 0.0009 0.0012 39.22 26.30 

46 4 47 0.0034 0.0084 0 0 

47 47 48 0.0851 0.2083 79 56.4 

48 48 49 0.2898 0.7091 384.7 274.5 

49 49 50 0.0822 0.2011 384.7 274.5 

50 8 51 0.0928 0.0473 40.5 28.3 
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51 51 52 0.3319 0.1114 3.6 2.7 

52 9 53 0.1740 0.0886 4.35 3.5 

53 53 54 0.2030 0.1034 26.4 19 

54 54 55 0.2842 0.1447 24 17.2 

55 55 56 0.2813 0.1433 0 0 

56 56 57 1.5900 0.5337 0 0 

57 57 58 0.7837 0.2630 0 0 

58 58 59 0.3042 0.1006 100 72 

59 59 60 0.3861 0.1172 0 0 

60 60 61 0.5075 0.2585 1244 888 

61 61 62 0.0974 0.0496 32 23 

62 62 63 0.1450 0.0738 0 0 

63 63 64 0.7105 0.3619 227 162 

64 64 65 1.0410 0.5302 59 42 

65 11 66 0.2012 0.0611 18 13 

66 66 67 0.0047 0.0014 18 13 

67 12 68 0.7394 0.2444 28 20 

68 68 69 0.0047 0.0016 28 20 
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