The frequency-domain method of calculation for the pulsed electromagnetic field in a conductive ferromagnetic plate

G V Nosov¹, E O Kuleshova¹, S Lefebvre², A A Plyusnin¹ and D M Tokmashev¹

¹ Tomsk Polytechnic University, 30, Lenina ave., Tomsk, 634050, Russia
² Conservatoire National des Arts et Métiers, École Normale Supérieure de Cachan, 61 Av. Du President Wilson, Paris, F94235, France

E-mail: nosov@tpu.ru, kuleshova@tpu.ru

Abstract. The technique for parameters determination of magnetic skin effect on ferromagnetic plate at a specified pulse of magnetic field intensity on the plate surface is proposed. It is based on a frequency-domain method and could be applied for a pulsing transformer, a dynamoelectric pulse generator and a commutating inductor that contains an imbricated core. Due to this technique, such plate parameters as specific heat loss energy, the average power of this energy and the plate temperature raise, the magnetic flux attenuation factor and the plate q-factor could be calculated. These parameters depend on the steel type, the amplitude, the rms value, the duration and the form of the magnetic field intensity impulse on the plate surface. The plate thickness is defined by the value of the flux attenuation factor and the plate q-factor that should be maximal. The reliability of the proposed technique is built on a common frequency-domain usage applicable for pulse transient study under zero boundary conditions of the electric circuit and the conformity of obtained results with the sinusoidal steady-state mode.

1. Introduction
Many of today's electrophysical devices contain an imbricated core run under the pulsed electromagnetic field (EMF). Pulsing transformers, dynamoelectric pulse generators and commutating inductors provide examples [1-5, 10]. It is necessary to take uneven distribution of the pulsed magnetic flow in ferromagnetic plates of the imbricated core (magnetic skin effect) into account. To calculate its parameters, it is possible to solve EMF equations by a numerical technique. However, this technique is quite cumbersome so it makes determination of the pulsed EMF influence on imbricated cores too complicated [6-8]. On the other hand, the using of the frequency-domain method simplify computations and allows us to consider the shape, amplitude and duration of pulsed EMF at its diffusion in the ferromagnetic plate [9]. Consequently, such task as calculation of the magnetic skin effect in the ferromagnetic plate due to the frequency-domain method and choosing the plate thickness with respect to the pulsed EMF shape, duration and amplitude seems to be a vital one and reflects the purpose of the paper.

2. Assumptions
The following assumptions were used to obtain calculating formula.

1. Isolated from each other, ferromagnetic plates of the imbricated core at the same initial
temperature of θ_0 (°С) have the same values of absolute permeability μ_a (H/m), specific conductivity γ (1/Ω·m), volume density ρ (kg/m³) and specific heat capacity C_T (J/kg°С).

2. Quite short EMF pulse of τ (s) heats ferromagnetic plates only by eddy currents (hysteresis neglected). It is adiabatic heating and heat transfer with the environment that has been neglected. Moreover, identical temperature rise θ (°С) of plates due to the pulsed EMF influence is minor in comparison with initial temperature θ_0 and does not lead to the change of μ_a, γ, ρ, C_T.

3. Thickness d (m) of ferromagnetic plates is much smaller than its height h (m) and length l (m), namely $d << h$ and $d << l$, so we will proceed from the conception of the plane one-dimensional electromagnetic wave penetrating from the opposite sides to conductive ferromagnetic plates along the X axe (Figure 1) perpendicular to plate lateral surfaces.

4. The EMF pulse is prescribed as an identical magnetic field intensity on plates lateral surfaces $H_s(t)$ – i.e. pulse time function t with duration τ and directed along the Z axe (Figure 1).

5. According to the frequency-domain method, the definable magnetic field in conductive ferromagnetic plates has zero initial conditions [9] that is the magnetic field in plates is completely absent (magnetic field intensity and induction are equal to zero).

3. The calculation method

Within these assumptions, let us consider the EMF influence on one ferromagnetic plate. Let us suppose that the plate lateral surface is an x_0y plane of Cartesian coordinates as it is shown in Figure 1.

Then, E-vector \vec{E}, H-vector \vec{H} and current density vector $\vec{\delta}$ of the plane one-dimensional electromagnetic wave have unit components each of which is dependent on the x coordinate and the t time [9]:

$$\vec{E} = E_x(x,t) \cdot \hat{1}_y; \quad \vec{H} = H_z(x,t) \cdot \hat{1}_z; \quad \vec{\delta} = \delta_y(x,t) \cdot \hat{1}_y,$$

where $\hat{1}_y, \hat{1}_z$ – lie in y and z axis unit vectors, respectively (Figure 1).

![Figure 1. The conductive ferromagnetic plate: $H_s(t) = H_z(\pm d/2,t)$ – the magnetic field intensity on the plate surface.](image)

In this case, EMF diffusion in the plate is described by the following equations [10]:
\[
\frac{\partial^2 H_z(x,t)}{\partial x^2} = \mu_\alpha \gamma \frac{\partial H_z(x,t)}{\partial t} ; \quad \delta_z(x,t) = \gamma E_z(x,t) = -\frac{\partial H_z(x,t)}{\partial x},
\]

where boundary and zero conditions are
\[
H_z(\pm d/2, t) = H_s(t) ; \quad H_z(x, 0) = 0.
\]

Let us find a spectral function of the magnetic field intensity on the conductor surface by the spectral (frequency-domain) method of unilateral forward Fourier transformation:
\[
H_{zn}(j\omega) = \frac{\int_0^\infty H_s(t) \cdot \exp(-j\omega t) dt \cdot \exp[j\varphi_z(\omega)]}{j \cdot \sqrt{-1}},
\]

where \(H_{zn}(\omega) \) and \(\varphi_z(\omega) \) – the amplitude and the phase response of the magnetic field intensity pulse on the conductor surface as a function of cyclic frequency \(\omega \).

Then, equation (1) becomes:
\[
\frac{d^2 H_{zn}(x, j\omega)}{dx^2} = j\omega \mu_\alpha \gamma H_{zn}(x, j\omega) ; \quad \delta_{zn}(x, j\omega) = -\frac{dH_{zn}(x, j\omega)}{dx},
\]

where \(H_{zn}(x, j\omega) \) and \(\delta_{zn}(x, j\omega) \) – the complex amplitude of the magnetic field intensity and the eddy current density as a function of the x coordinate and cyclic frequency \(\omega \).

Considering conditions (2, 3), the solutions of equations (4) will be:
\[
H_{zn}(x, j\omega) = \frac{H_{zn}(j\omega)}{\cosh[0.5 \cdot p(j\omega) \cdot d]} \cdot \cosh[p(j\omega) \cdot x]; \quad \delta_{zn}(x, j\omega) = -\frac{p(j\omega) \cdot H_{zn}(j\omega)}{\cosh[0.5 \cdot p(j\omega) \cdot d]} \cdot \sinh[p(j\omega) \cdot x]; \quad p(j\omega) = \sqrt{j\omega \mu_\alpha \gamma}.
\]

Next, it is possible to determine the magnetic field density and the eddy current density in the plate:
\[
H_z(x,t) = 2 \int_0^\pi \{\text{Re} H_{zn}(x, j\omega) \cdot \cos(\omega t)\} d\omega;
\]

\[
\delta_z(x,t) = 2 \int_0^\pi \{\text{Re} \delta_{zn}(x, j\omega) \cdot \cos(\omega t)\} d\omega.
\]

As a result, specific heat loss energy \(W_T \) (J/kg), the average power of its energy \(P_T \) (W/kg) and the plate temperature rise caused by eddy currents (8) will be:
\[
W_T = \frac{1}{\gamma \rho d} \int_0^{0.5d} \int_{-0.5d}^{0.5d} \delta_z(x,t)^2 dx \cdot dt \quad ; \quad P_T = W_T / \tau ; \quad \tau = W_T / C_T.
\]

In virtue of (7), let us find the pulsed magnetic flux in plate \(\Phi(t) \) and its rms value \(\Phi \) (Wb/m):
\[
\Phi(t) = \mu_\alpha \int_{-0.5d}^{0.5d} H_z(x,t) dx \quad ; \quad \Phi = \sqrt{\frac{1}{\tau} \Phi(t)^2 dt},
\]

and calculate the values in the absence of eddy currents and the rms value of density on plate surface \(H_s \) that are then used for determination of magnetic flux attenuation factor \(K_\Phi \) with regard to eddy currents:
\[
\Phi_s(t) = \mu_\alpha H_s(t) dx ; \quad H_s = \sqrt{\frac{1}{\tau} \Phi_s(t)^2 dt} ; \quad \Phi_s = \mu_\alpha H_s dx ; \quad K_\Phi = \frac{\Phi}{\Phi_s}.
\]

Taking into account (7, 9), we will define the average specific magnetic field energy in plate \(W_{M} \) (J/kg) and the ratio of \(W_{M} \) and \(W_T \) that we will call plate q-factor \(K_{W} \):
\[W_M = \frac{\mu_0}{2\rho\tau d} \int_0^{0.5d} H_z(x,t)^2 \, dx \, dt ; \quad K_w = \frac{W_M}{W_T}. \]

Let us examine the sinusoidal steady-state mode for comparison under:

\[H_S(t) = H_w \sin(\omega_0 t + \varphi), \quad \text{(13)} \]

when the complex amplitude of magnetic field intensity \(\hat{H}_{z0}(x) \) and eddy current density \(\hat{\delta}_{j0}(x) \) with respect to (5, 6) when \(\omega = \omega_0 \) are rated as follows:

\[
\hat{H}_{z0}(x) = \frac{H_w e^{j\varphi} \cdot \cosh \left[\frac{x \sqrt{j\omega \mu_0 \gamma}}{0.5d} \right]}{\cosh \left[\frac{0.5d \sqrt{j\omega \mu_0 \gamma}}{j\omega \mu_0 \gamma} \right]} = |\hat{H}_{z0}(x)| \cdot \exp \left[j\psi_{H0}(x) \right];
\]

\[
\hat{\delta}_{j0}(x) = -\frac{\sqrt{j\omega \mu_0 \gamma} \cdot H_w e^{j\varphi} \cdot \sinh \left[\frac{x \sqrt{j\omega \mu_0 \gamma}}{0.5d} \right]}{\cosh \left[\frac{0.5d \sqrt{j\omega \mu_0 \gamma}}{j\omega \mu_0 \gamma} \right]} = |\hat{\delta}_{j0}(x)| \cdot \exp \left[j\psi_{H0}(x) \right],
\]

In other words, magnetic field intensity \(H_z(x,t) \) and eddy current density \(\delta_j(x,t) \) will be:

\[H_z(x,t) = |\hat{H}_{z0}(x)| \cdot \sin \left[\omega_0 t + \psi_{H0}(x) \right]; \quad \delta_j(x,t) = |\hat{\delta}_{j0}(x)| \cdot \sin \left[\omega_0 t + \psi_{H0}(x) \right]. \quad \text{(16)} \]

Due to substitution (14-16) into (9-12), let us determine EMF integral characteristics in the sinusoidal steady-state mode.

4. Calculation results

Calculation of the magnetic skin-effect for the electrical steel plate of type 2411 and thickness \(d=0.5 \) (mm) with the intensity pulse of magnetic field equal to:

\[H_w = \frac{\mu_0}{2\rho\tau d} \int_0^{0.5d} H_z(x,t)^2 \, dx \, dt; \quad K_w = \frac{W_M}{W_T}. \]

\[H_z(t) = \begin{cases} H_w \sin \left(\frac{t}{\tau} \right) & \text{at } 0 < t < \tau, \\ 0 & \text{at } t > \tau \end{cases} \]

using formulas (3, 5-17) and replacement of integrals by sums have been carried out. Steel parameters at \(\mu_0 = 4\pi \cdot 10^{-7} \) (H/m) are shown in table 1. Calculation results under various magnetic field intensity amplitudes \(H_w \) (17) are listed in tables 2, 3, 4. In addition, the sinusoidal steady-state mode at \(n=1; \omega_0 = 2\pi f = \pi/\tau \) (tables 2, 3) and the pulse mode at \(\tau = 0.1; 1 \) (ms); \(n = 0; 1 \) (table 4) have been computed. Specific time dependence of pulsed intensity \(H_z(t) \) (17) and magnetic field flux \(\Phi(t) \) (10) for the steel plate of type 2411 at \(H_w = 1000 \) (A/m); \(\tau = 0.1 \) (ms); \(d=0.5 \) (mm); \(\Phi_w = \mu_0 H_w d = 0.685 \) (mWb/m) are shown in Figure 2.
Figure 2. Specific time dependence of pulsed intensity $H_s(t)$ and magnetic field flux $\Phi(t)$ for the steel plate of type 2411: $H_m=1000$ (A/m); $\tau=0.1$ (ms); $d=0.5$ (mm); $\Phi_m=\mu_0 H_m d = 0.685$ (mWb/m).

Table 1. Cold-rolled isotopic electric steel of type 2411 (silicon 2.8-3.8%)

<table>
<thead>
<tr>
<th>H_m, A/m</th>
<th>$\mu_r = \mu_a/\mu_0$</th>
<th>$B_m=\mu_0 H_m$, T</th>
<th>θ_0, °С</th>
<th>γ, 1/Ω·m</th>
<th>ρ, kg/m³</th>
<th>C_f, J/kg°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1090</td>
<td>1.37</td>
<td>20</td>
<td>$2\cdot10^6$</td>
<td>7650</td>
<td>472.3</td>
</tr>
<tr>
<td>2500</td>
<td>477.6</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>135.3</td>
<td>1.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We can see that such characteristics as specific heat loss energy W_f, average power of this energy P_f and plate temperature θ grow with the amplitude H_m growth and the decline in duration τ of magnetic field intensity (17) (tables 2, 4). It is obviously that the use of the steel plate of type 2411 of thickness $d=0.5$ (mm) is most likely for the pulse mode at such H_m, n, H_s and τ values when K_Φ and K_{Φ} are maximal (table 4): $H_m=10000$ (A/m); $n=1$; $\tau=1$ (ms).

Table 2. The sinusoidal steady-state mode of the steel plate of type 2411 and thickness $d=0.5$ (mm)

<table>
<thead>
<tr>
<th>H_m, A/m</th>
<th>f/τ, Hz/ms</th>
<th>W_f, J/kg</th>
<th>P_f, W/kg</th>
<th>θ, °С</th>
<th>γ, 1/Ω·m</th>
<th>ρ, kg/m³</th>
<th>C_f, J/kg°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>500/1</td>
<td>0.051</td>
<td>50.56</td>
<td>1.07·10^{-4}</td>
<td>0.988</td>
<td>0.862</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5000/0.1</td>
<td>0.097</td>
<td>970.74</td>
<td>2.06·10^{-4}</td>
<td>0.474</td>
<td>0.156</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td>500/1</td>
<td>0.063</td>
<td>62.99</td>
<td>1.33·10^{-4}</td>
<td>1</td>
<td>1.951</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5000/0.1</td>
<td>0.334</td>
<td>3340</td>
<td>7.07·10^{-4}</td>
<td>0.751</td>
<td>0.230</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>500/1</td>
<td>0.082</td>
<td>81.56</td>
<td>1.73·10^{-4}</td>
<td>1</td>
<td>6.876</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5000/0.1</td>
<td>0.760</td>
<td>7604</td>
<td>1.61·10^{-3}</td>
<td>0.977</td>
<td>0.698</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. The sinusoidal steady-state mode of the steel plate of type 2411 at frequency $f=5000$ (Hz)

<table>
<thead>
<tr>
<th>H_w, A/m</th>
<th>$d=0.05$ (mm)</th>
<th>$d=0.15$ (mm)</th>
<th>K_w / K_{w_0}</th>
<th>$d=0.25$ (mm)</th>
<th>$d=0.35$ (mm)</th>
<th>$d=0.5$ (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1 / 8.534</td>
<td>0.992 / 0.956</td>
<td>0.895 / 0.362</td>
<td>0.714 / 0.213</td>
<td>0.474 / 0.156</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td>1 / 19.476</td>
<td>1 / 2.167</td>
<td>0.984 / 0.789</td>
<td>0.921 / 0.416</td>
<td>0.751 / 0.230</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>1 / 68.748</td>
<td>1 / 7.640</td>
<td>1 / 2.753</td>
<td>1 / 1.408</td>
<td>0.977 / 0.698</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. The pulse mode of the steel plate of type 2411 and thickness $d=0.5$ (mm)

<table>
<thead>
<tr>
<th>H_w, A/m</th>
<th>τ, ms</th>
<th>H_S/H_w, A/m</th>
<th>n</th>
<th>W_T, J/kg</th>
<th>P_T, W/kg</th>
<th>ϑ, °C</th>
<th>K_Φ</th>
<th>K_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.5</td>
<td>4.837</td>
<td>0.53</td>
<td>53.49</td>
<td>1.13·10$^{-5}$</td>
<td>0.963</td>
<td>0.390</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.707</td>
<td>0.043</td>
<td>43.15</td>
<td>9.14·10$^{-5}$</td>
<td>0.994</td>
<td>1.021</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>4.837</td>
<td>0.047</td>
<td>468.74</td>
<td>9.92·10$^{-5}$</td>
<td>0.518</td>
<td>0.167</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.707</td>
<td>0.068</td>
<td>682.48</td>
<td>1.44·10$^{-4}$</td>
<td>0.603</td>
<td>0.274</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0.148</td>
<td>1485</td>
<td>3.14·10$^{-4}$</td>
<td>0.614</td>
<td>0.249</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td>0.5</td>
<td>4.837</td>
<td>0.079</td>
<td>78.84</td>
<td>1.67·10$^{-5}$</td>
<td>1</td>
<td>0.772</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.707</td>
<td>0.058</td>
<td>58.10</td>
<td>1.23·10$^{-4}$</td>
<td>1</td>
<td>2.133</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>4.837</td>
<td>0.178</td>
<td>1778</td>
<td>3.76·10$^{-4}$</td>
<td>0.724</td>
<td>0.201</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.707</td>
<td>0.224</td>
<td>2240</td>
<td>4.74·10$^{-4}$</td>
<td>0.816</td>
<td>0.379</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0.487</td>
<td>4873</td>
<td>1.03·10$^{-3}$</td>
<td>0.807</td>
<td>0.335</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>0.5</td>
<td>4.837</td>
<td>0.107</td>
<td>107.33</td>
<td>2.27·10$^{-5}$</td>
<td>1</td>
<td>2.615</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.707</td>
<td>0.079</td>
<td>78.63</td>
<td>1.66·10$^{-5}$</td>
<td>1</td>
<td>7.190</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>4.837</td>
<td>0.742</td>
<td>7421</td>
<td>1.57·10$^{-5}$</td>
<td>0.944</td>
<td>0.338</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.707</td>
<td>0.629</td>
<td>6286</td>
<td>1.33·10$^{-5}$</td>
<td>0.985</td>
<td>0.855</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>2.207</td>
<td>22070</td>
<td>4.67·10$^{-5}$</td>
<td>0.959</td>
<td>0.462</td>
<td></td>
</tr>
</tbody>
</table>

5. Conclusion

1. The technique for parameters determination of the magnetic skin effect on the ferromagnetic plate at a specified pulse of magnetic field intensity on the plate surface is proposed. The technique is based on a spectral method and could be applied for a pulsing transformer, a dynamoelectric pulse generator and a commutating inductor that contains an imbricated core.

2. Due to this technique such plate parameters as specific heat loss energy, the average power of this energy and the plate temperature raise, the magnetic flux attenuation factor and the plate q-factor could be calculated. These characteristics depend on the steel type, the amplitude, the q-factor that should be maximal.

3. In virtue of the minor temperature rise of the given type of the plate under one impulse, its considering is necessary only under numerous EMF impulses.

4. The plate thickness is governed by the value of the flux attenuation factor and the plate q-factor that should be maximal.

5. The reliability of the offered methodology is built on a common frequency-domain usage applicable for pulse transient study under zero boundary conditions of the electric circuit and conformity of the obtained results with the sinusoidal steady-state mode.

References

Albuquerque (NM, USA) 675-678