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ABSTRACT
The paper is organized as follows. In Section 2, the Laplace equations, the parameter space and the algebraic transformation are
presented for domains in two dimensional physical space. The resulting Poisson equations are derived together with the appropriate
expressions of the control functions. The relationship with other methods is explained. The discretization and solution of the nonlinear
elliptic equations is discussed and also the orthogonalization of the grid at boundaries. Examples of grids in 2D domains are given.
Surface grid generation on minimal surfaces is discussed in Section 3. It is shown that grid generation on minimal surface is in fact the
same problem as grid generation in a domain in 2D physical space. llustrations of grids on minimal surfaces are given.
Surface grid generation on surfaces with a prescribed shape is treated in Section 4. It is assumed that such surfaces are parametrized
and that the parametrization is a differentiable one-to-one mapping from a unit square onto the surface. The generated surface grids are
independent of the parametrization. The solution method to generate the grids in the interior of parametrized surfaces is different from
that used for minimal surfaces. It is much easier to solve the two linear elliptic partial differential equations defined by the Laplace-
Beltrami equations directly, instead of interchanging the dependent and independent variables which leads to an nonlinear elliptic
system of partial differential equations. An inversion problem must then be solved afterwards. Such a simple solution method is only
possible for parametrized surfaces. This is due to the fact that an initial grid folding free surface grid on a parametrized surface can be
easily generated because the given parametrization is one-to-one. 
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1 Introduction

A graphical interactive multi-block grid generator, called ENGRID, has been developed at

NLR to construct multi-block structured grids for the computation of ows based on the Euler

and Navier-Stokes equations. Flows can be computed about complete aircraft con�gurations

including propulsion aircraft components [11, 13, 14, 15]. Advanced algebraic grid generation

techniques are applied to construct the grids [13, 14]. Extensive use of ENGRID at NLR

and Fokker has demonstrated that the applied techniques are fast and su�ciently robust to

create grids for the simulation of ows based on the Euler equations. However, the applied

techniques show too often grid folding when Navier-Stokes grids are generated in the interior

of curved surfaces and blocks with complex shapes. Therefore more robust grid generation

techniques with a minimum of grid tuning parameters were needed to construct such grids

e�ciently. For this purpose, new elliptic grid generation methods have been developed with

a maximum of robustness and a minimum of grid tuning parameters. The methods have

been incorporated into the ENGRID code and have been applied successfully to generate

boundary conforming Navier-Stokes grids in blocks and block-faces with complex shapes.

The new elliptic grid generation methods are the topic of this lecture.

Since the pioneering work of Thompson on elliptic grid generation it is known that systems

of elliptic second-order partial di�erential equations produce the best possible grids in the

sense of smoothness and grid point distribution. The systems of elliptic second-order partial

di�erential equations are Poisson-type systems with control functions to be speci�ed. The

secret of each \good" elliptic grid is the method to compute the control functions [10].

Originally Thompson and Warsi introduced the Poisson systems by considering a curvilin-

ear coordinate system which satis�es a system of Laplace equations and which is transformed

to another coordinate system [1, 2]. Then this new coordinate system satis�es a system of

Poisson equations with control functions completely speci�ed by the transformation between

the two coordinate systems. However Thompson did not use this approach for grid genera-

tion. Instead he proposed to use the Poisson system with control functions speci�ed directly

rather than through a transformation [1]. Since then the general approach is to compute the

control functions at the boundary and to interpolate them from the boundaries into the �eld

[1, 8, 9, 10].

The main disadvantage of such an approach is that it is then not possible to prove that

the system of Poisson equations de�nes a one-to-one map so that the computed grids may

contain grid folding.

In this paper we will show that also Thompson's and Warsi's original idea to de�ne

the control functions by a transformation can be used for grid generation. An important

advantage of this approach is that the corresponding Poisson system de�nes a one-to-one

map if the transformation is one-to-one. It will be shown that it is not di�cult to construct

appropriate one-to-one transformations. For this purpose, nonlinear trans�nite algebraic

transformations will be used.

We will apply this approach to generate boundary conforming grids in domains in 2D and

3D physical space and on minimal surfaces and parametrized surfaces in 3D physical space.

Thus the underlying concept of the proposed grid generation method is to use a composite

mapping. The idea is to introduce a parameter (coordinate) system in the given domains and

surfaces which only depends on their shape and not on the prescribed boundary grid point

distribution. The parameters are de�ned as normalized arclength at the boundaries and each

parameter obeys the Laplace equation in the interior of a domain or the Laplace-Beltrami
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equation in the interior of a surface.

For 2D domains and surfaces, the parameter system can be interpreted as a di�erentiable

one-to-one mapping from a unit square, called the parameter space, onto the 2D domain or

surface. This mapping is called here the elliptic transformation. The parameter space is a

unit cube for a domain in 3D physical space.

A nonlinear trans�nite algebraic transformation is constructed to control grid point dis-

tributions. This transformation maps the computational space onto the parameter space.

The computational space is also considered as a unit square for 2D domains and surfaces

and as a unit cube for 3D domains. Grids in computational space are always uniform. The

algebraic transformation depends on the prescribed boundary grid point distribution. The

algebraic transformation is constructed in such a way that the mapping is also di�erentiable

and one-to-one.

Thus the algebraic transformation maps the computational space onto the parameter

space and an elliptic transformation maps the parameter space onto the domains or surfaces

in physical space. The composition of these two mappings is a di�erentiable one-to-one

mapping from computational space onto the domains or surfaces in physical space and has

a nonvanishing Jacobian. The composite mapping de�nes the grid point distribution in the

interior of the domains or surfaces.

Although the composite mapping is one-to-one, this does not imply that generated grids

are always grid folding free, because the discrete equations may not share this robustness

property [7]. But it is sure that grid folding will always disappear when the grid is re�ned.

Furthermore, it is our experience that grids produced by the composite mapping are hardly

ever folded even when Navier-Stokes type of grids are generated in domains or surfaces with

complex shapes.

The elliptic transformation is independent of the prescribed boundary grid point distribu-

tion and may thus be considered as a property of the domain or surface itself. The algebraic

transformation depends on the prescribed grid point distribution. As we will see, the inte-

rior grid point distribution in parameter space, generated by the algebraic transformation,

is always a good reection of the grid point distribution at the boundary of the parameter

space. Therefore, the interior grid point distribution in the domains and surfaces is also a

good reection of the prescribed boundary grid point distribution. This is not the case for

grids solely based on the system of Laplace equations. Then the inherent smoothness of the

Laplace operator makes the grids evenly spaced in the interior (for example, a boundary layer

will be blown up and completely disappear). Therefore, grid generators solely based on the

system of Laplace equations are unusable in practice.

Thompson [1] and Warsi [2] have shown that the composite mapping obeys an elliptic

Poisson system with control functions completely de�ned by the algebraic transformation.

The number of control functions is 6 for 2D domains and surfaces, and 18 for 3D domains.

In our case, the control functions are speci�ed by the algebraic transformation only and it

is therefore not needed to compute the control functions at the boundary and to interpolate

them into the interior of the domains or surfaces, as is the case of all well known elliptic grid

generation systems based on Poisson systems [1, 8, 9, 10].

Also new and more useful expressions for the control functions are derived in a short

and elegant way which only depend on the algebraic transformation itself and not also on the

inverse of this transformation (which occurs in the expressions used by Warsi and Thompson).

The computed grids are in general not orthogonal at the boundary. Sometimes, grid

orthogonality is very much desired. It is shown that the algebraic transformation can be
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rede�ned to obtain a grid which is orthogonal at the boundary.

The nonlinear elliptic Poisson equations are solved by Picard iteration. The linearized

equations are solved by excellent black-box multigrid solvers for linear problems which are

developed by P.M. de Zeeuw at C.W.I. [17, 18, 19].

The paper is organized as follows. In Section 2, the Laplace equations, the parameter

space and the algebraic transformation are presented for domains in two dimensional physical

space. The resulting Poisson equations are derived together with the appropriate expressions

of the control functions.The relationship with other methods is explained. The discretization

and solution of the nonlinear elliptic equations is discussed and also the orthogonalization of

the grid at boundaries. Examples of grids in 2D domains are given.

Surface grid generation on minimal surfaces is discussed in Section 3. It is shown that grid

generation on a minimal surface is in fact the same problem as grid generation in a domain

in 2D physical space. Illustrations of grids on minimal surfaces are given.

Surface grid generation on surfaces with a prescribed shape is treated in Section 4. It is

assumed that such surfaces are parametrized and that the parametrization is a di�erentiable

one-to-one mapping from a unit square onto the surface. The generated surface grids are

independent of the parametrization. The solution method to generate the grids in the interior

of parametrized surfaces is di�erent from that used for minimal surfaces. It is much easier

to solve the two linear elliptic partial di�erential equations de�ned by the Laplace-Beltrami

equations directly, instead of interchanging the dependent and independent variables which

leads to a nonlinear elliptic system of partial di�erential equations. An inversion problem must

then be solved afterwards. Such a simple solution method is only possible for parametrized

surfaces. This is due to the fact that an initial grid folding free surface grid on a parametrized

surface can be easily generated because the given parametrization is one-to-one. Illustrations

of grids on parametrized surfaces are given.

Grid generation in 3D domains is treated in Section 5. The elliptic and algebraic transfor-

mation is de�ned. The resulting Poisson equations are derived together with the appropriate

expressions of the control functions. The discretization and solution of the nonlinear elliptic

equations is discussed and examples of grids in 3D domains are given.

Finally, concluding remarks are made in Section 6.

2 2D Grid Generation

2.1 Derivation of the 2D grid generation equations

Consider a simply connected bounded domain D in two dimensional space with Cartesian

coordinates ~x = (x; y)T . Suppose that D is bounded by four edges E1; E2; E3; E4. Let

(E1; E2) and (E3; E4) be the two pairs of opposite edges as shown in Fig.1.

De�ne the computational space C as the unit square in a two dimensional space with

Cartesian coordinates ~� = (�; �)T . Assume that a mapping ~x : @C 7! @D is prescribed which

maps the boundary of C one-to-one on the boundary of D. This mapping de�nes the boundary

grid point distribution. Assume that

� � � 0 at edge E1 and � � 1 at edge E2,

� � � 0 at edge E3 and � � 1 at edge E4.
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Figure 1: Transformation from computational (�; �) space to a domain D in Cartesian (x; y)

space.

We wish to construct a mapping ~x : C 7! D which obeys the boundary conditions and

which is a di�erentiable one-to-one mapping. Furthermore, we require that the interior grid

point distribution is a good reection of the prescribed boundary grid point distribution.

A natural mapping ~x : C 7! D exists which obeys these requirements. This mapping will

be the composition of an algebraic transformation and an elliptic transformation based on

the Laplace equations. The algebraic transformation is a di�erentiable one-to-one mapping

from computational space C onto a parameter space P. The parameter space is also a unit

square. We will see below that the algebraic transformation will only depend on the prescribed

boundary grid point distribution at the four edges of domain D. The elliptic transformation

is a di�erentiable one-to-one mapping from parameter space P onto domain D. The elliptic

transformation will only depend on the shape of domain D and is thus independent of the

prescribed boundary grid point distribution. The elliptic transformation may thus be consid-

ered as a property of domain D. The composition of these two mappings de�nes the interior

grid point distribution and is a di�erentiable one-to-one mapping from computational domain

C onto domain D.

Introduce the parameter space P as the unit square in a two dimensional space with

Cartesian coordinates ~s = (s; t)T . Require that the parameters s and t obey:

� s � 0 at edge E1 and s � 1 at edge E2,

� s is the normalized arclength along edges E3 and E4.

� t � 0 at edge E3 and t � 1 at edge E4,

� t is the normalized arclength along edges E1 and E2.

Thus ~s : @D 7! @P is de�ned by these requirements. In the interior of D we require that

s and t are harmonic functions of x and y, thus obey the Laplace equations:

4s =
@2s

@x2
+
@2s

@y2
= sxx + syy = 0; (1)

4t =
@2t

@x2
+

@2t

@y2
= txx + tyy = 0: (2)

The two Laplace equations 4s = 0 and 4t = 0, together with the above speci�ed bound-

ary conditions, de�ne the mapping ~s : D 7! P. Note that this mapping only depends on the
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shape of domain D and is independent of the prescribed boundary grid point distribution.

By interchanging the dependent and independent variables, a non-linear elliptic partial dif-

ferential equation can be derived for ~x : P 7! D. Thus we have to solve a non-linear elliptic

boundary value problem in P in order to de�ne this mapping. This mapping de�nes our

elliptic transformation. It is well known that this mapping is di�erentiable and one-to-one

[4].

The algebraic transformation must be a di�erentiable one-to-one mapping from compu-

tational space C onto the parameter space P. Because ~x : @C 7! @D is prescribed and

~x : @P 7! @D is de�ned as described above, it follows that ~s : @C 7! @P is also de�ned.

From the preceding requirements it follows that

s(0; �) = 0 ; s(1; �) = 1 ; s(�; 0) = sE3
(�) ; s(�; 1) = sE4

(�); (3)

where the functions sE3
; sE4

are monotonically increasing, and

t(�; 0) = 0 ; t(�; 1) = 1 ; t(0; �) = tE1
(�) ; t(1; �) = tE2

(�); (4)

where the functions tE1
; tE2

are also monotonically increasing. Thus the four functions

tE1
(�); tE2

(�); sE3
(�); sE4

(�) are de�ned by the boundary grid point distribution.

The mapping ~s : C 7! P is now de�ned by the following two algebraic equations:

s = sE3
(�)(1 � t) + sE4

(�)t; (5)

t = tE1
(�)(1 � s) + tE2

(�)s: (6)

Eq.(5) implies that a coordinate line � = constant is mapped to the parameter space P

as a straight line: s is a linear function of t, and Eq.(6) implies that a grid line � = constant

is also mapped to P as a straight line: t is a linear function of s. For given values of � and

�, the corresponding s and t values are found as the intersection point of the two straight

lines. For this reason, the system de�ned by Eqs.(5),(6) is called the \algebraic straight

line transformation" because of the use of straight lines in parameter space P. It can be

easily veri�ed that this system de�nes a di�erentiable one-to-one mapping because of the

positiveness of the Jacobian: s�t� � s�t� > 0.

The system de�ned by Eqs.(5),(6) can be interpreted as a trans�nite interpolation with

nonlinear blending functions and resembles the trans�nite interpolation method of Soni [6].

The algebraic transformation ~s : C 7! P and the elliptic transformation ~x : P 7! D are

di�erentiable and one-to-one. Thus the composite mapping ~x : C 7! D de�ned as ~x(~�) =

~x(~s(~�)) is also di�erentiable and one-to-one. Furthermore, due to the properties of the basic

mappings, we may indeed expect that the interior grid point distribution will be a good

reection of the boundary grid point distribution.

In the remainder of this section, we will derive the set of non-linear elliptic partial di�er-

ential equations which the composite mapping ~x = ~x(~s(~�)) has to ful�ll.

It has already been noted by Warsi and Thompson that the composite mapping will obey

an elliptic system of Poisson equations. However the system of Poisson equations as given in

[1, 2] is not so useful because it contains control functions which depend also on the derivatives

of the inverse mapping ~� : P 7! C. It will be shown below that it is not di�cult to obtain

expressions for these control functions which only depend on the derivatives of the mapping

~s : C 7! P itself.
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First introduce the two covariant base vectors

~a1 =
@~x

@�
= ~x� ; ~a2 =

@~x

@�
= ~x�; (7)

and de�ne the covariant metric tensor components as the inner product of the covariant base

vectors

aij = (~ai;~aj) ; i = f1; 2g; j = f1; 2g: (8)

Then the contravariant base vectors ~a1 and ~a2 are de�ned according to the rules

(~ai;~aj) = �ij ; i = f1; 2g; j = f1; 2g; (9)

with �ij the Kronecker symbol. De�ne the contravariant metric tensor components

aij = (~ai;~aj) ; i = f1; 2g; j = f1; 2g; (10)

so that  
a11 a12
a12 a22

! 
a11 a12

a12 a22

!
=

 
1 0

0 1

!
; (11)

and

~a1 = a11~a1 + a12~a2 ; ~a
2 = a12~a1 + a22~a2: (12)

Introduce the determinant J2 of the covariant metric tensor: J2 = a11a22 � a212.

Now consider an arbitrary function � = �(�; �). Then � is also de�ned in domain D and

the Laplacian of � is expressed as

4� = �xx + �yy =
1

J

��
Ja11�� + Ja12��

�
�
+
�
Ja12�� + Ja22��

�
�

�
; (13)

which may be found in every textbook on Tensor Analysis and Di�erential Geometry (for

example see [21], page 227). Take as special cases respectively � � � and � � �. Then

Eq.(13) yields

4� =
1

J

��
Ja11

�
�
+
�
Ja12

�
�

�
; 4� =

1

J

��
Ja12

�
�
+
�
Ja22

�
�

�
: (14)

Thus the Laplacian of � can also be expressed as

4� = a11��� + 2a12��� + a22��� +4��� +4��� : (15)

Substitution of respectively � � s and � � t in this equation yields

4s = a11s�� + 2a12s�� + a22s�� +4�s� +4�s�; (16)

4t = a11t�� + 2a12t�� + a22t�� +4�t� +4�t�: (17)

Using these equations and the property that s and t are harmonic in domain D, thus

4s = 0 and 4t = 0, we �nd the following expressions for the Laplacian of � and � 
4�

4�

!
= a11 ~P11 + 2a12 ~P12 + a22 ~P22; (18)
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where

~P11 = �T�1

 
s��
t��

!
; ~P12 = �T�1

 
s��
t��

!
; ~P22 = �T�1

 
s��
t��

!
; (19)

and the matrix T is de�ned as

T =

 
s� s�
t� t�

!
: (20)

The six coe�cients of the vectors ~P11 = (P 1
11; P

2
11)

T ; ~P12 = (P 1
12; P

2
12)

T and ~P22 = (P 1
22; P

2
22)

T

are so called control functions. The six control functions are completely de�ned and easily

computed for a given algebraic transformation ~s = ~s(~�). Di�erent and less useful expressions

of these control functions can also be found in [1, 2].

Finally, substitution of � � ~x in Eq.(15) yields

4~x = a11~x�� + 2a12~x�� + a22~x�� +4�~x� +4�~x� : (21)

Substitution of Eq.(18) into this equation and using the fact that 4~x � 0 we arrive at the

following Poisson grid generation system

a11~x�� + 2a12~x�� + a22~x�� +
�
a11P 1

11 + 2a12P 1

12 + a22P 1

22

�
~x�

+
�
a11P 2

11 + 2a12P 2

12 + a22P 2

22

�
~x� = 0: (22)

Using Eqs.(8),(11) we �nd the following well known expressions for the contravariant

metric tensor components:

J2a11 = a22 = (~x�; ~x�) ; J
2a12 = �a12 = �(~x�; ~x�) ; J

2a22 = a11 = (~x�; ~x�): (23)

Thus the Poisson grid generation system de�ned by Eq.(22) can be simpli�ed by multi-

plication with J2. Then we obtain:

a22~x�� � 2a12~x�� + a11~x�� +
�
a22P

1

11 � 2a12P
1

12 + a11P
1

22

�
~x�

+
�
a22P

2

11 � 2a12P
2

12 + a11P
2

22

�
~x� = 0: (24)

This equation, together with the expressions for the control functions P k
ij given by Eq.(19),

forms our 2D grid generation system. Grids are computed by solving this quasi-linear system

of elliptic partial di�erential equations with the prescribed boundary grid points as Dirichlet

boundary conditions. The discretization of this Poisson system is described in Section 2.3.

2.2 Relationship with other methods

Suppose that the boundary grid point distribution is the same for both pairs of opposite edges

of domain D, thus tE1
(�) = tE2

(�) and sE3
(�) = sE4

(�). Then it follows from Eqs.(5),(6) that

s = s(�) and t = t(�). The control functions become P 1
11 = P = �s��=s�, P

2
11 = 0, P 1

12 = 0,

P 2
12 = 0, P 1

22 = 0, P 2
22 = Q = �t��=t� and the Poisson grid generation system simpli�es to

a22(~x�� + P~x�)� 2a12~x�� + a11(~x�� +Q~x�) = 0: (25)

This is the common form of the Poisson system as used in the literature. The common

approach is to compute the values of the two control functions P and Q from the boundary
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grid point distribution and to interpolate these values in the interior.The values of P are

computed at edges E3 and E4, the values of Q are computed at edges E1 and E2. For

example consider edge E1. Assume grid orthogonality, thus (~x�; ~x�) = 0 i.e. a12 = 0. The

Poisson system simpli�es to

a22(~x�� + P~x�) + a11(~x�� +Q~x�) = 0: (26)

Take the inner product of ~x� with this equation, use (~x� ; ~x�) = 0 and ignore (~x��; ~x�). Then

the following expression is found for the boundary value of Q at edge E1:

Q = �
(~x��; ~x�)

(~x� ; ~x�)
: (27)

This is the computed boundary value ofQ as used in the the method of Thomas and Middleco�

[8]. Along edge E1 we have ~x� = ~xtt� and ~x�� = ~xttt
2
� + ~xtt��. Furthermore, t is de�ned

as normalized arclength so that (~xt; ~xt) = constant and (~xt; ~xtt) = 0. Thus (~x�� ; ~x�) =

(~xt; ~xt)t�t�� so that Q is also equal to

Q = �
t��

t�
: (28)

Hence, for the special case that opposite boundary grid point distributions are the same, the

method simpli�es to the method of Thomas and Middleco�.

2.3 Discretization and solution method

Consider a uniform rectangular grid of (N + 1) � (M + 1) points in computational space C

de�ned as

�i;j = �i = i=N ; �i;j = �j = j=M ; i = 0 : : : N; j = 0 : : : M: (29)

Assume that ~xi;j is prescribed on the boundary of this grid and consider the computation

of ~xi;j in the interior of the computational grid based on the solution of the Poisson system

de�ned by Eq.(24).

First we will compute the arclength normalized variables si;j and ti;j based on the algebraic

transformation de�ned by Eqs.(5),(6).

The arclength normalized variables si;j and ti;j are computed at the boundary of the com-

putational grid as follows. Compute the distance between succeeding points at the boundary:

�d0;j =k ~x0;j � ~x0;j�1 k ; �dN;j =k ~xN;j � ~xN;j�1 k ; j = 1 : : : M; (30)

�di;0 =k ~xi;0 � ~xi�1;0 k ; �di;M =k ~xi;M � ~xi�1;M k ; i = 1 : : : N: (31)

De�ne the length of edges E1; E2; E3; E4 by

LE1
=

MX
j=1

�d0;j ; LE2
=

MX
j=1

�dN;j ; LE3
=

NX
i=1

�di;0 ; LE4
=

NX
i=1

�di;M ; (32)

and the normalized distances as

d0;j = �d0;j=LE1
; dN;j = �dN;j=LE2

; j = 1 : : : M; (33)

di;0 = �di;0=LE3
; di;M = �di;M=LE4

; i = 1 : : : N: (34)
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The arclength normalized variables si;j and ti;j at the boundary are then de�ned by:

s0;j = 0 ; sN;j = 1 ; j = 0 : : : M; (35)

ti;0 = 0 ; ti;M = 1 ; i = 0 : : : N; (36)

and

si;0 = si�1;0 + di;0 ; si;M = si�1;M + di;M ; i = 1 : : : N; (37)

t0;j = t0;j�1 + d0;j ; tN;j = tN;j�1 + dN;j ; j = 1 : : :M: (38)

The arclength normalized variables (si;j; ti;j) in the interior of the grid are now computed

according to the algebraic straight line transformation de�ned by Eqs.(5),(6) and are thus

found by solving simultaneously the two linear algebraic equations:

si;j = si;0(1� ti;j) + si;M ti;j; (39)

ti;j = t0;j(1� si;j) + tN;jsi;j; (40)

for each pair (i; j) 2 (1 : : : N � 1; 1 : : : M � 1).

At each grid point (i; j), the six control functions P 1
11
,P 2

11
,P 1

12
, P 2

12
,P 1

22
,P 2

22
de�ned by

Eq.(19), are now easily computed using central di�erences for the discretization of s��,s��,s�� ,s�,s�
and t��,t��,t��,t�,t�.

Next, consider the iterative solution process of the nonlinear elliptic Poisson grid genera-

tion system de�ned by Eq.(24). Rewrite this system as

P~x�� + 2Q~x�� +R~x�� + S~x� + T~x� = 0 (41)

with

P = (~x�; ~x�) ; Q = �(~x�; ~x�) ; R = (~x�; ~x�) ;

S = PP 1

11 + 2QP 1

12 +RP 1

22;

T = PP 2

11 + 2QP 2

12 +RP 2

22: (42)

The solution of this system of nonlinear elliptic equations is obtained by Picard iteration:

P k�1~xk�� + 2Qk�1~xk�� +Rk�1~xk�� + Sk�1~xk� + T k�1~xk� = 0 (43)

where k is the Picard index and

P k�1 = (~xk�1� ; ~xk�1� ) ; Qk�1 = �(~xk�1� ; ~xk�1� ) ; Rk�1 = (~xk�1� ; ~xk�1� ) ;

Sk�1 = P k�1P 1

11 + 2Qk�1P 1

12 +Rk�1P 1

22;

T k�1 = P k�1P 2

11 + 2Qk�1P 2

12 +Rk�1P 2

22: (44)

Thus a current approximate solution

~xk�1 =
n
~xk�1ij ; i = 0 : : : N; j = 0 : : : M

o
(45)

is improved by the following steps:
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� Compute the coe�cients P k�1,Qk�1,Rk�1,Sk�1,T k�1 by applying central di�erences

for the discretization of ~xk�1� and ~xk�1� . Note that the six control functions remain

unchanged during the iterative procedure.

� Discretize ~xk��, ~x
k
�� , ~x

k
� ,~x

k
� by using central di�erences. The discretization of the mixed

derivative ~xk�� is done in a way as described in [20].

� After the discretization of ~xk��, ~x
k
��, ~x

k
�� , ~x

k
� , ~x

k
� we arrive at a linear system of equations

for the unknowns ~xki;j ; i = 0 : : : N; j = 0 : : :M with Dirichlet boundary conditions. At

each interior grid point (i; j) we have a nine-point stencil. This linear system is solved

by the black-box multigrid solver MGD9V developed at C.W.I by P.M. de Zeeuw [17].

The multigrid solver MGD9V is called twice to compute the two components xki;j and

yki;j of ~x
k
i;j. The solution of the linear system provides a better approximate solution ~xk.

The complete process is repeated until a su�ciently accurate solution has been obtained.

The initial start solution ~x0 is obtained by algebraic grid generation. The �nal grid is inde-

pendent of the initial grid. Moreover, the quality of the initial grid is unimportant and severe

grid folding of the initial grid is allowed. In general, about 10 Picard iterations are enough

to obtain a su�ciently accurate solution of the nonlinear elliptic Poisson equations.

2.4 Orthogonality at boundaries

Grids obtained by the nonlinear elliptic Poisson grid generation system de�ned by Eq.(24) are

grid folding free and have an excellent interior grid point spacing distribution. However, the

computed grids are in general not orthogonal at the boundary and sometimes grids should be

orthogonal at the boundary. Especially for Navier-Stokes computations, the orthogonality of

the grid in a boundary layer is often desired.

Grid orthogonality at boundaries can be achieved as follows. Suppose that a grid has been

computed based on the solution of the Poisson grid generation system with control functions

speci�ed by the algebraic straight-line transformation. Suppose that it is desired that the

grid is orthogonal at all four edges of domain D.

Rede�ne the elliptic transformation ~x : P 7! D by imposing the following new set of

boundary conditions for the harmonic functions s and t:

� s � 0 at edge E1 and s � 1 at edge E2,

� @s
@n

= 0 along edges E3 and E4, where n is the outward normal direction,

� t � 0 at edge E3 and t � 1 at edge E4,

� @t
@n

= 0 along edges E1 and E2, where n is the outward normal direction.

These new boundary conditions de�ne a new mapping ~x : P 7! D. Thus s is no longer

the normalized arclength along edges E3 and E4, and t is no longer the normalized arclength

along edges E1 and E2. It is not di�cult to understand, by applying Gauss's integral formula

for harmonic functions, that the Neumann boundary condition @s
@n

= 0 implies that s cannot

have a local extremum at edge E3 and edge E4 of domain D. Similarly, t cannot have a local

extremum at edge E1 and edge E2. Hence, s is still monotone along edges E3 and E4, and t

is still monotone along edges E1 and E2.
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The Neumann boundary conditions @s
@n

= 0 along edges E3 and E4 also imply that a

parameter line s = constant is a curve in domain D which is orthogonal at those edges.

Similarly, a parameter line t = constant is a curve in D which is orthogonal at edge E1 and

edge E2.

It is possible to compute the new harmonic functions s and t directly as functions of the

computational coordinates (�; �) because of the existence of an initial mapping ~x : C 7! D.

We only have to solve two Laplace equations 4s = 0 and 4t = 0, together with the above

speci�ed combination of Dirichlet and Neumann boundary conditions, on an existing grid

in domain D. This is an elementary classical problem and the solution can be obtained

rather easily. Some remarks about the discretization of the Laplace equation with Neumann

boundary conditions are given at the end of this section.

Write the solution as s = ~s(�; �) and t = ~t(�; �). For our purposes, the only important

information is the solution on the boundary. Rede�ne the edge functions by

sE3
(�) = ~s(�; 0); sE4

(�) = ~s(�; 1); tE1
(�) = ~t(0; �); tE2

(�) = ~t(1; �): (46)

These new edge functions are still monotonically increasing.

The algebraic transformation ~s : C 7! P is now rede�ned according to the following two

algebraic equations:

s = sE3
(�)H0(t) + sE4

(�)H1(t); (47)

t = tE1
(�)H0(s) + tE2

(�)H1(s): (48)

where H0 and H1 are cubic Hermite interpolation functions de�ned as

H0(s) = (1 + 2s)(1 � s)2;H1(s) = (3� 2s)s2; 0 � s � 1: (49)

Note that H0(0) = 1, H 0

0
(0) = 0, H0(1) = 0, H 0

0
(1) = 0 and H1(0) = 0, H 0

1
(0) = 0, H1(1) = 1,

H 0

1
(1) = 0. It follows from Eq.(47) that a coordinate line � = constant is mapped to parameter

space P as a cubic curve which is orthogonal at both edge E3 and edge E4 in P. Such a curve

in parameter space P will thus be mapped by the new elliptic transformation ~x : P 7! D as

a curve which is orthogonal at both edge E3 and edge E4 in D. Similar observations can be

made for coordinate lines � = constant. Thus the grid will be orthogonal at all four edges in

domain D.

The composite mapping ~x : C 7! D still obeys the Poisson grid generation system de�ned

by Eq.(24). Thus the same system of elliptic equations can be solved to generate an orthogonal

grid at the boundary. The only di�erence is that now ~s : C 7! P is de�ned by Eqs.(47),(48)

instead of Eqs.(5),(6).

Grid orthogonality at boundaries is obtained in three steps. First compute an initial grid

based on the Poisson grid generation system with control functions speci�ed according to

the algebraic straight line transformation de�ned by Eqs.(5),(6). Next solve the two Laplace

equations 4s = 0 and 4t = 0, together with the above speci�ed combination of Dirichlet

and Neumann boundary conditions, on this initial grid to obtain new edge functions tE1
(�),

tE2
(�), sE3

(�), sE4
(�). Then recompute the grid based on the Poisson system but with control

functions speci�ed according to the algebraic transformation de�ned by Eqs.(47),(48).

Grid orthogonality at boundaries can introduce grid folding. Fortunately, grid folding will

not easily arise. From Eq.(47) it follows that two di�erent coordinate lines � = �1,� = �2,

�1 6= �2, are mapped to parameter space P as two disjunct cubic curves which are orthogonal
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at both edge E3 and edge E4 in P. This is due to the fact that sE3
(�) and sE4

(�) are

monotonically increasing functions. The same holds for di�erent coordinate lines � = �1,� =

�2, �1 6= �2. For given values of � and �, the corresponding s and t values are found as

intersection point of two cubic curves. However, such two cubic curves can have more than

one intersection point. In that case grid folding will occur. However, in practice we hardly

ever encounter grid folding due to orthogonalization.

We have described a method to obtain an orthogonal grid at all four edges of domain D.

In practice, orthogonality of the grid is often only desired at one edge or two or three edges.

Suppose for example that it is only desired to have an orthogonal grid at edge E3. In that

case, tE1
(�), tE2

(�) and sE4
(�) are de�ned as normalized arclength. Only sE3

(�) is computed

by demanding that @s
@n

= 0 along edge E3 in D. Thus only one Laplace equation 4s = 0 has

to be solved to obtain sE3
(�) (with Dirichlet boundary conditions at edges E1; E2; E4 and a

Neumann boundary condition at edge E3). Furthermore, it is su�cient that the algebraic

transformation ~s : C 7! P is such that a coordinate line � = constant is mapped to P as a

straight line and that a coordinate line � = constant is mapped to P as a parabolic curve

which is only orthogonal at edge E3 in P.

Finally we will show how the Laplace equation 4s = 0, together with the above speci�ed

boundary conditions, is discretized and solved on an existing grid in D. The discretization

and solution of 4t = 0 is obtained in the same way.

Consider a uniform rectangular grid of (N + 1)� (M + 1) points in computational space

as de�ned by Eq.(29). Thus ~xi;j is de�ned for all grid points (i; j). From Eq.(13) it follows

that s obeys in computational space the linear second-order elliptic equation�
Ja11s� + Ja12s�

�
�
+
�
Ja12s� + Ja22s�

�
�
= 0 (50)

which can be written in vector notation as

div (A grad s) = 0 (51)

where the matrix A = A(�; �) is de�ned as

A = J

 
a11 a12

a12 a22

!
=

1

J

 
a22 �a12

�a12 a11

!
: (52)

At an interior grid point (i; j), the coe�cients of matrix A can be directly computed by

using central di�erences for ~x� and ~x�. Thus Eq.(51) is a linear di�usion problem with given

variable coe�cients.

A �nite-volume cell-centered approach is used to obtain the discretized equations. Inte-

gration of Eq.(51) on a control volume 
 � C givesZ



div (A grad s)d�d� =

Z
@

(A grad s; ~n)d� =

Z
@

( grad s;A~n)d� = 0 (53)

where ~n is the outward unit normal vector and d� a line element. At an interior grid point

(i; j) in C, the discrete equation is derived in a straightforward way by applying Eq.(53) for

a rectangular control volume 
i;j with sizes 1=N and 1=M around (�i;j; �i;j) = (i=N; j=M).

The result is a nine point stencil.

Half control volumes are used for boundary grid points. It is not di�cult to show that

the Neumann boundary condition @s
@n

= 0 at a boundary in D transforms to (grad s;A~n) = 0
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at the corresponding boundary in C. Thus the ux is zero. This observation makes the

discretization at boundary grid points also straightforward.

After discretization, we obtain at a linear system of equations for the unknowns fsi;j j

i = 0 : : : N; j = 0 : : : Mg with Dirichlet and Neumann boundary conditions. At each interior

grid point (i; j) we have a nine-point stencil. This linear system is solved by the black-box

multigrid solver MGD9V [17].

2.5 Illustrations

Examples of grids in 2D domains are shown in Figs.7,...,22. All grids are grid-folding free

and the interior grid point distribution is a good reection of the prescribed boundary grid

point distribution. An initial grid (obtained with algebraic grid generation) is required as

start solution for the nonlinear elliptic Poisson system. The �nal elliptic grid is independent

of the initial grid. Moreover, the quality of the initial grid is unimportant and severe grid

folding of the initial grid is allowed.

Fig.7 shows a region about a NACA0012 airfoil subdivided into four domains. The do-

mains have common edges. The total number of edges is twelve. The boundary grid point

distribution is prescribed at all twelve edges. Fig.8 shows a complete O-type Euler grid. Grid

orthogonality is prescribed at the interior edges and at the boundary of the airfoil. A close-up

near the airfoil of the domains and grid is shown in Fig.9 and Fig.10.

Fig.11 shows a region about a RAE2822 airfoil also subdivided into four domains. Again,

the boundary grid point distribution is prescribed at all twelve edges and grid orthogonality

is prescribed at the interior edges and at the boundary of the airfoil. Fig.12 shows a C-type

Navier-Stokes grid. A close-up of the grid near the airfoil is shown in Fig.13.

A more complex example is a C-type Navier-Stokes grid around a wing with ap shown in

Fig.14. Blow-up of the domain decomposition and multi-block grid are shown in Figs.15,...,18.

Local grid re�nement (see [16], Section 4.6) is applied near the wing and ap.

Fig.19 shows an initial grid around an complex arti�cial boundary with severe grid folding.

This initial grid is obtained with an algebraic grid generation method. Fig.20 shows the

Navier-Stokes grid around the complex arti�cial boundary obtained with the elliptic grid

generation method. Grid orthogonality is prescribed. This grid illustrates the robustness of

the elliptic grid generation method. Fig.21 and Fig.22 show details of the elliptic grid at

respectively a convex and a concave part of the boundary. There is only some slight tendency

that grid lines are more closely (widely) spaced near convex (concave) parts of the boundary.

3 Surface Grid Generation on Minimal Surfaces

Grid generation on a minimal surface is in fact a straightforward extension of grid generation in

a domain in 2D physical space. Consider four connected curved edges situated in 3D physical

space. A minimal surface is then de�ned as a surface bounded by these four edges and with

zero mean curvature. Thus the shape of the minimal surface is a soap �lm bounded by the four

curved edges. Again, a parameter system with two parameters is de�ned. The two parameters

are normalized arclength at the four curved edges. Furthermore, it is required that both

parameters obey the Laplace-Beltrami equation for surfaces. These two equations, together

with the requirement that the mean curvature is identically zero, de�ne a di�erentiable one-

to-one mapping from parameter space (a unit square) onto the minimal surface. Thus this

mapping is independent of the prescribed boundary grid point distribution at the four edges.
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The same algebraic transformation as used for domains in 2D physical space is applied to

map the computational space (a unit square) onto the parameter space.

We will now show that the set of non-linear elliptic partial di�erential equations which

the composite mapping has to ful�ll is the same Poisson system as de�ned by Eq.(24) but

with ~x = (x; y; z)T instead of ~x = (x; y)T . Thus grid generation on a minimal surface in 3D

physical space is in fact equivalent to grid generation in a domain in 2D physical space. The

result that a Poisson system of the form as de�ned by Eq.(24) can be used to compute a grid

on a minimal surface can also be found as a special application of the formulas derived in [3].

As in the two dimensional case, consider again four curved edges E1; E2; E3; E4 but now

situated in the three dimensional physical space with Cartesian coordinates ~x = (x; y; z)T .

Let (E1; E2) and (E3; E4) be the two pairs of opposite edges as shown in Fig.2.

Introduce the parameter space P as the unit square in a two dimensional space with

Cartesian coordinates ~s = (s; t)T . Again require that the parameters s and t obey:

� s � 0 at edge E1 and s � 1 at edge E2,

� s is the normalized arclength along edges E3 and E4.

� t � 0 at edge E3 and t � 1 at edge E4,

� t is the normalized arclength along edges E1 and E2.

Furthermore, require that

4s = 0; (54)

4t = 0; (55)

H = 0; (56)

where 4 is the Laplace-Beltrami operator for surfaces and H is the mean curvature.

These three requirements, together with the described boundary conditions de�ne a unique

mapping ~x : P 7! R3. The shape of the surface de�ned by this mapping is a minimal surface

because of the requirement that the mean curvature H is zero. The parametrization of the

surface is de�ned by Eqs.(54),(55).

De�ne the minimal surface S as

S = f~x(s; t) j (s; t) 2 Pg : (57)

Consider a prescribed boundary grid point distribution at the four edges E1; E2; E3; E4 of

the minimal surface S. Mathematically, the boundary grid point distribution can be de�ned

as a mapping ~x : @C 7! @S where C is the computational space de�ned as the unit square

in a two dimensional space with Cartesian coordinates ~� = (�; �)T . Because ~x : @C 7! @S is

prescribed and ~x : @P 7! @S is de�ned as described above, it follows that ~s : @C 7! @P is also

de�ned.

In exactly the same way as for the two dimensional case, the mapping ~s : C 7! P is de�ned

by the algebraic straight line transformation de�ned by Eqs.(5),(6). The mapping ~x : P 7! S

is de�ned by Eqs.(54),(55),(56). The composite mapping ~x : C 7! S is de�ned as ~x = ~x(~s(~�))

and describes the interior grid point distribution on the minimal surface S. Note that this

composite mapping will be di�erentiable and one-to-one.
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Figure 2: Transformation from computational (�; �) space to a minimal surface S in Cartesian

(x; y; z) space.

What remains to be done is to derive the system of nonlinear elliptic partial di�erential

equations which the composite mapping has to obey. Then the solution of this system de�nes

the interior grid point distribution on the minimal surface S.

For this purpose, introduce the two covariant base vectors

~a1 = ~x� ; ~a2 = ~x�: (58)

The two covariant base vectors span the tangent plane of S at the corresponding point P .

De�ne the unit surface normal as

~n =
~a1 ^ ~a2

k ~a1 ^ ~a2 k
; (59)

where ^ is the vector product operator. The contravariant base vectors ~a1 and ~a2 are de�ned

according to the rules

(~ai;~aj) = �ij ; i = f1; 2g; j = f1; 2g; (60)

and

(~a1; ~n) = 0 ; (~a2; ~n) = 0: (61)

Thus the two contravariant base vectors are also lying in the tangent plane of S at the

corresponding point P . De�ne the covariant metric tensor components by Eq.(8) and the

contravariant metric tensor components by Eq.(10). Then Eqs.(11),(12) are still valid. Again

introduce the determinant J2 of the covariant metric tensor: J2 = a11a22 � a212.

Now consider an arbitrary function � = �(�; �). Then � is also de�ned on surface S and

the Laplace-Beltrami operator of � is expressed as

4� =
1

J

��
Ja11�� + Ja12��

�
�
+
�
Ja12�� + Ja22��

�
�

�
(62)

(see [21], page 227). As in the two-dimensional case, substitution of � � � and � � � into

this equation yields Eq.(14). Thus the Laplace-Beltrami operator of � can also be expressed

as de�ned by Eq.(15). Substitution of respectively � � s and � � t in Eq.(15) and using the

requirements expressed by Eqs.(54),(55) yields exactly the same expressions for 4� and 4�

given by Eqs.(18),(19). Finally, substitution of � � ~x in Eq.(15) yields Eq.(21).

The Laplace-Beltrami operator applied on ~x obeys a famous relation expressed by

4~x = 2H~n; (63)
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where the mean curvature H is de�ned as

H =
1

2

�
a11~x�� + 2a12~x�� + a22~x��; ~n

�
: (64)

(for example see [22], Theorem 1, page 71). Using the requirement H = 0 yields

4~x = 0: (65)

Thus Eq.(18) and Eq.(21) with 4~x = 0 are also valid for minimal surfaces. Following the

same derivation as given at the end of Section 2.1, we arrive at exactly the same nonlinear

system of elliptic partial di�erential equations as expressed by Eq.(24). Thus an interior

grid point distribution on a minimal surface is found by solving Eq.(24) with the prescribed

boundary grid points as Dirichlet boundary conditions. The only di�erence compared to the

two dimensional case is that now ~x = (x; y; z)T instead of ~x = (x; y)T .

The same discretization and solution method as described in Section 2.3 can be used to

solve the Poisson grid generation system in order to generate grids on minimal surfaces. The

only di�erence compared to the two dimensional case is that three (instead of two) linear

systems must be solved during one Picard iteration.

Grid orthogonality at boundaries can be obtained in the same way as described in Section

2.4.

One may ask whether it is useful to implement a method to compute grids on minimal

surfaces in a 3D multi-block grid generator code. The answer is yes. Minimal surfaces may

be used to de�ne the geometry and grid for a block-face of which only the four face-edges

are given. It is also possible to apply minimal surface grid generation when a grid must be

generated in a block-face with four face-edges lying in a plane. Then the minimal surface is a

plane surface bounded by the four edges. The grids in the 2D domains depicted in Figs.7,...,22

were generated in this way and are in fact grids on minimal surfaces.

An example of a grid on a characteristic minimal surface is shown in Fig.24. This is a

so-called square Sherck surface [22]. The initial algebraic grid is shown in Fig.23. Fig.25

and Fig.26 illustrate what happens when the prescribed boundary grid point distribution is

changed. These �gures clearly show that the shape of the minimal surface is independent of

the prescribed boundary grid point distribution.

4 Surface Grid Generation on Parametrized Surfaces

4.1 Derivation of the grid generation equations

In this section we develop a method to generate a grid on a parametrized surface which is

independent of the parametrization. A generated grid only depends on the shape of the

surface and the prescribed boundary grid point distribution at the four edges of the surface.

Consider a bounded surface S with a prescribed geometrical shape in three dimensional

physical space with Cartesian coordinates ~x = (x; y; z)T . Assume that S is parametrized by

a di�erentiable one-to-one mapping

~x : Puv 7! S; (66)

where Puv is the unit square in two dimensional space with Cartesian coordinates ~u = (u; v)T .

De�ne the four edges E1; E2; E3; E4 of surface S by
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Figure 3: Transformation from computational (�; �) space to a parametrized surface S in

Cartesian (x; y; z) space.

� u � 0 at edge E1 and u � 1 at edge E2,

� v � 0 at edge E3 and v � 1 at edge E4.

Thus (E1; E2) and (E3; E4) are the two pairs of opposite edges of surface S as shown in

Fig.3. Introduce the parameter space Pst as the unit square in a two dimensional space with

Cartesian coordinates ~s = (s; t)T . Again require that the parameters s and t obey:

� s � 0 at edge E1 and s � 1 at edge E2,

� s is the normalized arclength along edges E3 and E4,

� t � 0 at edge E3 and t � 1 at edge E4,

� t is the normalized arclength along edges E1 and E2.

Furthermore, require that 4s = 0 and 4t = 0 where 4 is the Laplace-Beltrami operator

for surfaces. Hence the parameters s and t obey�
Ja11su + Ja12sv

�
u
+
�
Ja12su + Ja22sv

�
v
= 0; (67)�

Ja11tu + Ja12tv

�
u
+
�
Ja12tu + Ja22tv

�
v
= 0; (68)

where aij are the contravariant tensor components and J2 is de�ned as the determinant of the

covariant metric tensor. The contravariant tensor components aij are related to the covariant

tensor components aij according to Eq.(11). The covariant metric tensor components are

de�ned by Eq.(8), where the two covariant base vectors are now given by

~a1 = ~xu ; ~a2 = ~xv : (69)

Thus the coe�cients Ja11, Ja12 and Ja22 in Eqs.(67),(68) are functions of u and v and

Eqs.(67),(68) are therefore two uncoupled second-order linear partial di�erential equations

for the functions s = s(u; v) and t = t(u; v).

Each boundary point of surface S has a unique (s; t) parameter value at @Pst and a unique

(u; v) parameter value at @Puv. Thus each (u; v) parameter value at @Puv has also a unique

(s; t) parameter value at @Pst. Thus the functions s and t are prescribed at the boundary

of Puv. Hence, Eq.(67) together with the Dirichlet boundary conditions for s can be used to

compute s = s(u; v) and Eq.(68) together with the Dirichlet boundary conditions for t can be
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used to compute t = t(u; v). Only two linear partial di�erential equations have to be solved

to de�ne these mappings. These two mappings are compactly written as ~s : Puv 7! Pst.

Note that ~s : Puv 7! Pst is a di�erentiable one-to-one mapping so that the inverse mapping

~u : Pst 7! Puv also exists.

Thus the composite mapping ~x : Pst 7! S, de�ned as ~x = ~x(~u(~s)) also exists and is

di�erentiable and one-to-one. Note that this mapping ~x : Pst 7! S only depends on the shape

of surface S and is independent of the original parametrization ~x : Puv 7! S. The mapping

~x : Pst 7! S may thus be considered as a property of surface S and de�nes a new unique

parametrization of S.

Consider a prescribed boundary grid point distribution at the four edges E1; E2; E3; E4.

Mathematically, the boundary grid point distribution can be de�ned as a mapping ~x : @C 7!

@S where C is the computational space de�ned as the unit square in a two dimensional space

with Cartesian coordinates ~� = (�; �)T . Because ~x : @C 7! @S is prescribed and ~x : @Pst 7! @S

is de�ned as described above, it follows that ~s : @C 7! @Pst is also de�ned.

In exactly the same way as for the two dimensional case, the mapping ~s : C 7! Pst is now

de�ned by the algebraic straight line transformation de�ned by Eqs.(5),(6). The composition

of the mapping ~s : C 7! Pst and the mapping ~x : Pst 7! S de�nes ~x : C 7! S and describes the

interior grid point distribution on surface S. Note that this composite mapping will also be

di�erentiable and one-to-one.

Although it is possible to derive the system of nonlinear elliptic partial di�erential equa-

tions which the composite mapping ~x : C 7! S has to obey, we prefer not to do so because it is

much easier to solve the linear partial di�erential equations de�ned by Eqs.(67),(68) to de�ne

the mapping ~s : Puv 7! Pst instead of interchanging the dependent and independent variables

to obtain the nonlinear partial di�erential equations for the inverse mapping ~u : Pst 7! Puv.

Thus the mapping ~s : Puv 7! Pst is computed by solving Eqs.(67),(68) and an inversion

problem is solved afterwards to compute the inverse mapping ~u : Pst 7! Puv.

This is possible due to the fact that the parametrization ~x : Puv 7! S is one-to-one so

that an initial grid folding free grid in surface S can be easily generated. Such an initial grid

is obtained by applying the algebraic straight line algorithm in parameter space Puv. This is

a di�erent situation compared to grid generation in 2D domains or minimal surfaces where

it is not possible to generate easily an initial grid folding free grid. Details of the solution

method are described in the next section.

4.2 Discretization and solution method

Consider surface S with a prescribed boundary grid point distribution. Assume that there are

M +1 prescribed boundary grid points on edges E1 and E2, and N + 1 prescribed boundary

grid points on edges E3 and E4. A boundary conforming grid in the interior of surface S is

now obtained by the following algorithm.

step 1 Compute the corresponding boundary grid points in parameter space Puv. A bound-

ary grid point ~xB of surface S is related to a unique boundary grid point ~uB of parameter

space Puv by the equation ~x(~uB) = ~xB where ~x : Puv 7! S is the given parametrization

of surface S. In practice, the corresponding parameter values ~uB of a boundary grid

point ~xB are often already known.

step 2 Compute an initial grid ~uIij by applying the algebraic straight line algorithm in pa-

rameter space Puv. Thus ~uIij is computed according to Eqs.(39),(40) with sij and tij
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Figure 4: Patch (p,q) in parameter space Pst

replaced by uIij and vIij . Compute the corresponding initial grid ~xIij on surface S by

~xIij = ~x(~uIij).

step 3 Compute the normalized arclength parameters s and t at the boundary points of

surface S in a way as described in Section 2.3 . Solve the two Laplace-Beltrami equations

4s = 0,4t = 0, together with Dirichlet boundary conditions, on the initial grid ~xIij .

The same solution procedure as described at the end of Section 2.4 can be used to

discretize and solve the Laplace-Beltrami equations. Note that the Laplace-Beltrami

equation 4s = 0 is in fact the same equation as de�ned by Eq.(50); the only di�erence

compared to the two-dimensional case is that now ~x = (x; y; z)T instead of ~x = (x; y)T .

Thus in practice, the Laplace-Beltrami equations4s = 0 and4t = 0 are solved directly

in computational space C instead of solving Eqs.(67),(68) on the nonuniform grid ~uIij
in parameter space Puv which would be more complicated. Write the solution of the

Laplace-Beltrami equations as f~sIij = (sIij ; t
I
ij) j i = 0 : : : N; j = 0 : : :Mg.

step 4 Compute in parameter space Pst the grid f~sij = (sij ; tij) j i = 0 : : : N; j = 0 : : :Mg

by applying the algebraic straight line algorithm according to Eqs.(39),(40).

step 5 Finally the inversion problem must be solved. Consider the parameter space Pst and

consider the in step 3 computed mesh (sIij ; t
I
ij) as an embedded nonuniform grid. This

grid may also be considered as a non-overlapping subdivision of parameter space Pst by

N �M patches where each patch has four corner points.

For a given interior grid point (i; j), the new position ~xij on surface S of the �nal grid

is now obtained as follows. Locate the patch in parameter space Pst to which the in

step 4 computed value (sij ; tij) belongs. Suppose that (sij; tij) belongs to patch (p,q)

as shown in Fig.4.
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The local patch parameters � and � are now de�ned by the following two bilinear

equations

si;j = sIp;q(1� �)(1 � �) + sIp+1;q�(1 � �) + sIp;q+1(1� �)� + sIp+1;q+1��;

ti;j = tIp;q(1� �)(1 � �) + tIp+1;q�(1� �) + tIp;q+1(1� �)� + tIp+1;q+1��:

The two parameters � and � are solved by Newton iteration. Note that 0 � � � 1 and

0 � � � 1 because (sij; tij) belongs to patch (p,q). Compute the corresponding position

~uij = (uij ; vij) in parameter space Puv by

ui;j = uIp;q(1� �)(1 � �) + uIp+1;q�(1� �) + uIp;q+1(1� �)� + uIp+1;q+1��;

vi;j = vIp;q(1� �)(1 � �) + vIp+1;q�(1 � �) + vIp;q+1(1� �)� + vIp+1;q+1��;

and compute ~xij = ~x(~uij) where ~x : Puv 7! S is the given parametrization. The grid

f~xij j i = 0 : : : N; j = 0 : : : Mg is the �nal surface grid.

The same algorithm can also be used to obtain an orthogonal grid at the boundary of

surface S. The only changes that have to be made are in step 3 and step 4. In step 3,

the Laplace-Beltrami equations must then be solved together with the Neumann boundary

condition @s
@n

= 0 along edges E3 and E4, and
@t
@n

= 0 along edges E1 and E2, where n is

the outward normal direction. In step 4, the grid ~sij must be computed using Eqs.(47),(48)

instead of Eqs.(5),(6).

4.3 Illustrations

We only consider parametrized surfaces which are de�ned as interpolated surfaces, constructed

from a two-dimensional array of control points, and passing through these control points. The

surface shape of each patch, spanned between four adjacent control points, is de�ned by a bi-

cubic polynomial. Hermite interpolation is used to connect the surface shapes of the patches

smoothly. For details, see [12] or Appendix B in [16]. The parametrization of a surface,

de�ned by the mapping ~x : Puv 7! S, is constructed such that this mapping is continuously

di�erentiable. The parametrization depends on the position of the control points.

As an illustration, consider a surface S which is de�ned by an irregular control point mesh

in a unit square as shown in Fig.27. Thus the shape of surface S is a unit square. Fig.28 shows

how a uniform grid in Puv is mapped onto surface S by the parametrization ~x : Puv 7! S.

This �gure clearly demonstrates that the parametrization of S depends on the position of the

control points.

The grid in Fig.28 is also the initial surface grid ~xIij as de�ned at step 2 of the grid

generation algorithm described above. The corresponding initial grid ~uIij , also de�ned at

step 2, is a uniform grid in parameter space Puv. The new grid ~uij, de�ned at step 5, is

shown in Fig.29. Note that the behaviour of the grid in Fig.29. is opposite to the behaviour

of the grid in Fig.28. The corresponding �nal surface grid ~xij , also de�ned at step 5, is shown

in Fig.30. As expected, this surface grid is uniform. Thus this example clearly demonstrates

that the surface grid is independent of the parametrization.

Another illustration of the fact that an elliptic surface grid is independent of the parametriza-

tion of the surface is shown in Figs.31,32. Fig.31 shows an irregularly distributed control point

mesh on a smooth surface. The surface is de�ned as z = 1

8
tanh(15(1

4
� (x� 1)2 � (y � 1)2)),
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(x; y) 2 [0; 1]2. Fig.32 shows an elliptic grid. Equidistributed boundary grid points are used

as Dirichlet boundary condition. This �gure clearly demonstrates that the interior surface

grid only depends on the shape of the surface and is independent of the parametrization.

A more practical example is shown in Fig.33 where the control point mesh is shown of a

surface S which belongs to the lower part of a wing near the intersection of a pylon. Fig.34 is

a close-up of the control point distribution near the leading edge of the pylon. Fig.35 shows

a detail of the initial surface grid ~xIij as de�ned at step 2. This grid is badly distributed

and shows the inuence of the control point mesh. Fig.36 shows a detail of the �nal elliptic

surface grid ~xij as de�ned at step 5. The elliptic surface grid shows no dependency of the

control point mesh and has a good interior grid point distribution.

5 3D Grid Generation

5.1 Derivation of the 3D grid generation equations

The two dimensional grid generation method described in Section 2 can be extended into

three dimensions.

Consider a simply connected bounded domain D in three dimensional space with Cartesian

coordinates ~x = (x; y; z)T . Suppose that D is bounded by six faces F1; F2; F3; F4; F5; F6. Let

(F1; F2) , (F3; F4) and (F5; F6) be the three pairs of opposite faces. Furthermore, consider

the twelve edges fEi; i = 1 : : : 12g and assume that these edges are related to the six faces as

shown in Fig.5

Consider the computational space C as the unit cube in three dimensional space with

Cartesian coordinates ~� = (�; �; �)T . Assume that a mapping ~x : @C 7! @D is prescribed

which maps the boundary of C one-to-one on the boundary of D. This mapping de�nes the

boundary grid point distribution. Assume that

� � � 0 at face F1 and � � 1 at face F2,

� � � 0 at face F3 and � � 1 at face F4,

� � � 0 at face F5 and � � 1 at face F6.

We wish to construct a mapping ~x : C 7! D which obeys the boundary conditions and

which is a di�erentiable one-to-one mapping. Furthermore, we require that the interior grid

point distribution is a good reection of the prescribed boundary grid point distribution.

As in two dimensions, this mapping will be a composition of an algebraic transformation

and an elliptic transformation based on the Laplace equations. The algebraic transformation

is a di�erentiable one-to-one mapping from computational space onto a parameter space P.

The parameter space P is also a unit cube. The elliptic transformation is a di�erentiable

one-to-one mapping from parameter space to domain D.

Introduce the parameter space P as the unit cube in three dimensional space with Carte-

sian coordinates ~s = (s; t; u)T . Require that the parameters s; t and u obey:

� s � 0 at face F1 and s � 1 at face F2,

� t � 0 at face F3 and t � 1 at face F4,

� u � 0 at face F5 and u � 1 at face F6,
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Figure 5: Transformation from computational (�; �; �) space to a domain D in Cartesian

(x; y; z) space.

� s is the normalized arclength at edges E1; E2; E3; E4,

� t is the normalized arclength at edges E5; E6; E7; E8,

� u is the normalized arclength at edges E9; E10; E11; E12.

From the �rst three requirements it follows that

� s(0; �; �) = 0 and s(1; �; �) = 1 ,

� t(�; 0; �) = 0 and t(�; 1; �) = 1 ,

� u(�; �; 0) = 0 and u(�; �; 1) = 1 .

The coordinates (s; t; u) are de�ned at all twelve edges of domain D. The computational

coordinates are de�ned at the complete boundary of D and thus also at the twelve edges.

Thus each point at the twelve edges of domain D has a unique (�; �; �) coordinate and a

unique (s; t; u) coordinate. Thus each (�; �; �) value at the twelve edges of the unit cube in

computational space has also a unique (s; t; u) value. Hence, we may conclude that:

� s(�; 0; 0) = sE1
(�); s(�; 1; 0) = sE2

(�); s(�; 0; 1) = sE3
(�); s(�; 1; 1) = sE4

(�);

� t(0; �; 0) = tE5
(�); t(1; �; 0) = tE6

(�); t(0; �; 1) = tE7
(�); t(1; �; 1) = tE8

(�);

� u(0; 0; �) = uE9
(�); u(1; 0; �) = uE10

(�); u(0; 1; �) = uE11
(�); u(1; 1; �) = uE12

(�):

The twelve edge functions sE1
; : : : ; uE12

are monotonically increasing and are de�ned by

the prescribed boundary point distribution at the twelve edges.

The algebraic mapping from computational space to parameter space, ~s : C 7! P, is now

de�ned as

s = sE1
(�)(1 � t)(1� u) + sE2

(�)t(1 � u) + sE3
(�)(1 � t)u+ sE4

(�)tu; (70)

t = tE5
(�)(1 � s)(1� u) + tE6

(�)s(1 � u) + tE7
(�)(1 � s)u+ tE8

(�)su; (71)

u = uE9
(�)(1� s)(1� t) + uE10

(�)s(1� t) + uE11
(�)(1� s)t+ uE12

(�)st: (72)
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Note that this mapping only depends on the boundary grid point distribution at the twelve

edges of domain D.

Eq.(70) implies that a grid plane � = constant is mapped to the parameter space P as

a bilinear surface: s is a bilinear function of t and u. Similarly, Eq.(71) and Eq.(72) imply

that grid planes � = constant and � = constant are also mapped to the parameter space P

as bilinear surfaces. For a given computational coordinate (�; �; �) the corresponding (s; t; u)

value is found as the intersection point of three bilinear surfaces. For this reason, the system

de�ned by Eqs.(70),(71),(72) is called the \algebraic bilinear transformation" because of the

use of bilinear surfaces in parameter space P. The algebraic bilinear transformation is the

three dimensional equivalent of the two dimensional algebraic straight line transformation. It

can be easily veri�ed that two bilinear surfaces corresponding to two di�erent �-values will

never intersect in parameter space P. The same is true for two di�erent � or � values. This

observation indicates that the algebraic transformation is a di�erentiable one-to-one mapping.

The system de�ned by Eqs.(70),(71),(72) can also be interpreted as a trans�nite interpolation

with nonlinear blending functions.

Because ~x : @C 7! @D is prescribed and ~s : C 7! P is de�ned by the algebraic bilin-

ear transformation, it follows that the (s; t; u) coordinates are now de�ned at the complete

boundary of domain D including the interior of the six faces F1; : : : ; F6.

Require that (s; t; u) are harmonic functions in the interior of D, i.e.

4s = sxx + syy + szz = 0 ; 4t = txx + tyy + tzz = 0 ; 4u = uxx + uyy + uzz = 0 : (73)

Thus a linear elliptic boundary value problem de�nes the mapping ~s : D 7! P. It seems to

be still an open theoretical question whether this mapping is one-to-one [5]. The proof in [4]

is not correct. However, in this paper it is assumed that ~s : D 7! P is one-to-one and thus

that the inverse mapping ~x : P 7! D exists. This inverse mapping obeys a nonlinear system

of elliptic di�erential equations.

Note that the mapping ~x : P 7! D is not independent of the boundary grid point distribu-

tion and may thus not be considered as a property of domain D. This is because the (s; t; u)

coordinates at the interior of the six boundary faces depend on the boundary grid point dis-

tribution. It is possible to de�ne the mapping ~x : P 7! D independently from the boundary

grid point distribution by requiring that the (s; t; u) coordinates obey the Laplace-Beltrami

equations in the interior of the six faces of domain D but then it is no longer possible to use

the simple algebraic bilinear transformation de�ned by Eqs.(70),(71),(72).

The algebraic transformation ~s : C 7! P and the elliptic transformation ~x : P 7! D

are thus assumed to be di�erentiable one-to-one mappings. Then the composite mapping

~x : C 7! D , de�ned as ~x = ~x(~s(~�)) , is also di�erentiable and one-to-one. Furthermore, due

to the properties of the basic mappings, we may indeed expect that the interior grid point

distribution will be a good reection of the boundary point distribution.

The composite mapping ~x : C 7! D obeys an elliptic Poisson system with control func-

tions de�ned by the algebraic mapping ~s : C 7! P. This three dimensional elliptic Poisson

system together with the appropriate expressions of the control functions is a straightforward

extension of the two dimensional system and will be derived in the remainder of this section.

De�ne the three covariant base vectors

~a1 = ~x� ; ~a2 = ~x� ; ~a3 = ~x� : (74)

and the covariant metric tensor components

aij = (~ai;~aj) ; i = f1; 2; 3g; j = f1; 2; 3g: (75)
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The three contravariant base vectors ~a1, ~a2 and ~a3 are de�ned according to the rules

(~ai;~aj) = �ij ; i = f1; 2; 3g; j = f1; 2; 3g: (76)

The contravariant metric tensor components

aij = (~ai;~aj) ; i = f1; 2; 3g; j = f1; 2; 3g; (77)

ful�ll 0
B@ a11 a12 a13

a12 a22 a23
a13 a23 a33

1
CA
0
B@ a11 a12 a13

a12 a22 a23

a13 a23 a33

1
CA =

0
B@ 1 0 0

0 1 0

0 0 1

1
CA : (78)

The three contravariant base vectors can be expressed as

~a1 = a11~a1 + a12~a2 + a13~a3 ; ~a
2 = a12~a1 + a22~a2 + a23~a3 ; ~a

3 = a13~a1 + a23~a2 + a33~a3: (79)

De�ne J2 as the determinant of the covariant metric tensor.

Consider an arbitrary function � = �(�; �; �). Then � is also de�ned in domain D and the

Laplacian of � can be expressed as

4� =
1

J

��
Ja11�� + Ja12�� + Ja13��

�
�
+
�
Ja12�� + Ja22�� + Ja23��

�
�

+
�
Ja13�� + Ja23�� + Ja33��

�
�

�
: (80)

As in the two-dimensional case, substitution of � � �, � � � and � � � into this equation

yields expressions for 4�, 4� and 4�. Combining these expressions with Eq.(80) gives

4� = a11��� +2a12��� + 2a13��� + a22��� +2a23��� + a33��� +4��� +4��� +4��� (81)

Substitute � = (s; t; u)T in Eq.(81) and use the property that s, t and u are harmonic in

domain D, i.e. 4s = 0 , 4t = 0 and 4u = 0. Then the following expressions for the

Laplacian of � , � and � are found:0
B@ 4�

4�

4�

1
CA = a11 ~P11 + 2a12 ~P12 + 2a13 ~P13 + a22 ~P22 + 2a23 ~P23 + a33 ~P33; (82)

where

~P11 = �T�1

0
B@ s��

t��
u��

1
CA ; ~P12 = �T�1

0
B@ s��

t��
u��

1
CA ; ~P13 = �T�1

0
B@ s��

t��
u��

1
CA ;

~P22 = �T�1

0
B@ s��

t��
u��

1
CA ; ~P23 = �T�1

0
B@ s��

t��
u��

1
CA ; ~P33 = �T�1

0
B@ s��

t��
u��

1
CA ; (83)

and the matrix T is de�ned as

T =

0
B@ s� s� s�

t� t� t�
u� u� u�

1
CA : (84)
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The 18 coe�cients of the six vectors ~P11,~P12,~P13; ~P22,~P23,~P33 are so called control functions.

Thus the 18 control functions are completely de�ned and easily computed for a given algebraic

transformation mapping ~s = ~s(~�). Di�erent and less useful expressions of these control

functions can also be found in [1, 2].

Finally, substitution of � � ~x in Eq.(81) and using the fact that 4~x � 0 we arrive at the

following equation

a11~x�� + 2a12~x�� + 2a13~x�� + a22~x�� + 2a23~x�� + a33~x�� +4�~x� +4�~x� +4�~x� = 0: (85)

The �nal form of the Poisson grid generation system can now be derived from this equation

by substitution of Eq.(82),by multiplication with J2, and by expressing the contravariant

tensor components in the covariant tensor components according to Eq.(78). The result can

be written as:

�11~x�� + 2�12~x�� + 2�13~x�� + �22~x�� + 2�23~x�� + �33~x��

+
�
�11P 1

11 + 2�12P 1

12 + 2�13P 1

13 + �22P 1

22 + 2�23P 1

23 + �33P 1

33

�
~x�

+
�
�11P 2

11 + 2�12P 2

12 + 2�13P 2

13 + �22P 2

22 + 2�23P 2

23 + �33P 2

33

�
~x�

+
�
�11P 3

11 + 2�12P 3

12 + 2�13P 3

13 + �22P 3

22 + 2�23P 3

23 + �33P 3

33

�
~x� = 0; (86)

with

�11 = a22a33 � a223 ; �
12 = a13a23 � a12a33 ; �

13 = a12a23 � a13a22 ;

�22 = a11a33 � a213 ; �
23 = a13a12 � a11a23 ; �

33 = a11a22 � a212; (87)

and

a11 = (~x�; ~x�) ; a12 = (~x� ; ~x�) ; a13 = (~x�; ~x�) ;

a22 = (~x�; ~x�) ; a23 = (~x�; ~x�) ; a33 = (~x� ; ~x�) : (88)

Eq.(86), together with the expressions for the control functions P k
ij given by Eq.(83), forms

our 3D grid generation system. Grids are computed by solving this quasi-linear system of

elliptic partial di�erential equations with the prescribed boundary grid points as Dirichlet

boundary conditions. The discretization and solution of this Poisson system is described in

the next section.

5.2 Discretization and solution method

Consider a rectangular grid of (N + 1)� (M + 1)� (L+ 1) points in computational space C

de�ned as

�i;j;k = �i = i=N ; �i;j;k = �j = j=M ; �i;j;k = �k = k=L ; i = 0 : : : N; j = 0 : : : M;

k = 0 : : : L: (89)

Assume that ~xi;j;k is prescribed on the boundary of this grid and consider the computation

of ~xi;j;k in the interior of the computational grid based on the solution of the Poisson system

de�ned by Eq.(86).

The �rst task is the computation of the algebraic transformation. The computation

of the arclength normalized values at the twelve edges is straightforward and performed
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in exactly the same way as described in Section 2.3 . The arclength normalized variables

(si;j;k; ti;j;k; ui;j;k) in the interior of the six boundary faces and in the interior of the grid are

computed according to the algebraic bilinear transformation de�ned by Eqs.(70),(71),(72)

and are thus found by solving simultaneously the three bilinear algebraic equations:

si;j;k = si;0;0(1� ti;j;k)(1 � ui;j;k) + si;M;0ti;j;k(1� ui;j;k)

+ si;0;L(1� ti;j;k)ui;j;k + si;M;Lti;j;kui;j;k; (90)

ti;j;k = t0;j;0(1� si;j;k)(1 � ui;j;k) + tN;j;0si;j;k(1� ui;j;k)

+ t0;j;L(1� si;j;k)ui;j;k + tN;j;Lsi;j;kui;j;k; (91)

ui;j;k = u0;0;k(1� si;j;k)(1� ti;j;k) + uN;0;ksi;j;k(1� ti;j;k)

+ u0;M;k(1� si;j;k)ti;j;k + uN;M;ksi;j;kti;j;k: (92)

for each pair (i; j; k) 2 (0 : : : N; 0 : : : M; 0 : : : L).

At each grid point (i; j; k), the 18 control functions de�ned by Eq.(83), are now easily

computed using central di�erence representations of the derivatives of s, t and u.

What remains is the iterative solution process of the nonlinear elliptic Poisson grid gener-

ation system de�ned by Eq.(86). The discretization and the applied Picard iteration process

is similar as used to solve the 2D Poisson grid generation systems and details are therefore

omitted.

During a Picard iteration, a linear system of equations must be solved for the unknowns

~xi;j;k; i = 0 : : : N; j = 0 : : : M; k = 0 : : : L. This linear system consists of 19-point stencils with

Dirichlet boundary conditions. Fig.6 shows the structure of the 19-point stencils. Such linear

systems are solved by another black-box linear-system solver, also developed at C.W.I. by

P.M. de Zeeuw. The black-box linear-system solver, called THREED, is based on multigrid

and Bi-CGSTAB [18, 19]. The linear system solver THREED is called three times to compute

the three components xi;j;k,yi;j;k and zi;j;k of ~xi;j;k.

The complete process is repeated until a su�ciently accurate solution has been obtained.

The initial start solution ~x0 is obtained by algebraic grid generation. The �nal grid is inde-

pendent of the initial grid. Moreover, the quality of the initial grid is unimportant and severe

grid folding of the initial grid is allowed. In general, about 10 Picard iterations are enough

to obtain a su�ciently accurate solution of the nonlinear elliptic Poisson equations.

5.3 Illustrations

An example of a multi-block Navier-Stokes is shown in Figs.37,...,42. The mesh is a 4 blocks

CO-type grid around an Onera-M6 wing. The total number of grid cells is 256� 64� 48. On

the wing, the mesh-width in normal direction of the �rst grid cell is at the leading edge 10�5

times the local chord-length and at the trailing edge 2� 10�5 times the local chord-length .

Fig.37 and Fig.38 are three-dimensional views of vertical grid-planes intersecting the wing.

Fig.39 is a close-up of the wing-tip. Fig.40 is a two-dimensional projection of horizontal grid-

planes intersecting the wing. Fig.41 and Fig.42 are two-dimensional projections of vertical

grid-planes at stations halfway in spanwise and chordwise direction.

The grid is grid-folding free and the interior grid point distribution is a good reection of

the prescribed boundary grid point distribution at the block-faces.
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Figure 6: Structure of 19-point stencil of the discretized 3D Poisson grid generation system.

6 Conclusions

An elliptic grid generation method is developed which produce excellent grids in the sense

of smoothness, grid point distribution and regularity. The elliptic grid generation method is

based on the composition of an algebraic and elliptic transformation. The elliptic transforma-

tion is based on the Laplace equations for domains, and on the Laplace-Beltrami equations

for surfaces. The composite mappings obey the familiar grid generation systems of Poisson

equations with control functions speci�ed by the algebraic transformation. New expressions

for the control functions are derived which only depend on the algebraic transformation and

not also on the inverse of this transformation. The composite mappings are di�erentiable,

and surely one-to-one for 2D domains and surfaces, and in practice also for 3D domains.

It is described how the proposed elliptic grid generation method can be used to generate

boundary conforming grids in 2D domains, 3D domains and surfaces. It is shown that surface

grid generation on minimal surfaces (soap �lms) is in fact a straightforward extension of grid

generation in 2D domains. It is also shown that grid generation on parametrized surfaces

with a prescribed geometrical shape can be performed very easily by only solving two linear

elliptic partial di�erential equations and an inversion problem. A generated surface grid on

a parametrized surface is independent of the parametrization itself and only depends on the

shape of the surface and the prescribed boundary grid point distribution.

For 2D domains and surfaces, it is described how the algebraic transformation can be

rede�ned to obtain grids which are orthogonal at the boundary.

The described elliptic grid generation method has been implemented into NLR's multi-

block grid generation code ENGRID and is extensively used for the generation of boundary

conforming Navier-Stokes grids in blocks and block-faces with very complex aerodynamic

shapes, like complete aircraft con�gurations with propulsion systems and tailplanes.
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Figure 7: Region about NACA0012 airfoil

subdivided into four domains.
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Figure 8: Complete O-type Euler grid.
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Figure 9: Domain boundaries near

NACA0012 airfoil.
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Figure 10: Grid near NACA0012 airfoil.
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Figure 11: Region about RAE2822 airfoil sub-

divided into four domains.
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Figure 12: Complete C-type Navier-Stokes

grid.
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Figure 13: Grid near RAE2822 airfoil.
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Figure 14: C-type Navier-Stokes grid about a

wing with ap.
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Figure 15: Domain decomposition about a

wing with ap.
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Figure 16: Corresponding multi-block grid.
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Figure 17: Blow-up of domain decomposition.
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Figure 18: Blow-up of grid.
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Figure 19: Initial algebraic grid with se-

vere grid folding around a complex arti�cial

boundary.
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Figure 20: Elliptic grid with orthogonality at

the boundary.
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Figure 21: Detail of elliptic grid at convex

part of the boundary.
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Figure 22: Detail of elliptic grid at concave

part of the boundary.
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Figure 23: Initial grid used for minimal sur-

face grid generation.
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Figure 24: Minimal surface grid. Surface is a

square Sherck surface.

X

Y

Z

8
8
7
7

7
7
7
7

0

0
0

D

Figure 25: Initial grid used for minimal sur-

face grid generation.
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Figure 26: Minimal surface grid. Shape of

surface is independent of the boundary grid

point distribution.
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Figure 27: Surface de�ned by an irregular con-

trol point mesh in a unit interval.
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Figure 28: Initial algebraic surface grid ob-

tained from a uniform grid in parameter space

Puv.
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Figure 29: New grid in parameter space Puv.
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Figure 30: Corresponding elliptic surface grid.

Grid is independent of parametrization.
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Figure 31: Irregularly distributed control

point mesh on a smooth surface.
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Figure 32: Elliptic grid on the surface. Grid

is independent of the parametrization.
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Figure 33: Control point mesh of a surface

which belongs to the lower part of a wing near

the intersection of a pylon.
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Figure 34: Detail of control point mesh.
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Figure 35: Detail of initial surface grid ob-

tained by algebraic grid generation.
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Figure 36: Detail of �nal surface grid obtained

by elliptic grid generation.
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Figure 37: Vertical grid-plane intersecting the

Onera-M6 wing.
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Figure 38: Onera-M6 wing with parts of ver-

tical grid-planes.
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Figure 39: Wing-tip with parts of vertical

grid-planes.
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Figure 40: Horizontal grid-planes intersecting

the wing.
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Figure 41: Grid halfway in spanwise direction.
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Figure 42: Grid halfway in chordwise direc-

tion.


