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ABSTRACT
A robust algorithm for the adaptation of a 3D single-block structured
grid suitable for the computation of viscous flows around a wing is
presented and demonstrated by application to the ONERA M6 wing. The
effects of grid adaptation on the flow solution and acuracy improvements
are analyzed. Reynolds number variations are studied.
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Abstract

A robust algorithm for the adaption of a 3D single-block structured grid suitable
for the computation of viscous ows around a wing is presented and demonstrated
by application to the ONERA M6 wing. The e�ects of grid adaption on the ow
solution and acuracy improvements are analyzed. Reynolds number variations are
studied.

Introduction and objectives

The motivation for the development of automatically adapted grids within the �eld
of computational uid dynamics (CFD) consists of two parts [1]:

1. The numerical solution to a speci�c problem should be achieved with the
lowest possible number of degrees of freedom, given the accuracy of the ow
solver and the desired or required accuracy of the ow solution.

2. The construction of a suitable grid for the problem at hand should not be
done by hand but by means of an algorithm.

Part 1 of this motivation addresses the computing time that are associated with
large scale computations. Flow calculations based on solution of the Navier-Stokes
equations require several millions of degrees of freedom and are constrained by the
memory limits of today's supercomputers. Part 2 of this motivation addresses the
turnaround time needed for the solution of real-life realistic aerodynamic problems
concerning the design of aircraft con�gurations. Presently the turnaround time for
such problems typically is in the order of several months, primarily needed for the
generation of a high-quality structured grid, depending on the complexity of the
problem at hand. In order to e�ciently contribute to aircraft design the problem-
turnaround time must be reduced to the order of a day or a week [2].

The �rst objective of the present paper is to present the development of a robust
algorithm for the adaption of a 3D single-block structured grid suitable for the com-
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putation of viscous ows around a wing. The algorithm is robust in the sense that it
can be applied automatically without user interaction. Since the number of nodes is
�xed during adaption, the goal of the algorithm is to distribute the available nodes
over the computational domain in some optimal sense. The second objective is to
demonstrate application to a 3D test case consisting of calculation of the viscous ow
around a transonic wing-alone con�guration. The third objective is to analyse the
e�ects of grid adaption on the ow solution and to assess the acuracy improvements.

Mathematical model used for grid adaption

Let x(p) : 
p = [0; 1]3 7! 
 � R3 be the map that de�nes the initial grid
in physical space as the image of a uniform grid in the unit cube 
p, called the
parametric domain. In the same way let xa(�) : 
c = [0; 1]3 7! 
 � R3 be the
map that de�nes the adapted grid in physical space as the image of a uniform grid
in the unit cube 
c, called the computational domain. As a direct extension of the
2D developments in [3] the adaptive map xa(�) is de�ned in terms of the initial
map: xa(�) = x(p(�)). Hence the goal is to de�ne an adaptive map p(�) between
the parametric domain 
p and the computational domain 
c. In [3] the partial
di�erential equations that are used to de�ne the adaptive map p(�) are basically
derived from a variational problem formulation.

The complete boundary value problem formulation for adaptive grid generation is
conveniently formulated in the parametric domain 
p, based on minimization of a
weighted least squares (WLS) functional:
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where �p indicates di�erentiation of the vector � = (�; �; �)T to p etc., k:k denotes
the Eucledian norm and wi; i = 1; 2; 3, are weight functions that measure the ow
solution gradients. For background information with respect to the formulation of
the functional K the reader is refered to [3]. To ensure that the adapted grid in the
physical domain be boundary conforming a set of essential boundary conditions is
imposed:

�(0; q; r) = 0; �(1; q; r) = 1;
�(p; 0; r) = 0; �(p; 1; r) = 1;
�(p; q; 0) = 0; �(p; q; 1) = 1:

(2)

To solve the variational problem (1) and (2), the associated EL equations
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must be solved and a set of additional natural boundary conditions must be satis�ed:

�q(p; 0; r) = 0; �q(p; 1; r) = 0; �r(p; q; 0) = 0; �r(p; q; 1) = 0;
�p(0; q; r) = 0; �p(1; q; r) = 0; �r(p; q; 0) = 0; �r(p; q; 1) = 0;
�p(0; q; r) = 0; �p(1; q; r) = 0; �q(p; 0; r) = 0; �q(p; 1; r) = 0:

(4)
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The weight functions wi are de�ned as functions of a monitor function Q(p):

wi(p) = k
@Q

@pi
k; Q 2 RN ; N � 1: (5)

In [3] Q(p) was de�ned for 2D problems as Q(p) = (p; q;Q(1); :::; Q(n))T where
Q(k); k = 1; :::; n represent components of the ow solution. The presence of p and
q, which are the parametric coordinates for 2D problems, provides that the initial
grid is preserved when the conservative variables are bi-linear functions of p and q.
For 3D problems the monitor function can be chosen as:

Q(p) = (p; q; r; �; �u; �v; �w; �p)T ; (6)

where the last �ve components represent mass per unit volume, momentum in x,y,z
directions and static pressure respectively. Taking a relatively large set of monitor
function components in stead of only two (e.g. the Mach number and the pressure
coe�cient) has the advantage that gradients in the ow solution have a much larger
chance to be represented by the weight functions.

In [3] a 2D analysis shows that skewness of the adapted grid in the parametric
domain is ampli�ed upon mapping to the physical domain if the initial grid in
the physical domain possesses cells with large aspect ratios. A modi�cation of the
EL equations was proposed resulting in the so-called modi�ed anisotropic di�usion
(MAD) equations. Again a direct extension for the 3D development can be obtained:
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where the modi�cation functions �i; i = 1; 2; 3 are de�ned as:

�i(p) = w2
i kxpjk

2 kxpkk
2; i; j; k cyclic: (8)

A critical issue of grid generation and grid adaption is that the underlying map be
invertible. In view of this it is important to note that if the above de�ned boundary
value problem reduces to a 2D problem (e.g. if the derivatives of wi and �i with
respect to r are zero) then the recently formulated theorem in [6] assures that the
map p(�) is regular in the sense that it is C2 and one-to-one and the Jacobian is
positive everywhere. Unfortunately until date such theorem has not been developed
yet for the 3D problem.

In Fig. 1 the CO-topology of a single block around a wing is depicted as a map
from the unit cube. The central part of the lower face of the cube is mapped to the
wing surface while the remaining parts of the lower face are mapped to the upper
and lower side of the wake cut respectively. The back face of the cube is mapped
to the upper and lower side of the horizontal plane outside the wing. Hence two
face-to-face connections are present: the o�-centre parts of the downward face and
the two halfs of the back face.



4

Figure 1: Single block CO-topology

The adaption of this single block topology is performed in steps [3]. First the basic
adaption map is applied by solving the MAD equations. The MAD equations are
discretised by means of central di�erences and the resulting large linear system is
solved by means of GMRES relaxation [7]. The speci�c GMRES algorithm has
been taken from the netlib.linalg library (ftp address: netlib2.cs.utk.edu) provided
by the University of Tennessee and Oak Ridge National Laboratory. A correction
storage multi-grid technique [8] with �xed V-cycles is used to increase the rate of
convergence. Subsequently the lower and back faces are corrected to satisfy the
face-to-face connection requirements. Then both corrected faces are matched on
the common edge. Finally the block interior is matched to the corrected faces. The
result is the inverse adaption map �(p). To re-invert this map to the adaption map
p(�) each of the rectangular cells in the uniform 3D grid in the parametric domain

p is subdivided into six tetrahedra. Then in a loop over these tetrahedra the val-
ues of �, � and � are examined at the vertices resulting in a number of candidate
new grid points that may be present in the speci�c tetrahedron. The �nal presence
check only involves some basic linear algebra if all functions on the tetrahedron are
linearly approximated.

Results for ONERA M6 wing

To illustrate the grid adaption algorithm we present calculations for the ONERA
M6 wing under transonic ow conditions [9]. We have performed calculations on
both non-adapted and adapted grids, medium and �ne grids, and for three di�erent
Reynolds numbers, see table 1. For all calculations we have used the NLR ow
simulation system ENFLOW, [10],[11],[12], to solve the Thin-layer approximation
of the Reynolds-averaged Navier-Stokes equations including the Baldwin-Lomax
turbulence model, or to generate grids. Fig. 2 shows the medium grid (Fig. 2a)

Table 1: Calculated cases for ONERA M6 wing (n=non-adapted, a=adapted),
M1 = 0:84,� = 3:06�.

dimensions Re1 = 3 � 106 Re1 = 11:7 � 106 Re1 = 48 � 106

medium 128x24x32 n+a n+a n+a
�ne 256x48x64 n n n
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b) adapted grid
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c) Cp on non-adapted grid
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d) Cp on adapted grid
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e) non-adapted grid, nose
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Figure 2: Non-adapted and adapted medium grid (a),(b), and Cp-distributions (c)
and (d) on wing upper surface, and close-ups of non-adapted and adapted grid near
the leading edge in the root plane, Re1 = 11:7 � 106.
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Figure 3: Pressure distributions (Cp) on non-adapted and adapted grids compared
to �ne grid result and experimental data, Re1 = 11:7 � 106.

and the adapted medium grid (Fig. 2b) and the calculated pressure coe�cient (Cp)
distributions (Fig. 2c and 2d). Adaption at the leading edge, trailing edge, shock
position and tip are visible resulting in a more pronounced shock. Details of the
adaption near the nose at the symmetry plane (Fig. 2e and 2f) show concentration
at the boundary layer with a non-smooth transition to the outer ow. The Cp
distributions at the upper side of various cross sections of the wing are depicted
in more detail in Fig. 3 and compared to the �ne grid result and experimental
data. The suction peak at the leading edge and the down stream expansion zone
from the �ne grid result and the experimental data is completely recovered by the
adapted medium grid result, while the non-adapted medium grid result fails in this
respect. The lower side distributions (not shown) show the same features. The skin-
friction (Cf ) distributions at the upper side of various cross sections of the wing
are depicted in Fig. 4 for the Re1 = 48 �106 calculation. Along the complete upper
side adaption results in signi�cant improvements. Also it is visible how the laminar-
turbulent transition line has shifted upstream upon adaption due to the fact that the
ow solver uses grid line indices for transition indication. Less pronounced e�ects
are encountered for the lower two Reynolds numbers (not shown). The inuence of
grid adaption on the boundary layer resolution is explicitly demonstrated in Fig.
5 showing the 'Law-of-the-wall' coordinate Y + of the �rst grid point above the
wing surface at the 65% span cross section. For the Re1 = 11:7 � 106 case the Y +

distribution over the grid is signi�cantly improved upon adaption compared to the
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Figure 4: Skin-friction distribution on non-adapted and adapted grids compared to
�ne grid result, Re1 = 48 � 106

�ne grid result. For the Re1 = 48 � 106 case the improvement is even stronger:
the adapted medium grid resolves the boundary layer better than the �ne grid
and the Y + values are roughly reduced by 30%. The stronger e�ect for the high
Reynolds number case is not unexpected since the initial grids have been generated
for the Re1 = 11:7 � 106 case by CFD experts with a state-of-the-art elliptic grid
generator. From Fig. 5a we learn that even such a special purpose grid can be
automatically modi�ed to improve the Y + resolution by roughly 50%. The inuence
of grid adaption on the aerodynamic coe�cients is shown in Fig. 6 which shows the
lift (CL), drag (CD), friction drag (CDf

), and pitching moment (CMp
) coe�cients

respectively as calculated on the non-adapted and adapted medium grids, and on
the �ne grid, for three di�erent Reynolds numbers. Globally grid adaption results
in improvement of the coe�cient predictions if compared to the �ne grid results.
More speci�cally the drag coe�cient, see Fig. 6b, is strongly improved: the gap of
25 counts between the medium and �ne grid results is reduced to 6 counts upon grid
adaption. This is still too large for practical problems but it should be reminded
that the medium grid only consists of about 100,000 points. For Re1 = 48 � 106

the friction drag is strongly improved upon grid adaption, see Fig. 6c. Besides the
absolute values of the predictions it is remarkable that the adapted medium grid
results and the �ne grid results have almost the same dependency on the Reynolds
number and only di�er by a constant for all four coe�cients. This is not true for
the non-adapted medium grid result.
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Figure 5: Law-of-the-wall coordinate of �rst grid point above the surface at 65%
span cross section on various grids.

Conclusions

The presented adaption algorithm for structured 3D single-block grids appears to
be robust in the sense that it fully automatically generates heavily adapted grids
which are regular and non-overlapping. Adaption of single-block structured grids
of approximately 100,000 points around the ONERA M6 wing shows signi�cant
improvement of the ow solution: both the pressure and skin-friction distributions
improve if compared to a �ne grid result. Speci�cally the suction peak at the wing
leading edge calculated on the �ne grid is completely recovered by the adapted
medium grid result, and the skin friction distributions approximate the �ne grid
result closely. Three main nconclusions can be drawn:

1. The grid adaption algorithm enables ow calculations with improved accuracy,

2. The grid adaption algorithm enables automatic construction of a suitable grid
for a wide range of Reynolds numbers,

3. The grid adaption algorithm enables an improved estimate of the inuence of
Reynolds number variations on the aerodynamic coe�cients.

The second conclusion is based on the fact that the non-adapted grid has been
generated for the Re1 = 11:7 � 106 case but upon adaption can easily be used for
Reynolds numbers that di�er by a factor of four. The third conclusion is based
on the fact that the adapted medium grid results and the �ne grid results show
identical variations of the aerodynamic coe�cients as a function of the Reynolds
number and only di�er by a constant.
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Figure 6: Force coe�cients as function of Reynolds number calculated on non-
adapted and adapted medium grids, and calculated on �ne grid.
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