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Abstract: Nowadays, the application of the STRIP-YIELD model
for computation of crack opening load levels is well known. In
this paper the incremental formulation of a fatigue crack
growth law is used to demonstrate the role of the crack opening
load level in time independent fatigue crack growth.
Less known is the ability of the STRIP-YIELD model to define
the strain rate at the crack tip. A threshold level ε th of this
strain rate is introduced and used to formulate a criterion for
initiation of time dependent accelerated fatigue crack growth.
This process is called corrosion fatigue. To account for
effects of environment and frequency on the crack growth rate a
time dependent part is added to the incremental fatigue crack
growth law. The resulting incremental crack growth equation is
integrated to obtain the crack growth rate for a load cycle.

The model discussed in this paper is a mechanical model.
Physical aspects other than the strain rate, the loading
frequency and load wave shape are not modelled in an explicit
way. Hence, the model is valid for specific environment/base
metal combinations. However, in a consideration of the effects
of small variations of environment, temperature and other
variables on the crack growth rates, it can be used as a
reference solution.

The fatigue crack growth model has been implemented in the
NASGRO (ESACRACK) software. The time dependent part is still
subject of further evaluation.

Introduction
For over two decades models of fatigue crack growth have

been based on empirical laws that relate the amount of crack
growth in a load cycle to the stress intensity factor range
∆K = Kmax - K min or the effective [1] range ∆Keff = Kmax - K op.
Correction factors were included for near threshold behaviour
and accelerated growth in the high K regime.

From a physical point of view such crack growth laws are
speculative because crack growth and plastic deformation are
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irreversible processes that depend on the loading history. By
nature, such processes must be described in an incremental way
and properly integrated to obtain the amount of crack growth
for a load cycle or the part of a load cycle for which the
incremental description is valid [2,3]. Clearly, such a new
description allows that a distinction is made between the part
of a load range where secondary (cyclic) plastic flow is
observed and the part where primary plastic flow developes
under monotonic increasing loads. For each of these domains an
incremental crack growth law can be formulated. Then after
integration over the appropriate load ranges the contributions
to the crack growth rate for the load cycle under
consideration, are obtained. In a similar way "range pair" (or
"rain flow") principles may be used to select the appropriate
load ranges [4]. In addition, the incremental formulation
allows the introduction of other terms representing time and/or
environment dependent crack growth [5].

In this paper the STRIP-YIELD model is applied for
computation of crack opening loads, crack tip stretches and
strain rates. In the open literature [6,7] and other documents
[8,9] the STRIP-YIELD model is discussed extensively and,
recently, results obtained using different versions of the
model (the NASA/FASTRAN and the ESA/NLR versions) were compared
and it was concluded that the models predict the same crack
opening behaviour if the constraint effects on yielding are
modelled in the same way. For this reason the STRIP-YIELD model
itself is not discussed in detail. Instead, the description of
the STRIP-YIELD model is limited to the yield limits and the
equations used in this paper.

The definition of crack size c, crack tip stretch δ as
well as the assumptions made to account for differences in the
yield limit in tension σt compared to the yield limit in
compression σc are shown in figure 1. The introduction of a
separate parameter σc allows for some form of description of
different constraint, crack tip geometry and the effect of cold
work on yielding in compression. The material in the thin
Dugdale strip is assumed to behave in a rigid, ideal plastic
manner and elastic deformations are assumed to be absent in the
strip.

The assumed yield limits σt and σc can be introduced in
the STRIP-YIELD model. The result can be used to derive some
simple analytical expressions for the crack tip stretch δ. For
monotonic increasing loads it can be derived, as a first order
approximation and for small scale yielding, that

where K denotes the stress intensity factor and E is Youngs’

(1)δ K2 / E σ t

modulus. For the loading parts of a constant amplitude load
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sequence we can derive in a similar way

where K op is the stress intensity factor at the crack opening

(2)

←
δ K2

max / E σ t
→ ←

Kmax Kop
2 / E σ t σc

→ ←
K Kop

2 / E σ t σc
→

loading unloading loading

to K max from K max→ Kop from K op→ K

Kop ≤ K ≤ Kmax

load level. It is seen that fo r K = K max this equation gives
the same stretch as equation 1. Below K op the plastic stretch
increment associated with unloading is assumed to be absent.
Also the effect of crack closure during unloading in the regime
Kmax → Kop is ignored.
Equation 2 will be used to derive a simple expression for the
strain rate. More accurate results can be obtained by
application of the numerical discretized STRIP-YIELD model.
Which of both methods is used for computation of the crack tip
stretch depends on the efficiency and accuracy required in the
predicted results.

Crack opening and threshold effects under fatigue loading
conditions

Usually, fatigue crack growth is assumed to occur in the
upward part of a load cycle. In the upward part different
regimes can be distinguished, depending on the loading history
and the state of opening of the crack. To illustrate these
domains in figure 2 the loading path is shown in a stress
intensity factor, K, versus crack size, c, plot. The different
loading regimes are indicated and discussed one after another
[5].

Closed crack regime 1, K min ≤ K < Kop
Starting at the minimum intensity factor K min the load is

increased until the crack opening level K op is attained. In
this regime 1, characterized by K min ≤ K < Kop, the crack is at
least partly closed and the contact areas on the crack surfaces
decrease when the applied load is increased. Although the
stress intensity factors in this regime are calculated assuming
the presence of the crack, it is clear that the effective
loading of the crack tip region is very small and no crack
growth is assumed in this regime.

Opened crack but no growth regime 2, K op ≤ K < Kop + δKth
At level K op the crack is fully opened, but, it takes

another increase by δKth to initiate crack growth. Obviously,
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some crack tip blunting occurs in this regime. Models and
empirical equations for computation of values for K op and δKth
are discussed in reference 5.

Fatigue crack growth in regime 3, K op + δKth ≤ K < K*
Upon a further increase of the applied load crack growth

is initiated when the stress intensity factor K exceeds the
level K op + δKth . In this regime 3 plastic deformations take
place in a relatively small part of the plastic zone created by
application of K max in the previous load cycle. At the load
leve l K = K * primary plastic flow in virgin material
reinitiates and the zone of material that actually is loaded to
the yield limit is extending beyond the previous plastic zone.
The level K * depends on the amount of crack growth relative to
the primary plastic zone size. This transition is characterized
by a discrete jump in plastic zone size and a loss of load
history effects on the state of deformation. To describe the
crack growth behaviour in regime 3, corresponding to K op + δKth
< K ≤ K* , the following incremental crack growth law is adopted

where subscript f stands for fatigue.

(3)dc f C1 K Kop
n1 C2 δ K

p1
th K Kop

n1 p1 dK

In this expression the first term on the right hand side is an
incremental form of Elbers’ law. The second one is added to
describe threshold effects, if present. The power n 1-p 1 follows
from the requirement that the units of both terms must be the
same. Note that C 1, and n 1, are not the same as the traditional
Elber parameters C and n (C 1 = nC; n 1 = n-1).
At initiation of crack growth, when , K = K op + δKth , it follows
that

It may be expected that a relation exists between the material

(4)








dc f

dK th
δK

n1
th C1 C2

parameters C 1 and C2, the threshold level δKth and the slope of
the crack growth curve (see Fig. 2).
In equation 3 the transition from threshold behaviour to the
crack growth behaviour in the mid range (Elber) regime is
governed by the power p 1 attached to K-K op. Values selected for
p1 must guarantee that the transition is smooth and that the
slope arctan(dc f /dK) has the proper value. In order to simplify
the equations in this application we use p 1 values satisfying

the equation

(5)








dc f

dK th
p1 C1 δK

n1
th / n1 1
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In that case, it follows from equation 4, that

To obtain the contribution of regime 3 to the crack growth rate

(6)C2 C1
p1 n1 1

n1 1

per load cycle ∆Cf / ∆N the crack growth law, equation 3, must be
integrated over the range K op + δKth ≤ K ≤ K* . It is assumed
that the parameters involved (K * , K op, δKth ) are constant during
integration. Then, after substitution of equation 6 and
redefinition of the material and threshold parameters, there
results

where K * is the level at which the transition from cyclic,

(7)∆c f / ∆N C K Kop
n











1








δKth

K Kop

p1

secondary, plastic flow to primary plastic flow occurs. In the
absence of primary plastic flow (K * > Kmax) K * is substituted by
Kmax and then equation 7 is the crack growth rate for the load
cycle under consideration.

Note that also after integration the ∆cf / ∆N versus K max - K op
curve tends to be linear near threshold when K * and Kmax both
tend towards K op + δKth . The slope can be determined from

Recently, Döker [11] confirmed experimentally that the relation

(8)d ∆c f / ∆N / dK p1 C δK n 1
th

between ∆cf / ∆N and ∆K = Kmax - K min is linear in the low ∆K
regime when plotted on a linear scale. The present model fully
supports Dökers ideas for a modification of the ASTM standard
for threshold determination. After establishment of values for
δKth , C and n equation 8 can be used to derive a value for p 1
from the slope of the crack growth curve in the near threshold
domain.

Quasi-static crack extension regime 4, K * ≤ K ≤ Kmax
Loading above the transition level K * is assumed to induce

quasi-static crack extension. In this regime the plastic
deformation behaviour takes place under monotonic increasing
loads. This implies that the effects of secondary cyclic
loading on the actual material behaviour are lost. Thus, the
crack opening load and threshold behaviour becomes
insignificant [2,3]. Moreover, the plastic zone sizes are much
larger. To describe crack growth in this domain we will adopt
the incremental formulation of the R (or J) curve approach.
Assuming small scale plastic behaviour and small amounts of
static crack extension the crack growth law adopted is written
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as

where subscript p denotes primary plastic flow in virgin

(9)dc p Cp KmdK

material.
In addition, for cases where wide scale plastic deformation
occurs or the amount of static crack extension becomes large we
may choose to introduce new -or sub- regimes and formulate the
applicable crack growth law in such a way that it describes
these processes properly.
The incremental crack growth law must be integrated over the
applicable range to obtain the contribution ∆cp to the crack
growth increment for a load cycle. There results

Regime 4 is discussed here for the sake of completeness. In

(10)∆c p / ∆N
Cp

m 1
K m 1

max Km 1

references 2, 3 and 5 the effect of quasi static growth of a
fatigue crack is discussed in detail. In the same references
equations for computation of δKth , K * and Kop are given.

Time dependent loading and definition of the stretch and strain
rate at the crack tip

In an early publication of Speidel [10] on corrosion
fatigue some experimental observations were attributed to the
crack opening behaviour. An example is given in figure 3
reproduced from reference 10. The process is corrosion fatigue
and for one cycle from a constant amplitude sequence the crack
size is plotted versus time. The load ratio R equals 0. Hence,
based on crack opening functions from the open literature, it
is expected that the crack is open a t a K level of
approximately 27 MPa √m. In any case far below the level of
about 47 MPa √m where accelerated growth initiates (see Fig. 3).
This difference is not covered by δKth in regime 2. The
frequency effects in figure 4 and results shown by Barsom (Fig.
5) clearly demonstrate a rate effect. It is suggested here that
the stain rate at the crack tip appears to control the crack
growth process. In this section equations for computation of
the crack tip stretch and strain rate are discussed. In the
next section a crack growth law for the description of
corrosion fatigue is presented.

Since crack growth can be ignored for stress intensity
levels below the opening level K op, it is convenient to write
the prescribed time dependent stress intensity factor in the
following way

Some load shape functions are given in appendix A. After

(11)K ( t ) Kop Kmax Kop f ( t )
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substitution of equation 11 into equation 2 the crack tip
stretch can be written as

and for the stretch rate d δ(t)/dt it follows

(12)δ ( t )
K 2

max

Eσ t

Kmax Kop
2

E σt σc

f 2 (t) 1

Then, for the stain rate ε(t), according to the definition of

(13)d δ( t ) / dt 2
Kmax Kop

2

E σt σc

f ( t ) df ( t ) / dt

natural strain it follows that

where β = ( σt + σc)/ σt . Obviously, the strain rate ε(t) depends

(14)ε. ( t ) d δ ( t ) / δ ( t ) dt 2 (1 CF ) 2 f ( t ) df ( t ) / dt

β (1 CF) 2 ( f 2 ( t ) 1 )

on the load shape function f(t), its derivative df(t)/dt and
the relative crack opening level CF = K op/K max (and on the yield
parameter β). At first sight it is surprising that ε(t) depends
on 1-CF = (K max - K op)/K max and not on the magnitude of
Kmax - K op. However, this is a straightforward result of
application of the definition of strain rate
ε(t) = d δ(t)/ δ(t) dt. The important role of the closure
coefficient CF in equation 14 explains why in the past some
processes were thought to be driven by crack opening, but, on
the basis of equation 14 can be governed also by the strain
rate ε(t).

Threshold and frequency effects in corrosion fatigue
In corrosion fatigue the role of the strain rate can be

elucidated by considering the competition between strain rate
and the velocity of build-up of a passivating film shielding
the base metallic material at the crack tip from direct contact
with the environment.
If such a process is taking place then, only strain rates
larger than the overall build-up rate will allow direct contact
(and attack) of the environment on the base metal of the alloy
under consideration. This condition can be used to formulate a
criterion for initiation of accelerated fatigue crack growth.
It is assumed that, for a specific material/environment system,
crack growth acceleration initiates when a certain threshold

strain rate ε th is exceeded, that is when
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Such a criterion can be used to calculate the lower bounds t i

(15)d δ ( t) / δ ( t ) dt ≥ ε. th

of the periods of time t i ≤ t ≤ t e during which environmentally
induced crack growth acceleration occurs.
Once accelerated fatigue crack growth has initiated the crack
growth rate increases. In general, the crack growth rate
becomes so high that direct contact between the environment and
the base metal is self-contained. To stop it the load must be
brought to a hold or decreased. This implies that the period of
accelerated growth ends close to the moment t m of application
of the maximum load, that is t e = t m.
Values for t i and t e are used, respectively, as lower and upper
bounds for integration of the time dependent part of the
incremental corrosion fatigue crack growth law discussed later
in this section.

Using the strain rate expression 14, equation 15 can be
written as

This equation also provides a criterion for the absence of

(16)
2 f ( t) d f ( t ) / dt ε. th β / (1 CF) 2 f 2 ( t ) 1 ≥ 0

accelerated growth associated with corrosion fatigue: If no
solution for t i can be found in the interval t op < t i < t m, (t op
is the moment the crack is opened) then corrosion fatigue is
assumed to be absent, however, other processes may take place.

In the description of crack growth under corrosion fatigue
conditions we assume that the crack growth increment dc can be
considered as a result of addition of a time independent part
dc f and a time dependent part dc c, that is

The first part dc f is given by equation 3. For the time

(17)dc dc f dc c

dependent part dc c the following new basic equation is adopted

In this equation n 1 is the same as in equation 3 and the load

(18)dc c C1c K(t) Kop
n1 1 δK

p2
thc K(t) Kop

n1 1 p2 f
p2 (t) f m(t)dt

shape function f(t) is the same as used in equations 11, 14 and
16. The shape of equation (18) is primarily chosen to be such
that, after integration (see eq. 20) and superposition to the
fatigue crack growth increment ∆cf / ∆N, the simple equations 21
and 22 are obtained. This implies that C 1c has the same
dimensions as C 1, C 2 and C in the expressions related to dc f .
In principle the threshold parameter δKthc can have a value
different from δKth and, using similar arguments as in the
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discussion of equation 5, the value of the power p 2 can be
different from p 1. Further, the reason for introduction of the
power m on the load shape function will be clarified next.
Using the load shape function, equation 11, and, after
substitution of n 1 + 1 by n, equation 18 can be rewritten as

Clearly, for the cas e m = n the time dependent part dc c varies

(19)dc c C1c Kmax Kop
n δK

p2
thc Kmax Kop

n p2 f n m(t)dt

in proportion with dt. Other values of m can be used to
describe non-linear dc c versus dt behaviour related to the load
shape function f(t). In the remaining part of this paper, it
will be assumed that , m = n.

To obtain the total crack growth increment ∆c/ ∆N for one
load cycle equation 17 must be integrated, that is

After substitution of equations 7 and 19, rearrangement of some

(20)∆c/ ∆N ∆c f / ∆N ⌡
⌠
t m

t i

dc c

of the parameters and assuming tha t m = n, there results

For the specific case that p 2 = p1 = p, and, δKthc = δKth

(21)∆c/ ∆N C Kmax Kop
n











1








δKth

Kmax Kop

p1
Cc











1








δKthc

Kmax Kop

p2
t m t i

(threshold effects are assumed to be the same as in time
independent growth), equation 21 degenerates into

(22)∆c/ ∆N C Kmax Kop
n











1








δKth

Kmax Kop

p
1 Cc t m t i

Equation 22 demonstrates that the time dependent part acts as a
multiplier on the time independent part. On a log-log scale
this implies a shift of the crack growth curve that depends on
the frequency. Equations 21 and 22 are surprisingly simple. The
new parameters involved are: the threshold strain rate ε th for
determination of t i and, further, δKthc , p 2 and Cc.
The threshold strain rate ε th can be determined in a low
frequency crack growth test from the c and K versus time plots
(see Fig. 3). A value for C c follows from the slope of the c
versus time plot obtained in the same test. Such tests are
executed at frequencies of the order 0.001 Hz. In general, the
time independent parts of equations 21 and 22 can be safely
ignored compared to the time dependent parts at such low
frequencies and the material/environment systems of interest.
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As an example figure 3 is used to determine the parameters
involved in the time dependent part of the crack growth law
(eq. 22) and the threshold value of the strain rate ε th . In
table 1 the quantities are listed together with the result
obtained for ε th .
In figure 4 the measured crack growth rate is plotted versus
the frequency for the same ∆K = 53 MPa√m used for the
determination of the results in figure 3. Then, the value of C c
can be determined from the ∆c/ ∆N ratio measured for a high and
a low frequency. After application of equation 22 for both
frequencies the following equation is obtained

as t m
F=10 - t i

F=10 = 0. Then, it follows, that C c = 0.827/sec and

(23)Cc








∆c/ ∆N F .001

∆c/ ∆N F 10
1 / t F .001

m t F .001
i

using this result we can predict the frequency effect shown in
figure 4. The results are listed in table 2.
It is interesting to see that, for a frequenc y F = .0001 Hz, no
solution for equation 16 is found. This implies that the crack
growth acceleration effects diminish for frequencies lower
than, say, .001 Hz. The results presented in table 2 are also
plotted in figure 4.

A second example is taken from Barsom [12]. The results
are reproduced in figure 5. Loading is sine shaped and the load
rati o R = 0.25. Unfortunately, registrations of c versus time
are not available. Therefore ε th and Cc cannot be determined in
the way described earlier. Some additional assumptions are to
be made. Firstly, the data points obtained at a frequency
F = 10 Hz are adopted as the high frequency fatigue crack
growth results. Further, a closure coefficient is assumed to be
CF = 0.5 and, in addition, it is assumed that t i = t op for the
F = 1 Hz data points, then we can determine C c from the ratio
of the crack growth rates of both data sets in the following
way

It then follows C c = 1.2/sec. For loading a t F = 0.1 Hz the

(24)∆c/ ∆N F 1Hz

∆c/ ∆N F 10Hz
1 Cc t m t i

strain rates are lower and therefore t i > t op. From a
comparison of the crack growth rates obtained fo r F = 0.1 Hz
and F = 10
Hz, it follows that

From the results it is concluded that t i = 3.75 sec. for the

(25)∆c/ ∆N F 0.1Hz

∆c/ ∆N F 10Hz
1 Cc t m t i
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F = 0.1 Hz series.
As threshold effects are absent we can use equation 22 to
describe the results in figure 5. The result is the same as the
dashed lines for the three frequencies indicated.
Barsom [12] also studied the effect of load wave shape on the
crack growth rate. The wave shapes used are given in figure 6.
The results are given in figure 7. From the application of the
corrosion fatigue model to the shapes of figure 6 it is
concluded that shapes 3, 4 b and 5 a and 5 b have the same common
property t m - t i = 0. Hence, the predicted crack growth rates
are the same as the high frequency fatigue data measured for
the same load amplitude and rati o R = 0.25. This is confirmed
by the measured data points in figure 7.
The load wave types 2 and 4 a in figure 6 also have a common
t m - t i value and for the sinusoidal load the threshold strain
rate will be exceeded slightly earlier in the cycle, so, t i

1 <
t i

2 and t i
4a and the crack growth rate for shape 1 will be

slightly higher than for cases 2 and 4 a. These observations are
also confirmed by the results presented in figure 7.

Implementation and verification of models
The fatigue crack growth model has been implemented in the

NASA/FLAGRO and the ESACRACK software. The crack opening levels
Kop are calculated using a discretized STRIP-YIELD model. This
model has also been included in the software. An extensive
verification programme (some 500 cases) was executed to
demonstrate the accuracy and reliability of the software and
models.
The time dependent part of the model discussed in this paper
was formulated recently and is still subject of further
improvement. A verification programme is not yet formulated.

Discussion and concluding remarks
An incremental form of crack growth law (eq. 3) was used

to derive a fatigue crack growth equation for computation of
the fatigue crack growth rate per load cycle (eq. 7).
Using the STRIP-YIELD model a criterion for initiation of
accelerated fatigue crack growth (corrosion fatigue) in a
specific environment was based on the threshold strain rate ε th
concept (eq. 16). A time dependent incremental growth law (eq.
18) was used to describe accelerated growth after initiation.
Using the moment in time initiation occurs as the lower bound
and the moment the load reaches its maximum level as the upper
bound, the time dependent part is integrated to obtain the
contribution per load cycle (eq. 21). In its most simple form
(eq. 22) only two new material/environment dependent parameters
are involved: the threshold strain rate ε th and the parameter
Cc.
In more general situations when the low frequencies threshold
behaviour is different compared to the high frequency behaviour
two additional parameters are introduced: the threshold stress
intensity factor δKthc and the threshold power p 2.
It was shown that using the most simple formulation described,
frequency and load wave shape effects can be described for some
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specific environment/metal combinations.
However, it is well known that highly complicated electro-
chemical, diffusion and transportation processes are taking
place near the crack tip and along the crack surfaces. Clearly,
the values of the parameters involved in the time dependent
part of the crack growth equation highly depend on these
processes and in a description of the effects of variations in
the environment, such as, the electrical potential,
concentration of ions, temperature and pressure, these
phenomena are to be described in detail.
For the time being the equations discussed in this paper are to
be considered as a specific reference solution that can be used
for a description of frequency and load wave shape effects on
the fatigue crack growth behaviour.

References
[1] Elber, W., Fatigue Crack Closure under Cyclic Tension.

Eng. Frac. Mech., Vol. 2, no. 1, July 1970, p.37.
[2] Koning, A.U. de, and Dougherty, D.J., Prediction of low

and high crack growth rates under constant and variable
amplitude loading. Proc. of the spring meeting on
"Fatigue crack growth under variable amplitude loading",
(Ed. by J. Petit), Paris, 1988.

[3] Dougherty, D.J., Koning, A.U. de, and Hillberry, B.H.,
Modelling high crack growth rates under variable
amplitude loading, Advances in Fatigue Lifetime
Predictive techniques, ASTM STP 1122, 1992, pp. 214-223.

[4] Koning, A.U. de, Prediction of fatigue crack growth, The
assessment of cracked components by Fracture Mechanics,
EGF4 (Ed. by L.H. Larsen), 1989, p.61.

[5] Koning, A.U. de, Hoeve, H.J. ten, and Henriksen, T.K.,
Recent advances in the modelling of crack growth under
fatigue loading conditions, Proc. of the FAA/NASA Int.
Symp. "Advanced Structural Integrity Methods for Airframe
durability and Damage Tolerance, May 4-6, 1994, Hampton,
USA.

[6] Newman, J.C. Jr., A crack closure model for predicting
fatigue crack growth under aircraft spectrum loading,
ASTM STP 748, 1981, pp. 53-84.

[7] Koning, A.U. de, and Liefting, G., Analysis of crack
opening behaviour by application of a discretised STRIP-
YIELD model, ASTM STP 982, 1988, pp. 437-458.

[8] Newman, J.C., FASTRAN-II- A fatigue crack growth
structural analysis program, NASA TM 104159, Febr. 1992.

[9] Koning, A.U. de, The application of the STRIP-YIELD model
in the prediction of fatigue crack growth. Final report
ESA contract no. 9691-CCN4, NLR CR 97XXX L, 1997.

[10] Speidel, M.O., Corrosion fatigue in Fe-Ni-Cr Alloys. NACE
5, Unieux-Firminy, France, June 12-16, 1973.

[11] Döker, H., Fatigue Crack Growth Threshold: Implications,
Determination and Data Evaluation. To appear in
International Journal of Fatigue.

[12] Barsom, J.H., Effect of cyclic stress form on corrosion
fatigue crack propagation below K ISCC in a high yield



-15-
TP 97511

strength steel. Corrosion Fatigue: chemistry, mechanics
and micro structure. (Eds. O. Devereux, A.J. McEvily, and
R.W. Staehle), NACE 2, June 14-18, 1971, p. 432.

Table 1--Results derived from figure 3 (R = 0.0, CF = 0.5).

time at initiation t i = 367 sec.
frequency F = 0.001 Hz
time at end of acc. growth t m = 500 sec.
value load shape function
at initiation of acc. growth f(t i ) = 0.671
derivative of f(t) df(t i )/dt = 0.00466/sec
threshold strain rate (eq. 16) ε th = 0.00084/sec

Table 2--The effect of frequency on the crack growth

acceleration as described by the proposed model.

frequency F t i t m ∆c/ ∆N .10 5

Hz sec. sec. m/cycle

10 0.025 0.05 1.02
1 0.25 0.5 1.21
0.1 2.5 5.0 3.07
0.01 25.7 50.0 21.1
0.001 367 500 111.0
0.0001 no initiation

Note that the results measured for 10 Hz and 0.001 Hz were used

to determine the material parameter values C c and ε th .
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Fig. 1 The STRIP-YIELD model with different yield
limits in tension and in compression
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fatigue crack growth
during secondary plastic flow

n1
p1 n1-p1dcf = [C1(K -- Kop)    + C2δKth (K -- Kop)        ] dK

quasi-static growth
during primary plastic flow

dcp = CpK
m

dK

no growth
the crack is opened; crack tip blunting

no growth
the crack is closed or partly closed

Kmax

K*

Kop + δKth
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Fig. 2 Different loading and crack growth regimes in one (half) load cycle
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Fig. 3 A corrosion fatigue crack growing during the opening part of a load
cycle [10]
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Fig. 4 Comparison of experimental results presented by Speidel [10]
and the behaviour described by the proposed model
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Fig. 5 Corrosion fatigue crack growth data as a function of test frequency [12]
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C
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Fig. 6 Various forms of cyclic stress fluctuations used for
steel investigated in Ref. 12
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Fig. 7 Corrosion fatigue crack growth rates in 12Ni-5Cr-3Mo steel in 3% solution of sodium
chloride under various cyclic stress fluctuations with different stress - time profiles [12]
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Appendix--Loa d shap e functions

Positiv e sa w toot h loading (linear)

f ( t )
R CF (1 R)t / t m

1 CF

Sinusoida l loading

f ( t )

1 R 2CF (1 R) sin








πt
t m

π
2

2 ( 1 CF)

wher e R
Kmin

Kmax
and CF

Kop

Kmax




