View metadata, citation and similar papers at core.ac.uk brought to you bnyORE
provided by NLR Reports Repository

Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

NLR-TP-98599

Integrated management of design processes
and data: the CACE environment prototype

J.B.R.M. Spee and D.J.A. Bijwaard

https://core.ac.uk/display/80112076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

v~

an

=

NLR-TP-98599

Integrated management of design processes
and data: the CACE environment prototype

J.B.R.M. Spee and D.J.A. Bijwaard

This report is based on a presentation held at the 7th Symposium on Computer
Aided Control System Design (CACSD'97), [waar ???] en {wanneer ??7].

Division: Flight
Issued: January 1999
Classification of title: unclassified

- NLR-TP-98599

INTEGRATED MANAGEMENT OF DESIGN PROCESSES
AND DATA:
THE CACE ENVIRONMENT PROTOTYPE

J. Spee *, D. Bijwaard **

National Aerospace Laboratory (NLR), The Netherlands
* Flight Division, spee@nlir.nl ** Informatics Division, bijwaard@nlr.nl
P.O. Box 90502, 1006 BM AMSTERDAM

Abstract: The drive for efficiency improvement in industry has implications for control engineering
also. A process-oriented viewpoint is adopted, highlighting the need for integrated management of
design processes and data. The concepts of a design process management system are explained: it has
services to support design teams in concurrent design tasks, following a defined flow of activities,
using predefined tools on a data repository. The CACE Environment Prototype is presented as an
example application in the domain of aircraft control engineering. Most important to efficiency
improvement is the automated consistency control of all information in the framework.

Keywords: Computer-aided engineering; computer-aided control systems design; information

systems; information technology; systems methodology; project management.

1. INTRODUCTION

Observations of current industry initiatives show a
focus on business process improvement.
Innovative approaches to processes are recognised
as determining factors in competitiveness. The aim
is to improve the efficiency in processes;
enhancement of product quality, reduction in costs
and shorter time-to-market. A representative target
in industry is to better efficiency by 20-30 %
(O'Toole, 1996).

The need to improve process efficiency also has
implications for control engineering activities.
Innovative information technology for support of
concurrent engineering processes has been applied
to the design of control laws for aircraft flight
control. The result will be referred to in this paper
as the Computer-Aided Control Engineering
Environment Prototype (CACE Environment
Prototype). The CACE Environment Prototype is
the subject of this paper.

NLR employs SPINE for work environments in
specific application areas (Baalbergen and Loeve,
1994). SPINE work environments offer transparent
use of resources in a network of computers; the
'virtual computing' concept. ISMuS is NLR's
control engineering environment based on SPINE,
with facilities for management of, and access to
tools, data, and documentation (Couwenberg and
Cazemier, 1996). The CACE Environment
Prototype presented here is a first step towards the
integration in SPINE (and ISMuS) of services for
design process management.

A process-oriented viewpoint towards engineering
environments is adopted in this paper. Efficiency
improvement in engineering processes calls for
integration of both data management and process
management in computer-aided environments. The
next section describes the CACE Environment
Prototype, illustrating concepts for design process
management. Section 3 treats part of a design
process for aircraft flight control, and serves as an
example for the process dynamics in the CACE
Environment Prototype. Section 4 assesses the

NLR-TP-98599

&

=

significance of having integrated process and data
management in engineering environments.

2. THE CACE ENVIRONMENT PROTOTYPE

2.1 Frameworks as the basis for environments
Requirements for support of flight control
engineering processes show a lot of commonality
with more general requirements for computer-aided
engineering. This point has been clearly illustrated
by reference to the framework reference model for
software engineering (NIST and ECMA, 1993),
popularly known as 'the toaster model' (Barker
etal., 1993). An open framework approach is
regarded as most promising for (control)
engineering environments.

Standardisation in frameworks for computer-aided
design has been the aim of the CAD Framework
Initiative (CFI). The discipline of electronics
engineering has been the main driver in the
development of an operational framework,
compliant with the CFI standards. The result is
called SiFramell and this product was selected as
the core of the CACE Environment Prototype.

Standards and architectures of CAD frameworks
are treated by Van der Wolf (Wolf, 1994). He
discerns 3 roles in the evolution of CAD
frameworks:

¢ first role - Design Database;
¢ second role - Design Data Manager;
® third role - Design Process Manager.

The first role of a CAD framework is to act as a
common data repository. Tools which share data
store it only once, in the design database. Current
implementations are: structured organisation of a
file system; conventional Data Base Management
Systems (management of meta data only, i.e.
administrative data, including pointers to actual
design data in files); and Object-Oriented Data Base
Management Systems.

The second role of CAD frameworks is to provide
design management services. The framework
exploits knowledge of the structure and status of
design information and can therefore provide, for
instance: version management; concurrent access
mechanisms; organisation of multiple design
representations; and query services.

The third role of a CAD framework is to manage
design processes. Services for management of
design flows (or methodologies) include: control of
design activities according to a predefined flow;
application of a preselected set of tools; guarantee
of the correct data as input and output; and
monitoring of the progress in the design process.
The characteristics of the CACE Environment
Prototype presented here qualify it in this third
role; it serves as a design process management
system.

2.2 Architecture of the engineering environment
The architecture of the CACE Environment
Prototype is presented in Fig. 1. It is a framework
with integrated tools for the application area. Tools
can be integrated as native tools, employing the
application programming interfaces to the desktop,
database and communication services. Another
possibility is to integrate tools as 'black boxes’,
effectively encapsulating them in command scripts.
Encapsulated tools are operated from within the
framework, and employ their own user interface
and database.

DESIGN MANAGER

Global Projects
Rezources Tasks
Activitiey

Inter Tool Communicetion System Help

Error Handling

Fig. 1. Architecture of the CACE Environment
Prototype

The framework serves as an integration
environment for tools and offers common services
for the support of design processes. The main
framework services in the CACE Environment
Prototype are:

desktop services (user interface);
database services (repository);
common basic services; and
design management services.

The desktop services offer access to the design
management functions in the framework. All
objects in the framework are accessed through the

NLR-TP-98599

&

=

graphical user interface. Design process objects
are presented in trees (hierarchy) or networks.
Colours and texts indicate the state of process
objects. Changes in process structure or state are
reflected immediately on the desktop of all
connected clients.

The database services are used to manage all
design process information in the framework and
links to the design results. Each logical database
contains information on global resources and
multiple design projects. This includes the states of
all tasks in running projects. Databases can be
physically distributed, to support multi-site
development.

The common basic services offer general functions
to support framework tools. Examples are inter
tool communication services, a help system and
error handling.

The distinguishing features of this framework lay in
the design management services. Services for
design management hold the core functionality and
rules of the framework. One part of design
management is concerned with global resources,
i.e. the registration, definition and control of
resources available to all projects in a particular
logical database. The other part of design
management involves actual design projects, i.e.
the definition of process structure and control of
task execution in the framework. The next section
describes some of the concepts for design process
management.

proj ect

Fig. 2. Process management concepts in the
CACE Environment Prototype

2.3 Concepts for design process management
Design process management in the CACE
Environment Prototype is centred around the
concepts: projects; tasks; teams; and activities in
flows (Fig. 2). Whereas these concepts are
primarily oriented towards definition, the following
concepts support process execution: workspaces;
publication; states (behaviour) of tasks and
activities; task and activity versions; and
consistency.

Projects are the top-level in the design process
organisation. The available resources in the project
are selected from the global resources. Only
members from teams assigned to the project have
access to its contents.

Tasks are the building blocks from which a design
project is constructed. The task structure resembles
the results hierarchy normally defined in projects.
At the top is the end result, which is constructed
from contributing results in subtasks.

Teams are assigned to each task in the project.
Each task has one team attached. Team members
can execute design activities, if the task is reserved
into a team or user workspace.

Activity flows are an essential element in this
framework. The flow defines in which order
activities should be executed. As such an activity
flow defines the time dependency between activities
in one task. More important is the function of
guidance to the designers in the team.

Activities are the lowest level at which process
execution is defined and controlled. The definition
comprises: the tool to be used for the activity; the
datatype(s) it can use as input(s); and the
datatype(s) it can produce as output(s). Datatypes
define data dependencies between activities, both
within and across tasks. Fig. 3 gives an example
for the activity Define Controller in task Lateral
Controller Design. The names in between
parentheses point to the tasks 'producing' or
‘consuming' the particular data type.

Workspaces are in this framework to enable
concurrency in design processes. Teams and users

have to reserve tasks into their workspace prior to
performing any activities in them. Reservation of
an object locks it from access by others.

NLR-TP-98599

Requirements
(lateral)

Definition
/ (lateral)
Definition -
(architecture) \ _
- Define Images
Controller (lateral)
Trim Points (lateral) -
(architecture) T e
_— Scripts
- : (lateral)
Scripts -
(architecture) i
Matlab
Simulink
Toolboxes

Fig.3. Activity definition with input data types,
output data types and tool for execution

Publication is the mechanism to make results
available to users outside the workspace in which
they were produced. Published data is marked as

read-only in the repository, effectively ‘freezing’
the design result.

States describe the dynamics of tasks and activities
in the design process. A task can be: empty (no
previous execution); in work (one/more activities
have been executed); partly published (result of
activities have been issued); or complete (entire
task result has been published). An activity can be:
not executed; executed (tool has run with valid
result); invalid (input has changed by predecessor
activity); or finished (result has been published).

Several task and activity versions can be created.
This allows for design iterations, with or without
storage of design history. Task versions can be
linked to create different design alternatives. The
framework can show agraph of dependencies
between task versions, as a powerful and intuitive
means to process monitoring and control.

Consistency is the central and most powerful
concept in the CACE Environment Prototype. The
framework guarantees a consistent state of all the
design activities and the data they produce.
Consistency is controlled by application of rules in
the framework: before, during and after activity
execution; upon publication of results; and upon
change of the process structure (task version
network). Consistency control is expected to bring
the main contribution to efficiency improvement in
design processes.

3. AN EXAMPLE: APPLICATION IN A
FLIGHT CONTROL LAW DESIGN PROCESS

A design process for aircraft control laws was
implemented in the CACE Environment Prototype,
including evaluation and documentation of the

design. A part of this process is described here as
an example to show the behaviour of the
engineering environment.

The task structure is depicted in Fig. 4. Four tasks
are in the design project: Controller Architecture;
Lateral Controller Design; Longitudinal Controller
Design; and Complete Controller Evaluation. The
Controller Architecture task results in the definition
of the top level architecture of the controller. The
tasks Longitudinal Controller Design and Lateral
Controller Design result in these respective parts
of the controller. The combination of both top
level architecture and lateral and longitudinal parts
of the controller are evaluated in task Complete
Controller Evaluation.

Analyse Define Design Design
Req'ts Contr. Inner Outer

complete
controller
evaluation

longitudinal lateral
controller controller
design design

controller
architecture

Define
Contr.

Trim
Anal.

Fig.4. Example design project - task structure
and two activity flows

The above results in the following decomposition of
tasks. Complete Controller Evaluation has
(parallel) subtasks Longitudinal Controller Design
and Lateral Controller Design. They have a
common subtask Controller Architecture. Design
results flow from bottom to top in the project.

Two tasks are expanded to show their assigned
design activity flows. Tasks and activities are the
framework objects in which design teams perform
their work. Time dependencies (engineering work
flow) are visible in the activity flows. The data
dependencies between activities are treated
transparently for the designers, but can traced
through queries of the database.

NLR-TP-98599

&

=

3.1 Scenario 1: executing activities.

Execution of a design activity is only possible when
the required input data are available. Execution of
the activity: starts up the associated tool; reads the
appropriate input data from the repository; and
locks other users from access. After executing an
activity: the tool is closed; the results are written
back to the repository; and the state of successor
activities is changed to invalid (indicating the need
to inspect the impact of modified inputs).

In the following scenario, the effects of executing
activities will be discussed. Consider the following
situation: the first activities of tasks Controller
Architecture and Lateral Controller Design have
been executed (Fig. 4).

When the activity Define Controller (in task Lateral
Controller Design) is executed, a message pops up
that the inputs to this activity are not available.
When the database is queried for the activities from
which inputs are required it lists Define Controller
Architecture.

After executing activity Define Controller
Architecture it is possible to execute Define
(Lateral) Controller (Fig. 5.). When the database
is queried for the activities affected by
(re-)execution of activity Define Controller
Architecture, it will list Define (Lateral) Controller.
Actual re-execution of Define Controller
Architecture invalidates Define (Lateral) Controller
(inspection is necessary).

Fig.5. Design project state after execution of
activity Define Controller in task Controller
Architecture

3.2 Scenario 2: iteration and traceability of results
In the previous scenario, iteration took place by
re-executing activities. In this fashion it is not
possible to trace back to previous results after
re-execution. However, a new task version can be
derived from the current task version including its
data and connections to the subtasks. The results of
this new version can now be altered independent of
the task version it was derived from. It is useful to
publish a task version before another is derived
from it, to maintain full traceability. Looking at the
task versions of one task will show the derivation
tree (version trace).

complete
controller
evaluation
[version 1]
longitudinal lateral lateral
controller controller controller

design design design
[version 1] [version 1] [version 2]

! !

controller

architecture
[version 1]

Fig. 6. Initial task versions and task states in the
design project

Consider the following situation: all activities in the
project have been executed and version 1 of task
Controller Architecture has been published (Fig. 6).
After publishing versionl of task Lareral
Controller Design, activities in this task version
cannot be executed again. After deriving a new
version of this task version, one can however work
in the new version. Version2 of task Lareral
Controller Design is already connected to version 1
of Controller Architecture and contains results, i.e.
it inherited the connections to subtasks and the
results from the old version (Fig. 7). Once the old
task version of Lateral Controller Design has been
disconnected, the Evaluate activity in task version
Complete Controller Evaluation gets invalidated
because the input has been removed. Task
version 2 of Lateral Controller Design can now be
connected to version 1 of task Evaluate Complete
Design.

NLR-TP-98599

WNLR
Eg rrn‘rjtl;lelt:r task state:
evaluation empty
[version 1]
? ? task state:
‘ ‘ in work
longitudinal lateral
controller controller
design design task state:
[version 1] [version 1] complete

controller

architecture
[version 1]

Fig. 7. Task versions and task states after
derivation of a new version of task Lateral
Controller Design

4. ASSESSMENT

Flight control engineers in aircraft industry
indicated a need for better support in data
management. Data handling consumes much of a
designer's time, because of the large amount of
data items involved and their complex relationships.
However, data management cannot be viewed
separately from process management, because of
the number of result versions for each process step
and the dependencies between process steps. It is
also very difficult to monitor the progress based on
data only.

When process management and data management
are addressed separately, the users still have to
keep the link between the process and the actual
design results up-to-date. When a result is ready or
has changed, these changes have to be accounted
for in the process management package and it is
only there that it is visible which other results
depend on the new or changed result and have to be
checked. So the consistency of the results still has
to be checked manually and there is no direct link
between the versions of results in version
management and the versions of activities in
process management.

However when process and data management are
integrated with execution of the tools that use and
create the data, a much more powerful management
is possible. In the CACE Environment Prototype
discussed here, there is no longer need to check the
link between the different results in the process
manually. The framework ensures that the work in
the project is consistent at all times by making sure

that whenever the result of some activity changes,
the right version of results that depend on it have to
be checked.

Another important capability is introduced by
application of a design management system: the
formalisation of design processes. The steps
involved and the ordering of those steps can be
defined (activity flows in the CACE Environment
Prototype). This provides both valuable guidance
to design teams and likely efficiency improvements
(standardisation).

Storing the design process history is a way to
capture design methodologies in design departments
('as is process'). These methodologies can be re-
used in subsequent projects. Another possibility is
to introduce new processes, by assigning new
design activity flows to tasks in design projects and
executing them accordingly. Neither approach is
trivial though. Important steps are to take a

process-oriented ~ view towards engineering
environments and to develop a common
terminology to discuss process issues.

5. CONCLUSIONS
Integrated management of design processes

(including design flows and tool execution) and data
provides a guarantee for consistency of the states of
all design activities and the data they produce. This
reduces the workload on designers and the number
of errors made in manual data management,
thereby improving efficiency.

A process-oriented view towards engineering
environments is necessary. Design processes can be
captured, re-used and new design methods can be
introduced on the basis of design process
management systems. Process issues can be
discussed on the basis of a common terminology.

6. ACKNOWLEDGEMENTS

This study was partially conducted under a contract
awarded by the Netherlands Agency for Aerospace
Programs (NIVR). The following organisations
provided the platform on which the environment
runs: SiFrame; Informix Software; SUN
Microsystems; and Cambridge Control. Essential
support was given by the NLR CACEE project
team and Cranfield University. Industrial review by
British Aerospace and SAAB Aircraft is greatly
appreciated.

- NLR-TP-98599

&

=

7. REFERENCES

Baalbergen, E.H. and W. Loeve, SPINE:
Software Platform for Computer Supported Co-
operative Work in Heterogeneous Computer and
Software Environments, NLR Technical
Publication TP 94359, August 1994.

Barker, A.B., M. Chen, P.W. Grant, C.P.
Jobling and Townsend, P. (1993). Open
Arhitecture for Computer Aided Control
Engineering. In: /EEE Control Systems, April
1993, pp. 17-25.

Couwenberg, M.J.H. and R.J. Cazemier, NLR's
CACE working envrionment ISMuS, In: Proc.
IEEE Itn. Symp. on CACSD, pp. 468-471,
Dearborn, 1996.

NIST and ECMA (1993). Reference Model for
Frameworks of Software Engineering
Envrionments (Technical Report EcMA TR/55, 3™
Edition, NIST Special Publication 500-211),
August 1993, U.S. Government Printing Office,
Washington.

O'Toole, K. European Aerospace Survey 1996.
Flight International, 4-10 September 1996,
49-51.

Wolf, P. v.d. (1994). CAD Frameworks,
Principles and Architecture, Kluwer Academic
Publishers, Dordrecht, the Netherlands.

