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ABSTRACT: 

 

Supervised classification of remotely sensed images is a classical method to update topographic geospatial databases. The task 

requires training data in the form of image data with known class labels, whose generation is time-consuming. To avoid this problem 

one can use the labels from the outdated database for training. As some of these labels may be wrong due to changes in land cover, 

one has to use training techniques that can cope with wrong class labels in the training data. In this paper we adapt a label noise 

tolerant training technique to the problem of database updating. No labelled data other than the existing database are necessary. The 

resulting label image and transition matrix between the labels can help to update the database and to detect changes between the two 

time epochs. Our experiments are based on different test areas, using real images with simulated existing databases. Our results show 

that this method can indeed detect changes that would remain undetected if label noise were not considered in training. 

 

 

                                                           
* Corresponding author 

1. INTRODUCTION 

 

Topographical databases are very important for applications 

such as navigation or city planning. Keeping such a database 

up-to-date manually has been estimated to require up to 40% of 

the costs for the original data acquisition (Champion, 2007), 

which indicates that this process should be automated. In this 

context, the primary data source most frequently used is 

remotely sensed imagery. If the sensor data used for the original 

data acquisition are not available, a typical work flow for 

automated updating of topographic databases starts with the 

classification of the new sensor data. In a second step, the 

classification results are compared with the database in order to 

detect areas of change e.g. (Vosselman et al., 2004). Based on 

the detected changes, the database can then be updated. For the 

first step, supervised classification algorithms are frequently 

used because they are more easily transferred from one data set 

to another one. The reason for this is that supervised methods 

rely on representative training data to train the underlying 

classifier, thus adapting it to changes in the appearance of the 

objects. 

 

This flexibility comes at the cost that training data, consisting of 

image subsets with known object labels, have to be generated in 

advance, typically in a time-consuming and costly manual 

process. Thus, it would be desirable to reduce the amount of 

training data required. One strategy to achieve this aim is to use 

the existing database to provide the necessary class labels. Such 

a procedure has to take into account that the database may be 

outdated, so that some of the class labels derived from the 

original map might be wrong. However, in general changes will 

only affect a relatively small part of a scene, so that one can 

assume the majority of the class labels to be correct. 

 

In this paper we propose a new supervised classification method 

that uses existing database information for training. Unlike most 

of the existing work in this context, we do not just eliminate 

training samples having a wrong label as outliers, but we resort 

to a training method that is tolerant to these errors. In particular, 

we use a label noise tolerant version of logistic regression 

(Bootkrajang & Kabán, 2012), a probabilistic method that does 

not only reduce the impact of label noise in the training process, 

but also delivers an estimate about the amount of change in a 

scene. After applying the resultant classifier to the new sensor 

data, we can compare the classification results to the original 

database and, thus, obtain change in land cover. No manually 

labelled training data are required.  Our method is evaluated 

using several data sets with different degrees of simulated 

changes to show the benefits, but also the limitations of the 

proposed method. 

 

 

2. RELATED WORK 

 

The detection of changes between a current image and an 

existing database is a basic step in the updating process. The 

overview in (Jianya et al., 2008) distinguishes three basic 

strategies for change detection. The first group of methods 

compares the image data of two epochs directly, based on 

features such as band ratios, to detect changes, e.g. (Subudhi et 

al., 2014). The second group of methods compares the results of 

an independent classification of the images from both epochs, 

whereas the third and most general group of methods integrates 

all known data simultaneously for multitemporal classification. 

In a probabilistic context, this leads to models such as Markov 

chains, where transition probabilities between epochs are con-

sidered, potentially in combination with a local context model, 

e.g. (Hoberg et al., 2015). As we assume sensor data to be 

unavailable for the time of the original database acquisition, our 

approach is based on the second strategy in this paper; thus, we 

compare the classification results of the data acquired at the 

second epoch to the original database. To obtain the training 

samples required for good classification and change detection 

results, the database is used. Such derived training data are 
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affected by gross errors called label noise, which has to be 

considered in the training process. 

 

Training under label noise is a well-studied problem, for 

example in fields such as epidemiology, econometrics and 

computer-aided diagnoses. Frénay and Verleysen (2014) 

differentiate three types of statistical models for label noise. The 

noisy completely at random (NCAR) model assumes the 

occurrence of a label error to be independent from all other 

variables, including the class label. It is characterized by a 

single parameter, namely the probability of an error. In the noisy 

at random (NAR) model, the probability of an error depends on 

the class labels, so that it is parameterized by a square transition 

matrix whose elements describe the probability for a specific 

type of error affecting two classes. The most complex model is 

called noisy not at random model and additionally considers 

dependencies between labelling errors and the observed data. 

 

According to Frénay and Verleysen (2014), there are three 

strategies for dealing with label noise. The first one is to use a 

classifier that is robust to label noise by design, e.g. random 

forests. However, such methods still have problems with a large 

amount of label noise. The second strategy tries to identify the 

incorrect training samples in order to remove them from the 

training set before the actual training procedure. The authors 

state that such data cleansing approaches tend to eliminate too 

many instances, which may lead to a decreased classification 

performance. Finally, the third strategy consists of learning 

algorithms that are tolerant to noisy training data. In this context 

probabilistic approaches can be distinguished from non-

probabilistic ones. Probabilistic models learn the parameters of 

a noise model, e.g. the elements of the transition matrix for the 

NAR model, jointly with the parameters of a classifier that 

would best separate the data based on the (unknown) true labels 

of the training samples. This strategy is followed by 

Bootkrajang and Kabán (2012), using logistic regression as a 

base classifier. Li et al. (2007) achieve a similar result on the 

bases of a kernel Fisher discriminant. Bootkrajang and Kabán 

(2012) report results for the classification of entire images with 

the purpose of image revival, but not for a classification on a 

pixel level. Non-probabilistic methods focus on making non-

probabilistic classifiers such as support vector machines (SVM) 

tolerant to label noise (An & Liang, 2013), but typically do not 

estimate the parameters of a noise model.  

 

To the knowledge of the authors most existing approaches for 

considering label noise in remote sensing are based on data 

cleansing. For instance, Radoux et al. (2014), deriving training 

data from an existing map, present two techniques for 

eliminating outliers. The first one removes training samples 

near the boundaries of land cover types, whereas the other one 

assumes a Gaussian distribution of spectral signatures and 

removes outliers based on a statistical test. These methods seem 

to be tailored to data of low ground sampling distance (300m). 

It is doubtful whether the model assumptions can be transferred 

to high resolution data, where each class may correspond to 

multiple clusters in feature space. A similar method was used 

for map updating in (Radoux & Defourny, 2010), using Kernel 

density estimation for deriving probability densities. The error 

rates in the original data were relatively low. Jia et al. (2014) 

use all pixels from an existing map for training and eliminate 

samples that receive another class than the one indicated in the 

original data. Büschenfeld (2013) uses land cover data from a 

geographical information system (GIS) for generating training 

samples. He iteratively applies SVM, eliminating training 

samples that are assigned to another class than indicated by the 

observed label or that show a high uncertainty. The entities to 

be classified are land cover objects from the GIS.   

 

Mnih and Hinton (2012) are among the few authors using maps 

for label noise tolerant training. Their method is based on deep 

learning, but they only present a solution for a binary 

classification problem. Bruzzone and Persello (2009) propose a 

context-sensitive semi-supervised SVM, which is supposed to 

be robust to label noise. This improvement is realized by inclu-

ding information of the pixels in the neighbourhood of the 

training samples in the learning process. However, no probabi-

listic label noise model is used. The authors claim that such a 

strategy allows the use of existing maps for training, but this 

topic is not elaborated further.  

 

This paper presents a new method for change detection between 

an outdated database and current remotely sensed images 

without using manually labelled training data, just relying on 

the database. Unlike most existing work, we apply label noise 

tolerant classification to cope with incorrect training labels.  In 

particular, we apply label noise tolerant logistic regression 

(Bootkrajang & Kabán, 2012), a probabilistic method that also 

provides estimates for the parameters of a NAR model which 

can be interpreted as probabilities for specific types of change. 

In order to consider local context, we integrate this classifier in 

a Conditional Random Field (CRF) model. The resulting label 

image is compared with the database to detect changes. We 

evaluate our method for different degrees of label noise and 

compare the results to those achieved by random forests.   

 

 

3. LABEL NOISE TOLERANT CHANGE DETECTION 

 

3.1 General Idea 

For our task we assume the existing database and the image data 

to be available in raster format, defined on the same grid. The 

data consist of N pixels, each pixel   represented by a feature 

vector       
      

    of dimension F. The existing database 

contains an observed class label   
                 for 

each pixel n, where   denotes the set of classes and K is the 

total number of classes. As the database may be outdated, the 

observed label may differ from the unknown current label  

     of that pixel that corresponds to the updated database 

information and has to be estimated from the data. Changes are 

determined implicitly as pixels where the observed label differs 

from the current one (  
    ). 

 

The current class labels are determined in a supervised 

classification of the remote sensing data. Our classification 

method is based on a CRF. In this CRF, we use logistic 

regression for the association potentials. The core of our method 

and our main contribution is that we use the observed class 

labels as the labels of the training data and deal with the 

problem of wrong training labels under the assumption that they 

form a specific kind of label noise. Thus, in principle we can 

use all pixels as training data, though we have to select a subset 

of them for computational efficiency. The training procedure 

itself is the one proposed by Bootkrajang and Kabán (2012). It 

delivers the parameters of logistic regression and an estimate for 

the parameters of a model for label noise, namely the NAR 

model. This procedure is described in Section 3.2.  In the CRF-

based classification itself, the logistic regression classifier is 

combined with a model for local context to achieve a smooth 

classification result. Details are explained in Section 3.3.  
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3.2 Label Noise Tolerant Logistic Regression 

Multiclass logistic regression is a probabilistic discriminative 

classifier that directly models the posterior probability p(Cn|xn) 

of a class label Cn given the feature vector xn. A feature space 

transformation  (xn) is applied to achieve non-linear decision 

boundaries in the original feature space. That is, rather than to 

xn, the classification is applied to a vector  (xn) which has a 

higher dimension than xn and whose components may be 

arbitrary functions of xn. For instance, one can use quadratic 

expansion, i.e.  (xn) contains the original features as well as all 

squares and mixed products of features. In addition,  (xn) 

contains a bias feature that is assumed to be a constant with 

value 1 without loss of generality. The model of the posterior is 

based on the softmax function (Bishop, 2006): 
 

                   
      

        

       
        

 
   

  (1) 

 

where wk is a vector of weight coefficients for a particular class 

Ck that is related to the parameters of the separating hyperplanes 

in the transformed feature space. As the sum of the posterior 

over all classes has to be 1, these weight vectors are not 

independent. This fact is considered by setting w1 to 0. The 

remaining weights are collected in a joint parameter vector 

w=(w2
T, … wK

T)T to be determined from training data. 

 

It is our goal to train a classifier that directly delivers the current 

labels Cn. However, our training data consist of N independent 

pairs (xn,    
 ) of a feature vector and the corresponding 

observed class label from the existing database. In order to 

determine the most probable values of w, we have to optimise 

the posterior of w given the training data (Bishop, 2006):  
 

             
      

             
               (2) 

 

In the presence of label noise, the observed label   
  is not 

necessarily the label    which should be determined by 

maximising the posterior in eq. 1. Bootkrajang and Kabán 

(2012) propose to determine the probability     
           

required for training as the marginal distribution of the observed 

labels   
  over all possible states of the unknown current labels 

Cn. This leads to (Bootkrajang & Kabán, 2012): 
 

    
            

                       
                               (3) 

 

or                where we introduced the short-hands 

        
          ,         

            and 

                 . 
 

In eq. 3                   is identical to the posterior for 

the unknown current label Cn, modelled according to eq. 1. The 

probabilities     
            are the parameters of the 

NAR model according to (Frénay & Verleysen, 2014), 

describing how probable it is to observe label    if the true 

label indicated by the feature vector is     From the point of 

view of change detection, these probabilities are closely related 

to the probability of a change from class    to   , though the 

direction of change according to the definition in eq. 3 is 

actually inverted. If we differentiate K classes, there are, 

consequently, K x K such transition probabilities, which we can 

collect in a K x K transition matrix  with (a,k) = ak.  

 

We use a Gaussian prior with zero mean and isotropic 

covariance  · I, where I is a unit matrix, for the regularisation 

term p(w) in eq. 2. Finding the maximum of eq. 2 is equivalent 

to finding the minimum of the negative logarithm, thus of 

                      
      

   . Plugging eq. 3 into eq. 

2 and taking the negative logarithm yields 
 

                               
 
   

 
     

    

    
    ,      (4) 

where     is an indicator variable taking the value 1 if   
  

  and 0 otherwise. As      is nonlinear, minimisation has to 

be carried out iteratively. Starting from initial values w0, we 

apply gradient descent, estimating the parameter vector w in 

iteration  using the Newton-Raphson method (Bishop, 2006): 
 

                                                 ,                          (5) 
 

where           
           

      
 

 is the gradient 

vector and H is the Hessian matrix. The gradient is the 

concatenation of all derivatives by the class-specific parameter 

vectors wj, with (Bootkrajang & Kabán, 2012)  
 

   
                

 

   

       
 

  
    (6) 

 

where                 
   

   
  

   . The Hessian Matrix consists 

of (K - 1) x (K - 1) blocks        
   

     with (Bootkrajang 

& Kabán, 2012) 
 

                                            
  

     

              
      

  
  ,                                                                  (7) 

 

where I is a unit matrix with elements Iij,  (·) is the Kronecker 

delta function delivering a value of 1 if the argument is true and 

0 otherwise, and  
 

                            
   

     
  

 
     .                         (8) 

 

Optimising for the unknown weights by gradient descent as just 

described requires knowledge about the elements of the 

transition matrix , i.e. the parameters of the noise model. 

However, these parameters are unknown. Bootkrajang and 

Kabán (2012) propose an iterative procedure similar to 

expectation maximisation (EM). Starting from initial values for 

, e.g. based on the assumption that there is not much change 

(leading to large values on the main diagonal only), the optimal 

weights can be determined. Using these weights, one can update 

the parameters of  according to (Bootkrajang & Kabán, 2012) 
 

   
    

 

 
    

     
   

   
    

 

   

  (9) 

 

where          
          

   

   
  

     
   .  

 

These values for the transition matrix can be used for an 

improved estimation of w, and so forth. Thus, the update of w 

and   alternate until a stopping criterion, e.g. related to the 

change of the parameters between two consecutive iterations, is 

reached. Note that the parameters w thus obtained are related to 

a classifier delivering the posterior for the unknown current 

labels Cn (eq. 1).  

 

3.3 The Conditional Random Field (CRF) 

CRF are graphical models which can be used to consider local 

context in a probabilistic framework (Kumar & Hebert, 2006). 

In our application, the nodes of the graphical models are the 
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current labels Cn introduced in Section 3.1 that correspond to 

the updated database information. The edges of the graph model 

dependencies between the random variables corresponding to 

the nodes. We connect direct neighbours on the basis of a 4-

neighbourhood of the image grid by edges. Rather than 

classifying each pixel n of an image individually based on 

locally observed features, the entire configuration of labels, 

collected in a vector C = (C1, …, CN)T is determined 

simultaneously using all the observed data x, i.e. all features 

observed at the individual pixels. CRF are discriminative 

models, so that the posterior P(C|x) for the entire classified 

image C given the data x is modelled directly according to 

(Kumar & Hebert, 2006): 
 

       
 

 
            

 

            

     

  (10) 

 

In eq. 10, Z is a normalization constant which is not considered 

further in the classification process because we are only 

interested in determining the label configuration C for which 

P(C|x) max. The association potential A is the link between 

the data x and the label Cn of pixel n. A(Cn, x) may depend on 

the entire input image x, which is often considered by using 

site-wise feature vectors xn(x) that may be functions of the 

entire image. Any discriminative classifier can be used in this 

context; we use logistic regression, thus A(Cn, x) = ln p(Cn|xn), 

where p(Cn|xn) is determined according to eq. 1. The definition 

of xn = xn(x) depends on the available data.  

 

The terms I(Cn, Cm,  x) are called the interaction potentials; they 

describe the context model. The sum over the interaction 

potentials is taken over all pairs of pixels n,m connected by an 

edge; thus, is the set of edges in the graph. The interaction 

potentials also depend the data x. We use the context-sensitive 

Potts model for the interaction potential, which results in a data-

dependant smoothing of the resultant image (Shotton et al., 

2009): 
 

                                 
       

 

   
    

        (11) 
 

Again,  (·) is the Kronecker delta function, whereas the 

coefficients    and    influence the overall degree of smoothing 

and the impact of the data-dependant term, respectively. The 

parameter D is the average squared gradient of the image.  

 

We train the association potentials independently from the 

interaction terms, using the method described in Section 3.2. 

The parameters of the interaction potentials (   and   ) could 

be determined by a procedure such as cross-validation, but we 

use values found empirically. For the determination of the 

optimal configuration of labels given the model of the posterior 

we use loopy belief propagation (Frey & MacKay, 1998).  

 

 

4. EXPERIMENTS 

 

4.1 Test Data and Test Setup 

 

We use three data sets in our experiments. The first dataset 

consists of a part of the Vaihingen data contained in the ISPRS 

2D Labelling Challenge (Wegner et al., 2015). We use eleven of 

the patches provided for the test, each about 2,000 x 2,500 

pixels in size. For each patch, a colour infrared true orthophoto 

(TOP) and a digital surface model (DSM) are made available, 

both with a ground sampling distance of 9 cm. Furthermore, all 

the patches used in this paper belong to the training set of the 

labelling challenge, so that reference data are available in the 

same grid as the other data. The reference differentiates the six 

classes impervious surfaces, building, low vegetation, tree, car, 

and clutter/background. As cars are not considered to be 

contained in topographic databases, we merged this class with 

impervious surfaces. For each pixel, we defined a five-

dimensional feature vector xn(x) consisting of values for the 

normalised difference vegetation index (NDVI), the normalised 

digital surface model (nDSM), indicating the heights above 

ground, the red band of the TOP, smoothed by a Gaussian filter 

with =2, and hue as well as saturation obtained from the TOP, 

both smoothed by a Gaussian filter with =10. These features 

were selected from a larger pool of generic features based on 

the feature importance analysis of a random forest classifier 

(Breiman, 2001).  

 

The other two data sets, subsets of the data used in (Hoberg et 

al., 2015), are based on satellite imagery. Data set 2 consists of 

a subset of a Landsat image of an area near Herne, Germany, 

covering 8.6 x 5.9 km² with a GSD of 30 m (about 350 x 300 

pixels), acquired in 2010. Only the red, green and near infrared 

bands are available to us. The reference contains three classes, 

namely residential area, forest and cropland. Data set 3 consists 

of a RapidEye image with a GSD of 5 m of an area near Husum, 

Germany, also acquired in 2010. The area covered by this image 

is about 3.500 x 1.900 pixels or 16.8 x 9.6 km², and, again, only 

the red, green and near infrared bands are available to us. The 

reference contains the classes residential area, rural street, 

forest and cropland. For both data sets we selected seven 

features, namely the original grey values in the three available 

bands, the results of a colour space transform applied to the 

three-band false colour infrared images (intensity, hue, 

saturation), and the NDVI.   

 

We carried out two series of experiments. The first series, only 

based on one patch (patch 3) of the Vaihingen data, focussed on 

the evaluation of the method for label noise tolerant training 

described in Section 3.2. In these experiments, we did not use 

the CRF, but only the local classifier. The reference was used to 

obtain training labels, but these labels were contaminated 

randomly with varying degrees of label noise with different 

properties before training. In addition to noise tolerant logistic 

regression (LN), we also trained a standard multiclass logistic 

regression (MLR) and a Random Forest (RF) (Breiman, 2001) 

classifier using the training data thus derived, and we applied 

these classifiers to the image data. The results of all classifiers 

are compared to the reference to obtain confusion matrices and 

derived metrics such as completeness, correctness, quality and 

overall accuracy (OA), e.g. (Rutzinger et al., 2009). These 

experiments are designed to investigate the potential and 

limitations of the noise tolerant training procedure. RF was 

chosen for comparison as a representative example for a 

discriminative classifier that is supposed to be robust to some 

degree of label noise (Frénay & Verleysen, 2014). These 

experiments are presented in Section 4.2.  

 

The second set of experiments is designed to evaluate the CRF-

based method for change detection, and it uses all three data 

sets. For that purpose, we manually changed the existing 

database information used as reference, simulating realistic 

scenarios of change, e.g. urban redevelopment projects. After 

that, the classifier was trained using the simulated data, and it 

was applied to the feature vectors derived from the sensor data. 

We compare the results to the reference, deriving the same 

quality metrics as mentioned previously. This set of 

experiments highlights the feasibility of the overall approach for 
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different scenarios, also in terms of image resolution. These 

experiments are presented in Section 4.3.  

 

For the Vaihingen data set we used quadratic expansion for the 

feature space mapping  (xn) (cf. Section 3.2), whereas for 

Herne and Husum we used the original features. The standard 

deviation   of the regularisation term in eq. 4 was set to =10 in 

all experiments. If not stated otherwise, the initial values for the 

transition matrix  were ij = 0.8 for i = j and ij = 0.2/ (K-1) for 

i ≠ j, where K is the number of classes, corresponding to a 

situation in which 80% of the pixels are expected to remain 

unchanged. The initial values for the weights w in label noise 

robust training were determined by standard logistic regression 

training without assuming label noise. In cases involving the 

CRF, the parameters of the interaction potential were set to  

0 = 5.5 and 1 = 4.5, respectively.  

 

4.2 Evaluation of Label Noise Tolerant Training 

 

In the first part of this set of experiments, we contaminated the 

training data by label noise according to the NCAR model. That 

is, the label noise was assumed to be independent of the class 

labels, so that the true transition matrix contained identical 

values ij = 1- for i = j and ij =  / (K-1) for i ≠ j, where 

characterises the percentage of erroneous training labels. 

Training labels were changed randomly according to that model 

to simulate label noise. We varied  from 0% to 50% in steps of 

10%. For training we used 30% of the pixels, which we chose 

randomly from all available data, taking care to have 

approximately equal numbers of training samples per class. The 

RF classifier used for comparison consisted of 300 trees of a 

maximum depth of 25. A node was split if it contained more 

than 5 training samples. Each experiment was repeated 20 

times, using different training pixels and changing different 

class labels to simulate label noise. We report the average 

overall accuracy obtained for all pixels in the scene and also 

give error bars to indicate maximum and minimum numbers 

over all 20 test runs per experiment.  

 

The results of the first part of this set of experiments are shown 

in figure 1. In the absence of label noise, RF delivers slightly 

better results than both versions of logistic regression, all 

classifiers achieving an OA of about 84%. With  = 10% of 

wrong labels, RF still delivers results on par with the label noise 

tolerant logistic regression, but then the OA is decreasing down 

to 67% for 50% label noise. Standard logistic regression (MLR) 

turns out to be more robust than RF, with a decrease of only 2-

3% even for large amounts of label noise. Label noise robust 

logistic regression is hardly affected at all, performing at the 

same level more or less independently of . This good 

performance may be partly caused by the fact that this type of 

label noise corresponds well with the initialisation of the 

transition matrix (cf. Section 4.1). Note that the error bars in 

figure 1 are very small.  

 

However, the NCAR model is not very realistic for the task at 

hand. Some changes in topography are more likely to occur than 

others, so that the elements of the transition matrix may vary to 

a larger degree. This is why in the second part of this set of 

experiments, we simulated label noise according to the NAR 

model, where the likelihood of a change depends on the class 

labels. Again we used the variable  to characterise the amount 

of label noise in the training data, but the true transition matrix 

was generated in a different way. For each row i we randomly 

selected the probability for each class transition in that row (ij 

for i ≠ j) so that the sum S =  ij ≤ . The element of the main 

diagonal was then set to ii = 1- S. Thus,  can be interpreted as 

the maximum percentage of change, and the classes are also 

affected by change to different degrees. Label noise was 

simulated according to the transition matrix just described. We 

varied the values of  as in the case of the NCAR experiment, 

using 30% of the data for training and carrying out 20 tests for 

each value of . We also varied the transition matrix in each of 

these tests. To assess the influence of the initial values for the 

elements of , we carried out a second set of tests for  = 50% 

with label noise tolerant logistic regression based on the initial 

values ij = 0.5 for i = j and ij = 0.5/ (K-1) for i ≠ j; this version 

is referred to as version LN50. The overall accuracy values 

achieved in these experiments are shown in figure 2.  
 

 
Figure 1. Overall accuracy as a function of the amount of label 

noise  (NCAR model) for three different classifiers.    
 

 
Figure 2. Overall accuracy as a function of the maximum 

amount of label noise  (NAR model). Note that 

LN50 was only tested for  = 50%.   

 

Analysing figure 2, the first observation is that the error bars 

become longer with increasing amount of label noise. This is 

partly due to the fact that the actual amount of label noise may 

vary ( only is the maximum amount of label noise), but it is 

also caused by the impact of different true transition 

probabilities: the changing label noise with respect to the class 

labels does affect classification accuracy. Apart from that, we 

observe a similar behaviour as in the previous test as far as the 

average OA of RF is concerned. For the standard logistic 

regression (MLR), the decrease in OA is larger than in the 

NCAR case. This is to be expected: whereas the decision 

boundary between two classes is not likely to change if the label 

noise is equally distributed on either side of it, unbalanced label 

noise will shift it towards the class having more wrong labels. 

For the label noise tolerant version (LN), hardly any decrease in 

OA can be observed for  ≤ 30%. There is a tendency towards a 

smaller OA for larger amounts of label noise, indicating that 

unbalanced label noise also affects that method, but 

nevertheless LN consistently outperforms the other classifiers, 

and even for  = 50% the loss in average accuracy is only about 
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4%. The experiment with the different initialisation for  = 50% 

(LN50) achieves nearly identical results although one could 

have expected it to perform better because the initial values are 

closer to the true ones. This indicates the robustness of the 

method with respect to the initialisation of .  

 

We cannot give a detailed analysis of completeness and 

correctness here for lack of space. These quality metrics follow 

similar trends as the average OA. Buildings and impervious 

surfaces obtain better quality measures than the other classes, 

but this observation is independent from the classifier used. In 

general, the experiments presented in this section indicate that 

label noise robust logistic regression is well-suited to cope with 

even relatively large amounts of label noise.  

 

We also analysed the differences between the estimated 

transition matrices and the true ones that were used to simulate 

label noise. Figure 3 shows the median of the absolute 

differences between estimated and true matrix entries for the 

simulations based on the NAR model. Again we observe that 

the errors increase with the amount of label noise. For  = 50%, 

the median absolute difference is about 5%, identical to about 

10% of the amount of label noise, which we consider to be 

relatively accurate. The maximum differences, not shown in the 

figure for lack of space, show a higher rate of increase with 

increasing amount of label noise. For  = 50%, the average 

maximum error over 20 tests is about 20%.  
 

 
 

Figure 3. Median of absolute differences between the estimated 

and the true elements of the transition matrix (LN).  

 

4.3 Evaluation of Change Detection 

 

In Section 4.2, the label noise was distributed uniformly in the 

image, which is not very realistic when considering real changes 

in topography. For the experiments reported in this section, we 

simulated realistic changes in all our data sets, changing about 

15%-25% of the scene. For three of the Vaihingen test patches 

we simulated two outdated databases with different distributions 

of change (cf. figure 4; for Vaihingen we refer to patches by 

their numbers as given in the benchmark documentation 

(Wegner et al., 2015), using underscores to differentiate variants 

of the outdated database. Thus, 30_1 refers to the first variant of 

the database for patch 30). In this set of experiments, we used 

all pixels of the outdated database for training and applied the 

CRF-based classifier to the data. We compare the versions LN 

and MLR for the association potential of the CRF only to assess 

the benefits of the version with label noise tolerant training over 

standard training of logistic regression. The resulting values of 

overall accuracy for all test areas are presented in figure 5.  

 

Figure 5 shows that the overall accuracy achieved in 

classification if the label noise robust version of logistic 

regression is used for the association potential of the CRF (LN) 

is better than the one for MLR for nearly all the cases. The 

exceptions are the second variants of the (simulated) outdated 

databases for areas 30, 32 and 37 in Vaihingen, characterised by 

different distributions of label noise in the scene (cf. figure 4 for 

the difference in area 30). In general, the improvement of LN 

over MLR is in the order of about 1-2% in Vaihingen. This 

corresponds to the scenario with approximately 20% label noise 

observed in Section 4.2, where the differences between these 

two versions were not yet very pronounced. The improvement 

of LN over MLR is slightly more obvious for the data sets 

based on satellite imagery. Note that the disadvantages of MLR 

may also be mitigated by the smoothing effects due to the CRF. 

An example for the results achieved by LN is shown in figure 6.  

 

 
 

Figure 4. Area 30 in Vaihingen. Left: reference; centre: 

simulated topographic database (variant 30_1), right: 

simulated topographic database (variant 30_2). 

Colours: white: impervious surface; blue: building; 

green: tree; cyan: low vegetation.  
 

 
Figure 5. Overall accuracy [%] achieved for all test sites for two 

versions LN and MLR. Except for Herne and Husum, 

the numbers are the patch numbers of the Vaihingen 

data (Wegner et al., 2015).  

 

 
 

Figure 6. Vaihingen, area 3. Left: reference; centre: simulated 

database; right: classification results (LN). The colour 

code is identical to figure 4.  

 

A typical reason for problems of label noise robust training, 

occurring in the three cases where MLR achieves a slightly 

better result than LN, is a change that produces an object that is 

not represented by the correct training data for that class. An 

example is the construction of new buildings having an atypical 

roof material that is not used for any other building in the scene. 

An analysis of the estimated transition matrices indicates that 

clusters of atypical pixels that all correspond to label noise can 
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cause an overestimation of the off-diagonal elements of these 

matrices that obviously lead to errors in classification.  

Again, we cannot give a detailed analysis of completeness and 

correctness per class for lack of space; an example, comparing 

the two versions LN and MLR for all classes except 

clutter/background (which only occurs in one patch and, thus, is 

not representative) is shown in figure 7. The figure indicates 

that there is a different trade-off between type 1 and type 2 

errors. However, the quality, being a compound measure 

integrating both completeness and correctness, is consistently 

higher for LN than for MLR in this case.   
 

 
 

Figure 7. Completeness, correctness and quality per class (bu: 

building, tr: tree, lv: low vegetation; su: impervious 

surfaces) for the results in area 3 (Vaihingen). The 

results for version LN correspond to figure 6 (right).  

 

So far, the evaluation has concentrated on the entire image, thus 

also integrating unchanged pixels that were also used in the 

training process. Figure 8 shows the overall accuracy achieved 

in all tests, only taking into account the pixels affected by a 

simulated change. In the majority of the examples, LN delivers 

better results than MLR. The improvement can reach 10% 

(Vaihingen, area 17), but a more realistic number would be 1-

3%, which also applies to the satellite images. In the second 

variant of changes for area 32 (32_2), where MLR is better than 

LN by about 5%, there was a large new part of an industrial 

building with atypical roof material that could not be detected 

correctly, a problem already discussed above. 

 

 
 

Figure 8. Overall accuracy for all tests only taking into account 

the pixels affected by a change.  

 

Again, we also evaluated the differences between the estimated 

and the true elements of the transition matrices; figure 9 shows 

the median of these differences for all tests. In general, the 

median difference is below 3%, corresponding well to the 

scenario in figure 3 given the amount of simulated changes. 

Only the differences for the data set from Husum are atypically 

large. The median of the differences is about 5.5%. This 

problem can be attributed to the class rural streets contained in 

that data set. The maximum error in the transition matrix is 

related to a transition from rural street to residential, the 

corresponding probability being estimated as 86% although no 

such changes were simulated in the data. The estimation of the 

transition matrix may have been negatively affected by the fact 

that only a small number of pixels belongs to class rural streets, 

which, thus, is underrepresented in the data set.  
 

 
Figure 9. Median of absolute differences between the estimated 

and the true elements of the transition matrix (LN).  

 

 

5. CONCLUSION 

 

In this paper we have presented a method for change detection 

based on CRF that uses an outdated topographic database to 

derive training labels for the supervised classification of new 

data, without any need for training data generated manually. 

The method takes into account the unavoidable errors in the 

database by using a model of logistic regression which can deal 

with label noise. Comparing the classification results with the 

database, changes having taken place between the original 

acquisition of the database and the time epoch when the sensor 

data were acquired. 

 

In our experiments we tested label noise tolerant logistic 

regression under varying degrees of both, class-independent and 

class-dependent label noise. In both scenarios label noise 

tolerant logistic regression delivered very promising results. 

Even in the presence of up to 50% wrong training labels the 

classification accuracy was only affected to a small degree 

compared to a classifier trained on 100% correct labels, whereas 

the quality of a random forest classifier, supposed to be robust 

to some degree of label noise, deteriorated by a much larger 

margin. Applying the CRF-based classification to scenes with 

simulated realistic changes in the database, the use of label 

noise tolerant logistic regression for the association potentials 

increased the classification accuracy over a standard logistic 

regression for the changed areas by 1-3% in most cases. 

However, these experiments also showed the limitations of the 

training method. For instance, we consider the NAR model, 

which forms the basis of that method, to be too simplistic, 

neglecting the fact that in our application erroneous training 

labels occur in local clusters and, thus, are spatially correlated. 

As far as the estimated transition matrices are concerned, they 

are reasonably accurate in most cases. However, 

underrepresented classes or large amounts of label noise may 

affect the estimation in a negative way.  

 

In our future work we want to expand the model underlying the 

label noise tolerant classifier so that it can take into account the 

fact that wrong labels may appear in local clusters. Furthermore, 

here we used values determined on an empirical basis for the 

interaction model of the CRF; a joint training procedure similar 

to the one described in (Kumar & Hebert, 2006) might lead to 

improved results. We also want to expand our experiments, not 

restricting ourselves to the relatively small training patches as 

we did in this paper, so that the problem of atypical objects can 

be overcome and the results become more representative for 

different types of imagery. Additionally, we want to expand our 

experiments to data with real changes instead of simulated ones 

in order  to test our method in a scenario that is more realistic 
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with respect to the type and extent of change as well as to the 

level of detail and number of classes in the existing database. 

 

Finally, we observe that multitemporal classification requires 

temporal transition probabilities, which are frequently hand-

crafted based on heuristic models, e.g. (Hoberg et al., 2015). 

Our experience with estimating transition matrices presented in 

this paper gives us reason to believe that our method could be 

the basis for an empirical estimation of these important model 

parameters in such a multitemporal context.  
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