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Abstract— This paper is on the design of practical distributed
space-time codes for wireless relay networks with multiple
antennas terminals. The amplify-and-forward scheme is used in
a way that each relay transmits a scaled version of the linear
combination of the received symbols. We propose distributed
orthogonal space-time codes which are distributed among the
source node’s antennas and relays. Using linear orthogonal
decoding in the destination makes it feasible to employ large
number of potential relays to improve the diversity order.
Assuming multiple amplitude modulation, we derive a formula
for the symbol error probability of the investigated scheme
over Rayleigh fading channels. Our analytical results have been
confirmed by simulation results, using full-rate, full-diversity
distributed codes.

I. INTRODUCTION

In [1], a cooperative strategy was proposed which achieves
a diversity factor of R in a R-relay wireless network, using
the so-called distributed space-time codes (DSTC). A two-
phase protocol is used for this strategy. In phase one, the
transmitter sends the information signal to the relays and
in phase two, relays send information to the receiver. The
signal sent by every relay in the second phase is designed
as a linear function of its received signal. It was shown
that the relays can generate a linear space-time codeword at
the receiver, as in a multiple antenna system, although they
only cooperate distributively. This method does not require
decoding at the relays and for high SNR it achieves the optimal
diversity factor [1]. Although distributed space-time coding
does not need instantaneous channel information in the relays,
it requires full channel information at the receiver, i.e., both the
channels from the transmitter to relays and the channels from
relays to the receiver, need to be known at the receiver. This
requires that training symbols be sent from both the transmitter
and relays. Recently, the design of practical DSTC in amplify-
and-forward (A&F) mode, that lead to reliable communication
in wireless relay networks, has been presented in [2] and [3].

Distributed space-time coding in A&F mode was gener-
alized to networks with multiple-antenna nodes in [4]. It
is shown that in a wireless network with Ns antennas at
the transmit node, Nd antennas at the receive node, and a
total of R antennas at all relay nodes, the diversity order
of R min{Ns, Nd} is achievable [4], [5]. However, design of
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the appropriate space-time codes is not investigated in [4].
In [6], an algebraic coding scheme is introduced for A&F
DSTC. Note that in decode-and-forward (D&F) based space-
time codes, we can simply use the same space-time codes in
the context of MIMO in multiple antenna source and relays
[7]. Compared with D&F, since no decoding is needed at the
relays, A&F DSTC saves both time and energy and more
importantly, there is no rate constraint on the transmission.

In this paper, we focus on the design of the MIMO orthog-
onal DSTCs for multiple antenna terminals with A&F relays,
which are systematically constructed, orthogonally decodable,
full-rate, full-diversity distributed codes. The proposed space-
time codes are distributed among the source antennas and the
relays. Using these distributed codes with linear orthogonal
decoding, we can employ large number of antennas and poten-
tial relays to improve diversity order. Furthermore, we derive
the approximate average symbol error rate (SER) for multiple
antenna A&F DSTC with multiple amplitude modulation (M -
AM) over Rayleigh-fading channels. The method of moment
generating function (MGF) is used for performance analysis,
which is valid for any full-diversity, full-rate space-time block
codes, such as orthogonal DSTCs.

The rest of this paper is organized as follows. In Section
II, the system model is given. The formulation of A&F DSTC
in matrix form is considered in Section III. The orthogonal
DSTC for multiple antenna nodes is presented in Section
IV. In Section V, the average SER of DSTC under M -AM
modulation is derived. In Section VI, the overall system
performance is presented, and the correctness of the analytical
formula is confirmed by simulation results. Conclusions are
presented in Section VII.

Notations: The superscripts t and H stand for transposition
and conjugate transposition, respectively. The expectation op-
eration is denoted by E{·}. The symbol IT stands for the
T × T identity matrix. ‖A‖ denotes the Frobenius norm of
the matrix A. The trace of the matrix A is denoted by tr {A}.
diag{A1, . . . , AR} denotes the block diagonal matrix.

II. SYSTEM MODEL

Consider a wireless communication scenario where the
source node s transmits information to the destination node d
with the assistance of one or more relays denoted Relay r =
1, 2, . . . , R. The source and destination nodes are equipped
with Ns and Nd antennas, respectively (see Fig. 1). Without



Fig. 1. Wireless relay network including one source with Ns antennas, R
relays, and one destination with Nd antennas.

loss of generality, it is assumed that each relay node is
equipped with a single antenna. Note that this network can be
transformed to relays with multiple antenna, since the transmit
and receive signals at different antennas of the same relay can
be processed and designed independently.

We denote the links from Ns antennas of the source
to the rth relay as f1,r, f2,r, . . . , fNs,r, and the links from
the rth relay to the Nd antennas at the destination as
gr,1, gr,2, . . . , gr,Nd

. Under the assumption that each link
undergoes independent Rayleigh process fi,r, and gr,j are
independent complex Gaussian random variables with zero-
mean and variances σ2

fr
, and σ2

gr
, respectively. Since multiple

antennas in source and destination are co-located, and the co-
located antennas have the same distances to relays, we skipped
the i and j indices of σ2

fr
and σ2

gr
.

Assume that the source wants to send K symbols s1, s2,
. . ., sK to the destination during T time slots. T should be
less than the coherent interval, that is, the time duration among
which channels fi,r, and gr,j keep constant. Henceforth, we
assume using full-rate space-time codes, and thus, K = T .
Similar to [1], our scheme requires two phases of transmission.
During the first phase, the source should transmit a T × Ns

dimensional orthogonal code matrix S1 to all relays. We can
represent S1 in terms of the vector s = [s1, s2, . . . , sT ]t,
consisting of T information symbols as

S1 = [A1sA2s . . . ANss], (1)

where Ai, i = 1, . . . , Ns, are T × T unitary matrices, and
si = Ais describes the ith column of a T × Ns orthogonal
space-time code. We assume the following normalization

E
[

tr{SH
1 S1}

]
= E

[
tr

{
T∑

k=1

|sk|2INs

}]
= Ns. (2)

The source transmits
√

P1T/NsS1 where P1T is the average
total power used at the source during the first phase. Thus,√

P1T/Nssi, i = 1, . . . , Ns, is the signal sent by the ith
antenna with the average power of P1T/Ns. Assuming that
fi,r does not vary during T successive intervals, the T × 1
receive signal vector at the rth relay is

xr =
√

P1TS1fr + vr, (3)

where fr = [f1,r f2,r . . . fNs,r]t, and vr is a T × 1 complex
zero-mean white Gaussian noise vector with variance N1.

In the second phase of the transmission, all relays simultane-
ously transmit linear functions of their received signals xr. In

order to construct a distributed space-time codes, the received
signal at the jth antenna of the destination is collected inside
the T × 1 vector yj as

yj =
R∑

r=1

gr,j ρrCrxr + wj , (4)

for j = 1, 2, . . . , Nr, where wj is a T ×1 complex zero-mean
white Gaussian noise vector with component-wise variance
N2, ρr is the scaling factor at relay r, and Cr, of size
T × T , are obtained by representing the rth column of an
appropriate T×R dimensional space-time code matrix as Crs.
This construction method originates from the construction of
a space-time code for co-located multiple-antenna systems,
where the transmitted signal vector from the kth antenna
is Cks [8]. When there is no instantaneous channel state
information (CSI) at the relays, but statistical CSI is known, a
useful constraint is to ensure that a given average transmitted
power is maintained. That is, ρr =

√
P2,r

σ2
fr

P1+N1
, where P2,r

is the average transmit power from relay r.

III. DISTRIBUTED SPACE-TIME CODES IN
AMPLIFY-AND-FORWARD MODE

In this section, we formulate the A&F DSTC system in
matrix-form, and calculate the received SNR at the destination.
We can represent input-output relationship of the DSTC as the
space-time code in a multiple-antenna system. By setting the
T ×NsR space-time encoded signal

S = [C1S1, C2S1, . . . , CRS1], (5)

and by concatenating the received signals of the destination
antennas, i.e., Y = [y1 y2 . . . yNd

], from (3)-(4), we have

Y =
√

P1T

Ns
SH + W T , (6)

where the NsR×Nd channel matrix H is defined as

H = FΛG,

F = diag {f1, . . . , fR} , Λ = diag {ρ1, . . . , ρR} ,

gr = [gr,1 gr,2 . . . gr,Nd
], G =

[
gt

1 . . . gt
R

]t
,

and the noise is collected into the T ×Nd matrix

W T = V ΛG + W . (7)

where V = [C1v1 C2v2 . . . CRvR ] and W =
[w1 w2 . . . wNd

]. Now, we derive the covariance of W T

which will be used for calculating the received SNR at the
destination. Since gr,j , vr, and wj are zero-mean complex
Gaussian random variables and mutually independent, the
covariance matrix of W T can be shown to be

Cov(W T ) = E[ V ΛGGHΛHV H ] + E[ WW H ]

=
R∑

r=1

ρ2
rσ

2
gr

NdN1CrC
H
r + NdN2IT

= Nd

(
R∑

r=1

ρ2
rσ

2
gr
N1 +N2

)
IT . (8)



Thus, the noise vector W T is white. The third equality in
(8) follows from the fact that for each relay, Cr is a unitary
matrix.

Since, in this paper, we focus on orthogonal design, the
maximum likelihood (ML) detection is decomposed to single-
symbol detection, and by the fact that noise in (8) is white,
maximal-ratio combining (MRC) can be applied at the desti-
nation. To calculate the post detection SNR at the output of the
ML DSTC decoder, we need to compute the received signal
power. Hence, using (6), we have

ηsd
=

P1T

Ns
Es

[
tr{SHHHSH}

]
=

P1T

Ns
Es

[
tr{HHHSHS}

]

=
P1T

Ns
tr{HHH Es[SHS]}. (9)

To have a linear orthogonal ML detection, we should design
distributed DSTC, such that

SHS = (|s1|2 + |s2|2 + . . . + |sT |2)INsR, (10)

and using the normalization assumed in (2), we have
Es[SHS] = INsR. (11)

Thus, ηsd
in (9) can be evaluated as

ηsd
=

P1T

Ns
tr{HHH} =

P1T

Ns

NsR∑

i=1

[
HHH

]
i,i

=
P1T

Ns

R∑
r=1

Ns∑
n=1

|fn,r|2ρ2
r

Nd∑

j=1

|gr,j |2 =
P1T

Ns

R∑
r=1

ρ2
r‖fr‖2‖gr‖2.

(12)
From (8), the total noise power at the destination can be

written as

ηwT = Etr{W T W H
T } = NdT

(
R∑

r=1

ρ2
rσ

2
gr
N1 +N2

)
. (13)

Combining (12) and (13), the received SNR at the destina-
tion can be written as SNRd =

∑R
r=1 γr, where

γr =
P1ρ

2
r‖fr‖2‖gr‖2

NsNd

∑R
k=1 ρ2

kσ2
gk
N1 + NsNdN2

. (14)

It is important to note that in (14), we approximated the
conditional variance of the noise vector W T in (7), which is
obtained in (8), with its expected value.

IV. REAL ORTHOGONAL DESIGN FOR A&F MIMO DSTC

In this section, we propose a systematic orthogonal design
to construct DSTC in A&F relay networks consisting of
multiple antennas, which achieve full-diversity and full-rate. In
addition, these codes are generalized to any number of transmit
antennas or relays.

The distributed space-time code matrix S should be appro-
priately designed to achieve full diversity. Combining (1) and
(5), we can further rewrite S as

S = [C1A1s, . . . , C1ANss, . . . , CRA1s, . . . , CRANss].
(15)

Since the distributed space-time code S has size T × NsR,
there is no point in having NsR larger than the coherence
interval T and the diversity is determined by T in this case

(see [9]). Thus, in the following, we will always assume
T ≥ NsR. For symbols with real modulations, there exists
full-rate, full-diversity space-time codes with real orthogonal
design [10]. Since each component of the code matrix is a
linear combination of symbols {s1, . . . , sT }, we can represent
the (rNs −Ns + i)th column of the matrix code as AiCrs,
where AiCr is again a unitary matrix. The coding problem
consists of designing unitary matrices Ai, i = 1, . . . , Ns, and
Cr, r = 1, . . . , R, such that S as given in (15) is full rank,
or equivalently, condition in (10) is satisfied.

In the following, we systematically construct orthogonal
DSTC. A subset of the orthogonal DSTCs is proposed, whose
associated matrices Ai and Cr have the structure of a permu-
tation matrix whose entries can be 1, 0, or -1. We consider
square matrices of size T = NsR = 2N , N = 1, 2, 3. If one
needs a rectangular space-time code, one can always pick some
columns of a square code. If the codebook is fully diverse, then
the codebook obtained by removing columns will be fully
diverse too (see, e.g., [1] where this phenomenon has been
considered in the context of node failures).

First, using the Hurwitz-Radon theory [11], we can con-
struct T×T orthogonal matrices with real-valued components.

For example, the 2× 2 matrix is S(1) =
[

s1 −s2

s2 s1

]
. Then,

we construct A1,A2, . . . , ANs such that Ais, i = 1, . . . , Ns,
are associated with the first Ns columns of S(1). We set
C1 = IN , and we construct Cr, r = 2, . . . , R, such that Crs
is the (rNs − Ns + 1)th column of S(1). Then, we modify
matrix S(1) by replacing the consecutive columns rNs−Ns+1
to rNs with CrAis, r = 2, . . . , R, i = 1, . . . , Ns, and hence,
the orthogonal matrix S becomes in the form of (15).

The orthogonal DSTC of any size for arbitrary number of
Ns and R can be constructed by simply removing T −NsR
columns of the T × T matrix S(1). As an example, the
application of the proposed 4×4 and 8×8 orthogonal DSTCs
is demonstrated.

The 4× 4 DSTC matrix consisting of real symbols, which
is obtained by procedure given above, can be shown as

S =




s1 −s2 −s3 s4

s2 s1 s4 s3

s3 −s4 s1 −s2

s4 s3 −s2 −s1


 . (16)

For the case of Ns = 2, R = 2, the matrices used at the source
and relays are A1 = C1 = I4, and

A2 =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 , C2 =




0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


.

(17)

Moreover, when Ns = 1 (R = 4) or R = 1 (Ns = 8),
it is straightforward to find the corresponding Ai and Cr

from (16).
Using the Hurwitz-Radon theory [11], a 8×8 DSTC matrix



with orthogonal design can be shown as

S=




s1 −s2 −s3 s4 −s5 s6 −s7 −s8

s2 s1 s4 s3 s6 s5 −s8 s7

s3 −s4 s1 −s2 −s7 −s8 s5 −s6

s4 s3 −s2 −s1 −s8 s7 −s6 −s5

s5 −s6 s7 s8 s1 −s2 −s3 s4

s6 s5 s8 −s7 −s2 −s1 s4 s3

s7 s8 −s5 s6 s3 −s4 s1 −s2

s8 −s7 −s6 −s5 s4 s3 s2 s1




,

(18)
which is valid for all cases of Ns = 4 (R = 2), Ns = 2
(R = 4), Ns = 8 (R = 1), and Ns = 1 (R = 8). Since AiCrs
corresponds to the (rNs − Ns + 1)th column of the code
matrix S, one can construct the integer matrices - matrices
that all of their elements are -1, 0, or 1 - A1,A2, . . . , ANs

and C1, C2, . . . , CR to be used at the source’s antennas and
the relays, respectively. Due to lack of space, however, we
omit to write the corresponding matrices Ai and Cr.

V. PERFORMANCE ANALYSIS

In this section, we will derive the SER formulas of DSTC in
A&F relay networks with multiple antennas nodes. We assume
real constellations like multiple amplitude modulation (AM)
signals, and our analysis is valid for any full-rate full-diversity
DSTC such as the codes proposed in Section III.

The conditional SER of the protocol described in Section II,
with R relays, one source, and one destination with multiple
antennas, when M -AM signals are used, can be written as [12,
Eq. (8.3)]

Pe (R|F , G) = 2
(

M − 1
M

)
Q




√√√√ 6
M2 − 1

R∑
r=1

γr


 , (19)

where Q(x) = 1/
√

2π
∫∞

x
e−u2/2 du. For BPSK, (8.3) be-

comes the Pe (R|F , G) = Q

(√
2

∑R
r=1 γr

)
. The average

value of γr in (14) can be written as

γr = E[γr] =
P1ρ

2
rσ

2
fr

σ2
gr∑R

k=1 ρ2
kσ2

gk
N1 +N2

. (20)

For calculating the average value of conditional SER in (14)
we need to find probability density function (PDF) of γr.

Theorem 1: For γr in (14), the probability density function
pr(γr) can be written as

pr(γ) =
2

γ (Nd − 1)! (Ns − 1)!

(
γ

γr

)Nd+Ns
2

KNd−Ns

(
2
√

γ

γr

)
,

(21)
where Kn(x) is the modified Bessel function of the second
kind of order n.

Proof: Suppose X = ‖fr‖2
Nsσ2

fr

and Y = γr‖gr‖2
Ndσ2

gr

, where

X and Y have gamma distribution with mean of X = 1 and
Y = γr , respectively. Therefore, γr = X Y and its cumulative
density function can be presented to be

Pr{γr < γ} = Pr{XY < γ} =
∫ ∞

0

Pr{Xy < γ}pY (y)dy

=
∫ ∞

0


1−

Γ
(
Ns,

γ
y

)

Γ (Ns)


 yNd−1

(Nd − 1)!γNd
r

e−
y

γr dy

= 1−
∫ ∞

0

Γ
(
Ns,

γ
y

)

Γ (Ns)
yNd−1

(Nd − 1)!γNd
r

e−
y

γr dy,

(22)
where we have used [13, Eq. (3.324)] for the third equality,
Γ (α, x) is the incomplete gamma function of order α [3,
Eq. (8.350)], and pY (y) = yNd−1

(Nd−1)!γ
Nd
r

e−
y

γr [12, Eq. (5.14)].

Then, using (22), Γ (Ns) = (Ns − 1)!, and −d Γ (α,x)
dx =

xα−1e−x [3, Eq. (8.356)], the PDF of γr can be written as

pr(γ) =
d

dγ
Pr{γr < γ} =

γNs−1

γNd
r (Nd − 1)! (Ns − 1)!

×
∫ ∞

0

yNd−Ns−1e
−

(
γ
y + y

γr

)
dy. (23)

Thus, the PDF of γi can be found by solving the integral in
(4) using [3, Eq. (3.471)], yielding (21).

Since the γrs are independent, using the MGF approach,
the average SER would be

Pe(R) =
∫ ∞

0; R−fold
Pe (R|F , G)

R∏
r=1

(p(γr) dγr)

=
∫ ∞

0; R−fold

2(M − 1)
M

Q




√
6

∑R
r=1 γr

M2 − 1




R∏
r=1

(p(γr) dγr)

=
∫ ∞

0; R−fold

2(M − 1)
πM

∫ π
2

0

R∏
r=1

e
−3γr

(M2−1) sin2 φ dφ

R∏
r=1

(p(γr) dγr)

=
2(M − 1)

πM

∫ π
2

0

R∏
r=1

Mr

( −3
(M2 − 1) sin2 φ

)
dφ, (24)

where Mr(s) = Eγ{eγrs} is the MGF of γr. In the following
theorem, we derive a closed-form solution for Mr(s).

Theorem 2: The MGF of random variable γr, i.e.,
Mr(s) = Eγ{eγrs}, is given by

Mr(−s)= (γrs)
−µ+ 1

2 e
1

2γrs W−µ+ 1
2 , ν

2

(
1

γrs

)
, (25)

where Wa,b(x) is Whittaker’s function of orders a and b [13,
Eq. (9.224)], µ = Ns+Nd

2 , and ν = |Nd −Ns|.
Proof: We can express Mr(−s) as

Mr(−s) =
∫ ∞

0

e−sγpr(γ)dγ. (26)

Using (23) and [13, Eq. (6.643)], after some manipulations we
obtain (25).

VI. SIMULATION RESULTS

In this section, the performances of distributed orthogonal
space-time codes are studied through simulations. The error
event is bit error rate (BER). The signal symbols are modulated
as BPSK. We fixed the total power consumed in the whole
network as P and use the equal power allocation, i.e, P1 = P

2
and P2 = P

2R . Assume the relays and the destination have the



−5 0 5 10 15 20 25
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P [dB]

B
E

R

T=4, N
d
=2

 

 

Analyical result, N
s
=2, R=2

Simulated result, N
s
=2, R=2 

Analytical result, N
s
=1, R=4

Simulated result, N
s
=1, R=4

Analytical result, N
s
=4, R=1

Simulated result, N
s
=4, R=1

Fig. 2. Performance comparison of analytical and simulated results of a relay
network with BPSK signals, T = 4, and Nd = 2.

same value of noise power, i.e., N1 = N2, and all the links
have unit-variance Rayleigh flat fading. The orthogonal DSTC
of (16) is employed where T = 4, and the analytical results
are based on (24).

Fig. 2 confirms that the analytical results attained in Sec-
tion V for the SER have the same performance as practical
full-rate, full-diversity distributed space-time codes, such as
the proposed codes. It is assumed that destination has two
antennas. We compare all possible cases with T = NsR = 4,
i.e., Ns = 2 (R = 2), Ns = 2 (R = 2), and Ns = 2 (R = 2).

Fig. 3 compares the performance of the proposed DSTCs
for different values of Ns and R when Nd = 1. Observing the
curves at high SNR conditions, it can be seen that the diversity
order of the system becomes R min{Ns, Nd}. For instance, for
the case of R = 1, it is shown that increasing the number of
source’s antennas from 1 to 2 and 4, the diversity gain would
not be varying since Nd = 1. However, substantial coding gain
is obtainable by increasing the number of Ns, for fixed R and
Nd. For example, one can observe that at BER = 10−4, a
gain of 7 dB is obtained using Ns = 2 comparing to Ns = 1,
when R = 2. In addition, it can we observed from Fig. 3
that a higher number of antennas at source, and thus, lower
number of relays are preferable in low SNR scenario, due to
the accumulation of noise at A&F-based relays.

VII. CONCLUSION

In this paper, we proposed systematically constructed, full-
rate, full-diversity distributed orthogonal space-time codes for
a R-relay MIMO cooperative system. A part of the space-
time codes is done at the source multiple antennas, and the
remaining part is performed at relays. The relays do not require
to obtain channel coefficients, and simply transmit the scaled
version of the linear combinations of the received signals. We
analyzed the performance of the system with M -AM signals.
Simulation are in accordance with the analytical results. Fur-
thermore, simulations show that using linear decoder, we can
extend the network size with acceptable performance.
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Fig. 3. The average BER curves of a relay network employing orthogonal
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