
UNIVERSITY OF SHERBROOKE

[ES FACTEURS CONTRIBUANT A LA REUSStTE DANS [ES COURS
D’INTRODUCTION EN PROGRAMMATION

FACTORS INFLUENCING SUCCESS IN INTRODUCTORY PROGRAMMING
CO U RS ES

par

Pit Foung [an Chow Wing

Essai présenté a a Faculté d’éducation

En vue de I’obtention du grade de

Maître en education (MEd.)

MaItrise en enseignement au collegial

Novembre 2009

© Pit Foung Lan Chow Wing, 2009

CR P- Education

__

p1..Jd..eM-._4-.-_l—.

r-

UNfVERSITE DE SI-{ERBROOKE

Faculté d’éducation

\‘IaItrise en enseignernent au coflégial

Les facteurs contribuant a Ia réussite dans les cours dintroduction en programmation

Factors influencing success in introductory programming courses

Par

Pit Foung [an Chow Wing

a été évalué par un jury compose ds personnes suivantes:

Directrice de I’essai

Silke Lach

Evaluatrice de I’essai

Elizabeth Charles

SUMMARY

Learning programming is not an easy task. Research so far has shown that

computer science students in general lack basic programming skills. Halt’ of those in

university introductory programming courses do not make it to the next level. Several

studies have looked at different factors that could be keys to success in programming.

Factors that were most commonly examined were prior computer courses, prior

academic background. level of mathematics knowledge, programming skills and

number of hours of study. Results of those studies did not give a clear answer as to

what leads to success in programming courses.

This study looked at the reasons why Vanier College students in computer

programming are encountering difficulties in their learning process. Factors such as

prior academic background. prior computer experience, mother tongue, and learning

styles were examined to see how they play a role in students’ success in programming

courses. The research of Booth (1992) and Bruce et a!. (2001) informed this study.

Booth did a phenomenographic qualitative study on learning to program by

interviewing computer science students in their first year of studies. Booth found out

that the students’ learning methods can be grouped into four categoles: coding,

understanding & integrating, problem solving and participating & enculturation.

Bruce et al. added one more category: following. [-towever, these researchers did not

look at the relationship between ways of learning and student success. This study was

an attempt to see whether Vanier College students learning programming can be

categorized according to Booth and Bruce et a!. Furthermore, it tried to see whether

success depend on learning styles. The initial research hypotheses were the following:

• Computer Science students u/sing understanding amid integrating succeed

better ihami students usmg following, coding, or problem solving.

6

• Students using problem solving succeed better than those who use

pcir1icpating and enculturation.

• Students who use coding perform better than those who prefrn particijating

and enculturation.

In addition, this study hoped to examine whether there is a gender difference in how

students learn programming.

Both quantitative and qualitative methods were used in the study.

Quantitative data was collected via a survey of fifty-eight Vanier College students.

Qualitative data was generated by an open-ended question in the survey as well as by

personal interviews with ten computer science students. The statistical package SPSS

was used to analyze the quantitative data. The qualitative data was analyzed using

content analysis.

Only eight female students took part in the survey. With such a small

proportion of females, gender could not be considered as a factor in this study. The

data also showed that most of the students (43 out of the 58) said that they used either

coding, understanding and integrating or problem solving as their learning style. Only

II considered that they used participating and enculturàtion or following as their way

of learning. Correlation analyses were done using Spearman’s rho and Kendall’s tau

correlations. They showed that high school average and high school math grade did

have a slight positiv& effect of the final mark that the students received but the

relationship was not significant. However, there was a significant positive

relationship between high school average and high school math grade and the

midterm mark. Furthermore. prior computer knowledge and prior basic programming

knowledge play a positive role in success in learning how to program. The less prior

computer knowledge and the less prior basic programming experience the students

have, the lower their final marks were.

7

Since the number of students in the two latter learning style categories is

statistically insignificant and furthermore, since Spearman’s rho and Kendall’s tau

correlation showed that there was no significant correlation between ways of learning

and final marks of the students, these results led to a revision of the initial objectives

of the project. It cannot be said that students using coding succeed better than those

using understanding & integrating or problem soR ing.

The qualitative data analysis aimed to examine Vanier students’ ways of

learning how to program. and to see whether thes fit the categories of Booth (1992)

and Bruce et al. (2003). The qualitative data strongly support the findings of the

quantitative data. Three kinds of observations could be made from the interviews.

The interviews revealed details about the learning process of the students, the

difficulties the students encountered and the ways they coped with the difficulties.

The interviews confirmed that Vanier College computer science students learn

programming in mainly three ways: coding, understanding and integrating, and

problem solving.

A phenomenon that emerged in the interviews was that some students used

rote learning in their programming courses. They tried to learn the concepts and the

syntax of the programming language by heart without trying to understand how to

apply them. They just learned the situations where they could apply the concepts and

rules. This can be counterproductive to their learning process in that they may get

disoriented when they encounter unfamiliar problems or situations. Another

observation made from the interviews can be considered of importance. Three of the

ten students complained about attitudes of their teachers. They said that they did not

get much help from the teachers when they needed it. This led to increasing

disinterest in the subject and their dropping out of the course or program. It would

therefore be pertinent to look at the various ways computer programming is being

taught and how the learning styles can better accommodate Vanier College’s

corn puter programming students.

S OM NIAIRE

Apprendre Ia programmation n’est pas une tâche lacile. Jusqu’à date, les

etudes ont dérnontré que les étudiants en informatique n’ont pas, en génCral. les

compétences de base nécessaires pour programmer. Dc ceux qui ont commence les

etudes prCliminaires en programmation, Ia moitiC n’a pas atteint Ic niveau adCquat

pour continuer en deuxièrne annCe. Plusieurs etudes ont examine diffCrents facteurs

qui pourraient contribuer a Ia réussite en programmation. Les facteurs les plus

souvent examines Ctaient les précédents cours en informatique. les etudes

academiques précédentes, Ic niveau de connaissance en mathématiques, les

compétences en programmation et Ic nombre d’heures d’études. Les résultats de ces

etudes n’ont pas donné une réponse claire a cc qui arnène a Ia réussite dans les cours

de programmation.

La présente etude a examine les raisons pour lesquelles les étudiants en

inf’orrnatique du College Vanier rencontrent des diflicultés dans leurs etudes en

programmation. Les facteurs tel que Ic niveau des etudes précédentes, l’expérience en

informatique, a langue maternelle et les méthodes d’apprentissage ont été considérés

pour voir quel role ces facteurs jouent pour promouvoir Ia rCussite dans es cours de

programmation. Cette étude est basée sur les travaux de Booth (I 992) et de Bruce et

al. (2001). Booth a fait une étude qualitative sur l’apprentissage en programmation en

interrogeant des étudiants en premiere année d’études en informatique. Booth a

constaté que les méthodes ou styles utilisés par les étudiants peuvent être regroupés

en quatre categories : Ic codage, Ia comprehension et l’intégration, Ia resolution des

problèrnes, et Ia participation dans Ia culture informatique. Bruce et al. (200]) a

ajouté une autre categoric < suivre >>. Cependant, ces chercheurs n’ont pas considéré

les relations entre les styles d’apprentissage ci Ia réussite dans les cours de

prograrnrnation. La présente étude a essa’vC de voir si l’apprentissage en

programmation des étudiants du College Vanier pourrait Ctre categorisC scion Booth

et Bruce et al. Dc plus. l’étude a essayC de voir si leur i-éussite dépendait des styles

d’apprentissage. Les hypotheses initiales de recherche ont été forrnulées comme suit

1. Les étucliants en informatique utilisant Ia comprehension el I ‘integration

reussissent Iflielix que ceux utilisant < suivre ., le codage 01.1 1(1 resolution des

problCmes.

2. Les étudiants ulilisant la resolution des problèmes réussissent mieux que ceux

qui utiliseni laparticzpation dans la culture informatique.

3. Les éfudiants utilisanl Ic codage réussissent mieux que ceux qui uliliseni la

parlicpation dans Ia culture informatique.

Dc plus, Ia présente étude espérait examiner s’il y a une difference de perfbrmance

entre les deux genres.

Les méthodes quantitatives et qualitatives d’analyse sont utilisées pour

l’étude. Les données quantitatives étaient recueillies par un sondage vis--vis

cinquante-huit étudiants du College Vanier qui prenaient Ic cour dintroduction a Ia

programmation. Ces données ont été analvsées par Ic programme de statistiques

SPSS. Les données qualitatives ont été récupérées d’une question ouverte se trouvant

‘dans Ic questionnaire et aussi des entrevues personnelles avec dix étudiants en

informatique. Ces données qualitatives ont été analysées par Ia méthode de I’analyse

de contenu.

Huit flues seulement ont pris part au sondage. Avec cette minime quantité de

participantes, Ic genre ne pourrait pas étre pris en consideration dans l’étude. Aussi. Ia

plupart des cinquante-huit participants (43 au juste) ont affirmé qu’ils utilisaient le

codage ou Ia comprehension et I’intégration ou Ia resolution des problèrnes en tant

que style d’apprentissage. Les onze autres ont aflirmé qu’ils utilisaient Ia

l0

participation dans Ia culture informatique on <<suivre >. La correlation rho de

Spearman et celle de tan de Kendall ont etC utilisées pour fin danalyse de correlation.

Ces analyses ont clémontré que Ia rnoyenne au secondaire et Ia note du cours des

mathérnatiques au econdaire avaient un effet insignifiant stir Ia note finale en

programmation. Toutefois, il y avait une correlation significative enter Ia movenne au

secondaire et Ia note des mathématiques, et Ia note a I’examen de mi-session. Dc plus,

Ia connaissance en informatique et en programmation prCcédant Ic premier cours de

programmation avaient un effet positif sur Ia réussite en programmation. Plus

l’étudiant possédait de Ia connaissance en informatique avant Ic cours. plus Ia note

finale était haute.

Vu que Ic nombre des étudiants qui considéraient qu’ils utilisaient les deux

derniers styles d’apprentissage Ctait statistiquement insignifiant et, de plus, le rho de

Spearman et le tan de Kendall ont dCmontrC que Ia correlation entre les mCthodes ou

styles d’apprentissage avec Ia réussie n’était pas significative, ces rCsultats ont poussé

a Ia revision des objectifs initiaux du projet. On ne pourrait pas dire que les étudiants

utilisant le codage réussissent rnieux que les Ctudiants utilisant Ia comprehension et

integration ou Ia resolution des problèmes.

Les donnCes qualitatives étaient là pour examiner de plus près es méthodes

d’apprentissage en programmation des Ctudiants dii College Vanier, et pour voir si

ces méthodes correspon&nt a celles de Booth (1992) et de Bruce et al. (2001). Ces

données ont confirmé solidement les résultats obtenus des données quantitatives.

Trois types d’observations pouvaient Ctre faits des entrevues. Ces entrevues ont

relevé Ia facon dont Ies Ctudiants apprenaient Ia programmation, les difficultCs qu’ils

ont rencontrC, et comment ils ont Pu résoudre ces difficultés. Aussi. les entrevues ont

confirmé que les Ctudiants du College Vanier utilisaient surtout trois mCthodes

d’apprentissage : le codage, Ia comprehension et integration, et Ia resolution des

prob I è mes.

Un phénoméne a érnergé des données érnanant des entrevues. Quelques

étudiants apprenaient Ia programmation en mémorisant les concepts et a syntaxe du

langage de programmation sans comprendre comment les utiliser. us retenalent par

ceur seulernent les situations oi us pourraient utiliser les concepts et les règles. Cette

situation peut aMer a I’encontre du but recherché. Ms se retrouveraient désorientés et

confus devant des situations et des problèmes qu’ils n’ont jamais rencontrés. Une

autre observation très importante est le fait que trois des participants des entrevues se

sont plaints des attitudes negatives de certains professeurs. us disaient qu’ils

n’avaient pas assez d’aide de ces professeurs quand Is en avaient besoin. us sont

devenus dCsintCressés et ont pensC a abandonner le cours ou le programme. TI serait

pertinent de voir les différentes strategies d’enseignement de Ia programmation et

comment ces méthodes pourraient être utilisCes pour accommoder les exigences des

étudiants en informatique du College \/anier.

TABLE OF CONTENTS

SUMMARY 5

SOMMAIRE 8

LIST OF TABLES 15

CHAPTER ONE: INTRODUCTION 17

I. PROBLEM STATEMENT 18

CHAPTER TWO: LITERATURE REVIEW 20

1. CuRRENT LITERATURE 20

I .1 A Current Model of Learning 20

I .2 Misconceptions 2 I

1.3 Cognitive Abilities in Programming 22

1.4 Cognitive Abilities as Factors of Success 22

I .5 Cognitive Characteristics 23

1.6 Computer Science Discipline 25

1 .7 Learning Aspects 26

1 .8 Factors Contributing to Success 27

I .9 Motivation as a Factor of Success 30

.10 Time Spent Studying as a Factor 3 I

1.11 Learning Styles as Factors of Success 32

.12 Gender Dimension 33

1.13 WaysofLearning 33

1.13.1 Coding 34

1,13.2 Understanding and Integrating 35

1.13.3 Problem Solving 35

1.13.4 Participating and Enculturation 36

13

.13.5 Following.36

2. GAPs IN THE LITERATURE 37

3. THE REsEARcI-I QUESTIONS 38

CHAPTER THREE: RESEARCH DESIGN 39

I. METHODOLOGY 39

2. DATA CoLLEcTIoN 41

3. PARTIcIPANTs 41

4. QUANTITATIVE DATA 42

5. QUALITATIvE DATA 44

6. ETHIcAL ISSUES 45

CHAPTER FOUR: DATA ANALYSIS AND RESULTS 47

I. QUANTITATIVE DATA ANALYSIS RESULTS 47

2. CORRELATION ANALYSIs 50

3. QUALITATIVE DATA ANALYSIS 55

4. OPEN-ENDED QUESTION 55

5. INTERVIEWS 56

6. LEARNFNG PROCESS 57

6.1 Attending Lectures 58

6.2 Learning by Exaniples 59

6.3 Applying and Integrating 60

7. DIFFICULTIEs ENCOUNTERED 61

7.1 Syntax Errors 61

7.2 Difficulties in Problem Solving 62

7.3 Difficulties in Understanding the Concepts 63

8. CoPING WITH DIFFIcULTIEs 63

8.1 Perseverance :63

8.2 Source of References Used to Overcome Difficulties 64

8.3 Relaxation as a Mean to Cope with Difficulties 65

14

CHAPTER FIVE: CONCLUSION AND DESCUSSIONS .66

I. CONCLUSION 66

.1 Ways of Learning 66

I .2 Factors Influencing Success 67

1.3 Triangulation 68

1.4 Motivation and Expectation 69

2. DISCUSSIONS 71

3. LIMIT\TToNs OF THE STUDY 72

BIBLIOGRAPHICAL REFERENCES 74

APPENDIX A — TI-IF SURVEY QcEsTIoNNIRE 76

APPENDIX B — PROCEDURES FOR THE iNTERVIEW 85

APPENDIX C — THE CONSENT FORM 87

APPENDIX D — FREQUENCY TABLES 90

APPENDIX E — TI-IF INTERVIEW: TI-IF LEARNING PROCESS 98

APPENDIX F —THE INTERVIEW: TI-IF DIFFICULTIES ENCOUNTERED BY TI-IE

STUDENTS 101

APPENDIX G — THE INTERvIEw: How THE STUDENTS COPE WITH TI-IE

DIFFICuLTIEs I 04

LIST OF TABLES

Table I Frequency of Learning 49

Table 2 Spearrnan rho correlations among High school average, High school math
grade, Midterm mark, Final mark and Ways of learning 51

Table 3 Spearman’ rho correlations among Prior computer knowledge, prior basic
programming, Difficulties understanding concepts, Difficulties solving
problems. and Find computer science difficult 52

Table 4 Spearman’ rho correlations among Mother Tongue, Difficulties
understanding concepts. Difficulties solving problems and Find computer
science difficult 91

TableS Frequency: Student Gender 91

Table 6 Frequency: Access to Computer 91

Table 7 Frequency: Program of Study 91

Table 8 Frequency: Mother Tongue 91

Table 9 Frequency: High School Language 92

Table 10 Frequency: Prior Computer Knowledge 92

Table II Frequency: Prior Basic Knowledge 92

Table 12 Frequency: User Recommended Text 92

Table I 3 Frequency: Analyze and Write Algorithms 92

Tablel4 Frequency: Work in Group Doing Assignment 93

Tabl I 5 Frequency: Work in Group Preparing for Test 93

Table 16 Frequency: Participate in Class 93

Table 17 Frequency: Miss Class 93

Table 1 8 Frequency: Difficulties Understanding Concepts 94

Table 19 Frequency: Difficulties Solving Problems 94

Table 20 Frequency: Find Computer Science Difficult 94

Table 21 Frequency: Understanding Programming Concepts Before Using Them 95

Table 22 Frequency: Try Examples to Understand Concepts of Coding 95

Table 23 Frequency: Learn Syntax Before Applying it to Solving Problems 95

16

Table 24 Frequency: Learn by Analyzing and Testing Working Programs 95

Table 25 Frequency: Analyze Problem and Write Algorithm Before Coding 96

Table 26 Frequency: Do Assignments Discussing with Peers in Groups 96

Table 27 Frequency: Copy or Emulate More Experienced 96

Table 28 Frequency: Simply Do All the Assignment Tasks 96

Table 29 Frequency: Ways of Learn lug 97

CHAPTER 1

INTRODUCTION

It is a well-known fact that programming courses are considered difficult by

studefts. Teachers have been and are still complaining about the poor performance of

students in the introductory programming courses. Surveys that have been done so far

show that failure rates in introductory programming courses are very high. Students

in our English CEGEP (College d’Enseignernent Général Et Professionnel) computer

science programs including Vanier College are no exception; they are also struggling

to succeed in these courses. They have difficulties writing an algorithm, the basis of

all programming problems. At the beginning of the first semester. the majority of new

students have the misconception that they will do well in programming because they

have been playing with computers for a long time. After some time in the first

programming course, they realize that programming is not as easy as they have

thought it would be. They forget that computers are machines and will perform and

process only what is being asked of them. They have difficulties in learning “logical

thinking”, an important requirement for succeeding in a programming course.

Another related problem is that they often cannot apply and combine the various,

concepts in programming that they are taught in order to solve programming

problems. Most of them are surprised to learn that the tasks to be programmed have

to be very detailed so that an optimal solution could be found. There are also other

important misconceptions (which will be later discussed in the literature review) that

hinder novice students.

18

I. PROBLEM STATEMENT

Although programming is one of the many skills that computer science

students must acquire, there have been concerns expressed by computer science

teachers about their students lacking basic programming skills. Poor performance and

high failure rates in introductory programming courses are common. McCracken

(200 1) headed a working group made up of researchers from five countries that

studied the phenomenon. They devised assessment exercises to test the programming

skills of first-year computer science students from four universities. The team

reported that many students do not know how to program at the end of their

introductory programming courses. Two hundred and sixteen students took the

assessment test and the average score was just 20.8%.

In another study it was Found that half of the students in the Department of

Computer Science at the University of Glasgow do not achieve the minimum grade

necessary to automatically progress to the next level (Mancy & Reid, 2004). In 2002-

2003, only 50% of students obtained a grade C or better which is the required grade

to continue to the next level. The figure cnfirms that students commonly experience

difficulties with programming.

At Vanier College, during the academic years 2002 to 2006, an average of

32% of the students in the Computer Science Program failed their first programming

course, although emphasis was being placed on supervised practical exercises in

laboratories, which is usually not done at universities. The figure was calculated from

success data extracted from the SRAM (Service Regional d’Admission du Montréal

métropolitain) database.

Thus, we need to know more about how the learning of programming by

computer science students takes place, how students come to understand concepts and

gain the ability to apply these concepts, and how they gain the technical and practical

19

skills needed to be able to write efficient programs. We also need to understand why

failure rates among programming students are so high by considering numerous

factors such as prior academic background of the swdents, time spent studying and

practicing programming, and regular class attendance. Do computer science students

succeed better if they have a strong mathematics background? We need to look at

students’ abilities and methods of processing information that they receive in

introductory programming courses about programming concepts, programming logics

and techniques, and the syntax of the programming language used.

•Since most studies done to date were done at the university level, it is

interesting to see whether similar results are obtained at the CEGEP level. This study

aimed to find out how our CEGEP students are really coping with their programming

courses and to learn about their concerns. This research should therefore benefit

students as well as teachers. The students struggling with introductory courses may

require particular pedagogical approaches on the part of their teachers. It is hoped

that teachers can then better understand the state of mind of the students in their

learning process and become more aware of the difficulties that students are

encountering. At the same time certain misconceptions can be clarified. Teachers will

then be able to modify their instructional strategies to make the courses more

interesting and motivating to the students and help them in their learning process. In a

large sense, improving the quality of teaching and learning was the main aim of this

research.

CHAPTER 2

LITERATURE REVIEW

Scholarly articles investigating how students are doing in computer science

have been scarce until recently. Computer science teachers are rarely interested in

educational research since most of them do not have formal teaching training. Most

olthe articles published by teachers on this subject focus on their course contents and

teaching practices. ut learning programming is not a trivial task. This chapter

introduces a model of learning most appropriate to programming followed by some

results of previous research done on learning and teaching of the subject.

I. CURRENT LITERATURE

.1 A Current Model of Learning

Every student who starts a computer science program or any other related

field has some kind of knowledge and background. This knowledge has been actively

constructed by the student through different means. Programming cannot be learned

by passively absorbing materials ftorn textbooks and lectures. Rote learning also does

not help. Learning programming must follow a constructivist approach. This

approach is a dynamic one students construct more knowledge using their prior

knowledge. This can be done through much practice, writing, testing and running

programs. The students make progress by learning from the errors they make in their

programs. Students nay learn in different ways, but they all should know the

programming concepts and how to use them in their tasks in order to succeed. There

are different factors that contribute to their ability to apply these concepts to

successlully write a program that is efficient and at the same time produces what it is

21

supposed to produce. This study looks at some of the factors that contribute to

success in introductory programming courses at Vanier College.

I .2 Misconceptions

Early research considering the issues involved in learning how to program

looked at the cognitive aspects of the problem. Du Boulay (1989) analyzed the areas

in which students had difficulties. The areas include understanding the properties of

the machine, knowledge of the syntax of programming languages, understanding the

structures of programs as well as knowledge of the editors used to enter programs in

the computer, correct them for compiling errors, test and execute them. Du Boulay

also analyzed several misconceptions that novices have about programming concepts.

Most of the examples used in explaining concepts are mathematically oriented, but

students cannot see the difference between a variable in algebra and the notion of a

variable in programming. They cannot see how a variable or a variable name

represents an address of the computer’s memory. They were surprised to see that in

programming it is possible to write the following statement (in BAS[C, a

programming language in the early days of computer science): A = A + I meaning

that you are assigning the result of the increment by one olthe variable A to A itself.

In Algebra, this statement is illegal. Also, students cannot see the logic behind the

statement (in PASCAL, another popular programming language mainly used to teach

elements of,programming) A : B; Novices would see a link between A and B such

that whatever happens to A will also happen to B, which is wrong; the other way

round is right. These are two misconceptions among others that may result in students

making errors in their programming tasks. Furthermore, anecdotal evidence shows

that some students think that they would be good in programming because they have

been using computers playing games and do word-processing since an early age. But

when it comes to programming they have difficulties reading and interpreting error

messages when they try to compile and run their programs, and students are weak in

taking appropriate action.

1 .3 Cognitive abilities in programming

Linn & Dalbey (1989) surveyed 500 high school students looking at what

they called a chain of cognitive accomplishments needed in programming and

studying how the chain leads to progress in the learning of the subject. That chain

consists of the language features of the programming language used, design skills and

problem-solving abilities of the students. The language features are the rules or

syntax of the language. These are usually explained to the students by the teachers

who give exercises so that the students are able to see where and how to use them.

Design skills are the next step that the students need to grasp. They are the

set of techniques that combine the language features to write a program to solve a

problem. These techniques are used by the students to create a series of templates,

each of which performs a particular function. Design skills also involve planning,

testing and reformulating. Planning is needed to solve complex programming

problems and this is rarely done by novice programmers. On the other hand, testing is

important in order to know whether the programs perform as they are intended to.

Reformulating is the skill that is needed to modify the programs. Programs are

modified for various reasons, such as logical errors or change in specifications and

requirements of the problems among others.

The last link in the chain ofcognitive accomplishments is problem-solving.

This is the combination of the design skills and the language features that the students

use in order to apply templates learned in one system to a new system.

1.4 Cognitive abilities as factors of success

In their study, Linn & Dalbey linked the abilities to characteristices such as

the general ability or intelligence of the students inolved in their study as well as

access to computers, previous interest in computers, gender and programming skills.

They found that the programming skills of the students and their success in the final

23

assessment were correlated with increased access to computers. interest in and

previous knowledge of computers.

There was also a positive correlation between the students’ general academic

ability and their performance. There was no difference in performance when gender

was considered. However, these results may not be applicable to today’s computer

science courses, in part because the research was done with programming languages

that are not being taught now. Furthermore, the study done by Linn and Dalbey was

done in high schools where computer science was newl introduced and the teachers

did not have much experience in teaching the subject.

Both Du Boulay (1989) and Linn & Dalbey (1989) did early research

projects with the objective of helping teachers become aware of the difficulties

students were facing so that they could alter the courses and teaching assignments. It

would be interesting to see whether these findings still hold true nowadays in our

CEGEP environment. Furthermore, access to computers may not be as important an

issue as it was twenty years ago. Interest in and previous knowledge of computers

and computing will be more pertinent to the question.

1 .5 Cognitive characteristics

Another type of factor considered in research done on the poor performance

of novice students in introductory programming courses is cognitive style and

specific abilities. Mancy & Reid (2004) focussed on what the authors referred to as

working memory space (WMS) capacity and field dependency (FD). They wanted to

know how useful WMS and FD can be as predictors of success in computer

programming. WMS is that part of the brain that holds information temporarily,

processes it. and stores it in long-term memory for further use. The capacity of the

WMS is limited and information is not held for a long time. The researchers

explained the concept of field dependency the following way: a learner who is not

24

able to reorganize concepts and integrate them with past experience to solve problems

is considered field-dependent. Field-independent individuals are also able to extract

pertinent information and leave irrelevant materials aside.

En spring 2003. Mancy & Reid administered tests for WMS and FD to 150

first year computer science students at the University of Glasgow and correlated the

findings to their performance in their assessment tasks. To test WMS, the authors

used a digit span memory test based on Jacobs (1 887). The memory test was not done

with a computer. The students were read a series of numbers and they had to rewrite

the series, forward or backward depending on th series read.

As for the FD test, they made use of a slightly modified test by Witkin et al.

(1977). The students were given a set of complex figures and some simple geometric

shapes to be found in the complex figures. They had to trace the outlines of the

shapes. The score was the number of correct shapes found and traced with the

complex figures.

From those two tests, the researchers could classify the students into

categories with level of WMS and level of field-dependency respectively. The final

grade of the cohort of students was calculated based on the results of four

examinations given to the students throughout the course of the year. There were two

pmctical examinations and a class test which were worth 30% of the final grade and

the final examination which was worth 709 of the final mark.

Though it has been shown that WMS and FD are useful predictors of success

in conceptual areas such as mathematics and statistics and that problem solvers use

WMS to keep track of goals and plans and that FD students are better problem

solvers, the authors found to their surprise that WMS is not a factor of success in

programming, even though WMS limitations have been shown to hinder learning

progress in science education. At the same time they found that students who scored

25

well on the field dependency test i.e. those who are considered to be field-

independent scored better in their examinations.

I .6 Computer Science discipline

There have been recent attempts to define computer science education

(CSE), allowing computer science to be considered as an independent academic

discipline, just as mathematics or any science subject is. From this perspective,

Hoimboe et al. (200!) did a survey of research done in computer science education.

Apart from the psychological and cognitive aspects of research done, the team

noticed that most current research is being done on different ways of implementing

computer technology in the teaching and learning of different subjects. They found

there was insufficient CSE research done to understand the issues involved so as to

improve the quality of teaching and learning in the computer science disàipline, hence

defining success. They tried to define what constitutes a good teaching practice so as

to improve the quality of learning of programming. They suggested that a good

teacher should not only know and master his or her subject matter but also that he or

she must have essentially what is referred to as pedagogical content knowledge so

that the student can learn to construct knowledge and succeed. According to Holmboe

et al. (2001), close collaboration is needed between computer science teachers and

researchers in education science, psychology and epistemology.

Students’ performance is dependent on the ways disciplines are being taught

and also on how the students perceive the disciplines. Programming courses are not

exempted from this. Many students drop out of programming courses because they

find programming difficult. They cannot process tile information they receive; they

do not understand concepts used in programming, the programming logic and

techniques. Some teachers, knowing tile strengths and weaknesses of their students,

have developed and adapted ways of teaching that correspond to the learning path of

the students. But they rarely document their practice. Without detailed

26

documentation, it is difficult to deduce whether success in learning programming

depends largely on the ways of teaching or on the learning methods of the students.

On this question, a survey of methods to evaluate how computer science is taught was

done by Carbone & Kaasboll (1998). They noticed that the most common methods to

evaluate teachers and teaching methods were evaluation questionnaires, analysis ol

examination marks and laboratory experiments.

Similarly. many universities do a survey on students’ impression of a course.

The survey usually asks the level of satisfaction of the students with the course in

general, as well as with the teachers and specific areas of teaching. Much can also be

learned from open-ended questions which usually accompany the survey. The

comments made usually target the teaching methods. Examination marks are

supposed to reflect the students’ understanding and competence in the subjects. The

authors gave an example where students who were taught programming by means of

developing formal specifications of programs improved their examination marks. But

no details were mentioned concerning the student population and the reliability of the

measure. However, this survey did not fully answer the question of whether student

success depends on the teaching methods. It did shed some light on the delicate issues

involved in learning how to program. As for experiments, not much research has been

done to evaluate teaching and learning programming because setting up a controlled

experiment in a laboratory is considered too complex.

1 .7 Learning aspects

On the issues on learning programming, Lahtinen et al. (2005) did a

descriptive and comparative correlation analysis of the difficulties students from

several universities in Europe encountered in programming courses through a

questionnaire which surveyed programming concepts and issues with which they had

difficulties. The team also looked at the learning and teaching process as well as

materials used in the learning process. They wanted to know how the students’

27

performance was influenced by factors such as the background of the students. course

contents, learning situations and materials. The learning situations that Lahtinen et al.

considered were lectures, exercise sessions in small groups, practical sessions in

computer rooms, studying alone and programming by themselves. Examples of

learning materials considered in the survey were: textbooks. lecture notes and copies

of transparencies, exercise questions and answers, and example programs. Both

students and teachers participated in the survey. Fifty percent of the students surveyed

had prior programming experience. Those students thought that they had a moderate

to good level of programming skills.

Clearly, students in the programming courses often had different experience

levels making teaching the courses challenging for the teachers. For the course

contents, the opinions of both the students and the teachers on the most difficult

concepts were approximately the same. Teachers and students both considered that

learning by examples was the most helpful. As for the learning situations, students

tended to think that they would be better off learning by themselves whereas the

teachers thought that lectures were more beneficial to the students. Teachers thought

that the students would also learn better with more guided exercises. Again, the

results may partly be explained by the misconceptions that students have about

programming. Students do not realize the amount of difficulties that they have; they

sometimes overestimate their understanding. This research paper aims to help raise

awareness o’ the misconceptions that exist in the minds of students. especially

computer novices.

1 .8 Factors contributing to success

Several researchers or teams of researchers have begun recently to look at

factors contributing to success in introductory programming course. Wilson & Shrock

(2001) studied factors such as previous computer experience, self-efficacy. comfort

level, math background and gender among others. They tried to determine what

28

relationship exists between these predictive factors and the mid-term course grade

from 105 students they surveyed at a comprehensive Midwestern university. The

students were enrolled in the first introductory programming class required in the

computer science major. The authors used midterm grades as the determinant of

success. They wanted to include all the students who started the course, even those

who would drop out before the end of the semester. They wanted to survey as many

students as possible because of the high attrition rates in introductory computer

science courses.

They found out that comfort level was the best predictor of success in the

course followed by math background. Comfort level was described by the authors as

the ease of participation in class and laboratories, understanding the concepts in the

course, and perception of the difficulties in the completion of assignments. It also

involves anxiety felt while working on computer assignments.

Previous computer experience was divided into previous programming

experience and previous non-programming experience. They found out that previous

programming experience which included either a previous programming course or

self-initiated programming plays a positive but not a significant role in student

success. As for previous non-programming experience, the authors found out that

game playing, one of the activities mentioned in previous non-programming

experience, had a negative effect on the’rnidterrn grade.

A similar result was reported by Hagan & Markham (2000). They indicated

that students who have had experience in at least one programming language perform

significantly better in assessments than those with none, and that the more languages

with which they had experience with, the better the performance tended to be.

In a study done in Ireland, Bergin & Reilly (2005) found that there is a

strong positive relationship between programming performance and the Irish Leaving

29

Certificate scores in mathematics. But they also observed that there was no significant

difference in performance between students with prior programming experience and

non-programming experience.

Goold & Rimmer (2000) looked at some other factors affecting the

performance of a group of 39 Australian undergraduates majoring in computer

science in their first-year computing courses. During the first semester, two courses

were given, Information technology and Basic Programming Concepts. Raving

successfully completed them, the students took Data Structures and Algorithms.

Among the 39 respondents, only 25 of them took the Information technology course

while the rest were exempted and received credits since they had some experience in

the subject matter due to after school activities or pre-university courses.

Results in these three courses were analyzed. Performance was defined as

the grades received for these courses. In the nforrnation Technology units, mastery

of applications software was part of the measurement of performance. It was assessed

through assignments which accounted for 40% of the flnal grade. The same applied

for the basic programming course. As for the data structures course, assessment

included examination (60%), mid-term test (10%) and assignments (30%). The

authors looked at how prior experience, problem-solving abilities, dislike of

programming and secondary school results affected performance in the three courses.

They found the following correlations between performance and these

factors: Dislike of programming was seen to have a very negative influence on

performance in computer course examinations. Problem solving ability has a positive

correlation with performance in the Basic Programming Concepts course, but it did

not affect the overall performance in the higher level Data Structures and Algorithms

course.

30

Those students who did some programming before university did better

overall in data structures. But the results did not show any correlation between prior

programming experience and examination marks. The students demonstrated better

programming skills in assignments that contributed to the final grades. Secondary

school results had only a slight positive correlation with success in the Basic

Programming Concepts course. In the other courses. the significance was almost non

existent. Finally, gender was not a factor in performance in the advanced

programming course.

1.9 Motivation as a factor of success

Bergin & Reilly (2005), in another study, also looked at the influence of

motivation and comfort level on learning to program. However, this study looked at

how the factors affect performance in an introductory object-oriented programming

module. Object-oriented programming is a new technique of programming. Contrary

to the original style of procedural programming where the focus is on the design of

the processing (the design of procedures which perform appropriate actions on

different types of basic data types such as integer, real or character or other types

derived from the three basic ones), object-oriented programming encapsulates the

data with the methods that process the data to produce a class which is considered as

the data type. So whenever an object is defined as some class type, the appropriate

procedures or processing are also known. Students must be acquainted with the new

• philosophy.

Bergin & Reilly (2005) defined motivation as the need and desire to be

successful in their learning process. They also divided the students into two

categories, those who were intrinsically motivated and those who were extrinsically

motivated. For the latter, rewards such as grades are the motives to persevere whereas

for the first group, it was personal satisfaction or personal achievements which drive

them to go forward. The authors considered the students’ ease with asking and

‘1

answering questions in programming, and their self-esteem and self-efficacy when

•they described comfort level, in this study. the authors found that students who are

more intrinsically motivated perform better. The higher the level of intrinsic

motivation the greater is the programming success. They found that extrinsic

motivation does not have a significant influence on proramrning performance. As

for comfort level, it was found that students with higher self-esteem perform better

than students with lower self-esteem, but there was no significant difference found

with self-efficacy.

1 .10 Time spent studying as a factor

Another factor that was studied was time spent studying. Carrington (1998)

did a survey analyzing the amount of time full-time computer science students at the

University of Queensland in Brisbane (Australia) spend on their homework. Students

were complaining that they’ were overloaded with excessive work. The amount of

time spent by his students in a software design course was monitored for three

assignments. The time monitoring was intended to determine how students spent their

time and the causes of any overload. For the first two assignments, there was a

positive correlation between time spent and the marks received, whereas for the third

one, it was noticed that the correlation was slightly negative. Carrington explained

this result by noting that the third assignment was much more difficult and that the

students spent L lot of time trying to debug their program without much success.

Although the students were told that time monitoring and reporting were an

integral part of the assessment and that it was worth 5% of the mark, not every

student reported the time spent on a regular basis; around 60% of students supplied

data every week and 90% of them supplied the data for most weeks. In the paper it

was not mentioned how many students took part in the study. It was also noticed that

the reporting of time usage was concentrated during the weeks when the assignments

were due. The results show that the students surveyed did not study materials related

32

to programming regularly and that the overload reported was due to poor time

management. It would be interesting to see whether Carrington’s findings would also

hold true for a Quebec college environment. However, it is beyond the scope of this

study to repeat Carrington’s work at the CEGEP level.

1.1 1 Learning styles as factors of success

Success in programming also depends on how students learn .A survey was

done by Byrne & Lyons (2001) with 110 humanities students taking a first year

programming course in Ireland. Successes in the course were defined as the ability to

specify, design, code, and test a computing solution. The students were assessed on a

final three-hour written examination which was worth seventy percent of the final

grade and on twenty assignments worth a total of thirty percent of the final grade.

In addition to gender, prior experience, and previous academic performance

in mathematics, science and languages, the authors looked at KoIb’s four learning

styles as factors influencing the scores attained by the students. The four learning

styles are: convergers, divergers, assirnilators and accommodators. Convergers are

practical, preferring technical tasks and problems over those dealing in social issues.

They also like to experiment with new ideas and laboratory assignments. Divergers

are the opposite of convergers; instead of hands-on they prefer to observe situations

from different points of view, do focus groups and work in groups. Assimilators’ are

people who like to put information they gather in logical form in order to understand

the issues; they prefer to read, go through lectures and think things through

thoroughly before taking action. Accomodators are hands-on people; they like to

actually try out challenging things either by themselves or in groups.

According to Byrne & Lyons, convergers perform best in all academic

fields. As for gender, female students did better than male ones. But the difference

was not very significant. Males had a mean score for the final examination of 39.7%

-1-,
-‘3

whereas the females scored 43.9%. Those with backgrounds in math and science

obtained higher marks in programming exams than those having English and foreign

languages as their main prior academic experience. Finally, those with some prior

programming experience generally did better.

.12 Gender dimension

There have also been studies done looking at gender differences in attitudes

and perceptions in learning programming. Carter & Jenkins (1999) surveyed students

from Leeds and Kent Universities in UK by giving them seven statements and asking

them for their opinions. The statenients used were:

1. I findprogramming easy.

2. Iprefer to work alone.

3. When Iget stuck Iwill always approach a lecturerJr help.

4. When Iget stuck Iprefer to ask myfriends for help first.

5. When Iget stuck Iprefer to work out the answer myself

6. In general, men are better ihcin women in programming.

7. The lecturers are more willing to help female students than male.

For the first six statements, no significant difference in attitude was found between

males and females. BLIt for the last statement, male students strongly believed that

this was true. The authors also compared the students’ performance; they found that

female students performed better than male students.

1 .13 Ways of learning

Furthermore, Booth (1992) did a phenomenographic qualitative study on

learning to program by interviewing first time programming learners.

Phenomenography is an empirical qualitative research method often used in

educational research. Data is collected using interviews. These interviews are

34

recorded and the researchers take time to analyze the data and try to understand and

explain the phenomenon they are researching. The interviews are transcribed and are

read and reread, in context. Excerpts of the transcript are de-contextualised, compared

and grouped in different categories. In this way, researchers are able to understand the

phnomenon.

Booth addressed the fundamental question of what programming means and

what is demanded when learning to program. She wanted to understand how students

think and how this helps them in programming. The questions she addressed in her

work were the following: Wlat does it mean and what does it take to learn computer

programming? She found that first-year programming students learn programming in

four different ways, “Coding’, “Understanding and Integrating”, “Problem Solving”,

and “Participating and Enculturation”.

An extension of the study was done by Bruce et al. (2003) using the same

qualitative method. They added a fifth category which they called “Following”. From

the interviews the authors made, we can perceive how the students new to

programming learn the art. They also went further by looking at additional aspects

such as the students’ learning approaches and activities, their view of the

programming language learned their learning motivation and their ways of seeing

programming.

l.13.I Coding .

Students using coding focus on the syntax that makes tip the language being

earned. The programming language is seen as a means to develop one’s competency

with the syntax. They see programming as the ability to write codes. They think that

the more codes one knows. the better one will be able to program.

They also spend their time looking for examples or pieces of codes in

textbooks, on the internet or other sources that will help them finish their

35

programming tasks. Tf they do not receive any kind of help when they ask for it, they

become frustrated and disillusioned. Overall, for them, learning the syntax of the

programming language is the most important part in their learning process..

1 3.2 Understanding and Integrating

Students using understanding and integrating consider understanding as an

integral part of their learning process. They think that they would he able to write a

program after understanding the concepts. Since failures at the beginning very often

arise due to the fact that the students are not yet able to relate the tasks to the concepts

learned, many tend to give up on programming. Those students need to persevere.

They need to build their knowledge based on their schemata, i.e. prior experience and

knowledge, block by block. They have to assimilate one concept before going to the

next.

Their learning approach is based on understanding the concepts as well as

concentrating on the task at the same time. They would write the codes only after

they have understood. They would use their experience for further tasks. They would

also use different sources to gain these experiences such as the internet. For them,

learning programming is learning the structures and the logic of the programming

language. Their motivation extends more towards understanding the big picture of

programming through understanding the concepts rather than concentrating on the

tasks. Lastly, for them programs consist mainly of syntak. codes, concepts and logics

integrated together.

1.13.3 Problem Solving

Learning programming for the students using this way of learning starts with

the problem. They focus simultaneously on the problem to be solved and the

understanding of the concepts. They learn what it takes to solve the problems and to

36

finish the task. They do not focus on understanding first but on the ability to end up

with the solutions.

They place a high priority on planning before writing the codes. For them

learning the programming language is the means to solve the problems. They are

motivated by the problems they have to solve and see programming on the whole “is

about creating solutions to a problern’.

.13.4 Particpating or Enculturation

Students try to be part of the community of programmers, learning their

culture and their ways of thinking, to gain experience and learn what programming is

all about. They try to emulate their peers. They, too, need to learn the concepts and

the syntax of the programming language. But they focus mainly on the

communication with other programmers as their learning strategy.

They consider the programming language as part of learning the culture of

programming and are motivated by the prospect of finding work in the domain. For

them, programming is a culture; they can mingle with their peers sharing ideas and

experience.

1.13.5 Following

Students in that category simply try to get through the unit. This means that

they try only to complete whatever is being asked such as assignments, tests and

exams. The main issue is to get marks; this informs their learning strategies and

activities. Their desire to pass the course is the ultimate goal and iiotivation, and it is

also the way they see programming.

They differ from other students in that they want the course to be structured

in such a way that it rnaches their expectations and needs. For them. teacher

37

feedback is crucial because they want to know whether they are on the right track and

passing the course.

However, this study did not survey the relationship between success of the

students in their programming courses and their ways of learning mentioned above.

2. GAPS [N THE LITERATURE

The surveys of Du Boulay (1989) and Linn & Dalbey (I 989) were done at

the high school level; the others discussed in the literature review were done at

various universities. There has been no educational research of this kind done in our

English CEGEP environment. It would be interesting to see if our college

environment differs from the others. Research to answer questions about how the

learning of computer programming takes place, on how students come to understand

programming concepts and gain the ability to apply these concepts and on how

students gain the technical and practical skills needed to be able to write efficient

programs, can benefit the faculty as well as the students of computer science.

At the same time, it can help to see whether the factors such as prior

academic background, hours of study, ways of studying, and regular class attendance

play a significant role in the success of our English CEGEP students in their

introductory prograrnrping courses. This study hopes to result in higher quality

teaching and learning of computer science. Furthermore, the phenonienographic study

done by Booth and Bruce et al. did not look at possible relationship between students’

performance in programming and the ways they learn it. This study also attempts to

see whether there is a relation between the ways of learning, Coding, Understanding

and Integrating, Problem Solving, Participating or Enculturation and Following,

described by Booth and Bruce et al. and the performance of our programming

students. Do students using one way of learning perform or succeed better than

students using another way?

38

3. THE RESEARCH QUESTIONS

This descriptive study set out to investigate, from a cognitive perspective,

how Vanier College students in introductory programming courses learn the subject.

Since there has never been a study done on the subject at the College, the study will

focus on several factors that contribute to the success in the courses. Can the ways of

learning programming of Vanier students can be categorized according to Booth

(1992) and Bruce et al. (2002)? Is it possible to compare how successful the students

in each category are? Success in this context means passing their programming

courses.

From the teaching experience accumulated throughout the years spent in

teaching computer science and programming, from numerous discussions with

colleagues in the Computer Science department and from anecdotal evidence, the

following hypotheses were initially selected to he tested:

• Computer Science students using understanding and inregrating succeed

better than students using following, coding, or problem solving.

• Students using problem solving succeed better than those who use

participating and enculturation.

• Students who use coding peiformn better than those who pre/r particpating

and encu/turation.

In addition, the author set out to see whether there is a gender difference in how

students learn programming. For example, it is interesting to know the most common

way of learning (described by Booth and Bruce et al.) of female students compared to

male students who are taking programming courses.

CHAPTER 3

RESEARCH DESIGN

I. METHODOLOGY

In order to answer the initial research questions posed, data were gathered in

two different ways. a survey questionnaire (Appendix A) filled by the participants

and a semi-structured interview. The Survey questionnaire was used to collect

quantitative data to be analyzed using the statistical package SPSS for Windows. The

interview was used to corroborate the answers given by the students in the

questionnaire.

One question in the questionnaire explicitly asked the participating students

to choose away of learning which they feel is the most appropriate for them. The

question asked was the following:

Which of the following describes you the best, when you learn

programming? (Choose only one.)

a. I learn the syntax of the programming language first and then

spend a lot of time at the computer testing and running programs.

b. I need to understand the concepts before i can apply them to

practical tasks. I need to understand a concept fully before

learning others.

c. I start by analyzing a problem and then look at the concepts and

syntax necessary to solve it.

40

d I gain experience and learn what programming is all about by

learning the cultures and the itavs of thinking of experienced

progrmnmers and try to follow their example.

e. I learn by trying to do all the assessment tasks that are part of the

course requirements.

f I do not know.

The question placed the students into the categories enabling the researcher to test the

initial hypotheses.

There was a set of open-ended questions at the end of the questionnaire

(Appendix A). Learning how to program is best done by doing programming

assignments, by practising coding. Hence, how the students approach a programming

task can give us a •fair amount of information on how they learn. We can thus

categorize the students by the ways they deal with the difficult task of learning the art

of programming. The open-ended questions posed in the questionnaire were:

(1) Can you elaborate on how you do a programming assignment?

(2,) Is there a set of steps that you usually take to complete it? Please

explain.

A pre-test of the survey questionnaire was administered to 33 first and

second year computer science students in order to detect any flaws or ambiguities.

Appropriate modifications were made resulting in the final questionnaire used in the

current survey. In the pre-test questionnaire, students were asked to choose from a

range of numbers their average high school grade, their final grade in their high

school mathematics course, the number of hours they work outside school, and the

number of hours they spend studying. Accuracy was lost when medians were

calculated for the correlation analyses. Thus, in the revised questionnaire, students

were asked to enter a real number for each of these variables. Also, a set of questions

41

(QuestIons 23 through 30 in Appendix A) about the activities describing their styles

of learning were added. These questions were used for triangulation purposes.

2. DATA COLLECTION

The researcher went to class and explained to the students the purpose of the

research. The students were then asked to fill the questionnaire. The quantitative data

collected were analyzed by the statistical program SPSS. The open-ended questions at

the end of the questionnaire were analyzed using content-analysis methods. The semi-

structured interview was done one to two weeks after the questionnaire. Only

students who volunteered were interviewed. The interviews were mostly done on an

individual basis in the office of the researcher except for two pairs of students who

asked to be interviewed together. The students were reminded of the purpose and

importance of the research and that their answers would remain confidential. The

interviews were taped. Each interview lasted around 15 to 20 minutes.

3. PARTICTPANTS

Fifty-eight Vanier College students (other than the ones who did the pre

test), thirty-four (approximately 59%) of whom being in the Computer Science

Technology Program and twenty-four (41%) of whom being in the pre-university

Science Program, volunteered to participate in the survey. The Computer Science

students were in the first and second semester. The first semester students were taking

the introductory programming course at the time of the survey which was conducted

in March 2007. The second semester students had already taken the course and

received a final grade for it. As for the Science students, they were taking the

complementary programming course which is equivalent to the introductory

programming course taken by the Technology students. Even though Computer

Science students were using the Java programming language and Science students

42

were using the C++ programming language, they all had the same competencies,

objectives and standards to fulfill.

The percentage of female stLldents taking the course was low; only 8 out of

the 58 participants were females. This means that looking at the difference in gender

performance did not yield statistically significant results.

Both computer science and science students had their theory classes

conducted in an ordinary classroom or lecture room and their practical classes in the

computer laboratories. In the theory classes, the students were mainly lectured to;

programming concepts were being taught using examples. Sometimes the teacher

would demonstrate, in the classroom, some of the examples using a laptop connected

to a video projector.

During laboratory sessions, each student had a computer to himselfYherseif to

test his/her programs since the labs are mostly hands-on. There were more practical

or laboratory hours than theory classes in a ratio of almost two to one meaning that

the students had a fair amount of one to one contact hours with the teachers. On top

of that, the students are usually free to come to any available computer laboratories

when they want to work during their free periods. They have plenty of opportunities

to practice their programming skills.

4. QUANTITATIVE DATA

Data were collected using quantitative as well as qualitative methods. Fot:

the quantitative data, the instrument used was the questionnaire developed by the

researcher especially designed for the survey. It collected data on the following main

items: (a) gender, (b) high school average grade, (c) high school prerequisite

mathematics grade needed to enter the Computer Science Program, (d) previous

computer knowledge, (e) prior programming experience, (1) class attendance, (g)

ways of learning and tackling assignments, (h) number of hours worked outside the

43

curriculum, (i) hours spent swdying and doing the course assignments, (j) the level of

comfort in understanding the concepts, (k) the level of comfort in problem solving

and (I) the level of comfort in doing the course assignments. The three questions on

the last three factors depicting corresponding levels of comfort used a Likert scale

from 0 to 4. corresponding to (0) strongly disagree, (1) somewhat disagree, (2)

somewhat agree, (3) strongly disagree, and (4) don’t know. Questions (14) to (16) in

the questionnaire (Appendix A) given as statements were as follows:

(14) Ihave difficulties in understanding the concepts ofprogrammin.

(15) 1 have difficulties in problem solving.

(16) 1 find computer science difficult.

These variables were correlated with the final grade received for the

introductory course. The final grade for the introductory programming course for the

computer science students was calculated in the following way: assignments and

quizzes were worth 40% of the final grade; three tests were given worth 1 5%, 20%

and 25% respectively. As for the course for the science students, the assignments and

exercises accounted for 25% of the final grade; the three tests had a value of 20%,

25% and 30% respectively of the final grade. The final grades received by the

respondents were officially handled by the coordinator of the Computer Stience

department who oversaw the smooth running of the courses given by the department.

Frequency tables (Appendix D) concerning the following variables, gender,

access to a computer at home, niother tongue, high school language of study, prior

computer knowledge, prior basic programming, use of the recommended text,

working in group doing an assignment, working in group preparing a test,

participation in class. missing classes and ways of learning were generated.

Other variables involved in the survey relate to the following:

44

(a) understanding programming concepts before using them. (b) trying examples to

understand the concepts of coding, (c) learning syntax before applying it to solve

problem, (d) learning by analyzing and testing working programs, (e) analyzing

problem and write algorithm before coding, (f) doing assignment by discussing with

peers in group, (I) copying or emulating more experienced programmers and (j)
simply doing all assessment tasks.

These variables described the learning process of the students. The questions

posed as statements also used a Likert scale ranging from (0) to (4) corresponding to

strongly disagree, somewhat disagree, somewhat agree, strongly agree and don’t

know respectively. Examples of the questions (see Appendix A) are:

(23) 1 try to understand the programming concepts before using them.

(25) 1 learn the syntax of the programming language before applying it to

solve a problem.

(26) I learn programming by analyzing and testing working programs.

(27) 1 analyze problems and write the algorithms beFore attempting to do

some coding.

(29) 1 learn programming by copying and emulating others who are more

experienced.

These questions are similar to the way1s of learning; they are given as a

triangulation method. Correlation analyses were generated to look at relationships

between the variables mentioned above and the final grade of the students.

Independent-samples t-tests were conducted to test the hypotheses.

5. QUALITATIVE DATA

Additional qualitative data was collected using a semi-structured interview.

Ten students among the Computer Science Students volunteered to be interviewed on

the basis of their answers to the questionnaire. The following questions were used

45

during the interviews. These questions address the question of how students go about

learning to program:

1. Tell me why you chose computer science.

2. What is a programming language to you?

3. What are the main techniques that you use when you learn to program?

4. What type of assessment tasks help you most in learning to program?

5. Can you describe how you go about writing a program?

6. How do you overcome the frustration when your program is not

working?

7. [s there anything that you would like to see improved in the ways

learning how to program is being taught?

The qualitative data collection was done as a triangulation method and

expands on the answers given by the participants in the survey questionnaire. The

students were asked to express whatever views they have about their learning process

in programming. The interviews were recorded and transcribed. The answers were

then analyzed. The procedures for the interview are given in Appendix B.

6. ETHICAL ISSUES

All the participants took part in the survey voluntarily; they signed a consent

forni (Appendix C). Those who were under 18 had obtained their parents’ permission

to participate. They were given an explanation of the purpose of the research project

and why their participation was helpf’ul. They were explained the process by which

the research would be conducted. how the data would be used and to whom the

results would be reported. In doing so, any deception could be avoided. Furthermore,

participants were told that they could withdraw from the research for any reason

whatsoever without being penalized in their academic performance.

46

Moreover, the participants were informed that their personal data would be

protected and would remain confidential. The identifying descriptions of the data

would be removed so that their privacy is protected.

CHAPTER 4

DATA ANALYSIS AND RESULTS

I. QUANTITATIVE DATA ANALYSIS RESULTS

Vanier College is a college where the language of education is English. But

it is interesting to note that the student population is rather particular. This

particularity is also reflected on the group of respondents to this survey. The

frequency tables (Appendix D) show that less than half (43.1%) of the students have

English as their mother tongue. Exactly half of the students had done their high

school studies in English.

Furthermore, 53.9% of the respondents said that they had a good or very

good knowledge of how computers work, 27.6% said that they had a fair knowledge

and the rest had a rather poor or no knowledge at all. These students who had not

done any programming before starting the introductory course accounted to 48.3% of

the respondents. Among the rest, 48.2% said that they had very little or a little prior

experience in programming. Only two of the students firmly stated that they had done

much programming before. When asked whether they usually used the recommended

textbook, 49.9% replied that they used it sometimes, or often, or all the time. The rest

said that they never or rarely did.

Tt is also interesting to note that more than half (53.7%) had at one time or

another worked in group when doing their programming assignments. But, when

they were asked whether they prepared for tests together. twenty five (43.1%)

students said that they never studied for tests with others whilst 16 students (27.6%)

48

said that they sometimes or often worked together. The rnajoritv(74.2%) of the

students never or rarely missed classes.

When asked aboLit the level of comfort with programming, 63.8% answered

that they did not have difficulties understanding the programming concepts: 74.10/0

strongly disagree or somewhat disagree that they had difficulties solving problems

and 69% replied that they did not find computer science difficult. One thing that they

had in common is that they all had access to a computer at home.

The respondents were also asked explicitly in what category they would

place themselves among the five ways of learning; they were asked to choose only

one, that which would fit them the most. The following statements were used in the

survey question to describe the different ways of learning:

1. [learn the syntax of the programming language first and then spend a lot

of time at the computer testing and running programs (Coding)

2. 1 need to understand the concepts before I can apply them to practical

tasks. I need to understand a concept fully before learning others.

(Understanding and Integrating)

3. 1 start by analyzing a problem and then look at the concepts and syntax

necessary to solve it (Problem Solving)

4. [gain experience and learn what programming is all about by learning

the cultures and the ways of experienced programmers and try to follow

their eample (Participation and Enculturation)

5. 1 learn by trying to do all the assessment tasks that are put for the course

requirement (Following)

The following table shows the result:

49

Table I

Frequency on ways of learning

Way of learning Number of responses Response rate

Coding 14 24.1%

Understanding and Integrating 13 22.4%

Problem Solving 16 27.6%

Participation and Enculturation 5.2%

Following 6 10.3%

I do not know 8.6%

Blank 1 1.7%

Table I shows that very few respondents were in the categories of

“Participation and Enculturation” and “Following”. AlInost the same numbers of

respondents fell into the other three categories, “Coding”, “Understanding and

Integrating” and “Problem Solving”. OnI three students said that they fell into the

“Participation and Enculturation” category and only six respondents said that they

learned programming by doing all the assessment tasks that were given.

Since the number of students in these two categories is insignificant, these

results led to a revision of the initial objectives of the project. The hypotheses stating

that “Students using problem solving succeed better than those who use participating

and enculturation” and “Students who use coding perform better than those who

prefer participating and enculturation” could not be tested since significant results

would not be achieved due to the small number of students favouring “participating

and enculturation”.

Furthermore, since “Following” also had few respondents, instead of the

hypotheses “Computer Science students using understanding and integrating succeed

better than students using following, coding. or problem solving”. the following

50

hypotheses “Computer Science students using understanding and integrating succeed

better than students using coding or problem solving” was tested.

2. CORRELATION ANALYSIS

Since the number of respondents was not large, Spearman Rho correlation

and Kendall’s tau correlation tables were generated for several variables. There is a

general belief based largely on anecdotal evidence, that a student with a higher high

school average and a high school mathematics grade will be more successful in

programming. This may hold true for other institutions but at Vanier from the

responses that were collected the result was not quite what was expected.

The high school average and the high school math grade do have a slight

positive effect of the final mark that the students received but the relation was not

significant. However, we did notice that there was a significant positive relationship

between high school average and high school math grade and the midterm mark.

These results may be explained by the fact that the students in the programs

have been selected and accepted because they had satisfied the requirements that are

necessary and they had the prerequisites to be in their respective programs. They just

started college studies and they were very motivated. This explains their midterm

results; the higher the high school average and the higher their high school math

grade the higher their midterm marks were. After orne time spent in the college, the

students presumably started to assimilate to the college culture. Table 2 below shows

the result of the Spearman’s rho correlation addressing the relationships discussed

above.

51

Table 2

Spearman’ rho correlations among High school average, High school math grade,
Midterm mark, Final mark and Ways of learning

High school High school Midterm Final Ways of
average math grade mark mark learning

High school average I .00

High school math grade .60** 1.00

Midterm mark 44** 35* 1.00

Final mark .20 .10 .29* 1.00

Ways of learning -.14 -.01 .20 .1 0 I .00

<.001

* p<.005

Moreover, Spearman Rho and Kendall’s tau correlation analysis show that

there is a significant negative relationship between prior computer knowledge and

prior basic programming experience with difficulties understanding concepts,

difficulties solving problems and finding computer science difficult (as shown in the

Spearman’s rho Table 3). The latter variables result in a decrease in the final mark.

Thus, prior computer knowledge and prior basic programming knowledge

play a positive role in success in learning how to program. Having less prior

computer knowledge and less prior basic prbgramrning experience leads students to

have lower final marks.

52

Table 3

Spearman’ rho correlations among Prior computer knowledge, prior basic
programming, Difficulties understanding concepts, Difficulties solving problems, and

Find computer science difficult

Prior Prior Difficulties Difficulties Find
computer basic understanding solving computer

knowledge programming concepts problems science
di ff1 cult

Prior computer
knowledge 1 .0

Prior basic
programming .28* 1.0

Difficulties
understanding
concepts -.28 .29* 1.0

D iffic iii ties
solving
problems .3l* 43** .68** 1.0

Find computer
science
difficult 35** -.23 .66** .60** 1.0
**p< 001 * p<.O05

A correlation analysis was done between time spent studying programming

(M 4.97, SD = 6.80) and the final mark (M 74.22, SD = 14.31). Spearman’s rho

correlations did not show any significant correlation between these two variables (r

(53) = .03). Tho same result was obtained with Kendall’s tau_b. The result came as a

surprise. This inight be explained by the fact that the students were asked explicitly in

the questionnaire how many hours they thought they spent studying the programming

course. At that particular moment, they did not have a good idea of the amount of

time they spent in each course. A more appropriate method can involve asking the

students to log on and keep track of the time they spend on programming.

Due to the multicultural and multiethnic college population, there are many

students who do not have English as their main language. A Spearman’s rho

correlation addressed the relationship between Mother tongue (M 1.57, SD .50)

and Difficulties understanding concepts (M = 1.28, SD = .87). Similarly, the

correlation addressed the relationship between Mother tongue (i’J 1 .57, SD = 5.0)

and Difficulties solving problems (M 1.1, SD .88) and between Mother tongue (Al

= 1.57, SD = 5.0) and Find computer science difficult (M 1.2, SD 1.05). Table 4

shows that there is a slight significant correlation between mother tongue and

difficulties understanding concepts (r (56) = .27, p <.004 for an alpha level of.0l) as

well as difficulties solving problems (r (55) = .29. p < .003 for an alpha level of .01)

and a significant correlation between Mother tongue and Finding computer science

difficult (r (56) .35, p < .001 for an alpha level of .05). This means that those

students whose mother tongue is not English were having more difficulties in their

studies.

Hence, factors that are of importance and that max promote the success of

our students in the introductory programming course are prior knowledge of

computers and prior basic programming experience. The more experience the

students have, the less difficulties they have in understailding the concepts of

programming and in problem solving. Thus, they will find computer science less

difficult. Language also plays a vital role in the field of programming. English

speaking students have fewer difficulties in their learning process.

54

Table 4
Spearman’ rho correlations among Mother Tongue, Difficulties understanding

concepts, Difficulties solving problems and Find computer science difficult

Mother Difficulties Difficulties Find computer
tongue understanding solving science

. concepts problems difficult
Mothertongue 1.0

Difficulties
un de rs tan ding
concepts .27* 1 .0

Difficulties
solving problems .29* .6s** 1.0

Find computer
science difficult 35* .66** .60** 1.0
**p<.00l *p<.OOS

Lastly, it was interesting to observe that there was no significant correlation

between the ways of learning and the final mark obtained by the students. This might

mean that the hypotheses put forward in the research study would not hold. Then, it

would make more sense to see whether there was a difference between the final

marks received by the students who use coding and understanding and integrating,

coding and problem solving and eventually understanding and integrating and

problem solving. Thus, independent t-tests were used. An independent-samples t-test

was conducted to compare the final mark in programming received by students using

coding and students using understanding & integrating. The t-test showed that there is

no statistically significant difference between the final marks in programming for

students using coding (M= 71.4, SD 16.5) and students using understanding and

integrating (iW = 71.6, SD 11.1) for (1 = -0.034, p .973). Similarly, the t-test

showed that there is no statistically significant difference between the final marks for

students using coding (\I = 71 .4, SD 16.5) and problem solving (M 81 .2, SD

12.6) for (t -l .835, p = .077). Lastly, t-test revealed that there is no statistically

significant difference between the final marks for students using understanding &

integrating (M 71.6. SD 11.1) and problem solving (M= 8L2, SD= 12.6) for (1=

-2.145,p= .041).

Therefore, we cannot deduce that Vanier College programming students

using coding succeed better than those using understanding and integrating. The same

conclusion can be said about students using coding and problem solving. Similarly, it

cannot be said that students using understanding & integrating are more successful

than those using problem solving.

3 QUALITATIVE DATA ANALYSJS

The qualitative data analysis aimed to examine whether students at Vanier

are similar to or different from students of other institutions in their ways of learning

how to program according to the categories of Booth (1992) and Bruce et al. (2003).

The data analyzed came from the open-ended questions in the survey and semi-

structured interviews with 10 students from the Computer Science program at Vanier.

The initial qualitative analysis involved a thorough process of reading, re-reading the

answers and extracting pertinent ke vords and parts of texts that defined the action of

learning to program. A list of the pertinent chunks or expressions was drawn. The

latter were then grouped together by categories. This process was done for both the

open-ended questions and the transcripts from the interviews.

4. OPEN-ENDED QUESTIONS

For the open-ended questions from the survey questionnaire, six categories

of answers could be drawn. The first four correspond to Booth’s (1992) ways of

learning. They were Coding, Understanding & Integrating, Problem Solving,

Participation & Enculturation, Examples and Miscellaneous. The table in Appendix E

shows the final grouping. It shows that Van icr College students are no different than

students in other institutions vhen it comes to the ways they learn computer

programming. The most common ways are still Coding, Understanding &

Integrating, and Problem Solving. There are a still a few who look to their more

experienced peers to help them complete their work. Also, when doing an

56

assignment, there are some students who learned by examples. Four respondents

answered that they were inspired by other programs or used older assignments as

guidelines to try to finish their assignment. Finally, in the answers for the open-ended

questions. five students did not elaborate on how they proceeded when they had to do

a programming assignment.

5. INTERVIEWS

Ten students volunteered to be interviewed. Among the 10 volunteer

students, only two were female. The purpose of the interviews was to corroborate and

to validate the answers given b’ the respondents to the questions of the survey

questionnaire and at the same time. to better understand how Vanier College students

learn computer programming. The answers given during the interviews also shed

light on how students come to understand concepts and gain the ability to apply them

and why failure rates among programming students are high.

The transcripts of the interviews were analyzed by multiple iterations. All

were novices to programming; they had their first encounter with computer

programming when they started their college program. The one who was not a novice

had a “limited experience with Pascal”, a programming language which is not being

taught at the college any more. The programming language Java was the language

that all the interviewees were taught for their introductory cp’urse. This corresponds to

the survey results which show that only two respondents had done much

programming before and those who had some prior programming experience had

only a very limited one.

The second point that was considered concerned the motivation of the

students towards programming and towards starting a program that was considered to

be difficult. Although in the quantitative survey, no question was asked concerning

the motives of the students to take computer science courses, it was interesting to

57

examine the responses to the question posed to the interviewees asking why they

chose the Computer Science program. The overall motive is that they are simply

interested in Computer Science. but for different reasons. One became attracted to the

topic because of a report she had to produce in her workplace when she had to ask a

programmer for support. Another student said that it would be interesting and

attractive to get a job in the field. Challenge was the motive for one respondent

whereas for another who likes to play games the possibility to write his own

computer games was the reason why he entered the program. The others were

interested because they had been around computers or had been fascinated by them

since an early age. One of them said that he hoped that in doing Computer Science,

he would know how computers work.

Three other observations were made from the interviews; they described the

learning process itselE the difficulties the students encountered and the ways the

students coped with the difficulties encountered during the period. It was pertinent to

look at the latter because it formed part of the process of learning to program. The

observations are described in the following paragraphs named Learning process.

Difficulties encountered and Methods of coping with difficulties.

6. LEARNING PROCESS

The learning of programming usually is not a trivial activfty; there is always

a roadblock along the way. This is because there are so many new concepts and items

to learn before one can say that one has assimilated enough in order to write a decent

running program. The students use different learning approaches and activities. A

student may use a mixture of some of these approaches simultaneously. This is

usually the case. Those approaches were extracted from the transcripts from the

interviews and listed. They were then grouped into categories namely, Syntax,

Concepts, Analyze, Peers, Examples and Others (Appendix E). From these

58

categories, the learning process was observed. Following are comments and excerpts

from the interviews concerning the various activities in the students’ learning process.

6. I Attending lectures

Most of the students interviewed attended the lectures in order to understand

the concepts. Some of them complement their learning of the concepts by reading the

book and doing small assignments. [-lere are some excerpts of what some of the

interviewees said about attending lectures:

I learned bv, you know, being at the lecture, listening to the

lectures, listening to what the teacher is saying

You come to class, you have to listen to the teacher because the

teacher knows what he is talking about. The second thing is to read, read the

book. ... The third thing is to do the assignments So the thing is to write

program, to do the exercises in the book, you know, something like that.

In the boo/c there are two parts, the part ... the theory part explains

each program, how it ‘s going to do and the part with exercises. In the boo/c I

learn the theory part and I practise the assigmnents from the book”

I go; I attend all the classes. It’s supposed to work and I take

notes.

We have class time two times a week and we also have lab time two

times a ii;eek. The ii’ay it ii’orks is that i’e learn stuff we go over. We have a

book; it’s ve’ good too. The teacher goes over stz,fJin class, ... And then ‘.ie

go to the lab and we actually practise it.

59

Some students have to write codes and run the codes in order to understand. But they

still rely on the notes from the lectures which they attend. This is reflected in the

following:

For one reason, when taking classes, they explain there ..., ii he/ps

to give me a general idea of what Jam supposed to be doing. But once again,

when I get to the computer, there is where the real world integration takes

place. After writing the code and seeing the result of each action really.

That s really when I start to understand andfrom the beginning to even now

any new concept.”

It’s kind of gibberish, like the concepts. it ‘s really hard to

understand util I actually wrote some codes and did some little programs in

class, some applications.”

What I learn is that, if you actually write or type something, you

will understand and memorize it more.

6.2 Learning by examples

Apart from the lectures in class, students learn by examples. They rely on the

examples given in class and in the dextbook to help them learn the programming

concepts.

I learned a lot doing the exercises, the assignments that were

given.

“..Going home, I read the boo/c read the chapter and then I read the

examples in the boo/c code them in the computer, and see how it works and so

on.”

60

I try to do some of the book examples and then tn. the assignment

or homework.”

Igo through the book and do the examples. I try to applv them but

• I do some few examples here and there. If you actually do all the

programming you actually become very knowledgeable.”

In this last comment, by “do all the programming” the student must have meant “do

all the examples”.

6.3 Applying and Integrating

Furthermore, for most of the students, assignments are important in their

learning process. Some prefer short assignments where they can put into practice each

concept one at a time whereas others prefer long assignments where they can apply

and integrate what is being learned in a real working program. They said:

Assignments are good to keep coding and then to teach students to

really trace the codes also.”

So i/we are actually taking short assignments, five rather than one

big assignment, everyone i’ill understand, focus oi;i understanding and then,

at the end, we can just be given a project where we have to add it all together

and make one thing.”

I learn just by doing the assignments. I am just doing like

stz1ving; I just do what have to he done. This is how I learn the syntax; but

sometimes t.’hen I am curious about something, I test it out to see how it

works.”

61

And ,f you do his assininents in class, then you muster

everything.”

All the students interviewed used a combination of different activities to learn

programming. Those activities can be grouped into four categories, Lectures!

concepts, Coding, Examples and Assignments. Other practices could not be grouped

because they are isolated. That is why they were placed in the category called

Miscellaneous. The most striking among the ways of learning was the fact that some

students said that they rely on the teacher to pass the knowledge to them but they did

not elaborate on how they wished to be taught.

7. . DIFFICULTIES ENCOUNTERED

Since programming is not considered an easy task, students are always

encountering a roadblock, difficulties that can deter them from continuing or slow

down their progress. Coping with the difficulties helps in the learning process.

Difficulties arose when the program the students were writing and testing did not

work or did not return the anticipated results.

The tables in Appendix F and Appendix G illustrate the difficulties

encountered and how they are being overcome respectively.

7.1 Syntax errors

Most often errors occur when the students do not use the right syntax or omit

to use the corresponding functions. These errors are detected when the program is

being compiled and are easily corrected. They made the following statements:

Start with errors in compiling. Try to compile missing a semi

colon here, missing a semi-colon there and so on and so forth.

62

Ijust find what ‘s wrong with it looking what’s wrong wit/i it and

then one by one fix all the errors.”

Iforgot to import such and such class.

Students learn by not making the same mistakes again. Sometimes, it makes sense to

look over the program again and trace it on paper to see whether it is doing what it is

supposed to do. One interviewee had it the following way:

I understand the program even more once it’s finished and I look

over it and I trace it on paper and I trace what’s going on and I kind of say,

well I kind of realize, ok, that’ exactly how it works.

7.2 Difficulties in problem-solving

Novice programmers commonly have difficulties in problem solving, which

is a prerequisite to succeeding in programming courses. Among the ten interviewees,

five of them mentioned that they had dilficulties in problem solving.

The problem that I have right now is to find what is the problem,

I guess we did not know the logics and hrni’ to proceed with the

problems.

you want to real/v program you need to step awayfrom the boo/c

you need to step away ham the computer, you need to really think what’s the

problem and how do you plan ofsolving it. You know what the problem is and

think oft/ic solution. ... You just can ‘t sit there and expect the solution to come

10 you.”

63

7.3 Difficulties understanding the concepts

The difficulties of not being able to solve problems are mainly related to the

fact that some students have a hard time understanding the concepts of programming.

By concepts, it means how programs are structured and hat the main characteristics

of different tools and modules in the language used.

But I have to say that first semester I still did not understand the

concepts that well, you know. Second semester started being more clear as to

what ‘s this whole ... you know ... What is a class? What’s object-oriented

programming, you know?”

That ‘s the problem. Some people, now in programming are

actually understanding the concepts that we are supposed to understand in

the first semester now. It ‘s really late.”

and the concepts that we still don ‘t understand from last semester;

now we are stuck; we are stalled.”

8. COPFNG WITH DIFFICULTIES

8.1 Perseverance

Different students have different ways of coping with the difficulties. It is in

dealing with those difficulties and overcoming them that they learn. The most

common way of solving a difficult programming problem is perseverance. The

students tried to see what the main causes for their errors were and to find different

sets of solutions. They very often found their own way out. Sometimes they would

turn to their teachers or classmates for guidance.

64

J/ something is not working, I usually. I just keep trying over and

over again. I am injronl of the computer, sometimes ... hours later, I’ll gel it.

Sometimes Ijust slop and go and ask my teacher where I am doing ii’rong. I

have done that sometimes but I am sonic sort of stubborn. I would want to

learn it on my oivn because once I’ve done it on my own, it helps me learn

more than ijsomeone tells me.

8.2 Seeking help to overcome difficulties

Students most rely on other sources when they cannot continue advancing in

their programming assignments. Some turn to the books to look for similar examples

that can help them. Some turn to the teacher since they consider that it is the right

way to do.

when the program is not working, it’ best to ask questions to the

teacher. That’ the best ... Because ‘you don’t ask, you don’t ... you can’t

solve the problem.

Some most often turn to their peers because they feel embarrassed to ask the teachers

because they feel that they are supposed to know the answer to the questions that they

had to pose.

What we do is either we get he/p Jrom other students who actually

know what they are doing It’ a little embarrassing to ask questions that

you are supposed to know You are supposed to know the answer.”

Most oft/ic teachers ... They just give us the materials and tell us

to do. They don ‘1 do much. They tell us to work; they tell us ire are it’orthless,

something like that.

65

8.3 Relaxation as a mean to cope with difficulties

Others just take a break from programming and later come back to the

problem thinking that a clearer mind would help them.

Most of the time, what I do is, I take a break. I walk away from the

program that I cannot solve and I think of it again, go hack to the fIrst step I

see /I made an error in the logic anti see can break down the logic even

more And if that does not worlç then I call afriend.”

I think I just take a break from it, do something else for a while.

Then come back and it might become a bit more clear.

Attempts to correct errors and overcoming difficulties are usual activities in computer

programming. Whatever approach a student used would help in the learning process.

From these interviews, different ways of learning programming can be

observed. Different students use different approaches in order to achieve the objective

writing a working program. that will solve a problem. They should be able to apply

whatever techniques they learn to be able to produce systems that satisfy the

specifications and requirements asked by the user of the system.

CHAPTER 5

CONCLUSION AND DISCUSSION

This study answered questions on how Vanier College computer science

students learn programming. The original question as to whether their ways of

learning programming can he categorized according to Booth (1992) and Bruce et al.

(2002) was answered. But, results from the analysis of the quantitative data did not

support the initial research hypothesis. Few students preferred participating and

enculturation or following. At the same time, the hypotheses regarding whether

students .using one way are more successful than others using another way were

examined but could not be proven true. Simultaneously, the survey looked at the

factors that influenced their success in programming.

CONCLUSION

• I Ways of learning

From the quantitative survey conducted within students taking programming

courses. three ways of learning programming were observed to be the most popular

among the students. They are coding, understanding & integrating and problem

solving. Among the students surveyed, some students focus on the syntax of the

programming language to write the codes.

Almost the same number of students prefers to understand the concepts of

programming before attempting to write a program. The third most important way of

learning by the students uses the students’ abilities to solve problems. By simply

67

solving the problems, these students learn the concepts of programming and at the

same time the syntax of the language.

The other two ways put forward by Booth (1992) and by Bruce et al. (2003),

namely, participating and enculturation and following are applied only by a few of

the students. In this study, since correlation analysis did not show any significant

relationship between. the ways of learning and the final mark received by the students

it cannot be shown which way of the first three ways has been of more help in the

successful completion of their first introductory programming course.

It cannot be said that a student using coding would succeed better that one

using understanding & integrating or a student using coding would be more

successful that one using problem solving. Similarly, it cannot be shown that problem

solving is a more appropriate way to use than understanding & integrating to pass the

course. Independent-samples t-tests were used to confirm the findings.

Using the t-tests, it was shown that there was no significant difference

among the three ways taken two at a time. After conducting the t-tests it was found

that students have the same chance of success regardless which of the three ways of

learning they use.

A .2 Factors influencing success

The quantitative survey also looked at some factors that might help

encourage the success of the students in the introductory programming course.

Although anecdotal evidence suggests that high school average and high school

mathematics contribute greatly to the success in introductory programming, this was

not confirmed in the survey done with the Vanier College programming students. The

relation between the final grade and the two independent variables was not

significant.

68

On the other hand, prior computer knowledge and prior basic programming

knowledge positively influence success. This was shown in the correlation analysis:

those who did not have prior computer knowledge or prior programming knowledge

were more prone to have difficulties in understanding the concepts, difficulties in

solx.ing problems, and to find computer science to be a difficult subject. This in turn

leads students to he more inclined to fail the course. This study also indicated that

English speaking students have fewer difficulties in their learning process. However.

significant correlation between mother tongue and success was not established. This

may be explained by the fact that some students whose mother tongue is not English

are very fluent in English because they had their high school education in an English

environment.

1 .3 Triangulation

The open-ended survey question and semi-structured interview were used in

order to support the findings oldie quantitative survey especially regarding the ways

the students learn programming. It was clear from the responses in the interviews that

the ways of learning correspond to the results of the survey. The content of the

interviews was analyzed in terms of three angles, the learning process, the difficulties

students encountered during the learning and the ways the students cope with the

di ff1 cu I ties.

It was observed that the three preferred ways of learning programming

discussed in the quantitative analysis hold true. The students interviewed used codes

to learn the syntax of the programming language in order to do their programming

assignments. It was also observed that students generally attempt to understand the

concepts by going to the lectures and reading the book and attempt to write the

programs asked of them.

69

Some of the interviewees explicitly talked about problem soling as a means

to learn programming. These are the three ways of learning most students use in their

learning process. Very little mention was made concerning reliance on fellow

students to teach them how to program. There was no mention of enculturation where

programming students tend to mix with other peers to learn their ways of thinking.

The same phenomenon was observed when the students talked about how

they resolved the difficulties encountered during programming. The students

persevered by going back to the lecture notes and their books to look at the syntax

and the concepts. They tried to solve their problems on their own at the beginning

before going to consult with the teacher or ask their friends. The teacher still plays an

important role in learning; the teacher is the last resort person when things really do

not work, when the students really cannot see the solution to their difficulties.

Our teacher will help us out as mitch as he can because he wants

us to understand.

[I don ‘1 do all the three things, in the assignments I would he

stuck and I need the teacher.

I .4 Motivation and expectation

Besides the ways of learning discussed, the motivation to study con1putr

science was discussed. Most of them said that they were interested in computers at a

very early age. They wanted to know more about how the whole computer system

works. Others considered a career in computer science was the motivation behind

their choice. One became interested because he was completing a report that needed

the use of computers and computer knowledge.

During the interviews it became clear that success in programming also

depends on the way computer programming is taught. Some students prefer that

70

teachers introduce the concepts during the lecture sessions and do the demonstration

during the laboratory ieriods. Others prefer that the whole notion of programming is

demonstrated throughout the lectures using visual tools in class.

We learn the concept and in class he also actually goes over the

application of it. He does not just show what ii means. He act uallv shows us

examples: he actually has a computer hooked up and he actual/v does

program examples in the class.

All of them appreciate that they can practice the programming during the laboratory

sessions.

The interviews revealed that there is some rote learning taking place. Some

students tried to learn the concepts and the syntax of the programming language by

heart without trying to understand how to apply them. They just learned the situations

where they can apply the concepts and the rules.

What I learn is that, f you actually write or type something, you

will understand and memorize it more.

Like you say, you just read the bookjust before the exam.

Rote learning may be counterproductive in their learning process. If they come across

new situations or new problems that they have never seen before, they will be

disoriented and they will not be able to solve them. This problem is interesting and

further research may be needed to see whether this phenomenon is widespread among

computer science students.

71

2. DISCUSSTON

Overall, Vanier College programming students mostly learn programming in

three ways: coding. understanding & integrating and problem solving. They use the

textbook as a guide and rely on the teacher as a last resort in order to solve their

difficulties. From the interviews, it appears the factor that plays the most important

role in their successful completion of the introductory programming course is

perseverance.

However, quantitative data showed that there is no correlation between

number of hours of study computer science materials and the final marks. This

discrepancy is interesting; several questions can be asked. During their study periods,

what activities are they performing? Are they at ease when they are doing their

assignments or are they struggling to correct their errors spending a lot of time

debugging? How much time do they generally spend for their homework? Do they

need more time to assimilate the concepts because they are reluctant to ask their

teachers for help?

Further research is needed surveying the students’ activities and how they

spend their time on these activities. Also, the quantitative data show that high school

average and high school mathematics only play a slight role in the success for the

respondents of the survey.

Since it has been shown by independent-samples t-tests that success in

introductory programming does not depend on either the three ways of learning, it

will be interesting to see how KoIb’s four learning styles described by Byrne &

Lyons (2001) will influence the performance of Vanier College’s computer science

students. Can the students be categorized into convergers, divergers. assimilators and

accommodators? Will there be a difference in performance among them?

72

3. LIMITATIONS OF THE STUDY

Fifty-eight Vanier College students participated in this study. The

participants included first, second and third semester computer science students as

well as science students taking the complementary programming course for science.

For the interviews, only Computer Science students volunteered to come forward;

there was not a single science student who agreed to come and talk to the researcher.

The student population of Vanier College is unique. Only 40% of the

students have English as their mother tongue; 20°/b have French as their mother

tongue. The rest is made up of students whose mother tongue is neither English nor

French. This was reflected in the students in this study. It was noticed that some

language difficulties arose in the answering of the questionnaire and also during the

interviews. Many students do not understand computer science jargon. They really

are mixed up discussing programming terms, syntax. concepts, and logic even though

these terminologies are being used in their classroom, course materials and lectures.

Some think that they mean the same thing. Furthermore, during interviews some

students had difficulties expressing themselves in English. They seem to lack the

vocabulary necessary to describe their points of view.

However, one other point that should be reported is that during interviews,

three students took the opportunity to criticize their teachers concernrng their ways of

teaching and their attitudes towards the students. They complained that the teachers

did not help them enough in the laboratories because they were told that they were

supposed to know the materials before coming to class. They were afraid to ask

questions in class. They were sometimes left to themselves during those periods.

Some students lost their motivation and did not concentrate much on the course.

All of this resulted in some students failing the introductory course or

dropping it or abandoning the computer science program. It would be interesting to

73

look at the various ways computer programming is being taught and how they can be

accommodated to our Vanier College students. Thus a good combination of teaching

and learning may assure success. Further research will tell.

BIBLIOGRAPHICAL REFERENCES

Bergin. S. & Reilly, R. (2005). Programming: Factors that influence success.
SIGCSE’05. February 23-27, 2005 St. Louis, Missouri. USA.

Bergin. S. & Reilly, R. (2005). The irfluence of motivation and coni/brt-level on
learning to prgram. Proceedings PPIG 1 7. June 2005 Sussex University,
Sussex. UK. 2005.

Booth. S. (1 992). Leai-ning to program: a phenomenographic perspective. Acta
Un iversitatis Gothoburgensis. Goteborg.

Bruce, C., Mcf\lahon, C., Buckingham. L., Hvnd, J. & Roggenkamp. M. (2003).
Ways of experiencing the act of learning to program: A phenomenographic
study of introductory programming students at university. Retrieved August
1, 2005. Available: hup:;eprints.qut.edu.au’archiveTh)00 I 756

Byrne, P., Lyons, G. (2001). The Effect of Student Attributes on Success in
Programming. Paper presented at ITiCSE 2001, June 2001. Cantebur’,’, UK,
2001.

Carbone, A & Kaasboll, J. J. (1998). A survey of methods used to evaluate computer
science teaching. Paper presented at ITiCSE ‘98, Dublin. Ireland, 1998

Carrington, D. (1998). Time 1nontoring for students. Frontiers in Education
Conierence, IEEE, 1998.

Carter, J., Jenkins, T. (I 999). Gender and Programming: What ‘s Going On? Paper
presented at ITiCSE ‘99, June 99, Cracow, Poland, 1999.

Du Boulay, B. (1989). Some difficulties of learning to program. In E. Soloway & J.
C. Spohrer (Ed.), Studying the novice programmer (pp.283-299). I-Iillsdale.
NJ: Lawrence Erlbaurn Associates. Publishers.

Freebodv. P. (2003). Qualitative research in Education, Interaction and Practice,
SAGE Publications, London.

75

Goold, A., Rimmer, R. (2000) Factors AfecIing Perfrmance in First-year
Computing. SIGCSE Bulletin. vol. 32, No. 2, June 2000.

1-Tagan, D. & Markham, S. (2000). Does it help to have some programming
experience before beginning a computing degree prograin.’ Proceedings of
ITICSE 2000. (pp 25-28).

Holrnboe, C.. Mclver, L. & Carlisle, G. (200!). Research Agenda for Computer
Science Education. Paper presented at the 3° Workshop of the Psychology
of Programming Tnterest Group. Bournemoutli, UK. April 200!, (pp 207-
223).

Jacobs. J. (1887). Experiments on cornprehension’. Mind, 12. 75-79.

Lahtinen, E., Ala-Mutka, K., Jarvinen H. (2005). A Study of the Dfficulties ofNovice
Programmers. Paper presented at the TTiCSE’05, June 27-29, Monte de
Caparica, Portugal, 2005.

Linn. M. C. & Dalbey, J. (1989). Cognitive consequences of programming
instructions. In E. Soloway & J. C. Spohrer (Ed.), Studying the novice
programmer (pp.57-8 I). Hilisdale, NJ: Lawrence Eribaurn Associates,
Publishers.

Mancy, R., Reid, N. (2004). Aspects of Cognitive Style and Programming. Paper
presented at the 16° Workshop of the Psychology of Programming Interest
Group, 2004.

McCracken, M., Alrnstrurn, V., Diaz. D., Guzdial, M., Hagan, D., Kolikant, Y.,
Laxer, C., Thomas, L., Utting, I. & Wilusz, T. (2001). Report by the ITiC’SE
2001 Working Group on Assessment of Programming Skills of First-yeai CS
Students. Retrieved:August8,2005.Available: http:!/coweh.cc.atech.edu/
guzdial’up loads/I $:assessment\\g_iticse_flnal.pdf

Wilson, B. C. & Shrock, S. (2001). Contributing to success in an introductoiy
computer science course: a stud of twelve factors. Proceedings of the 23rd

SIGCSE technical Smposium on Computer Science Education. ACM Press,
NY,pp. 184-188.

Witkin, H. A., Moore. C. A.. Goodenough. D. R. and Cox, P. W. (1977). Field
dependent and independent cognitive styles and their educational
implications. Review of Educational Research, 47, 1-64

APPENDIX A

THE SURVEY QUESTIONNAIRE

77

Name:

Student ID:

Questionnaire

The purpose of this questionnaire is to find out about your ways of learning to

program and the factors involved in your learning process that will lead to the

successful completion of your programming course. This survey may suggest ways to

improve the teaching of computer science courses. That is why your answers are

important to us. We assure you that your responses will remain strictly

confidential.

Please follow the instructions very carefully. Thank you for your cooperation.

PART I

For each question or statement, circle the letter that provides the best answer.

I. What gender are you?

a. female

b. male

2 1 have access to a computer at home.

a. yes

b. no

3. What is your current semester in the program?

a. first

b. second

c. third

d. other

78

4. Is English your

a. first language

b. second language

5. Did you do your high school studies in

a. English

b. French

c. Other?

6. How I would rate my prior knowledge oIhow computers work before taking

the course:

a. very good knowledge

b. good knowledge

c. fair knowledge

d. rather poor knowledge

e. no knowledge

7. 1 have done some basic computer programming before.

a. very much

b. much

c. a little

d. very little

e. notatall

S. I use the text books recommended by the teacher in order to understand the

material better.

a. all the time

b. often

c. sometimes

d. rarely

e. never

79

9. 1 analyze a problem and write the algorithm to solve it on paper before

running the program.

a. all the time

b. often

C. sometimes

d. rarely

e. never

10. T work in a group when I am doing my assignments or prepare for a test.

a. all the time

b. often

c. sometimes

d. rarely

e. never

I. I work in a group when I prepare for a test.

a. all the time

b. often

c. sometimes

d. rarely

e. never

1 2. 1 participate in class by asking questions.

a. all the time

b. often

C. sometilnes

d. rarely

e. never

80

13. [miss classes.

a. never

b. rarely

c. sometimes

d. often

e. almost all the time

14. 1 have difficulties in understanding the concepts of programming.

a. strongly disagree

b. somewhat disagree

c. somewhat agree

d. strongly agree

e. don’t know

15. [have difficulties in problem solving.

a. strongly disagree

b. somewhat disagree

c. somewhat agree

d. strongly agree

e. don’t know

16. 1 find computer science difficult.

a. strongly disagree

b. somewhat disagree

c. somewhat agree

d. strongly agree

e. don’t know

8I

PART II

Please, answer the following questions.

1 7. What was your average grade in final year of high school?

18. What was your high school final mark in mathematics 536 or equivalent?

19. If you have a job, how many hours a week do you work, on average?

20. What is the total number of hours per week do you spend studying on

average, for all your college courses?

2 L. How many hours per week do you spend on average on studies related to your

computer programming course?

22. What mark did you obtain on the first te:st (midterm) of the computer

programming course?

82

PART III

Questions about students’ learning process

23. 1 try to understand the programming concepts before using them.

a. strongly disagree

b. somewhat disagree

c. somewhat agree

d. strongly agree

e. don’t know

24. 1 try examples in text books to help me understand the concepts when learning

how to code.

a: strongly disagree

b. somewhat disagree

c. somewhat agree

d. strongly agree

e. don’t know

25. 1 learn the syntax of the programming language before applying it to solve a

problem.

a. strongly disagree

b. somewhat disagree

c. somewhat agree

d. sirongly agree

e. don’t know

26. 1 learn programming by analyzing and testing working programs.

a. strongly disagree

b. somewhat disagree

c. somewhat agree

83

d. strongly agree

e. don’t know

27. 1 analyze problems and write the algorithms before attempting to do some coding.

a. strongly disagree

b. somewhat disagree

c. somewhat agree

d. strongly agree

e. don’t know

28. 1 usually do my assignments discussing with my peers in groups.

a. strongly disagree

b. somewhat disagree

c. sornewhñt agree

d. strongly agree

e. don’t know

29. 1 learn to program by copying or emulating others who are more experienced.

a. strongly disagree

b. somewhat disagree

c. somewhat agree

d. strongly agree

. don’t know

30. 1 learn best by simply doing all the assigned assessment tasks.

a. strongly disagree

b. disagree

c. agree

d. strongly agree

e. don’t know

84

31. Which of the following describes you the best, when you learn programming?

(Choose only one)

a. I learn the syntax of the programming language first and then spend a

lot of time at the computer testing and running programs

b. I need to understand the concepts before I can apply them to practical

tasks. I need to understand a concept fully before learning others

c. [start by analyzing a problem and then look at the concepts and syntax

necessary to solve it

d. I gain experience and learn what programming is all about by leaning

the cultures and the ways of thinking of experienced programmers and

try to follow their example

e. I learn by trying to do all the assessment tasks that are put of the

course requirements.

f. I do not know.

PART IV (Open-ended question)

32. Can you elaborate on how yoLl do a programming assignment? Is there a set of

steps that you usually take to complete it? Please explain.

Thank youfor filling out this questionnaire. Your responses are very help/li! to all

of us.

APPENDIX B

PROCEDURES FOR THE INTERVIEW

Procedures for the interviews

86

Students who were interviewed were chosen among the computer science

students. They were chosen on the basis of gender and the answers from the survey.

The main factor that was used for the choice was their way ol learning. I ensured that

each of the ways described by Booth and Bruce et al. was represented.

At the beginning of the interview, the students were explained the purpose of

the study and how the results could be used to improve the teaching and learning of

programming at school.

The students were told that all the data collected during the interview would be

strictly used for the purpose of the study only. The personal data would be kept

confidential and the results would be reported without bias and only to the

appropriate parties.

The following questions would be used for the interviews.

• Tell me why you chose computer science.

• What is a programming language to you?

• What are the main techniques that you use when you learn to program?

• What type of assessment tasks help you most in learning to program?

• Can you describe how you go about writing a program?

• How do you overcome the frustration when your program is not working?

• Is there anything that you would like to see improved in how programming is

being taught?

APPENDiX C

THE CONSENT FORM

88

CONSENT TO PARTICIPATE IN

“FACTORS INFLUENCING SUCCESS IN INTRODUCTORY

PROGRAMMING COURSES”

1, the undersigned. agree to participate in the research project conducted by Pit F. Lan

Chow Wing, a student in the Master Teacher Program given in collaboration with the

Université de Sherbrooke.

I was informed that the purpose of the research project is to look at the factors that

play a role in student success in introductory programming courses for computer

science and science students. The goal of the research is to look at how students learn

programming andwhat are the difficulties they encounter. Teachers can thus change

their strategies to better meet the needs of the students.

I was informed that the data collected will remain confidential and that they will in no

way affect my academic record at CEGEP.

I understand that I may be interviewed and that if so, the interview will be recorded.

I understand that the researcher can have access to my student records held by th

Office of the Registrar.

I understand that even if! decide to participate at this time, I can subsequently change

my mind and withdraw from the study. In such a circumstance, all the data I have

contributed will be removed and my withdrawal will not affect my academic standing

in any way.

SQ

I understand that the data collected for this study can be published but that my

identity will remain confidential.

Date:

Print name (Given name. Family name):

Student no.:

e-mail address:

Signature:

Signature (parent or guardian):

(If you are less than 18 years old)

/

APPENDIX P

FREQUENCY TABLES

91

Table 5
student gender

Cumulative
Frequency Percent Valid Percent Percent

Valid female 8 13.8 13.8 13.8
male 50 86.2 86.2 100.0
Total 58 100.0 100.0

Table
6

accesscomputer

Cumulative
. Frequency Percent Valid Percent Percent

Valid yes 58 100.0 100.0 100.0

Table 7
program of study

. Cumulative
Frequency Percent Valid Percent Percent

Valid computer science 34 58.6 58.6 58.6
science 24 41.4 41.4 100.0
Total 58 100.0 100.0

Table S
mother tongue

Cumulative
Frequency Percent Valid Percent Percent

Valid first 25 43.1 43.1 43.1
second 33 56.9 56.9 100.0
Total 58 100.0 100.0

Table 9
high school language

Cumulative
Frequency Percent Valid Percent Percent

Valid first 29 50.0 50.0 50.0
second 23 39.7 39.7 89.7
other 6 10.3 10.3 100.0
Total 58 100.0 100.0

Table 10
prior computer knowledge

Cumulative
Frequency Percent Valid Percent Percent

Valid no knowledge 3 5.2 5.2 5.2
rather poor knowledge 6 10.3 10.3 15.5
fair knowledge 16 27.6 27.6 43.1
good knowledge 30 51.7 51.7 94.8
very good 3 5.2 5.2 100.0
Total 58 100.0 100.0

Table II
prior basic programming

Cumulative
Frequency Percent Valid Percent Percent

Valid not at all 28 48.3 48.3 48.3
very little 10 17.2 17.2 65.5
a little 18 31.0 31.0 96.6
much 2 3.4 3.4 100.0
Total 58 100.0 100.0

Table 12
use recommended text

Cumulative
Frequency Percent Valid Percent Percent

Valid never 5 8.6 8.6 8.6
rarely 7 12.1 12.1 20.7
sometimes 17 29.3 29.3 50.0
often 15 25.9 25.9 75.9
all the time 14 24.1 24.1 100.0

‘ Total 58 100.0 100.0

Table 13
analyze and write algorithm

Cumulative
Frequency Percent Valid Percent Percent

Valid never 7 12.1 12.1 12.1
rarely 22 37.9 37.9 50.0
sometimes 18 31.0 31.0 81.0
often 9 15.5 15.5 96.6
all the time 2 3.4 3.4 100.0
Total 58 100.0 100.0

‘:1)

Table 14
work in group doing assignment

Cu mu ative
Frequency Percent Valid Percent Percent

Valid never 8 13.8 13.8 13.8
rarely 16 27.6 27.6 41.4
sometimes 15 25.9 25.9 67.2
often 19 32.8 32.8 100.0
Total 58 100.0 100.0

Table 15
work in group preparing test

Cumulative
Frequency Percent Valid Percent Percent

Valid never 25 43.1 43.1 43.1
rarely 17 29.3 29.3 72.4
sometimes 11 19.0 19.0 91.4
often 5 8.6 8.6 100.0
Total 58 100.0 100.0

Table 16
participate in class

Cumulative
Frequency Percent Valid Percent Percent

Valid never 7 12.1 12.1 12.1
rarely 17 29.3 29.3 41.4
sometimes 24 41.4 41.4 82.8
often 8 13.8 13.8 966
all the time 2 3.4 3.4 100.0
Total 58 100.0 100.0

Table 17
miss classes

Cumulative
Frequency Percent Valid Percent Percent

Valid never 15 25.9 25.9 25.9
rarely 28 48.3 48.3 74.1
sometimes 13 22.4 22.4 96.6
often 2 3.4 3.4 100.0
Total 58 100.0 100.0

Table 18
difficulties understand concepts

94

Table 19
difficulties solving problems

Cumulative
Frequency Percent Valid Percent Percent

Valid strongly disagree 13 22.4 22.8 22.8

somewhat disagree 30 51.7 52,6 75.4
somewhat agree 10 17.2 17.5 93.0

strongly agree 3 5.2 5.3 98.2

dont know 1 1.7 1.8 100.0

Total 57 98.3 100.0

Missing System 1 1.7

Total 58 100.0

Table 20
find computer science difficult

Cumulative
Frequency Percent Valid Percent Percent

Valid strongly disagree 16 27.6 27.6 27.6

somewhat disagree 24 41.4 41.4 69.0

somewhat agree 13 22.4 22.4 91.4

strongly agree 2 3.4 3.4 94.8

dont know 3 5.2 5.2 100.0

Total 58 100.0 100.0

Cumulative
Frequency Percent Valid Percent Percent

Valid strongly disagree 10 . 17.2 17.2 17.2
somewhat disagree 27 46.6 46.6 63.8
somewhat agree 17 29.3 29.3 93.1
strongly agree 3 5.2 5.2 98.3
don’t know

. 1 1.7 1.7 100.0
Total 58 100.0 100.0

95

Table 21
understand programming concepts before using them

. Cumulative
Frequency Percent Valid Percent Percent

Valid strongly disagree 2 3.4 3.4 3.4

somewhat disagree 1 1.7 1.7 5.2
somewhat agree 27 46.6 46.6 51.7

strongly agree 27 46.6 46.6 98.3

dont.know 1 1.7 1.7 100.0

Total 58 100.0 100.0

Table 22
try examples to understand the concepts of coding

Cumulative
Frequency Percent Valid Percent Percent

Valid strongly disagree 9 15.5 15.5 15.5

somewhat disagree 9 15.5 15.5 31.0

somewhat agree 20 34.5 34.5 65.5

strongly agree 20 34.5 34.5 100.0

Total 58 100.0 100.0

Table 23
learn syntax before appying it to solve problem

Cumulative
Frequency Percent Valid Percent Percent

Valid somewhat disagree 7 12.1 12.1 12.1

somewhat agree 28 48.3 48.3 60.3

strongly agree 21 36.2 36.2 96.6

dont know 2 3.4 3.4 100.0

Total 58 100.0 100.0

Table 24
learn by analyzing and testing working programs

Cumulative
Frequency Percent Valid Percent Percent

Valid strongly disagree 2 3.4 3.4 3.4

somewhat disagree . 13 22.4 22.4 25.9

somewhat agree 13 22.4 22.4 48.3

strongly agree 29 50.0 50.0 98.3

dont know 1 1.7 1.7 100.0

Total 58 100.0 100.0

96

Table 25
analyze problem and write algorithm before coding

Cumulative
Frequency Percent Valid Percent Percent

Valid strongly disagree 7 12.1 12.1 12.1
somewhat disagree 20 34.5 34.5 46.6
somewhat agree 27 46.6 46.6 93.1
strongly agree 4 6.9 6.9 100.0
Total 58 100.0 100.0

Table 26
do assignments discussing with peers in groups

Cumulative
Frequency Percent Valid Percent Percent

Valid strongly disagree 6 10.3 10.3 10.3
somewhat disagree 13 22.4 22.4 32.8
somewhaf agree 21 36.2 36.2 69.0
strongly agree 18 31.0 31.0 100.0
Total 58 100.0 100:0

Table 27
copy or emulate more experienced

Cumulative
Frequency Percent Valid Percent Percent

Valid strongly disagree 21 36.2 36.2 36.2
somewhat disagree 13 22.4 22.4 58.6
somewhat agree 19 32.8 32.8 91.4
strongly agree 5 8.6 8.6 100.0
Total 58 100.0 100.0

. Table 28
simply do all the assessment tasks

Cumulative
Frequency Percent Valid Percent Percent

Valid somewhat disagree 10 17.2 17.2 17.2
somewhat agree 33 56.9 56.9 74.1
strongly agree 14 24.1 24.1 98.3
don’t know 1 1.7 1.7 100.0
Total 58 100.0 100.0

97

Table 29
ways of learning

Cumulative
Frequency Percent Valid Percent Percent

Valid syntax and testing 14 24.1 24.6 24.6

understanding concepts
13 22.4 22.8 47.4

before applying

analyze and look at
16 27.6 28.1 75.4

concepts

learn cultures of
experienced 3 5.2 5.3 80.7
programmers

do all assessment tasks 6 10.3 10.5 91.2

• dont know 5 8.6 8.8 100.0

Total 57 98.3 100.0

Missing System 1 1.7

Total 58 100.0

APPENDIX E

THE INTERVIEW: THE LEARNING PROCESS

99

D,
.

-. 2
) 0 0

.
—

Category ->
• E0) 0- —

c — o ç
.

-E •o - t c
0 0 (V X

-- -- - -- --

1 2 3 4 5 6

Analyze the problem and write algorithm X

Figure what I need to solve the problem and write the code
Find the main concepts, main tools x
Try to understand the syntax and try examples in the book X

What is asked and try to create class

Look at the syntax learned in class and try to find functions to complete
the task
Draw a picture of how the program works X

Understand the problem and inspire from other programs X

Analyze the problem and write the code
Carefully read the given problem and write the code

Identify the variables and calculations required to solve it; try to figure out
how to get into the code

Think first about what I am going to need; then I start writing the program X

Try to see what kind of concept I am applying
Look at the syntax after I know what I need to solve it x
Get confirmation from teacher or classmates — X

Compare it with older assignments and use them as guidelines — —
— x —

Read the book and some examples; clues and pointers given by teachers
help
Discuss with others; read the book and notes —

— X

Read the chapter; read the assignment and write the methods x — — —

Read all the chapters and refer to them for the assignment x — — —

Read the corresponding chapters that relate to the program; do all the
examples; try to understand the concepts — —

Know all the theory needed for the assignment; write the code x — — —

Read the instructions and highlight the important information; start coding
— X — — —

Read the instructions and understand what is asked; start programming —

X — — —

Read the problem; write all the variables; continue with the coding x

Read the instructions and evaluate the important information; type the
program
Understand the problem and look up at the syntax x
Divide the task into smaller tasks

Listen to the teacher on theory classes; try to do the program; compare
my program with others
Understand the problem; start coding
Analyzing the problem; look at the concepts and syntax x x

100

Look at the problem; identify the concept needed; ask a friend if I dont
understand
Set up a plan; write it x
Write out the code; make sure concepts and syntax work by testing x x

look at what needs to be done; work on one problem at a time x
Try to understand the problem and write the commands I would need X

Look at the input needed, the output needed and the processing and
code

— — — —

— X

Read what is given and what is required; write program X

Write the methods and test them; ask a friend or teacher if there are
errors and got stuck
Just read the book and try to understand what I am doing
Use the textbook; try the examples in the book x —

I put my head what needs to be done; write the steps x
Use examples of similar classes/methods; code the problem — — — — x —

I think about what I need: write it J — x
I read the assignment and break it into steps: consult more experienced
programmer
Read the program and think about the logic; code it
I usually follow my class notes
Try to understand the problem; ask my peers when I got stuck — X

Basic understanding of the syntax; attempt the program; read textbook xfor more details
Observe other examples: observed other programmers

Look at the problem; what are the concepts that should be applied; write X

thecode
— j — —

2 (-
J C 2 2 liD

102

rJ

Question -

4 What are the difficulties encountered? 3 j_
51

First semester, still did not understand the
1 concepts that well. I was kind of scared. I did X

not really like it.

S2

53

54/55

When the teacher teaches on the
2 blackboard, you cant really see if the code is x

working.

3 We still do not understand some concepts. x

We cannot finish the long assignments
before the due date.

S6

5 I can’t solve the problems. x

S7

6
I have lots of difficulties when I opened the
book.

You need to step away from the book, you
7 need to step away from the computer.

You have to figure out what is the problem
8 and think of the solution.

58/59

I guess we did not know the logics and how
9 to proceed with the problems.

At the beginning I don’t know what I am
typing. I was just typing what I was told to x

10 type.

The problem that I have right now is to find
11 what is the problem.

510

It wasnt the greatest to tell you the truth. At

12 the beginning of the semester I actually did
pretty good but the problem was that you
have to be consistent to keep up ...

13 I wasnt ... keeping practising it. X

14 I was too dependent on the book. X

15 I fell behind because of the other courses. X

16 I had with that (that means problem solving). [x

1’-,
I U.)

APPENDIX G

THE INTERVIEW: HOW THE STUDENTS COPE WITH THE

DIFFICULTIES

Question How do you cope with the difficulties
5 encountered?

si
1 I just keep trying over and over again.

Sometimes I just stop and go and ask my
2 teacher where I am doing wrong.

3 Focus and I keep working.
S2

4 It’s basically trial and error.

I just find what is wrong with it looking what’s
S wrong ... and then oe by one fix all the errors.
6 Start with errors in compiling.

7 Look at run time.

S3

8 To memorize some little words

When you make a mistake in the program, you
9 have to start from the beginning. But

The method is basically a way to solve the
problem. When you make a mistake, it’s only in

10 one method.

S4/S5

We get help from other students who actually
11 know what they are doing.

S6

It’s best to ask questions to the teacher or
12 classmates.

If you don’t ask, you don’t ... you can’t solve the
13 problem.

—-

S7

14 Most of the time I take a break.

I think over it again, go back to the first step I
see if I made an error in the logic and see if I can

15 break down the logic even more,

16 And if that does not work, then I call a friend.
S8/S9

I just atake a break from it, do something else
for a while. Then come back and it might

17 become a bit more clear.

18 I ask other students for help.

105

Sb

I try to cram. The frustration is more with the
19 other courses.

20 It’s not so hard if you put the time to it.

106

