UNIVERSITY OF SHERBROOKE

LES FACTEURS CONTRIBUANT A LA REUSSITE DANS LES COURS
D'INTRODUCTION EN PROGRAMMATION

FACTORS INFLUENCING SUCCESS IN INTRODUCTORY PROGRAMMING
COURSES

par

Pit Foung Lan Chow Wing

Essai présenté a la Faculté d’éducation
En vue de I’obtention du grade de
Maitre en éducation (M.Ed.)

Maitrise en enseignement au collégial

Novembre 2009

© Pit Foung Lan Chow Wing, 2009

CRP-Educaﬁon

s
- _.,-!_'}
ALTINS PN

.]
o

i .-lw. 3y,
.

metyt

UNIVERSITE DE SHERBROOKE

Faculté d’éducation

Maitrise en enseignement au collégial

Les facteurs contribuant a la réussite dans les cours d’introduction en programmation

Factors influencing success in introductory programming courses

Par

Pit Foung Lan Chow Wing

ror 7 , . - t .
a été évalué par un jury composé€ des personnes suivantes:

Directrice de |’essai

Silke Lach

Evaluatrice de ’essai

Elizabeth Charles

i
.
.
' v
v
.
0
.
. * B
Kl
-
. B

SUMMARY

Learning programming is not an easy task. Research so far has shown that
computer science students in general lack basic programming skills. Half of those in
university introductory programming courses do not make it to the next level. Several
studies have looked at different factors that could be keys to success in programming.
Factors that were most commonly examined were prior cémputer courses, prior
academic background, level of mathematics knowledge, programming skills and
number of hours of study. Results of those studies did not give a clear answer as to

what leads to success in programming courses.

This study looked at the reasons why Vanier College students in computer
programming are encountering difficulties in their learning process. Factors such as
prior academic background, prior computer experience, mother tongue, and learning
styles were examined to see how they play a role in students’ success in programmiﬁg
courses. The research of Booth (1992) and Bruce et al. (2001) informed this study.
Booth did a phenomenographic qualitative study on learning to program by
interviewing computer science students in their first year of studies. Booth found out
that the students’ learning methods can be grouped into four categorjes: coding,
understanding & integrating, problem solving and participating & enculturation.
Bruce et al. added one more category: following. However, these researchers did not
look at the relationship between ways of learning and student success. This study was
an attempt to see whether Vanier College students learning programming can be
categorized according to Booth and Bruce et al. Furthermore, it tried to see whether

success depend on learning styles. The initial research hypotheses were the following:

» Computer Science students using understanding and integrating succeed

better than students using following, coding, or problem solving.

e Students using problem solving succeed better than those who use
:Darficipating and enculturation.
o Students who use coding perform better than those who prefer participating
and enculturation.
[n addition, this study hoped to examine whether there is a gender difference in how

students learn programming.

Both quantitative and qualitative methods were used in the study.
Quantitative data was collected via a survey of fifty-eight Vanier College students.
Qualitative data was generated by an open-ended question in the survey as well as by
personal interviews with ten computer science students. The statistical package SPSS
was used to analyze the quantitative data. The qualitative data was analyzed using

content analysis.

Only eight female students took part in the survey. With such a small
proportion of females, gender could not be considered as a factor in this study. The
data also showed that most of the students (43 out of the 58) said that they used either
coding, understanding and integrating or problem solving as their learning style. Only
Il considered that they used participating and enculturation or following as their way
of learning. Correlation analyses were done using Spearman’s rho and Kendall’s tau
correlations. They showed that high school average and high school math grade did
have a slight positive effect of the final mark that the students received but the
relationship was not significant. However, there was a significant positive
relationship between high s‘chool average and high school math grade and the
midterm mark. Furthermore, prior computer knowledge and prior basic programming
knowledge play a positive role in success in learning how to program. The less prior
computer knowledge and the less prior basic programming experience the students

have, the lower their final marks were.

Since the number of students in the two latter learning style categories is
statistically insignificant and furthermore, since Spearman’s rho and Kendall's tau
correlation showed that there was no significant correlation between ways of learning
and final marks of the students, these results led to a revision of the initial objectives
of the project. It cannot be said that students using coding succeed better than those

using understanding & integrating or problem solving.

The qualitative data analysis aimed to examine Vanier students’ ways of
learning how to program. and to see whether these fit the categories of Booth (1992)
and Bruce et al. (2003). The qualitative data strongly support the findings of the
quantitative data. Three kinds of observations could be made from the interviews.
The interviews revealed details about the learning process of the students, the
difficulties the students encountered and the ways they coped with the difficulties.
The interviews confirmed that Vanier College computer science students learn
programming in mainly three ways: coding, understanding and integrating, and

problem solving.

A phenomenon that emerged in the interviews was that some students used
rote learning in their programming courses. They tried to learn the concepts and the
syntax of the programming language by heart without trying to understand how to
apply them. They just learned the situations where they could apply the concepts and
rules. This can be counterproductive to their learning process in that they may get
disoriented when they encounter unfamiliar problems or situations. Another
observation made from the interviews can be considered of importance. Three of the
ten students complained about attitudes of their teachers. They said that they did not
get much help from the teachers when they needed it. This led to increasing
disinterest in the subject and their dropping out of the course or program. It would
therefore be pertinent to look at the various ways computer programming is being
taught and how the learning styles can better accommodate Vanier College’s

computer programming students.

SOMMAIRE

Y

Apprendre la programmation n’est pas une tiche facile. Jusqu’a date, les
¢tudes ont démontré que les étudiants en informatique n’ont pas, en général, les
compétences de base nécessaires pour programmer. De ceux qui ont commencé les
études préliminaires en programmation, la moitié n’a pas atteint le niveau adéquat
pour continuer en deuxiéme année. Plusieurs études ont examiné différents facteurs
qui pourraient contribuer a la réussite en programmation. Les facteurs les plus
souvent examinés é€taient les précédents cours en informatique, les études
académiques précédentes, le niveau de connaissance en mathématiques, les
compétences en programmation et le nombre d’heures d’études. Les résultats de ces
études n’ont pas donné une réponse claire & ce qui améne a la réussite dans les cours

de programmation.

La présente €tude a examiné les raisons pour lesquelles les étudiants en
informatique du Collége Vanier rencontrent des difficultés dans leurs études en
programmation. Les facteurs tel que le niveau des études précédentes, I’expérience en
informatique, la langue maternelle et les méthodes d’apprentissage ont été considérés
pour voir quel role ces facteurs jouent pour promouvoir la réussite dans les cours de
programmation. Cette étude est basée sur les travaux de Booth (1992) et de Bruce et
al. (2001). Booth a fait une étude qualitative sur I’apprentissage en programmation en
interrogeant des étudiants en premiére année d’études en informatique. Booth a
constaté que les méthodes ou styles utilisés par les étudiants peuvent étre regroupés
en quatre catégories : le codage, la compréhension et I'intégration, la résolution des
problémes, et la participation dans la culture informatique. Bruce et al. (2001) a
ajouté une autre catégorie : « suivre ». Cependant, ces chercheurs n’ont pas considéré

les relations entre les styles d’apprentissage et la réussite dans les cours de

programmation. La présente éude a essayé de voir si |’apprentissage en
programmation des étudiants du Collége Vanier pourrait étre catégorisé selon Booth
et Bruce et al. De plus, I’étude a essayé de voir si leur réussite dépendait des styles

d’apprentissage. Les hypothéses initiales de recherche ont été formulées comme suit :

1. Les éwdiants en informatique utilisant la compréhension et ['intégration
réussissent mieux que ceux utilisant « suivre », le codage ou la résolution des
probléemes.

2. Les étudiants utilisant la résolution des problémes réussissent mieux que ceux
qui utilisent la participation dans la culture informatique.

3. Les étudiants utilisant le codage réussissent mieux que ceux qui utilisent la

participation dans la culture informatique.

De plus, la présente étude espérait examiner s’il y a une différence de performance

entre les deux genres.

Les méthodes quantitatives et qualitatives d’analyse sont utilisées pour
I’étude. Les données quantitatives étaient recueillies par un sondage vis-a-vis
cinquante-huit étudiants du Collége Vanier qui prenaient le cour d’introduction a la
programmation. Ces données ont été analysées par le programme de statistiques
SPSS. Les données qualitatives ont été récupérées d une question ouverte se trouvant
+dans le questionnaire et aussi des entrevues personnelles avec dix étudiants en
" informatique. Ces données qualitatives ont été analysées par la méthode de I’analyse

de contenu.

Huit filles seulement ont pris part au sondage. Avec cette minime quantité de
participantes, le genre ne pourrait pas étre pris en considération dans I’étude. Aussi, la
plupart des cinquante-huit participants (43 au juste) ont affirmé qu’ils utilisaient le
codage ou la compréhension et I’intégration ou la résolution des problémes en tant

que style d’apprentissage. Les onze autres ont affirmé qu’ils utilisaient la

10

participation dans la culture informatique ou «suivre ». La corrélation rho de
Spearman et celle de tau de Kendall ont été utilisées pour fin d’analyse de corrélation.
Ces analyses ont démontré que la moyenne au secondaire et la note du cours des
mathématiques au secondaire avaient un effet insignifiant sur la note finale en
programmation. Toutefois, il y avait une corrélation significative enter la moyenne au
secondaire et la note des mathématiques, et la note a I’examen de mi-session. De plus,
la connaissance en informatique et en programmation précédant le premier cours de
programmation avaient un effet positif sur la réussite en programmation. Plus
I’étudiant possédait de la connaissance en informatique avant le cours, plus la note

finale était haute.

Vu que le nombre des étudiants qui considéraient qu’ils utilisaient les deux
derniers styles d’apprentissage était statistiquement insignifiant et, de plus, le rho de
Spearman et le tau de Kendall ont démontré que la corrélation entre les méthodes ou
styles d’apprentissage avec la réussie n’était pas significative, ces résultats ont poussé
a la révision des objectifs initiaux du projet. On ne pourrait pas dire que les étudiants
utilisant le codage réussissent mieux que les étudiants utilisant la compréhension et

intégration ou la résolution des problémes.

Les données qualitatives étaient 1a pour examiner de plus prés les méthodes
d’apprentissage en programmation des étudiants du Collége Vanier, et pour voir si
ces méthodes correspondent a celles de Booth (1992) et de Bruce et al. (2001). Ces
données ont confirmé solidement les résultats obtenus des données quantitatives.
Trois types d’observations pouvaient étre faits des entrevues. Ces entrevues ont
relevé la fagon dont les étudiants apprenaient la programmation, les difficultés qu’ils
ont rencontré, et comment ils ont pu résoudre ces difficultés. Aussi, les entrevues ont
confirmé que les étudiants du Collége Vanier utilisaient surtout trois méthodes
d’apprentissage : le codage, la compréhension et intégration, et la résolution des

problémes.

Un phénomeéne a émergé des données émanant des entrevues. Quelques
étudiants apprenaient Ig programmation en mémorisant les concepts et la syntaxe du
langage de programmation sans comprendre comment les utiliser. Ils retenaient par
cceur seulement les situations ou ils pourraient utiliser les concepts et les regles. Cette
situation peut aller a I’encontre du but recherché. Ils se retrouveraient désorientés et
confus devant des situations et des probléemes qu'ils n'ont jamais rencontrés. Une
autre observation trés importante est le fait que trois des participants des entrevues se
sont plaints des attitudes négatives de certains professeurs. Ils disaient qu’ils
n’avaient pas assez d’aide de ces professeurs quand ils en avaient besoin. Ils sont
devenus désintéressés et ont pensé a abandonner le cours ou le programme. Il serait
pertinent de voir les différentes stratégies d’enseignement de la programmation et
comment ces méthodes pourraient étre utilisées pour accommoder les exigences des

étudiants en informatique du Collége Vanier.

TABLE OF CONTENTS

SUMMARY ..ottt 5
SOMMAIRE ...ttt 8
LIST OF TABLESocoiiii ettt 15
CHAPTER ONE: INTRODUCTION.........ccoiiiiiieieiciiceeeeteeeeeeee 17
I PROBLEM STATEMENToiiiiiiiiiiiiiiiieiinietetee et sttt st 18
CHAPTER TWO: LITERATURE REVIEWcccoooiiiiiiiciece 20
1. CURRENT LITERATURE ...oiiiiiiiiiiiiciiciiiiice ettt 20
I.I A Current Model of Learningcccocvvvvvveveciiniiiiiceeeceee e, 20

1.2 MISCONCEPLIONS ...ocviiiiienieiiirtciticte e, 21

1.3 Cognitive Abilities in Programming..........cccooceveievveiviieiciece, 22

1.4 Cognitive Abilities as Factors of Success......c.oooeevvvviciviiiceiceeene, 22

1.5 Cognitive Characteristicsc.oeveviririernereeeeeieeeieiersseee e, 23

1.6 Computer Science Discipline.......ccocooeoiiininniineniicie e 25

1.7 Learning ASPECES ...c..eoureeiiiicierieeistisies et sttt et s 26

1.8 Factors Contributing to SUCCESS......coueiviiiieiriiiiieeeieieeeesi et 27

1.9 Motivation as a Factor of Successccoccevvveviiniiciiciceecee 30

.10 Time Spent Studying as a Factorccoveveeiiiriecieeeccecee e 31

I.11 Learning Styles as Factors of SUCCESSccuiveviviiiiieiiiieiieee 32

1.12 Gender DIimensionccooveveieiiiniiiiicieteeee ettt 33

.13 Ways of Learning.....c.cocoveoiiiiiiiineieeeee e 33

L1301 CodiNgG it 34

1.13.2 Understanding and Integrating.............c.ccooooevvivrierrennnen.. 35

1.13.3 Problem SolVing........coccoiiiieiiieireieieceeev v 35

1.13.4 Participating and Enculturation...........cccceooeivieieeenenann. 36

11325 FolloWing ..o 36

2. GAPS IN THE LITERATURE ..e.viuiiiieiiititaieiticeiie e seesiere et ten e 37
3. THE RESEARCH QUESTIONS ...iveiieiicteeeeeie ettt ettt ettt saene e 38
CHAPTER THREE: RESEARCH DESIGN ... 39
l. METHODOLOGY ..ottt ettt ettt as et bt en e 39
2. DATA COLLECTION ..ottt itenteete ettt sttt sv bbbt ese e e s 41
3. PARTICIPANTS .ottt ettt ettt 41
4. QUANTITATIVE DATA ittt 42
5. QUALITATIVE DATA oot 44
6. ETHICAL ISSUES ..ottt ettt ev et 45
CHAPTER FOUR: DATA ANALYSIS AND RESULTS ..o 47
l. QUANTITATIVE DATA ANALYSIS RESULTS ..oovviviiiieeeieieceeie v 47
2. CORRELATION ANALYSIS ..ottt ettt 50
3. QUALITATIVE DATA ANALYSIS oottt 55
4. OPEN-ENDED QUESTION L...oiiiiiiiiiiiiiieriesiieite e v eieeveesere et eve e 55
5. INTERVIEWS ..ottt ittt ettt ettt ebe et eaeene 56
6. LEARNING PROCESS....ccoiiiiiiiiiiiiii ittt et eve st 57
6.1 Attending LeCtUIeS ..ocooviiiiiiiiiiit ettt 58

6.2 Learning by EXamples ... 59

6.3 Applying and Integrating.........cccocevveviviinirinecnereeieeeee e 60

7. DIFFICULTIES ENCOUNTERED .. 6l
Tl SYNEAX EITOTS oveevieiiiiiiievii ettt 6l

7.2 Difficulties in Problem Solving.....c.ccoooevviiiiiiiniicceee 62

7.3 Difficulties in Understanding the Conceptscooveviviviirerecirienenne. 63

8. COPING WITH DIFFICULTIES. ...cecttierteienieeiieeeeie e ereereess et ereer et etn s enaenes 63
8.1 PEISEVEIANCE ..oviiiiiiiiiiiiii ettt .63

8.2 Source of References Used to Overcome Difficulties......................... 64

8.3 Relaxation as a Mean to Cope with Difficulties................c.cccovinans 65

CHAPTER FIVE: CONCLUSION AND DISCUSSIONS ..ooooo oo 66
. CONCLUSION .ottt e es e e 66

.1 Ways of Learning ...c.ccoocoeivioiiiiiiicececeeeee e e, 66

I.2 Factors InflTuencing SUCCESS.........cevmiviuererereiereereeeeeee e, 67

1.3 Triangulation.........ooeieiuiniiieieeieee e, 68

1.4 Motivation and EXPEctationcococeveevievivivieeeeeeeeeeeeeeeeeenn. 69
2. DISCUSSIONS iooiviiii st 71
3. LIMITATIONS OF THE STUDY .ottt eeeeeee oo ee e eee oo 72
BIBLIOGRAPHICAL REFERENCESoo oo 74
APPENDIX A — THE SURVEY QUESTIONNAIREc.ooovvuiivieeeisieeeeeeeeeeeneeeeeeseeeeeeren s 76
APPENDIX B — PROCEDURES FOR THE INTERVIEW .evevviov oo eee oo 85
APPENDIX C — THE CONSENT FORM ...oeeiioeeeee oot e 87
APPENDIX D — FREQUENCY TABLES .. cveee e ettt eeee e oo eeees oo eese e 90
APPENDIX E — THE INTERVIEW: THE LEARNING PROCESScoveeeeeeeeeeoeeeeeeeeereen 98

APPENDIX F — THE INTERVIEW: THE DIFFICULTIES ENCOUNTERED BY THE
STUDENTS oottt ettt e e e e oo e e e e st te e e ere e 101

APPENDIX G - THE INTERVIEW: HOW THE STUDENTS COPE WITH THE
DIFFICULTIES oeiiiiiieeee oottt eee e s v eeres e e avenasreeiaesesees o 104

Table |
Table 2

Table 3
Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10
Table 11
Table 12
Table 13
Tablel4
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23

LIST OF TABLES

Frequency of Learningccoceierimiiiieeneeciecie e 49

Spearman’ rho correlations among High school average, High school math
grade, Midterm mark, Final mark and Ways of learning.......................... 51

Spearman’ rho correlations among Prior computer knowledge, prior basic
programming, Difficulties understanding concepts, Difficulties solving
problems, and Find computer science difficult...........cooooiin. 52

Spearman’ rho correlations among Mother Tongue, Difficulties
understanding concepts, Difficulties solving problems and Find computer

science difficult ... 91
Frequency: Student Gender.........cccoiviiiiiniiiiiniiiiiici e 91
Freé]uency: Access t0 COMPULETouuiiieriiiiieieeneeneeeie et 91
Frequency: Program of Studycccocoiiiiiii 91
Frequency: Mother Tongue ... 91
Frequency: High School Language...........ccccooovviiiniiiinien, 92
Frequency: Prior Computer Knowledgeccoocooniiiiniiiiiinnn 92
Frequency: Prior Basic Knowledgecccccceveivinniniciiniiiin, 92
Frequency: User Recommended TeXt.......ccoooiieiiniiiiiiiiiiis 92
Frequency: Analyze and Write Algorithms ..., 92
Frequency: Work in Group Doing ASSIZNMENtccocvvvericiiiiniiiiiienns 93
Frequency: Work in Group Preparing for Test........cccoccoviniiniiiiiniinnnnn 93
Frequency: Participate in Class.................... et 93
Frequency: Miss Classcccoiiiiiiciiiiiiiicicsie e 93
Frequency: Difficulties Understanding Concepts...........ccccovviiiviiiinnnn. 94
Frequency: Difficulties Solving Problems.........cccocooeivciniiiiiin, 94
Frequency: Find Computer Science Difficult..........ccocoociiinnnn 94
Frequency: Understanding Programming Concepts Before Using Them. 95
Frequency: Try Examples to Understand Concepts of Coding................. 95

Frequency:

Learn Syntax Before Applying it to Solving Problems 95

Table 24 Frequency: Learn by Analyzing and Testing Working Programs............. 95
Table 25 Frequency: Analyze Problem and Write Algorithm Before Coding......... 96

Table 26 Frequency: Do Assignments Discussing with Peers in Groupsceevan. 96
Table 27 Frequency: Copy or Emulate More Experiencedoooovvvvevoveovon, %6
Table 28 Frequency: Simply Do All the Assignment Tasksco.o.oovvovoovo 96

Table 29 Frequency: Ways of Learningcoooeeeeoroveeoooeooeeeooooeoooo. 97

CHAPTER 1
INTRODUCTION

It is a well-known fact that programming courses are considered difficult by
students. Teachers have been and are still complaining about the poor performance of
students in the introductory programming courses. Surveys that have been done so far
show that failure rates' in introductory programming courses are very high.‘ Students
in our English CEGEP (Collége d’Enseignement Général Et Professionnel) computer
science programs including Vanier College are no exception; they are also struggling
to succeed in these courses. They have difficulties writing an algorithm. the basis of
all programming problems. At the beginning of the first semester. the majority of new
students have thé misconception that they will do well in programming because they
have been playing with computers for a long time. After some time in the first
programming course, they realize that programming is not as easy as they have
thought it would be. They forget that computers are machines and will perform and
process only what is being asked of them. They have difficulties in learning “logical

thinking”, an important requirement for succeeding in a programming course.

Another related problem is that they often cannot apply and combine the various

concepts in programming that they are taught in order to solve programming

problems. Most of them are surprised to learn that the tasks to be programmed have
to be very detailed so that an optimal solution could be found. There are also other
important misconceptions (which will be later discussed in the literature review) that

hinder novice students.

. PROBLEM STATEMENT

Although programming is one of the many skills that computer science
students must acquire, there have been concerns expressed by computer science
teachers about their students lacking basic programming skills. Poor pérformance and
high failure rates in introductory programming courses are common. McCracken
(2001) headed a working group made up of researchers from five countries that
studied the phenomenon. They devised assessment exercises to test the programming
skills of first-year computer science students from four universities. The team
reported that many students do not know how to program at the end of their
introductory programming courses. Two hundred and sixteen students took the

assessment test and the average score was just 20.8%.

In another study it was found that half of the students in the Department of
Computer Science at the University of Glasgow do not achieve the minimum grade
necessary to automatically progress to the next level (Mancy & Reid, 2004). In 2002-
2003, only 50% of students obtained a grade C or better which is the required grade
to continue to the next level. The figure confirms that students commonly experience

difficulties with programming.

At Vanier College, during the academic years 2002 to 2006, an average of
32% of the students in the Computer Science Program failed their first programming
course, although emphasis was being placed on supervised practical exercises in
laboratories, which is usually not done at universities. The figure was calculated from
success data extracted from the SRAM (Service Régional d’Admission du Montréal

métropolitain) database.

Thus, we need to know more about how the learning of programming by
computer science students takes place, how students come to understand concepts and

gain the ability to apply these concepts, and how they gain the technical and practical

19

skills needed to be able to write efficient programs. We also need to understand why
failure rates among programming students are so high by considering numerous
factors such as prior academic background of the students, time spent studying and
practicing programming, and regular class attendance. Do computer science students
succeed better if they have a strong mathematics background? We need to look at
students’ abilities and methods of processing information that they receive in
introductory programming cburses about programming concepts, programming logics

and techniques, and the syntax of the programming language used.

Since most studies done to date were done at the university level, it is
interesting to see whether similar results are obtained at the CEGEP level. This study
aimed to find out how our CEGEP students are really coping with their programming
courses and to learn about their concerns. This research should therefore benefit
students as well as teachers. The students struggling with introductory courses may
require particular pedagogical approaches on the part of their teachers. Tt is h;)ped
that teachers can then better understand the state of mind of the students in their
learning process and become more aware of the difficulties that students are
encountering. At the same time certain misconceptions can be clarified. Teachers will
then be able to modify their instructional strategies to make the courses more
interesting and motivating to the students and help them in their learning process. In a
large sense, improving the quality of teaching and learning was the main aim of this

14

research.

CHAPTER 2
LITERATURE REVIEW

Scholarly articles investigating how students are doing in computer science
have been scarce until recently. Computer science teachers are rarely interested in
educational research since most of them do not have formal teaching training. Most
of the articles published by teachers on this subject focus on their course contents and
teaching practices. But learning programming is not a trivial task. This chapter
introduces a model of iearning most appropriate to programming followed by some

results of previous research done on learning and teaching of the subject.
1. CURRENT LITERATURE
1.1 A Current Model of Learning

Every student who starts a computer science program or any other related
field has some kind of knowledge and background. This knowledge has been actively
constructed by the student through different means. Programming cannot be learned
by passively absorbing materials from textbooks and lectures. Rote learning also does
not help. Learning programming must follow a constructivist approach. This
approach is a dynamic one; students construct more knowledge using their prior
" knowledge. This can be done through much practice, writing, testing and running
programs. The students make progress by learning from the errors they make in their
programs. Students miay learn in different ways, but they all should know the
programming concepts and how to use them in their tasks in order to succeed. There
are different factors that contribute to their ability to apply these concepts to

successfully write a program that is efficient and at the same time produces what it is

supposed to produce. This study looks at some of the factors that contribute to

success in introductory programming courses at Vanier College.
1.2 Misconceptions

Early research considering the issues involved in learning how to program
looked at the cognitive aspects of the problem. Du Boulay (1989) analyzed the areas
in which students had difficulties. The areas include understanding the properties of
the machine, knowledge of the syntax of programming languages, understanding the
structures of programs as well as knowledge of the editors used to enter programs in
the computer, correct them for compiling errors, test and execute them. Du Boulay
also analyzed several misconceptions that novices have about programming concepts.
Most of the examples used in explaining concepts are mathematically oriented, but
students cannot see the difference between a variable in algebra and the notion of a
variable in programming. They cannot see how a variable or a variable name
represents an address of the computer’s memory. They were surprised to see that in
programming it is possible to write the following statement (in BASIC, a
programming language in the early days of computer science): A = A + | meaning
that you are assigning the result of the increment by one of the variable A to A itself.
In Algebra, this statement is illegal. Also, students cannot see the logic behind the
statement (in PASCAL, another popular programming language mainly used to teach
elements of programming) A := B; Novices would see a link between A and B such
that whatever happens to A will also happen to B, which is wrong; the other way
round is right. These are two misconceptions among others that may result in students
making errors in their programming tasks. Furthermore, anecdotal evidence shows
that some students think that they would be good in programming because they have
been using computers playing games and do word-processing since an early age. But
when it comes to programming they have difficulties reading and interpreting error
messages when they try to compile and run their programs, and students are weak in

taking appropriate action.

1.3 Cognitive abilities in programming

Linn & Dalbey (1989) surveyed 500 high school students looking at what
they called a. chain of cognitive accomplishments needed in programming and
studying how the chain leads to progress in the learning of the subject. That chain
consists of the language features of the programming language used, design skills and
problem-solving abilities of the students. The language features are the rules or
syntax of the language. These are usually explained to the students by the teachers

who give exercises so that the students are able to see where and how to use them.

Design skills are the next step that the students need to grasp. They are the
set of techniques that combine the language features to write a program to solve a
problem. These techniques are used by the students to create a series of templates,
each of which performs a particular function. Design skills also involve planning,
testing and reformulating. Planning is needed to solve complex programming
problems and this is rarely done by novice programmers. On the other hand, testing is
important in order to know whether the programs perform as they are intended to.
Reformulating is the skill that is needed to modify the programs. Programs are
modified for various reasons, such as logical errors or change in specifications and

requirements of the problems among others.

The last link in the chain oftcognitive accomplishments is problem-solving.
This is the combination of the desigri skills and the language features that the students

use in order to apply templates learned in one system to a new system.
1.4 Cognitive abilities as factors of success

In their study, Linn & Dalbey linked the abilities to characteristices such as
the general ability or intelligence of the students involved in their study as well as
access to computers, previous interest in computers, gender and programming skills.

They found that the programming skills of the students and their success in the final

3]
(05}

assessment were correlated with increased access to computers, interest in and

previous knowledge of computers.

There was also a positive correlation between the students’ general academic
ability and their performance. There was no difference in performance when gender
was considered. However, these results may not be applicable to today’s computer
science courses, in part because the research was done with programming languages
that are not being taught now. Furthermore, the study done by Linn and Dalbey was
done in high schools where computer science was newly introduced and the teachers

did not have much experience in teaching the subject.

Both Du Boulay (1989) and Linn & Dalbey (1989) did early research
projects with the objective of helping teachers become aware of the difficulties
students were facing so that they could alter the courses and teaching assignments. It
would be interesting to see whether these findings still hold true nowadays in our
CEGEP environment. F'urthermore, access to computers may not be as important an
1ssue as it was twenty years ago. Interest in and previous knowledge of computers

and computing will be more pertinent to the question.
1.5 Cognitive characteristics

Another type of factor considered in research done on the poor performance
of novice students in introductory programming courses is cognitive style and
specific abilities. Mancy & Reid (2004) focussed on what the authors referred to as
working memory space (WMS) capacity and field dependency (FD). They wanted to
know how useful WMS and FD can be as predictors of success in computer
programming. WMS s that part of the brain that holds information temporarily,
processes it, and stores it in long-term memory for further use. The capacity of the
WMS is limited and information is not held for a long time. The researchers

explained the concept of field dependency the following way: a learner who is not

24

able to reorganize concepts and integrate them with past experience to solve problems
is considered field-dependent. Field-independent individuals are also able to extract

pertinent information and leave irrelevant materials aside.

In spring 2003, Mancy & Reid administered tests for WMS and FD to 150
first year computer science students at the University of Glasgow and correlated the
findings to their performance in their assessment tasks. To test WMS, the authors
used a digit span memory test based on Jacobs (1887). The memory test was not done
with a computer. The students were read a series of numbers and they had to rewrite

the series, forward or backward depending on the series read.

As for the FD test, they made use of a slightly modified test by Witkin et al.-

(1977). The students were given a set of complex figures and some simple geometric
shapes to be found in the complex figures. They had to trace the outlines of the
shapes. The score was the number of correct shapes found and traced with the

complex figures.

From those two tests, the researchers could clasgify the students into
categories with level of WMS and level of field-dependency respectively. The final
grade of the cohort of students was calculated based on the results of four
examinations given to the students throughout the course of the year. There were two
practical examinations and a class test which were worth 30% of the final grade and

the final examination which was worth 70% of the final mark.

Though it has been shown that WMS and FD are useful predictors of success
in conceptual areas such as mathematics and statistics and that problem solvers use
WMS to keep track of goals and plans and that FD students are better problem-
solvers, the authors found to their surprise that WMS is not a factor of success in
programming, even though WMS limitations have been shown to hinder learning

progress in science education. At the same time they found that students who scored

o
e

well on the field dependency test i.e. those who are considered to be field-

independent scored better in their examinations.
1.6 Computer Science discipline

There have been recent attempts to define computer science education
(CSE), allowing computer science to be considered as an independent academic
discipline, just as mathematics or any science subject is. From this perspective,
Holmboe et al. (2001) did a survey of research done in computer science education.
Apart from the psychological and cognitive aspects of research done, the team
noticed that most current research is being done on different ways of implementing
computer technology in the teaching and learning of different subjects. They found
there was insufficient CSE research done to understand the issues involved so as to
improve the quality of teaching and learning in the computer science discipline, hence
defining success. They tried to define what constitutes a good teaching practice so as
to improve the quality of learning of programming. They suggested that a good
teacher should not only know and master his or her subject matter but also that he or
she must have essentially what is referred to as pedagogical content knowledge so
that the student can learn to construct knowledge and succeed. According to Holmboe
et al. (2001), close collaboration is needed between computer science teachers and

researchers in education science, psychology and epistemology.

T

Students’ performance is dependent on the wﬁys disciplines are being taught
and also on how the students perceive the disciplines. Programming courses are not
exempted from this. Many students drop out of programming courses because they
find programming difficult. They cannot process the information they receive; they
do not understand concepts used in programming, the programming logic and
techniques. Some teachers, knowing the strengths and weaknesses of their students,
have developed and adapted ways of teaching that correspond to the learning path of

the students. But they rarely document their practice. Without detailed

26

documentation, it is difficult to deduce whether success in learning programming
depends largely on the ways of teaching or on the learning methods of the students.
On this question, a survey of methods to evaluate how computer science is taught was
dor;e by Carbone & Kaasboll (1998). They noticed that the most common methods to
evaluate teachers and teaching methods were evaluation questionnaires, analysis of

examination marks and laboratory experiments.

Similarly, many universities do a survey on students’ impression of a course.
The survey usually asks the level of satisfaction of the students with the course in
general, as well as with the teachers and specific areas of teaching. Much can also be
learned from open-ended questions which usually accompany the survey. The
comments made usually target the teaching methods. Examination marks are
supposed to reflect the students’ understanding and competence in the subjects. The
authors gave an example where students who were taught programming by means of
~ developing formal specifications of programs improved their examination marks. But
no details were mentioned concerning the student population and the reliability of the
measure. However, this survey did not fully answer the question of whether student
success depends on the teaching methods. It did shed some light on the delicate issues
involved in learning how to program. As for experiments, not much research has been
done to evaluate teaching and learning programming because setting up a controlled

experiment in a laboratory is considered too complex.

1.7 Learning aspects

On the issues on learning programming, Lahtinen et al. (2005) did a
descriptive and comparative correlation analysis of the difficulties students from
several universities in Europe encountered in programming courses through a
questionnaire which surveyed programming concepts and issues with which they had
difficulties. The team also looked at the learning and teaching process as well as

materials used in the learning process. They wanted to know how the students’

27

performance was influenced by factors such as the background of the students, course
contents, learning situations and materials. The learning situations that Lahtinen et al.
considered were lectures, exercise sessions in small groups, practical sessions in
computer rooms, studying alone and programming by themselves. Examples of
learning materials considered in the survey were: textbooks, lecture notes and copies
of transparencies, exercise questions and answers, and example programs. Both
students and teachers participated in the survey. Fifty percent of the students surveyed
had prior programming experience. Those students thought that they had a moderate

to good level of programming skills.

Clearly, students in the programming courses often had different experience
levels making teaching the courses challenging for the teachers. For the course
contents, the opiﬁions of both the students and the teachers on the most difficult
concepts were approximately the same. Teachers and students both considered that
learning by examples was the most helpful. As for the learning situations, students
tended to think that they would be better off learning by themselves whereas the
teachers thoﬁght that lectures were more beneficial to the students. Teachers thought
that the students would also learn better with more guided exercises. Again, the
results may partly be explained by the misconceptions that students have about
programming. Students do not realize the amount of difficulties that they have; they
sometimes overestimate their understanding. This research paper aims to help raise
awareness of the misconceptions that exist in the minds of students, especially

computer novices.
1.8 Factors contributing to success

Several researchers or teams of researchers have begun recently to look at
factors contributing to success in introductory programming course. Wilson & Shrock
(2001) studied factors such as previous computer experience, self-efficacy. comfort

level, math background and gender among others. They tried to determine what

28

relationship exists between these predictive factors and the mid-term course grade
from 105 students they surveyed at a comprehensive Midwestern university. The
students were enrolled in the first introductory programming class required in the
computer science major. The authors used midterm grades as the determinant of
success. They wanted to include all the students who started the course, even those
who would drop out before the end of the semester. They wanted to survey as many
students as possible because of the high aurition rates in introductory computer

science courses.

They found out that comfort level was the best predictor of success in the
course followed by math background. Comfort level was described by the authors as
the ease of participation in class and laboratories, understanding the concepts in the
course, and perception of the difficulties in the completion of assignments. It also

involves anxiety felt while working on computer assignments.

Previous computer experience was divided into previous programming
experience and previous non-programming experience. They found out that previous
programming experience which included either a previous programming course or
self-initiated programming plays a positive but not a significant role in student
success. As for previous non-programming experience, the authors found out that
game playing, one of the activities mentioned in previous non-programming

expérience, had a negative effect on the'midterm grade.

A similar result was reported by Hagan & Markham (2000). They indicated
that students who have had experience in at least one programming language perform
significantly better in assessments than those with none, and that the more languages

with which they had experience with, the better the performance tended to be.

In a study done in Ireland, Bergin & Reilly (2005) found that there is a

strong positive relationship between programming performance and the Irish Leaving

29

Certificate scores in mathematics. But they also observed that there was no significant
difference in performance between students with prior programming experience and

non-programming experience.

Goold & Rimmer (2000) looked at some other factors affecting the
performance of a group of 39 Australian undergraduates majoring in computer
science in their first-year computing courses. During the first semester, two courses
were given, Information technology and Basic Programming Concepts. Having
successfully completed them, the students took Data Structures and Algorithms.
Among the 39 respondents, only 25 of them took the Information technology course
while the rest were exempted and received credits since they had some experience in

the subject matter due to after school activities or pre-university courses.

Results in these three courses were analyzed. Performance was defined as
the grades received for these courses. In the Information Technology units, mastery
of applications software was part of the measurement of performance. It was assessed
through assignments which accounted for 40% of the final grade. The same applied
for the basic programming course. As for' the data structures course, assessment
included examination (60%), mid-term test (10%) and assignments (30%). The
authors looked at how prior experience, problem-solving abilities, dislike of

programming and secondary school results affected performance in the three courses.

They found the following correlations between performance and these
factors: Dislike of programming was seen to have a very negative influence on
performance in computer course examinations. Problem solving ability has a positive
correlation with performance in the Basic Programming Concepts course, but it did
not affect the overall performance in the higher level Data Structures and Algorithms

course.

Those students who did some programming before university did better
overall in data structures. But the results did not show any correlation between prior
programming experience and examination marks. The students demonstrated better
programming skills in assignments that contributed to the final grades. Secondary
school results had only a slight positive correlation with success in the Basic
Programming Concepts course. In the other courses. the significance was almost non-
existent. Finally, gender was not a factor in performance in the advanced

programming course.
1.9 Motivation as a factor of success

Bergin & Reilly (2005), in another study, also looked at the influence of
motivation and comfort level on learning to program. However, this study looked at
how the factors affect performance in an introductory object-oriented programming
module. Object-oriented programming is a new technique of programming. Contrary
to the original style of procedural programming where the focus is on the design of
the processing (the design of procedures which perform appropriate actions on
different types of basic data types such as integer, real or character or other types
derived from the three basic ones), object-oriented programming encapsulates the
data with the methods that process the data to produce a class which is considered as
the data type. So whenever an object is defined as some class type, the appropriate
procedgres or processing are also known. Students must be acquainted with the new

. philosophy.

Bergin & Reilly (2005) defined motivation as the need and desire to be
successful in their learning process. They also divided the students into two
categories, those who were intrinsically motivated and those who were extrinsically
motivated. For the latter, rewards such as grades are the motives to persevere whereas
for the first group, it was personal satisfaction or personal achievements which drive

them to go forward. The authors considered the students’ ease with asking and

31

answering questions in programming, and their self-esteem and self-efficacy when
they described comfort level. In this study, the authors found that students who are
more intrinsically motivated perform better. The higher the level of intrinsic
motivation the greater is the programmiﬁg success. They found that extrinsic
motivation does not have a significant influence on programming performance. As
for comfort level, it was found that students with higher self-esteem perform better
than students with lower self-esteem, but there was no significant difference found

with self-efficacy.
1.10 Time spent studying as a factor

Another factor that was studied was time spent studying. Carrington (1998)
did a survey analyzing the amount of time full-time computer science students at the
University of Queensland in Brisbane (Australia) spend on their homework. Students
were complaining that they were overloaded with excessive work. The amount of
time spent by his students in a software design course was monitored for three
assignments. The time monitoring was intended to determine how students spent their
time and the causes of any overloa.d. For the first two assignments, there was a
positive correlation between time spent and the marks received, whereas for the third
one, it was noticed that the correlation was slightly negative. Carrington explained
this result by noting that the third assignment was much more difficult and that the

students spent 4 lot of time trying to debug their program without much success.

Although the students were told that time monitoring and reporting were an
integral part of the assessment and that it was worth 5% of the mark, not every
student reported the time spent on a regular basis; around 60% of students supplied
data every week and 90% of them supplied the data for most weeks. In the paper it
was not mentioned how many students took part in the study. It was also noticed that
the reporting of time usage was concentrated during the weeks when the assignments

were due. The results show that the students surveyed did not study materials related

32

to programming regularly and that the overload reported was due to poor time
management. It would be interesting to see whether Carrington’s findings would also
hold true for a Quebec college environment. However, it is beyond the scope of this

study to repeat Carrington’s work at the CEGEP level.
1.11 Learning styles as factors of success

Success in programming also depends on how students learn. A survey was
done by Byrne & Lyons (2001) with 110 humanities students taking a first year
programming course in Ireland. Successes in the course were defined as the ability to
specify, design, code, and test a computing solution. The students were assessed on a
final three-hour written examination which was worth seventy percent of the final

grade and on twenty assignments worth a total of thirty percent of the final grade.

In addition to gender, prior experience, and previous academic performance
in mathematics, science and languages, the authors looked at Kolb’s four learning
styles as factors influencing the scores attained by the students. The four learning
styles are: convergers, divergers, assimilators and accommodators. Convergers are
practical, preferring technical tasks and problems over those dealing in social issues.
They also like to experiment with new ideas and laboratory assignments. Divergers
are the opposite of convergers; instead of hands-on they prefer to observe situations
from different points of view, do focus groups and work in groups. Assimilators are
people who like to put information they gather in logical form in order to understand
the issues; they prefer to read, go through lectures and think things through
thoroughly before taking action. Accomodators are hands-on people; they like to

actually try out challenging things either by themselves or in groups.

According to Byrne & Lyons, convergers perform best in all academic
fields. As for gender, female students did better than male ones. But the difference

was not very significant. Males had a mean score for the final examination of 39.7%

(W]
(U]

whereas the females scored 43.9%. Those with backgrounds in math and science
obtained higher marks in programming exams than those having English and foreign
languages as their main prior academic experience. Finally, those with some prior

. programming experience generally did better.
.12 Gender dimension

There have also been studies done looking at gender differences in attitudes
and perceptions in learning programming. Carter & Jenkins (1999) surveyed students
from Leeds and Kent Universities in UK by giving them seven statements and asking

them for their opinions. The statements used were:

1 find programming easy.
I prefer to work alone.

When I get stuck I will always approach a lecturer for help.

oW~

When I get stuck I prefer to ask my friends for help first.
When I get stuck I prefer to work out the answer myself.

In general, men are better than women in programming.

NS W

The lecturers are more willing to help female students than male.

For the first six statements, no significant difference in attitude was found between
males and females. But for the last statement, male students strongly believed that
this was true. The authors also compared the students’ performance; they found that

female students performed better than male students.

1.13 Ways of learning

Furthermore, Booth (1992) did a phenomenographic qualitative study on
learning to program by interviewing first time programming learners.
Phenomenography is an empirical qualitative research method often used in

educational research. Data is collected using interviews. These interviews are

34

recorded and the researchers take time to analyze the data and try to understand and
explain the phenomenon they are researching. The interviews are transcribed and are
read and reread, in context. Excerpts of the transcript are de-contextualised, compared
and grouped in different categories. In this way, researchers are able to understand the

phenomenon.

Booth addressed the fundamental question of what programming means and
what is demanded when learning to program. She wanted to understand how students
think and how this helps them in programming. The questions she addressed in her
work were the following: What does it mean and what does it take to learn computer
programming? She found that first-year programming students learn programming in

four different ways, “Coding”, “Understanding and Integrating”, “Problem Solving”,

and “Participating and Enculturation”.

An extension of the study was done by Bruce et al. (2003) using the same
qualitative method. They added a fifth category which they called “Following”. From
the interviews the authors made, we can perceive how the students new to
programming learn the art. They also went further by looking at additional aspects
such as the students’ learning approaches and activities, their view of the
programming language learned their learning motivation and their ways of seeing

programming.

1.13.1 Coding

Students using coding focus on the syntax that makes up the language being
learned. The programming language is seen as a means to develop one’s competency
with the syntax. They see programming as the ability to write codes. They think that

the more codes one knows, the better one will be able to program.

They also spend their time looking for examples or pieces of codes in

textbooks, on the internet or other sources that will help them finish their

35

programming tasks. If they do not receive any kind ot help when they ask for it, they
become frustrated and disillusioned. Overall, for them, learning the syntax of the

programming language is the most important part in their learning process. ,

1.13.2 Understanding and Integrating

Students using understanding and integrating consider understanding as an
integral part of their learning process. They think that they would be able to write a
program after understanding the concepts. Since failures at the beginning very often
arise due to the fact that the students are not yet able to relate the tasks to the concepts
learned, many tend to give up on programming. Those students need to persevere.
They need to build their knowledge based on their schemata, i.e. prior experience and
knowledge, block by block. They have to assimilate one concept before going to the

next.

Their learning approach is based on understanding the concepts as well as
concentrating on the task at the same time. They would write the codes only after
they have understood. They would use their expérience for further tasks. They would
also use different sources to gain these experiences such as the internet. For them,
learning programming is learning the structures and the logic of the programming
language. Their motivation extends more towards understanding the big picture of
programming through understanding the concepts rather than concentrating on the
tasks. Lastly, for them programs consist mainly of synt_ax,, codes, concepts and logics

integrated together.
1.13.3 Problem Solving

Learning programming for the students using this way of learning starts with
the problem. They focus simultaneously on the problem to be solved and the

understanding of the concepts. They learn what it takes to solve the problems and to

finish the task. They do not focus on understanding first but on the ability to end up

with the solutions.

They place a high priority on planning before writing the codes. For them
learning the programming language is the means to solve the problems. They are
motivated by the problems they have to solve and see programming on the whole “is

about creating solutions to a problem”.
1.13.4 Participating or Enculturation

Students try to be part of the community of programmers, learning their
culture and their ways of thinking, to gain experience and learn what programming is
all about. They try to emulate their peers. They, too, need to learn the concepts and
the syntax of the programming language. But they focus mainly on the

communication with other programmers as their learning strategy.

They consider the programming language as part of learning the culture of
programming and are motivated by the prospect of finding work in the domain. For
them, programming is a culture; they can mingle with their peers sharing ideas and

experience.
1.13.5 Following '

Students in that category simply try to get through the unit. This means that
they try only to complete whatever is being asked such as assignments, tests and
ex.ams. The main issue is to get marks; this informs their learning strategies and
activities. Their desire to pass the course is the ultimate goal and motivation, and it is

also the way they see programming.

They differ from other students in that they want the course to be structured

in such a way that it matches their expectations and needs. For them, teacher

feedback is crucial because they want to know whether they are on the right track and

passing the course.

However, this study did not survey the relationship between success of the

students in their programming courses and their ways of learning mentioned above.
2 GAPS IN THE LITERATURE

The surveys of Du Boulay (1989) and Linn & Dalbey (1989) were done at
the high school level; the others discussed in the literature review were done at
various universities. There has been no educational research of this kind done in our
Engl'ish' CEGEP environment. Tt would be interesting to see if our college
environment differs from the others. Research to answer questions about how the
learning of computer programming takes place, on how students come to understand
programming concepts and gain the ability to apply these concepts and on how
students gain the technical and practical skills needed to be able to write efficient

programs, can benefit the faculty as well as the students of computer science.

At the same time, it can help to see whether the factors such as prior
academic background, hours of study, ways of studying, and regular class attendance
play a significant role in the success of our English CEGEP students in their
introductory programming courses. This study hopes to result in higher quality
teaching and learningfof computer science. Furthermore, the phenomenographic study
done by Booth and Bruce et al. did not look at possible relationship between students’
performance in programming and the ways they learn it. This study also attempts to
see whether there is a relation between the ways of learning, Coding, Understanding
and Integrating, Problem Solving, Participating or Enculturation and Following,
described by Booth and Bruce et al. and the performance of our programming
students. Do students using one way of learning perform or succeed better than

students using another way?

3. THE RESEARCH QUESTIONS

This descriptive study set out to investigate, from a cognitive perspective,
how Vanier College students in introductory programming courses learn the subject.
Since there has never been a study done on the subject at the College, the study will
focus on several factors that contribute to the success in the courses. Can the ways of
learning programming of Vanier students can be categorized according to Booth
(1992) and Bruce et al. (2002)? Is it possible to compare how successful the students
in each category are? Success in this context means passing their programming

COurses.

From the teaching experience accumulated throughout the years spent in
teaching computer science and programming, from numerous discussions with
colleagues in the Computer Science department and from anecdotal evidence, the

following hypotheses were initially selected to be tested:

o Computer Science students using understanding and integrating succeed
better than students using following, coding, or problem solving.

o Students using problem solving succeed better than those who use
participating and enculturation.

* Students who use coding perform better than those who prefer participating

and enculturation.

In addition, the author set out to see whether there is a gender difference in how
students learn programming. For example, it is interesting to know the most common
way of learning (described by Booth and Bruce et al.) of female students compared to

male students who are taking programming courses.

CHAPTER 3
RESEARCH DESIGN
Is METHODOLOGY

In order to answer the initial research questions posed, data were gathered in
two different ways, a survey questionnaire (Appendix A) filled by the participants
and a semi-structured interview. The survey questionnaire was used to collect
quantitative data to be analyzed using the statistical package SPSS for Windows. The
interview was used to corroborate the answers given by the students in the

questionnaire.

One question in the questionnaire explicitly asked the participating students
- to choose a way of learning which they feel is the most appropriate for them. The

question asked was the following:

Which of the following describes you the best, when you learn
programming? (Choose only one.)
a I learn the syntax of the programming language first and then
spend a lot of time at the computer testing and running programs.
b. I need to understand the concepts before I can apply them to
practical tasks. I need to understand a concept fully before
learning others.
c. Istart by analyzing a problem and then look at the concepts and

syntax necessary to solve it.

40

d. I gain experience and learn what programming is all about by
learning the cultures and the ways of thinking of experienced
programmers and try to follow their example.

e. [Ilearn by trying to do all the assessment tasks that are part of the
course requirenients. .

f Ido not know.

The question placed the students into the categories enabling the researcher to test the

initial hypotheses.

There was a set of open-ended questions at the end of the questionnaire
(Appendix A). Learning how to program is best done by doing programming
assignments, by practising coding. Hence, how the students approach a programming
task can give us a fair amount of information on how they learn. We can thus
categorize the students by the ways they deal with the difficult task of learning the art

of programming. The open-ended questions posed in the questionnaire were:

(1) Can you elaborate on how you do a programming assignment?
(2) Is there a set of steps that you usually take to complete it? Please

explain.

' A pre-test of the survey questionnaire was administered to 33 first and
second year computer science students in order to detect any flaws or ambiguities.
Appropriate modifications were made resulting in the final questionnaire used in the
current survey. In the pre-test questionnaire, students were asked to choose from a
range of numbers their average high school grade, their final grade in their high
school mathematics course, the number of hours they work outside school, and the
number of hours they spend studying. Accuracy was lost when medians were

calculated for the correlation analyses. Thus, in the revised questionnaire, students

were asked to enter a real number for each of these variables. Also, a set of questions

41

(Questions 23 through 30 in Appendix A) about the activities describing their styles

of learning were added. These questions were used for triangulation purposes.
2. DATA COLLECTION

The researcher went to class and explained to the students the purpose of the
research. The students were then asked to fill the questionnaire. The quantitative data
collected were analyzed by the statistical program SPSS. The open-ended questions at
the end of the questionnaire were analyzed using content-analysis methods. The semi-
structured interview was done one to two weeks after the questionnaire. Only
students who volunteered were interviewed. The interviews were mostly done on an
individual basis in the office of the researcher except for two pairs of students who
asked to be interviewed together. The students were reminded of the purpose and
importance of the research and that their answers would remain confidential. The

interviews were taped. Each interview lasted around 15 to 20 minutes.
3. PARTICIPANTS

Fifty-eight Vanier College students (other than the ones who did the pre-
test), thirty-four (approximately 59%) of whom being in the Computer Science
Technology Program and twenty-four (41%) of whom being in the pre-university
Science Program, volunteered to participate in the survey. The Computer Science
students were in the first and second semester. The first semester students were taking
the introductory programming course at the time of the survey which was conducted
in March 2007. The second semester students had already taken the course and
received a final grade for it. As for the Science students, they‘ were taking the
complementary programming course which is equivalent to the introductory
programming course taken by the Technology students. Even though Computer

Science students were using the Java programming Ia'nguage and Science students

42

were using the C++ programming language, they all had the same competencies,

objectives and standards to fulfill.

The percentage of female students taking the course was low; only 8 out of

the 58 participants were females. This means that looking at the difference in gender

performance did not yield statistically significant results.

Both computer science and science students had their theory classes
conducted in an ordinary classroom or lecture room and their practical classes in the
computer laboratories. In the theory classes, the students were mainly lectured to;
programming concepts were being taught using examples. Sometimes the teacher
would demonstrate, in the classroom, some of the examples using a laptop connected

to a video projector.

During laboratory sessions, each student had a computer to himself/herself to
test his/her programs since the labs are mostly hands-on. There were more practical
or laboratory hours than theory classes in a ratio of almost two to one meaning that
the students had a fair amount of one to one contact hours with the teachers. On top
of that, the students are usually free to come to any available computer laboratories
when they want to work during their free periods. They have plenty of opportunities

to practice their programming skills.
4. QUANTITATIVE DATA

Data were coIIectgd using quantitative as well as qualitative methods. For
the quantitative data, the instrument used was the questionnaire developed by the
researcher especially designed for the survéy. It collected data on the following main
items: (a) gender, (b) high school average grade, (c) high school prerequisite
mathematics grade needed to enter the Computer Science Program, (d) previous
computer knowledge, (e) prior programming experience, (f) class attendance, (g)

ways of learning and tackling assignments, (h) number of hours worked outside the

43

curriculum, (i) hours spent studying and doing the course assignments, (j) the level of
comfort in understanding the concepts, (k) the level of comfort in problem solving
and (1) the level of comfort in doing the cburse assignments. The three questions on
the last three factors depicting corresponding levels of comfort used a Likert scale
from 0 to 4, corresponding to (0) strongly disagree, (1) somewhat disagree. (2)
somewhat agree, (3) strongly disagree, and (4) don’t know. Questions (14) to (16) in

the questionnaire (Appendix A) given as statements were as follows:

(14) Thave difficulties in understanding the concepts of programming.
(15) Thave difficulties in problem solving.

(16) T find computer science difficult.

These variables were correlated with the final grade received for the
introductory course. The final grade for the introductory programming course for the
computer science students was calculated in the following way: assignments and
quizzes were worth 40% of the final grade; three tests were given worth 15%, 20%
and 25% respectively. As for the course for the’ science students, the assignments and
exercises accounted for 25% of the final grade; the three tests had a value of 20%,
25% and 30% respectively of the final grade. The final grades received by the
respondents were officially handled by the coordinator of the Computer Stience

department who oversaw the smooth running of the courses given by the department.

t

Frequency tables (Appendix D) concerning the following variables, gender,
access to a computer at home, mother tongue, high school language of study, prior
computer knowledge, prior basic programming, use of the recommended text,
working in group doing an assignment, working in group preparing a test,

participation in class, missing classes and ways of learning were generated.

Other variables involved in the survey relate to the following:

44

(a) understanding programming concepts before using them. (b) trying examples to
understand the concepts of coding, (c) learning syntax before applying it to solve
problem, (d) learning by analyzing and testing working programs, (e) analyzing
problem and write algorithm before coding, (f) doing assignment by discussing with
peers in group, (i) copying or emulating more experienced programmers and (j)

simply doing all assessment tasks.

These variables described the learning process of the students. The questions
posed as statements also used a Likert scale ranging from (0) to (4) corresponding to
strongly disagree, somewhat disagree, somewhat agree, strongly agree and don’t

know respectively. Examples of the questions (see Appendix A) are:

(23) Ttry to understand the programming concepts before using them.

(25) T learn the syntax of the programming language before applying it to
solve a problem.

(26) learn programming by analyzing and testing working programs.

(27) 1 analyze problems and write the algorithms before attempting to do
some coding.

(29) I learn programming by copying and emulating others who are more

experienced.

These questions are similar to the ways of learning; they are given as a
triangulation method. Correlation analyses were generated to look at relationships
between the variables mentioned above and the final grade of the students.

Independent-samples t-tests were conducted to test the hypotheses.
5. QUALITATIVE DATA

Additional qualitative data was collected using a semi-structured interview.
Ten students among the Computer Science Students volunteered to be interviewed on

the basis of their answers to the questionnaire. The following questions were used

45

during the interviews. These questions address the question of how students go about

learning to program:

[. Tell me why you chose computer science.

2. What is a programming language to you?

3. What are the main techniques that you use when you learn to program?
4. What type of assessment tasks help you most in learning to program?

5. Can you describe how you go about writing a program?

6. How do you overcome the frustration when your program is not

working?
7. Is there anything that you would like to see improved in the ways

learning how to program is being taught?

The qualitative data collection was done as a triangulation method and
expands on the answers given by the participants in the survey questionnaire. The
students were asked to express whatever views they have about their learning process
in programming. The interviews were recorded and transcribed. The answers were

then analyzed. The procedures for the interview are given in Appendix B.

6. ETHICAL ISSUES

All the participants took part in the survey voluntarily; they signed a consent
form (Appendix C). Those who were under 18 had obtained their parents’ permission
to participate. They were given an explanation of the purpose of the research project
and why their participation was helpful. They were explained the process by which
the research would be conducted, how the data would be used and to whom the
results would be reported. In doing so, any deception could be avoided. Furthermore,
participants were told that they could withdraw from the research for any reason

whatsoever without being penalized in their academic performance.

46

Moreover, the participants were informed that their personal data would be
protected and would remain confidential. The identifying descriptions of the data

would be removed so that their privacy is protected.

CHAPTER 4
DATA ANALYSIS AND RESULTS
1. QUANTITATIVE DATA ANALYSIS RESULTS

Vanier College is a college where the language of education is English. But
it is interesting to note that the student population is rather particular. This
particularity is also reflected on the group of respondents to this survey. The
frequency tables (Appe‘ndi'x D) show that less than half (43.1%) of the students have
English as their mother tongue. Exactly half of the students had done their high

school studies in English.

Furthermore, 53.9% of the respondents said that they had a good or very
good knowledge of how computers work, 27.6% said that they had a fair knowledge
and the rest had a rather poor or no knowledge at all. These students who had not
done any programming before starting the introductory course accounted to 48.3% of
the respondents. Among the rest, 48.2% said that they had very little or a little prior
experience in programming. Only two of the students firmly stated that they had done
much programming before. When asked whether théy usually :used the recommended
textbook, 49.9% replied that they used it sometimes, or often, or all the time. The rest

said that they never or rarely did.

It is also interesting to note that more than half (53.7%) had at one time or
another worked in group when doing their programming assignments. But, when
they were asked whether they prepared for tests together, twenty five (43.1%)
students said that they never studied for tests with others whilst 16 students (27.6%)

48

said that they sometimes or often worked together. The majority.(74.2%) of the

students never or rarely missed classes.

When asked about the level of comfort with programming, 63.8% answered
that they did not have difficulties understanding the programming concepts; 74.1%
strongly disagree or somewhat disagree that they had difficulties solving problems
and 69% replied that they did not find computer science difficult. One thing that they

had in common is that they all had access to a computer at home.

The respondents were also asked explicitly in what category they would
place themselves among the five ways of learning; they were asked to choose only
one, that which would fit them the most. The following statements were used in the

survey question to describe the different ways of learning:

1. Tlearn the syntax of the programming language first and then spend a lot
of time at the computer testing and running programs (Coding)

2. I need to understand the conce;pts before [can apply them to practical
tasks. 1 need to understand a concept fully before learning others.
(Understanding and Integrating)

3. Tstart by analyzing a problem and then look at the concepts and syntax
necessary to solve it (Problem Solving))

4. T gain experience and learn what programming is all about by learning
the cultures and the ways of experienced programmers and try to follow
their example (Participation and Enculturation)

5. Tlearn by trying to do all the assessment tasks that are put for the course

requirement (Following)

The following table shows the result:

49

Table |
Frequency on ways of learning

Way of learning Number of responses Response rate
Coding 14 24.1%
Understanding and Integrating 13 22.4%
Problem Solving 16 27.6%
Participation and Enculturation 3 5.2%
Following 6 10.3%
I do not know 5 8.6%
Blank 1 1.7%

Table 1 shows that very few respondents were in the categories of
“Participation and Enculturation” and “Following”. Alimost the same numbers of
respondents fell into the other three categories, “Coding”, “Understanding and
Integrating” and “Problem Solving”. Only three students said that they fell into the
“Participation and Enculturation” category and only six respondents said that they

learned programming by doing all the assessment tasks that were given.

. Since the number of students in these two categories is insignificant, these
results led to a revision of the initial objectives of the project. The hypotheses stating
that “Students using problem solving succeed better than those who use participating
and enculturation” and “Students who use coding perform better than those who
prefer participating and enculturation” could not be tested since significant results
would not be achieved due to the small number of students favouring “participating

and enculturation”.

Furthermore, since “Following” also had few respondents, instead of the
hypotheses “Computer Science students using understanding and integrating succeed

better than students using following, coding, or problem solving”, the following

50

hypotheses “Computer Science students using understanding and integrating succeed

better than students using coding or problem solving” was tested.
2. CORRELATION ANALYSIS

Since the number of respondents was not large, Spearman Rho correlation
and-Kendall’s tau correlation tables were generated for several variables. There is a
general belief based largely on anecdotal evidence, that a student with a higher high
school average and a high school mathematics grade will be more successful in
programming. This may hold true for other institutions but at Vanier from the

responses that were collected the result was not quite what was expected.

The high school average and the high school math grade do have a slight
positive effect of the final mark that the students received but the relation was not
significant. However, we did notice that there was a significant positive relationship

between high school average and high school math grade and the midterm mark.

These results may be explained by the fact that the students in the programs
have been selected and accepted because they had satisfied the requirements that are
necessary and they had the prerequisites to be in their respective programs. They just
started college studies and they were very motivated. This explains their midterm
results; the higher the high school average and the higher their high school math
grade the higher their midterm marks were. After sjc;me time spent in the college, the
students presumably started to assimilate to the college culture. Table 2 below shows
the result of the Spearman’s rho correlation addressing the relationships discussed

above.

Table 2

Spearman’ rho correlations among High school average, High school math grade,
Midterm mark, Final mark and Ways of learning

High school High school Midterm Final Ways of
average math grade mark mark learning
High school average 1.00
High school math grade 60** 1.00
Midterm mark 44x* 35* 1.00
Final mark 20 10 20% 1.00
Ways of learning -.14 -0l 20 10 1.00
** p <001
* p<.005

Moreover, Spearman Rho and Kendall’s tau correlation analysis show that

there is a significant negative relationship between prior computer knowledge and

prior basic programming experience with difficulties understanding concepts,

difficulties solving problems and finding computer science difficult (as shown in the

Spearman’s rho Table 3). The latter variables result in a decrease in the final mark.

Thus, prior computer knowledge and prior basic programming knowledge

play a positive role in success in learning how to program. Having less prior

computer knowledge and less prior basic programming experience leads students to

have lower final marks.

Table 3

Spearman’ rho correlations among Prior computer knowledge, prior basic
programming, Difficulties understanding concepts, Difficulties solving problems, and
Find computer science difficult

Prior Prior Difficulties Difficulties Find
computer basic understanding solving computer
knowledge programming concepts problems science

difficult
Prior computer
knowledge 1.0
Prior basic
programming 28% 1.0
Difficulties
understanding
concepts -.28 -.20% 1.0
Difficulties
solving
problems -31%* - 43%* 68** 1.0
Find computer
science
difficult - 35%# -.23 66%* 60** 1.0

**p< 001 * p<.005

~ A correlation analysis was done between time spent studying programming
(M =497, §D = 6.80) and the final mark (M = 74.22, SD = 14.31). Spearman’s rho
correlations did not show any significant correlation between these two variables (r
(53) = .03). The same result was obtained with Kendall’s tau_b. The result came as a
surprise. This fﬁight be explained by the fact that the students were asked explicitly in
the questionnaire how many hours they thought they spent studying the programming
course. At that particular moment, they did not have a good idea of the amount of
time they spent in each course. A more appropriate method can involve asking the

students to log on and keep track of the time they spend on programming.

Due to the multicultural and multiethnic college population, there are many
students who do not have English as their main language. A Spearman’s rho

correlation addressed the relationship between Mother tongue (M = 1.57, SD = .50)

wh
(U8}

and Difficulties understanding concepts (M = 128, SD = .87). Similarly, the
correlation addressed the relationship between Mother tongue (M = 1.57, SD = 5.0)
and Difficulties solving problems (M = 1.1, SD = .88) and between Mother tongue (M
= 1.57, SD = 5.0) and Find computer science difficult (M = 1.2, SD = 1.05). Table 4
shows that there is a slight significant correlation between mother tongue and
difficulties understanding concepts (r (56) = .27, p <.004 for an alpha level of .01) as
well as difficulties solving problems (r (55) = .29, p <.003 for an alpha level of .01)
and a significant correlation between Mother tongue and Finding computer science
difficult (» (36) = .35, p < .001 for an alpha level of .05). This means that those
students whose mother tongue is not English were having more difficulties in their

studies.

Hence, factors that are of importance and that may promote the success of
our students in the introductory programming course are prior knowledge of
computers and prior basic programming experience. The more experience the
students have, the less difficulties they have in understariding the concepts of
programming and in problem solving. Thus, they will find computer science less
difficult. Language also plays a vital role in the field of programming. English

speaking students have fewer difficulties in their learning process.

— —

Table 4
Spearman’ rho correlations among Mother Tongue, Difficulties understanding
concepts, Difficulties solving problems and Find computer science difficult

Mother Difficulties Difficulties Find computer
tongue understanding solving science
concepts problems difficult

Mother tongue 1.0

Difficulties

understanding

concepts 27* 1.0

Difficulties

solving problems 29* o .68%* 1.0

Find computer
science difficult 35% 66** 60** 1.0

**p <001 *p <.005

Lastly, it was interesting to observe that there was no significant correlation
between the ways of learning and the final mark obtained by the students. This might
mean that the hypotheses put forward in the research study would not hold. Then, it
Would make more sense to see whether there was a difference between the final
marks received by the students who use coding and understanding and integrating,
coding and problem solving and eventually understanding and integrating and
problem solving. Thus, independent t-tests were used. An independent-samples t-test
was conducted to compare the final mark in programming received by students using
coding and.students using understanding & integrating. The t-test showed that there is
no statistically significant difference between the final marks in programming for
students using coding (M = 71.4, SD = 16.5) and students using understanding and
integrating (M = 71.6, SD = 11.1) for (+ = -0.034, p = .973). Similarly, the t-test
showed that there is no statistically significant difference between the final marks for
students using coding (A = 71.4, SD = 16.5) and problem solving (M = 81.2, SD =
12.6) for (t = -1.835, p = .077). Lastly, t-test revealed that there is no statistically
significant difference between the final marks for students using'understanding &
integrating (M= 71.6, SD = 11.1) and problem solving (M = 81:2, SD = 12.6) for (t =
-2.145, p=.041).

wn
(.4}

Therefore, we cannot deduce that Vanier College programming students
using coding succeed better than those using understanding and integrating. The same
conclusion can be said about students using coding and problem solving. Similarly, it
cannot be said that students using understanding & integrating are more successful

than those using problem solving.
3. QUALITATIVE DATA ANALYSIS

The qualitative data analysis aimed to examine whether students at Vanier
are similar to or different from students of other institutions in their ways of learning
how to program according to the categories of Booth (1992) and Bruce et al. (2003).
The' data analyzed came from the open-ended questions in the survey and semi-
structured interviews with 10 students from the Computer Science program at Vanier.
The initial qualitative analysis involved a thorough process of reading, re-reading the
answers and extracting pertinent keywords and parts of texts that defined the action of
learning to program. A list of the pertinent chunks or expressions was drawn. The
latter were then grouped together by categories. This process was done for both the

open-ended questions and the transcripts from the interviews.
4. OPEN-ENDED QUESTIONS

For the open-ended questions from the survey questionnaire, six categories
of answers could be drawn. The first four correspond to Booth’s (1992) ways of
learning. They were Coding, Understanding & Integrating, Problem Solving,
Particibation & Enculturation, Examples and Miscellaneous. The table in Appendix E
shows the final grouping. Tt shows that Vanier College students are no different than
students in other institutions when it comes to the ways they learn computer
programming. The most common ways are still Coding, Understanding &
Integrating, and Problem Solving. There are a still a few who look to their more

experienced peers to help them complete their work. Also, when doing an

36

assignment, there are some students who learned by examples. Four respondents
answered that they were inspired by other programs or used older assignments as
guidelinqs to try to finish their assignment. Finally, in the answers for the open-ended
questions, five students did not elaborate on how they proceeded when they had to do

a programming assignment.
5. INTERVIEWS

Ten students volunteered to be interviewed. Among the 10 volunteer
students, only two were female. The purpose of the interviews was to corroborate and
to validate the answers given by the respondents to the questions of the survey
questionnaire and at the same time, to better understand how Vanier College students
learn computer programming. The answers given during the interviews also shed
light on how students come to understand concepts and gain the ability to apply them

and why failure rates among programming students are high.

The transcripts of the interviews were analyzed by multiple iterations. All
were novices to programming; they had their first encounter with computer
programming when they started their college program. The one who was not a novice
had a “limited experience with Pascal”, a programming language which is not being
taught at the college any more. The programming language Java was the language
that all the interviewees were taught for their introductory cgurse. This corresponds to
the survey results which show that only two respdndents had done much
programming before and those who had some prior programming experience had

only a very limited one.

The second point that was considered concerned the motivation of the
students towards progl'amming and towards starting a program that was considered to
be difficult. Although in the quantitative survey, no question was asked concerning

the motives of the students to take computer science courses, it was interesting to

57

examine the responses to the question posed to the interviewees asking why they
chose the Computer Science program. The overall motive is that they are simply
interested in Computer Science, but for different reasons. One became attracted to the
topic because of a report she had to producé in her workplace when she had to ask a
programmer for support. Another student said that it would be interesting and
attractive to get a job in the field. Challenge was the motive for one respondent
whereas for another who likes to play games the possibility to write his own
computer games was the reason why he entered the program. The others were
interested because they had been around computers or had been fascinated by them
since an early age. One of them said that he hoped that in doing Computer Science,

he would know how computers work.

Three other observations were made from the interviews; they described the
learning process itself, the difficulties the students encountered and the ways the
students coped with the difficulties encountered during the period. It was pertinent to
look at the latter because it formed part of the process of learning to program. The
observations are described in the.following paragraphs named Learning process,

Difficulties encountered and Methods of coping with difficulties.
6. LEARNING PROCESS

The learning of programming usually is not a trivial activity; there is always
a roadblock along the way. This is because there are so many new concepts and items
to learn before one can say that one has assimilated enough in order to write a decent
running program. The students use different learning approaches and activities. A
student may use a mixture of some of these approaches simultaneously. This is
usually the case. Those approaches were extracted from the transcripts from the
interviews and listed. They were then grouped into categories namely, Syntax,

Concepts, Analyze, Peers, Examples and Others (Appendix E). From these

58

categories, the learning process was observed. Following are comments and excerpts

from the interviews concerning the various activities in the students’ learning process.
6.1 Attending lectures

Most of the students interviewed attended the lectures in order to understand
the concepts. Some of them complement their learning of the concepts by reading the
book and doing small assignments. Here are some excerpts of what some of the

interviewees said about attending lectures:

“.. I learned by, you know, being at the lecture, listening fto the

lectures, listening to what the teacher is saying ..."

“.. You come to class, you have to listen to the teacher because the
teacher knows what he is talking about. The second thing is to read, read the
book. ... The third thing is to do the assignments. ... So the thing is to write

program, to do the exercises in the book, you know, something like that.”

".. In the book, there are two parts, the part ... the theory part explains
each program, how it's going to do and the part with exercises. In the book, |

learn the theory part and I practise the assignments from the book”

1

. I go; I attend all the classes. It’s supposed to work and I take

notes.”

“.. We have class time two times a week and we also have lab time two
times a week. The way it works is that we learn stuff we go over. We have a
book, it's very good too. The teacher goes over stuff in class, ... And then we

go to the lab and we actually practise it.”

59

Some students have to write codes and run the codes in order to understand. But they
still rely on the notes from the lectures which they attend. This is reflected in the

following:

“.. For one reason, when taking classes, they explain there ..., it helps
to give me a general idea of what I am supposed to be doing. But once again,
whgn I get to the computer, there is where the real world integration takes
place. After writing the code and seeing the result of each action really.
That's really when I start to understand and from the beginning to even now

any new concept.”

i

. It’s kind of gibberish, like the concepts, it’s really hard to
understand until I actually wrote some codes and did some little programs in

class, some applications.”

“.. What I learn is that, if you actually write or type something, you

will understand and memorize it more.”
6.2 Learning by examples

Apart from the lectures in class, students learn by examples. They rely on the
examples given in class and in the.textbook to help them learn the programming

concepts.

“.. I learned a lot doing the exercises, the assignments that were

)

given.’
“..Going home, I read the book, read the chapter and then I read the
examples in the book, code them in the computer, and see how it works and so

1

on.

e

e

.

—

60

“. I try to do some of the book examples and thén try the assignment

or homework."

“.. 1 go through the book and do the examples. I try to apply them but
. I do some few examples here and there. If you actually do all the

programming you actually become very knowledgeable.”

In this last comment, by “do all the programming” the student must have meant “do

all the examples”.
6.3 Applying and Integrating

Furthermore, for most of the students, assignments are important in their
learning process. Some prefer short assignments where they can put into practice each
concept one at a time whereas others prefer long assignments where they can apply

and integrate what is being learned in a real working program. They said:

.. Assignments are good to keep coding and then to teach students to

really trace the codes also.”

“.. So if we are actually taking short assignments, five rather than one
big assignment, everyone will understand; focus op understanding and then,
at the end, we can just be given a project where we have to add it all together

and make one thing.”

“ .. I learn just by doing the assignments. I am just doing like
studying; I just do what have to be done. This is how I learn the syntax; but
sometimes when I am curious about something, I lest it out to see how it

works.”

61

I3

everything.”

All the students interviewed used a combination of different activities to learn
programming. Those activities can be grouped into four categories, Lectures/
concepts, Coding, Examples and Assignments. Other practices could not be grouped
because they are isolated. That is why they were placed in the category called
Miscellaneous. The most striking among the ways of learning was the fact that some
students said that they reiy on the teacher to pass the knowledge to them but they did

not elaborate on how they wished to be taught.
7. DIFFICULTIES ENCOUNTERED

Since programming is not considered an easy task, students are always
encountering a roadblock, difficulties that can deter them from continuing or slow
down their progress. Coping with the difficulties helps in the learning process.
Difficulties arose when the program the students were writing and testing did not

work or did not return the anticipated results.

The tables in Appendix F and Appendix G illustrate the difficulties

encountered and how they are being overcome respectively.
7.1 Syntax errors

Most often errors occur when the students do not use the right syntax or omit
to use the corresponding functions. These errors are detected when the program is

being compiled and are easily corrected. They made the following statements:

“.. Start with errors in compiling. Try to compile ... missing a semi-

colon here, missing a semi-colon there and so on and so forth.”

. And if you do his assignments in class, then you master

62

“ .. 1 just find what’s wrong with it looking what's wrang with it and

then one by one fix all the errors.”
" .. I forgot to import such and such class.”

Students learn by not making the same mistakes again. Sometimes, it makes sense to
look over the program again and trace it on paper to see whether it is doing what it is

supposed to do. One interviewee had it the following way:

".. I understand the program even more once it’s finished and I look
over it and I trace it on paper and I trace what’s going on and I kind of say,

well I kind of realize, ok, that' exactly how it works.”
7.2 Difficulties in problem-solving

Novice programmers commonly have difficulties in problem solving, which
is a prerequisite to succeeding in programming courses. Among the ten interviewees,

five of them mentioned that they had difficulties in problem solving.
“.. The problem that I have right now is to find what is the problem,”

" .. I guess we did not know the logics and how to proceed with the

'

problems.”

“.. if you want to really program you need to step away from the book,
you need to step away from the computer, you need to really think what’s the
problem and how do you plan of solving it. You know what the problem is and
think of the solution. ... You just can't sit there and expect the solution to come

»

fo you.’

—1

73 Difficulties understanding the concepts

The difficulties of not being able to solve problems are mainly related to the
fact that some students have a hard time understanding the concepts of programming.
By concepts, it means how programs are structured and what the main characteristics

of different tools and modules in the language used.

“ .. But I have to say that first semester I still did not understand the
concepts that well, you know. Second semester started being more clear as to
what’s this whole ... you know ... What is a class? What's object-oriented

programming, you know? "

a“

That's the problem. Some people, now in programming are
actually understanding the concepts that we are supposed to understand in

the first semester now. It's really late.”

“ .. and the concepts that we still don’t understand from last semester,

now we are stuck; we are stalled.”
8. COPING WITH DIFFICULTIES
8.1 Perseverance

Different students have different ways of coping with the difficulties. It is in
dealing with those difficulties and overcoming them that they learn. The most
common way of solving a difficult programming problem is perseverance. The
students tried to see what the main causes for their errors were and to find different
sets of solutions. They very often found their own way out. Sometimes they would

turn to their teachers or classmates for guidance.

64

“.. If something is not working, I usually, I just keep trying over and
over again. I am in front of the computer, sometimes ... hours later, I'll get it.
... Sometimes I just stop and go and ask my teacher where I am doing wrong. I
have done that sometimes but I am some sort of stubborn, I would want to
learn it on my own because once I've done it on my own, it helps me learn

more than if someone tells me.”
8.2 Seeking help to overcome difficulties

Students most rely on other sources when they cannot continue advancing in
their programming assignments. Some turn to the books to look for similar examples
that can help them. Some turn to the teacher since they consider that it is the right

way to do.

. when the program is not working, it’ best to ask questions to the
teacher. That’ the best ... Because if you don’t ask, you don't ... you can't

solve the problem.”

Some most often turn to their peers because they feel embarrassed to ask the teachers
because they feel that they are supposed to know the answer to the questions that they

had to pose.

.. What we do is either we get help from other students who actually
know what they are doing. ... It’ a little embarrassing to ask questions that

2

you are supposed to know. ... You are supposed to know the answer.’

" .. Most of the teachers ... They just give us the materials and tell us
to do. They don’t do much. They tell us to work, they tell us we are worthless,

something like that.”

8.3 Relaxation as a mean to cope with difficulties

Others just take a break from programming and later come back to the

problem thinking that a clearer mind would help them.

“ . Most of the time, what I do is, I take a break. I walk away from the
program that I cannot solve and I think of it again, go back to the first step I
see if I made an error in the logic and see if I can break down the logic even

more, ... And if that does not work, then I call a friend.”

“ . I think I just take a break from it, do something else for a while.

Then come back and it might become a bit more clear.”

Attempts to correct errors and overcoming difficulties are usual activities in computer

programming. Whatever approach a student used would help in the learning process.

From these interviews, different ways of learning programming can be
observed. Different students use different approaches in order to achieve the objective
writing a work'ing program. that will solve a problem. They should be able to apply
whatever techniques they learn to be able to produce systems that satisfy the

specifications and requirements asked by the user of the system.

CHAPTER 5
CONCLUSION AND DISCUSSION

This study answered questions on how Vanier College computer science
students learn programming. The original question as to whether their ways of
learning programming can be categorized according to Booth (1992) and Bruce et al.
(2002) was answered. But, results from the analysis of the quantitative data did not
support the initial research hypothesis. Few students preferred participating and
enculturation or following. At the same time, the hypotheses regarding whether
students ,using one way are more successful than others using another way were
examined but could not be proven true. Simultaneously, the survey looked at the

factors that influenced their success in programming.
1. CONCLUSION
1.1 Ways of learning

From the quantitative survey conducted within students taking programming
courses, three ways of learning programming were observed to be the most popular
among the students. They are coding, understanding & integrating and problem
solving. Among the students surveyed, some students focus on the syntax of the

programming language to write the codes.

Almost the same number of students prefers to understand the concepts of
programming before attempting to write a program. The third most important way of

learning by the students uses the students’ abilities to solve problems. By simply

—_— e —

67

solving the problems, these students learn the concepts of programming and at the

same time the syntax of the language.

The other two ways put forward by Booth (1992) and by Bruce et al. (2003),
namely, participating and enculturation and following are applied only by a few of
the students. In this study, since correlation analysis did not show any significant
relationship between the ways of learning and the final mark received by the students
it cannot be shown which way of the first three ways has been of more help in the

successful completion of their first introductory programming course.

It cannot be said that a student using coding would succeed better that one
using understanding & integrating or a student using coding would be more
successful that one using problem solving. Similarly, it cannot be shown that problem
solving is a more appropriate way to use than understanding & integrating to pass the

course. Independent-samples t-tests were used to confirm the findings.

Using the t-tests, it was shown that there was no significant difference
among the three ways taken two at a time. After conducting the t-tests it was found
that students have the same chance of success regardless which of the three ways of

learning they use.
4.2 Factors influencing success

The quantitative survey also looked at some factors that might help
encourage the success of the students in the introductory programming course.
Although anecdotal evidence suggests that high school average and high school
mathematics contribute greatly to the success in introductory programming, this was
not confirmed in the survey done with the Vanier College programming students. The
relation between the final grade and the two independent variables was not

significant.

e ———

68

On the other hand, prior computer knowledge and prior basic programming
knowledge positively influence success. This was shown in the correlation analysis:
those who did not have prior computer knowledge or prior programming knowledge
were more prone to have difficulties in understanding the concepts, difficulties in
solving problems, and to find computer science to be a difficult subject. This in turn
leads students to be more inclined to fail the course. This study also indicated that
English speaking students have fewer difficulties in their learning process. However,
significant correlation between mother tongue and success was not established. This
may be explained by the fact that some students whose mother tongue is not English
are very fluent in English because they had their high school education in an English

environment.
1.3 Triangulation

The open-ended survey question and semi-structured interview were used in
order to support the findings of the quantitative survey especially regarding the ways
the students learn programming. [t was clear from the responses in the interviews that
the ways of learning correspond to the results of the survey. The content of the
interviews was analyzed in terms of three angles, the learning process, the difficulties
students encountered during the learning and the ways the students cope with the

difficulties.

*

It was observed that the three preferred ways of learning programming
discussed in the quantitative analysis hold true. The students interviewed used codes
to learn the syntax of the programming language in order to do their programming
assignments. It was also observed that students generally attempt to understand the
concepts by going to the lectures and reading the book and attempt to write the

programs asked of them.

69

Some of the interviewees explicitly talked about problem solving as a means
to learn programming. These are the three ways of learning most students use in their
learning process. Very little mention was made concerning reliance on fellow
students to teach them how to program. There was no mention of enculturation where

programming students tend to mix with other peers to learn their ways of thinking.

The same phenomenon was observed when the students talked about how
they resolved the difficulties encountered during programming. The students
persevered by going back to the lecture notes and their books to look at the syntax
and the concepts. They tried to solve their problems on their own at the beginning
before going to consult with the teacher or ask their friends. The teacher still plays an
important role in learning; the teacher is the last resort person when things really do

not work, when the students really cannot see the solution to their difficulties.

“ .. Our teacher will help us out as much as he can because he wants

us to understand.”

“.. If I don’t do all the three things, in the assignments I would be

stuck and I need the teacher.”

1.4 Motivation and expectation

*

Besides the ways of learning discussed, the motivation to study computér
science was discussed. Most of them said that they were interested in computers at a
very early age. They wanted to know more about how the whole computer system

works. Others considered a career in computer science was the motivation behind

their choice. One became interested because he was completing a report that needed,

the use of computers and computer knowledge.

During the interviews it became clear that success in programming also

depends on the way computer programming is taught. Some students prefer that

e ————

70

teachers introduce the concepts during the lecture sessions and do the demonstration
during the laboratory periods. Others prefer that the whole notion of programming is

demonstrated throughout the lectures using visual tools in class.

“ .. We learn the concept and in class he also actually goes over the
application of it. He does not just show what it means. He actually shows us
examples,; he actually has a computer hooked up and he actually does

program examples in the class.”

All of them appreciate that they can practice the programming during the laboratory

sessions.

The interviews revealed that there is some rote learning taking place. Some
students tried to learn the concepts and the syntax of the programming language by
heart without trying to understand how to apply them. They just learned the situations

where they can apply the concepts and the rules.

“ .. What I learn is that, if you actually write or type something, you

will understand and memorize it more.”
“.. Like you say, you just read the book just before the exam.”

Rote learning may be counterproductive in their learning process. If they come across
new situations or new problems that they have never seen before, they will be
disoriented and they will not be able to solve them. This problem is interesting and
further research may be needed to see whether this phenomenon is widespread among

computer science students.

e —

71

2, DISCUSSION

Overall, Vanier College programming students mostly learn programming in
three ways: coding, understanding & integrating and problem solving. They use the
‘textbook as a guide and rely on the teacher as a last resort in order to solve their
difficulties. From the interviews, it appears the factor that plays the most important
role in their successful completion of the introductory programming course is

perseverance.

However, quantitative data showed that there is no correlation between
number of hours of study computer science materials and the final marks. This
discrepancy is interesting; several questions can be asked. During their study periods,
what activities are they performing? Are they at ease when they are doing their
assignments or are they struggling to correct their errors spending a lot of time
debugging? How much time do they generally spend for their homework? Do they
need more time to assimilate the concepts because they are reluctant to ask their

teachers for help?

Further research is needed surveying the students’ activities and how they
spend their time on these activities. Also, the quantitative data show that high school
average and high school mathematics only play a slight role in the success for the

respondents of the survey.

Since it has been shown by independent-samples t-tests that success in
introductory programming does not depend on either the three ways of learning, it
will be interesting to see how Kolb’s four learning styles described by Byrne &
Lyons (2001) will influence the performance of Vanier College’s computer science
students. Can the students be categorized into convergers, divergers, assimilators and

accommodators? Will there be a difference in performance among them?

ad

3. LIMITATIONS OF THE STUDY

Fifty-eight Vanier College students participated in this study. The
participants included first, second and third semester computer science students as
well as science students taking the complementary programming course for science.
For the interviews, only Computer Science students volunteered to come forward;

there was not a single science student who agreed to come and talk to the researcher.

The student population of Vanier College is unique. Only 40% of the
students have English as their mother tongue; 20% have French as their mother
tongue. The rest is made up of students whose mother tongue is neither English nor
French. This was reflected in the students in this study. It was noticed that some
language difficulties arose in the answering of the questionnaire and also during the
interviews. Many students do not understand computer science jargon. They really
are mixed up discussing programming terms, syntax, concepts, and logic even though
these terminologies are being used in their classroom, course materials and lectures.
Some think that they mean the same thing. Furthermore, during interviews some
students had difficulties expressing themselves in English. They seem to lack the

vocabulary necessary to describe their points of view.

However, one other point that should be reported is that during interviews,
three students took the opportunity to criticize their teachers concerm’ng their ways of
téaching and their attitudes towards the students. They complained that the teachers
did not help them enough in the laboratories because they were told that they were
supposed to know the materials before coming to class. They were afraid to ask
questions in class. They were sometimes left to themselves during those periods.

Some students lost their motivation and did not concentrate much on the course.

All of this resulted in some students failing the introductory course or

dropping it or abandoning the computer science program. [t would be interesting to

—_— e e

look at the various ways computer programming is being taught and how they can be
accommodated to our Vanier College students. Thus a good combination of teaching

and learning may assure success. Further research will tell.

BIBLIOGRAPHICAL REFERENCES

Bergin, S. & Reilly, R. (2005). Programming: Factors that influence success.
SIGCSE’05, February 23-27, 2005 St. Louis, Missouri, USA.

Bergin. S. & Reilly, R. (2005). The influence of motivation and comfort-level on
learning to prgram. Proceedings PPIG 17, June 2005 Sussex University,
Sussex, UK, 2005.

Booth, S. (1992). Learning to program: a phenomenographic perspective. Acta

Universitatis Gothoburgensis, Goteborg.

Bruce, C., McMahon, C., Buckingham, L., Hynd, J. & Roggenkamp, M. (2003).
Ways of experiencing the act of learning to program. A phenomenographic
study of introductory programming students at university. Retrieved: August
1, 2005. Available: http://eprints.qut.edu.au/archive/00001736/

Byrne, P., Lyons, G. (2001). The Effect of Student Attributes on Success in
Programming. Paper presented at [TiCSE 2001, June 2001, Cantebury, UK,
2001.

Carbone, A & Kaasboll, J. J. (1998). 4 survey of methods used to evaluate computer
science teaching. Paper presented at ITiICSE *98, Dublin, Ireland, 1998

Carrington, D. (1998). Time monitoring for students. Frontiers in Education
Conference, IEEE, 1998.

Carter, J., Jenkins, T. (1999). Gender and Programming: What's Going On? Paper
presented at ITiCSE "99, June 99, Cracow, Poland, 1999.

Du Boulay, B. (1989). Some difficulties of learning to program. In E. Soloway & J.
C. Spohrer (Ed.), Studying the novice programmer (pp.283-299). Hillsdale,
NJ: Lawrence Erlbaum Associates, Publishers.

Freebody, P. (2003). Qualitative research in Education, Interaction and Practice,
SAGE Publications, London.

S

75

Goold, A., Rimmer, R. (2000) Factors Affecting Performance in First-year
Computing. SIGCSE Bulletin, vol. 32, No. 2, June 200Q.

Hagan, D. & Markham, S. (2000). Does it help to have some programming
experience before beginning a computing degree program? Proceedings of
ITiCSE 2000, (pp 25-28).

Holmboe, C., Mclver, L. & Carlisle, G. (2001). Research Agenda Jor Computer
Science Education. Paper presented at the 13" Workshop of the Psychology
of Programming Interest Group, Bournemouth, UK, April 2001, (pp 207-

223).
Jacobs, J. (1887). Experiments on ‘comprehension’. Mind, 12, 75-79.

Lahtinen, E., Ala-Mutka, K., Jarvinen H. (2005). 4 Study of the Difficulties of Novice
Programmers. Paper presented at the ITiCSE’03, June 27-29, Monte de
Caparica, Portugal, 2005.

Linn, M. C. & Dalbey, J. (1989). Cognitive consequences of programming
instructions. In E. Soloway & J. C. Spohrer (Ed.), Studying the novice
programmer (pp.57-81). Hillsdale, NJ: Lawrence Erlbaum Associates,
Publishers.

Mancy, R., Reid, N. (2004). Aspects of Cognitive Style and Programming. Paper
presented at the 16" Workshop of the Psychology of Programming Interest
Group, 2004.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.,
Laxer, C., Thomas, L., Utting, I. & Wilusz, T. (2001). Report by the ITiCSE
2001 Working Group on Assessment of Programming Skills of First-year CS
Students. Retrieved:August8,2005.Available: http://coweb.cc.eatech.edu/
guzdial/uploads/1 8/assessmentwg iticse final.pdf

Wilson, B. C. & Shrock, S. (2001). Contributing to success in an introductory
computer science course: a study of twelve factors. Proceedings of the 23"
SIGCSE technical Symposium on Computer Science Education, ACM Press,
NY, pp. 184-188.

Witkin, H. A., Moore, C. A., Goodenough, D. R. and Cox, P. W, (1977). Field
dependent and independent cognitive styles and their educational
implications. Review of Educational Research, 47, 1-64

APPENDIX A

THE SURVEY QUESTIONNAIRE

77

Name: Student ID:

Questionnaire

The purpose of this questionnaire is to find out about your ways of learning to
program and the factors involved in your learning process that will lead to the
successful completion of your programming course. This survey may suggest ways to
improve the teaching of computer science courses. That is why your answers are
important to us. We assure you that your responses will remain strictly

confidential.

Please follow the instructions very carefully. Thank you for your cooperation.

PARTI

For each question or statement, circle the letter that provides the best answer.

. What gender are you?
a. female

b. male
2 1 have access to a computer at home.
a. yes

b. no

3. What is your current semester in the program?

a. first
b. second
c. third

d. other

e ——

78

4. [s English your

a.

b.

first language

second language

5. Did you do your high school studies in

a.
b.

C

English
French

Other?

6. How I would rate my prior knowledge of how computers work before taking

the course:
a. very good knowledge
b. good knowledge
c. fair knowledge
d. rather poor knowledge
e. no knowledge

7. 1have done some basic computer programming before.

a.
b.
C.

d.

€.

very much

much

a little

very little ,

not at all

8. Tuse the text books recommended by the teacher in order to understand the

material better.

a.
b.

C.

all the time
often
sometimes
rarely

never

79

9. I analyze a problem and write the algorithm to solve it on paper before
running the program.

a. all the time

b. often
sometimes

d. rarely

e. never

10. T work in a group when I am doing my assignments or prepare for a test.

a. all the time

b. often
sometimes

d. rarely

e. never

1. T work in a group when [prepare for a test.

a. all the time
b. often
c. sometimes
d. rarely
e. never

12. 1 participate in class by asking questions.
a. all the time
b. often
c. sometimes
d. rarely

€. never

13. I miss classes.
a. never
b. rarely
c. sometimes
d. often

e. almost all the time

14. T have difficulties in understanding the concepts of programming.

a. strongly disagree
b. somewhat disagree
c. somewhat agree

d. strongly agree

e. don’tknow

15. [have difficulties in problem solving.
a. strongly disagree
b. somewhat disagree
c. somewhat agree
d. strongly agree

e. don’tknow

16. 1 find computer science difﬂ’cult.
a. strongly disagree
b. somewhat disagree
c. somewhat agree
d. strongly agree

e. don’tknow

80

3l

PART II

Please, answer the following questions.
17. What was your average grade in final year of high school?

18. What was your high school final mark in mathematics 536 or equivalent?

19. If you have a job, how many hours a week doyou work, on average?

20. What is the total number of hours per week do you spend studying on

average, for all your college courses?

21. How many hours per week do you spend on average on studies related to your

computer programming course?

22. What mark did you obtain on the first test (midterm) of the computer
programming course?

%

PART III

Questions about students’ learning process
23. I try to understand the programming concepts before using them.
a. strongly disagree
b. somewhat disagree
c. somewhat agree
d. strongly agree

e. don’t know

24. T'try examples in text books to help me understand the concepts when learning
how to code.
a: strongly disagree
b. somewhat disagree
c. somewhat agree
d. strongly agree

e. don’t know

25. T learn the syntax of the programming language before applying it to solve a
problem.

a. strongly disagree

b. somewhat disagree

c. somewhat agree

d. strongly agree

e. don’t know

26. I learn programming by analyzing and testing working programs.
a. strongly disagree
b. somewhat disagree

c. somewhat agree

—————

= —————

d.

€.

83

strongly agree

don’t know

27. I analyze problems and write the algorithms before attempting to do some coding.

L

b.
C.
d.

€.

strongly disagree
somewhat disagree
somewhat agree
strongly agree

don’t know

28. Tusually do my assignments discussing with my peers in groups.

a.

b.

strongly disagree
somewhat disagree
somewhat agree
strongly agree

don’t know

29. T learn to program by copying or emulating others who are more experienced.

a.

b.

strongly disagree
somewhat disagree
somewhat agree
strongly agree

don’t know

30. T'learn best by simply doing all the assigned assessment tasks.

a.

b.

strongly disagree
disagree

agree

strongly agree

don’t know

SIS

34

31. Which of the following describes you the best, when you learn programming?

(Choose only one)

a.

[learn the syntax of the programming language first and then spend a
lot of time at the computer testing and running programs

I need to understand the concepts before I can apply them to practical
tasks. I need to understand a concept fully before learning others

[start by analyzing a problem and then look at the concepts and syntax
necessary to solve it

I gain experience and learn what programming is all about by learning
the cultures and the ways of thinking of experienced programmers and
try to follow their example '

[learn by trying to do all the assessment tasks that are put of the
course requirements.

[do not know.

PART IV (Open-ended question)

32. Can you elaborate on how you do a programming assignment? [s there a set of

steps that you usually take to complete it? Please explain.

Thank you for filling out this questionnaire. Your responses are very helpful to all

of us.

APPENDIX B

PROCEDURES FOR THE INTERVIEW

Procedures for the interviews

86

Students who were interviewed were chosen among the computer science
students. They were chosen on the basis of gender and the answers from the survey.
The main factor that was used for the choice was their way of learning. I ensured that

each of the ways described by Booth and Bruce et al. was represented.

At the beginning of the interview, the students were explained the purpose of
the study and how the results could be used to improve the teaching and learning of

programming at school.

The students were told that all the data collected during the interviéw would be
strictly used for the purpose of the study only. The personal data would be kept
confidential and the results would be reported without bias and anly to the

appropriate parties.

The following questions would be used for the interviews.
e Tell me why you chose computer science.
e What is a programming language to you?
e What are the main techniques that you use when you learn to program?
e What type of assessment tasks help you most in learning to program?
e Can you describe how you go about writing a program?
e How do you overcome the frustration when your program is not working?

e Is there anything that you would like to see improved in how programming is

being taught?

APPENDIX C

THE CONSENT FORM

88

CONSENT TO PARTICIPATE IN

“FACTORS INFLUENCING SUCCESS IN INTRODUCTORY
PROGRAMMING COURSES”

I, the undersigned, agree to participate in the research project conducted by Pit F. Lan
Chow Wing, a student in the Master Teacher Program given in collaboration with the

Université de Sherbrooke.

['was informed that the purpose of the research project is to look at the factors that
play a role in student success in introductory programming courses for computer
science and science students. The goal of the research is to look at how students learn
programming and what are the difficulties they encounter. Teachers can thus change

their strategies to better meet the needs of the students.

I 'was informed that the data collected will remain confidential and that they will in no

way affect my academic record at CEGEP.

[understand that [may be interviewed and that if so, the interview will be recorded.
l'understand that the researcher can have access to my student records held by thé

Office of the Registrar.

I'understand that even if I decide to participate at this time, I can subsequently change
my mind and withdraw from the study. In such a circumstance, all the data I have
contributed will be removed and my withdrawal will not affect my academic standing

in any way.

89

[understand that the data collected for this study can be published but that my

identity will remain confidential.

Date:

Print name (Given name, Family name):

Student no.:

e-mail address:

Signature:

Signature (parent or guardian):

(If you are less than 18 years old)

APPENDIX D

FREQUENCY TABLES

Table 5
student gender
Cumulative
Frequency | Percent | Valid Percent Percent
Valid female 8 13.8 13.8 13.8
male 50 86.2 86.2 100.0
Total 58 100.0 100.0
Table 6
accesscomputer
Cumulative
| Frequency | Percent | Valid Percent Percent
Valid yes 58 100.0 100.0 100.0
Table 7
program of study
Cumulative
Frequency | Percent | Valid Percent Percent
Valid computer science 34 58.6 58.6 58.6
science 24 41.4 41.4 100.0
Total 58 100.0 100.0
Table 8
mother tongue
Cumulative
Frequency | Percent | Valid Percent Percent
Valid first 25 43.1 43.1 431
second 33 56.9 56.9 100.0
Total 58 100.0 100.0
Table 9
high school language
Cumulative
Frequency | Percent | Valid Percent Percent
Valid first 29 50.0 50.0 50.0
second 23 39.7 39.7 89.7
other 6 10.3 10.3 100.0
Total 58 100.0 100.0

91

Table 10
prior computer knowledge
Cumulative
Frequency | Percent | Valid Percent Percent
Valid no knowledge 3 52 52 5.2
rather poor knowledge 6 10.3 10.3 15.5
fair knowledge 16 27.6 27.6 43.1
good knowledge 30 51.7 51.7 94.8
very good 3 52 52 100.0
Total 58 100.0 100.0
Table 11
prior basic programming
Cumulative
Frequency | Percent | Valid Percent Percent
Valid not at all 28 48.3 48.3 48.3
very little 10 17.2 17.2 65.5
a little 18 31.0 31.0 96.6
much 2 3.4 34 100.0
Total 58 100.0 100.0
Table 12
use recommended text
Cumulative
Frequency | Percent | Valid Percent Percent
Valid never 5 8.6 8.6 8.6
rarely 7 12.1 12.1 20.7
sometimes 17 29.3 29.3 50.0
often 15 25.9 259 75.9
all the time 14 24 1 24 1 100.0
' Total 58 100.0 100.0
Table 13
analyze and write algorithm
Cumulative
Frequency | Percent | Valid Percent Percent
Valid never 7 12.1 121 121
rarely 22 37.9 37.9 50.0
sometimes 18 31.0 31.0 81.0
often 9 15.5 15.5 96.6
all the time 2 34 3.4 100.0
Total 58 100.0 100.0

Table 14

work in group doing assignment

Cumulative
Frequency | Percent | Valid Percent Percent
Valid never 8 13.8 13.8 13.8
rarely 16 27.6 27.6 41.4
sometimes 15 259 25.9 67.2
often 19 32.8 32.8 100.0
Total 58 100.0 100.0
Table 15
work in group preparing test
Cumulative
Frequency | Percent | Valid Percent Percent
Valid never 25 43.1 43.1 43.1
rarely 17 29.3 29.3 72.4
sometimes 11 19.0 19.0 91.4
often 5 8.6 8.6 100.0
Total 58 100.0 100.0
Table 16
participate in class
Cumulative
Frequency | Percent [Valid Percent Percent
Valid never 7 121 12.1 12.1
rarely 17 29.3 29.3 41.4
sometimes 24 41.4 41.4 82.8
often 8 13.8 13.8 96.6
all the time 2 34 34 100.0
Total 58 100.0 100.0
Table 17
miss classes
Cumulative
Frequency | Percent | Valid Percent Percent
Valid never 15 25.9 259 259
rarely 28 48.3 48.3 74.1
sometimes 13 224 224 96.6
often 2 3.4 34 100.0
Total 58 100.0 100.0

Table 18
difficulties understand concepts
Cumulative
Frequency | Percent | Valid Percent Percent
Valid strongly disagree 10 17.2 17.2 17.2
somewhat disagree 27 46.6 46.6 63.8
somewhat agree 17 29.3 29.3 93.1
strongly agree 3 52 52 98.3
don't know 1 1.7 1.7 100.0
Total 58 100.0 100.0
Table 19
difficulties solving problems
Cumulative
Frequency Percent Valid Percent Percent
Valid strongly disagree 13 22.4 22.8 22.8
somewhat disagree 30 51.7 526 75.4
somewhat agree 10 17.2 17.5 93.0
strongly agree 3 52 53 98.2
don't know 1 1.7 1.8 100.0
Total 57 98.3 100.0
Missing System 1 17
Total 58 100.0
Table 20
find computer science difficult K
Cumulative
Frequency | Percent | Valid Percent Percent
Valid strongly disagree 16 27.6 27.6 27.6
somewhat disagree 24 41.4 41.4 69.0
somewhat agree 13 22.4 22.4 914
strongly agree 2 34 3.4 94.8
don't know 3 52 52 100.0
Total 58 100.0 100.0

94

Table 21
understand programming concepts before using them
Cumulative
Frequency | Percent | Valid Percent Percent
Valid strongly disagree 2 3.4 3.4 3.4
somewhat disagree 1 1.7 1.7 5.2
somewhat agree 27 46.6 46.6 51.7
strongly agree 27 46.6 46.6 98.3
don't know 1 1.7 1.7 100.0
Total 58 100.0 100.0
Table 22
try examples to understand the concepts of coding
Cumulative
Frequency | Percent | Valid Percent Percent
Valid strongly disagree 9 15.5 15.5 "15.5
somewhat disagree 9 15.5 15.5 31.0
somewhat agree 20 34.5 34.5 65.5
strongly agree 20 34.5 34.5 100.0
Total 58 100.0 100.0
Table 23
learn syntax before appying it to solve problem
Cumulative
Frequency | Percent | Valid Percent Percent
Valid somewhat disagree 7 12.1 12.1 12.1
somewhat agree 28 48.3 48.3 60.3
strongly agree 21 36.2 36.2 96.6
don't know 2 3.4 3.4 100.0
Total 58 100.0 100.0
Table 24
learn by analyzing and testing working programs
Cumulative
Freguency | Percent | Valid Percent Percent
Valid strongly disagree 2 3.4 34 3.4
somewhat disagree . 13 224 224 259
somewhat agree 13 22.4 22.4 48.3
strongly agree 29 50.0 50.0 98.3
don't know 1 1.7 1.7 100.0
Total 58 100.0 100.0

96

Table 25
analyze problem and write algorithm before coding
Cumulative
Frequency | Percent | Valid Percent Percent
Valid strongly disagree 7 12.1 1241 121
somewhat disagree 20 345 345 46.6
somewhat agree 27 46.6 46.6 93.1
strongly agree 4 6.9 6.9 100.0
Total 58 100.0 100.0
Table 26
do assignments discussing with peers in groups
Cumulative
Frequency | Percent | Valid Percent Percent
Valid strongly disagree 6 10.3 10.3 10.3
somewhat disagree 13 22.4 224 328
somewhat agree 21 36.2 36.2 69.0
strongly agree 18 31.0 31.0 100.0
Total 58 100.0 100.0
Table 27
copy or emulate more experienced
Cumulative
Frequency | Percent | Valid Percent Percent
Valid strongly disagree 21 36.2 36.2 36.2
somewhat disagree 13 22.4 22.4 58.6
somewhat agree 19 32.8 328 91.4
strongly agree 5 8.6 8.6 100.0
Total 58 100.0 100.0
Table 28
simply do all the assessment tasks
Cumulative
Frequency | Percent Valid Percent Percent
Valid somewhat disagree 10 17.2 17.2 17.2
somewhat agree 33 56.9 56.9 74.1
strongly agree 14 24,1 241 98.3
don't know 1 1.7 1.7 100.0
Total 58 100.0 100.0

97

Table 29
ways of learning g
Cumulative
Frequency | Percent | Valid Percent Percent
Valid syntax and testing 14 241 24.6 24,6
understandi n
before :;:I;;ggcc’ cepts 13 22.4 22.8 47.4
analyze and look at
Conggpts 16 27.6 28.1 75.4
learn cultures of
experienced 3 5.2 53 80.7
programmers
do all assessment tasks 6 10.3 10.5 91.2
don't know 5 8.6 8.8 100.0
Total 57 98.3 100.0
Missing System 1 1.7
Total 58 100.0

—————

APPENDIX E

THE INTERVIEW: THE LEARNING PROCESS

99

g u,
5| 3| 5 2
Category -—-——-> s 2| 35| 8] &
o 2] E R=3 a =
sl | 28| | 3
Bl Bl e| 5| 8} 2
Q 2 a Q. Ll =
1121 3[4(5]|68
Analyze the problem and write algorithm X
Figure what | need to solve the problem and write the code X
Find the main concepts, main tools X
Try to understand the syntax and try examples in the book X
What is asked and try to create class X
Look at the syntax learned in class and try to find functions to complete X
the task
Draw a picture of how the program works X
Understand the problem and inspire from other programs X
Analyze the problem and write the code X
Carefully read the given problem and write the code X
Identify the variables and calculations required to solve it; try to figure out x
how to get into the code
Think first about what | am going to need; then | start writing the program
Try to see what kind of concept | am applying
Lock at the syntax after | know what | need to solve it X
Get confirmation from teacher or classmates X
Compare it with older assignments and use them as guidelines X
Read the book and some examples; clues and pointers given by teachers "
help
Discuss with others; read the book and notes X
Read the chapter; read the assignment and write the methods ~ X
Read all the chapters and refer to them for the assignment X
Read the corresponding chapters that relate to the program; do all the x
examples; try to understand the concepts
Know all the theory needed for the assignment; write the code , X
Read the instructions and highlight the important information; start codiﬁg X
. . . X
Read the instructions and understand what is asked; start programming
Read the problem; write all the variables; continue with the coding X
Read the instructions and evaluate the important information; type the x
program
Understand the problem and look up at the syntax X
Divide the task into smaller tasks X
Listen to the teacher on theory classes; try to do the program; compare X
my program with others
Understand the problem; start coding X
X | X

Analyzing the problem; look at the concepts and syntax

Look at the problem; identify the concept needed; ask a friend if | don't
understand

100

Set up a plan; write it

Write out the code; make sure concepts and syntax work by testing

| look at what needs to be done; work on one probleim at a time

Try to understand the problem and write the commands | would need

Look at the input needed, the output needed and the processing and
code

Read what is given and what is required; write program

Write the methods and test them; ask a friend or teacher if there are
errors and got stuck

Just read the book and try to understand what | am doing

Use the textbook; try the examples in the book

| put my head what needs to be done; write the steps

Use examples of similar classes/methods; code the problem

| think about what | need: write it

| read the assignment and break it into steps; consult more experienced
programmer

Read the program and think about the logic; code it

| usually follow my class notes

Try to understand the problem; ask my peers when | got stuck

Basic understanding of the syntax; attempt the program; read textbook
for more details

Observe other examples; observed other programmers

Look at the problem; what are the concepts that should be applied; write
the code :

APPENDIX F

THE INTERVIEW: THE DIFFICULTIES ENCOUNTERED BY STUDENTS

X
]
w | 3
S| £ 3
5| 8| e | 2
2| © gl ° s
gl 8|23
Question 2 GE’ -g > ;
4 What are the difficulties encountered? Sl & &1 S
S1
First semester, | still did not understand the
1 concepts that well. | was kind of scared. | did | X
not really like it.
S2
S3
S4/55
When the teacher teaches on the
2 blackboard, you can't really see if the code is X
working.
3 We still do not understand some concepts. X
4 We cannot finish the long assignments «
before the due date.
S6
5 | can't solve the problems. X
S7
6 I have lots of difficulties when | opened the
book.
You need to step away from the book, you X
7 need to step away from the computer.
You have to figure out what is the problem «
8 and think of the solution. :
S8/S9
| guess we did not know the logics and how y
9 to proceed with the problems.
At the beginning | don't know what | am
typing. | was just typing what | was told to X
10 type.
The problem that [have right now is to find X
11 what is the problem.

103

S10

It wasn't the greatest to tell you the truth. At

12 the beginning of the semester | actually did
pretty good but the problem was that you
have to be consistent to keep up ...

13 | wasn't ... keeping practising it.

14 | was too dependent on the book.

15 | fell behind because of the other courses.

16 | had with that (that means problem solving).

APPENDIX G

THE INTERVIEW: HOW THE STUDENTS COPE WITH THE
DIFFICULTIES

Question | How do you cope with the difficulties
5 encountered?
S1
1 I just keep trying over and over again.
Sometimes | just stop and go and ask my
2 teacher where | am doing wrong.
3 Focus and | keep working.
S2
4 It's basically trial and error.
| just find what is wrong with it looking what's
wrong ... and then oe by one fix all the errors.
Start with errors in compiling.
Look at run time.
S3
8 To memorize some little words ...
When you make a mistake in the program, you
9 have to start from the beginning. But ...
The method is basically a way to solve the
problem. When you make a mistake, it's only in
10 one method.
S4/55
We get help from other students who actually
11 know what they are doing.
S6 :
It's best to ask questions to the teacher or
12 - classmates.
If you don't ask, you don't ... you can't solve the
13 problem.
S7
14 Most of the time, ..., | take a break.
I think over it again, go back to the first step |
see if made an error in the logic and see if | can
15 break down the logic even more, ...
16 And if that does not work, then | call a friend.
S8/59
I just atake a break from it, do something else
for a while. Then come back and it might
17 become a bit more clear.
18 | ask other students for help.

510

19

i try to cram. The frustration is more with the
other courses.

20

it's not so hard if you put the time to it.

106

