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Abstract 

There is no doubt that rechargeable lithium-ion batteries (LIBs) have been developed as an 

electrical power source in a wide variety of energy storage systems including portable electronics, 

electric vehicles (EVs) and plug-in hybrid electric vehicle (PHEVs). Continuous advanced demands for 

higher energy density energy storage systems strongly push us to develop breakthroughs for improved 

cathode materials of LIBs. Recently, over-lithiated layered metal oxides (xLi2MnO3•(1-x)LiMO2, 

[M=Ni, Co, Mn], OLOs) materials, which are widely used in cathode materials of LIBs for high 

discharge capacity (over 250 mAh/g), are struggling with fast capacity fading and Mn dissolution on 

the unstable lithium-rich layered metal oxides surface. The poor electrical conductivity of lithium-rich 

layered metal oxides and Mn dissolution-triggered by-products are known to induce serious capacity 

fading during charge/discharge cycling. 

As a newly-synthesized polymeric ionic liquid (PIL)-driven material/single-walled carbon 

nanotube (SWCNT) nano-architecture strategy to develop an ion/electron-conductive nanoshells far 

beyond traditional surface modification, we have demonstrated single-walled carbon nanotube 

(SWCNT)-embedded and dual atom (nitrogen (N) and sulfur (S))-doped mesoporous carbon shells 

(referred to as “SMC” shell) on the LNMO (LiNi0.5Mn1.5O4) as well as OLO 

(0.49Li2MnO3·0.51LiNi0.37Co0.24Mn0.39O2) surface. The SMC-coated electrode materials are fabricated 

via simple mixing of pristine active materials in the SWCNT/PIL mixture solution and the subsequent 

one-pot carbonization process of the coated PIL on active materials surface. The PIL synthesized herein 

consists of poly(1-vinyl-3-ethylimidazolium) cations and dodecyl sulfate counter anions, of which 

chemical structures are purposeful designed to achieve multifunctional roles as: i) precursor of 

conformal/continuous carbon shell, ii) dual (N and S)-doping source, iii) porogen, and iv) SWCNT 

dispersant. Driven by such chemical/structural originality, the SMC effectively reduces unwanted 

interfacial side reactions between the cathode materials and liquid electrolyte while charge/discharge 

process. As a consequence, the SMC-coated cathode materials provided unprecedented improvements 

in the high-performance (rate capability, cycling performance and thermal stability) of lithium-ion 

batteries.  

The SMC-coated cathode materials hold a great deal of promise as a facile and versatile platform 

surface modification technology for high-performance batteries and also open a new opportunity for 

next-generation multifunctional molecularly-designed, ion/electron-conductive nanoshells on electrode 

materials that are in strong pursuit of progress in electrochemical performance. 
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CHAPTER I. INTRODUCTION 

1.1. Operating principle of lithium-ion batteries 

Lithium-ion batteries (LIBs) are currently being developed to fulfill high power for many energy 

storage applications regarding portable electrical devices, electric vehicles (EVs), plug-in hybrid 

electric vehicles (PHEVs) and grid-scale energy storage systems (ESSs). Also, LIBs essentially require 

reliable electrochemical properties, because they possess serious performance deterioration problems 

such as thermal instability, voltage drop, poor rate capability and decreasing energy density during 

cycling1. 

Conventional LIBs consist of four specific components, i.e., a positive electrode (cathode), a negative 

electrode (anode) divided by a separator and electrolyte which enable ion transfer (Figure 1). In the 

charging process, lithium ions migrate through a separator across the electrolyte from the cathode to 

the anode and the electrons move through the external circuit (Equation 1). During the battery 

discharging process, lithium ions transfer from the anode to the cathode across the electrolyte (Equation 

2). For instance, using conventional rechargeable LIBs, the LiCoO2 cathodes and graphite anodes have 

been described in the equations below2-3.  

 

 

Cathode side: LiCoO2 ⇆ Li1-xCoO2 + xLi+ + xe-    (1) 

Anode side: xLi+ + xe- + xC6 ⇆ xLiC6                    (2) 

Total reaction: LiCoO2 + xC6 ⇆ Li1-xCoO2 + xLiC6  (3) 

(→: Charge reaction, ←: Discharge reaction) 
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Figure 1. A schematic diagram of representative lithium-ion batteries: Cathode, Anode, Electrolyte and 

Separator.  
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Recently, endless demands for higher energy density and low cost push us to substitute 

commercial LiCoO2 (LCO) to alternative active materials. Layered-type lithium-rich transition-

metal oxides, so-called over-lithiated layered oxides (OLOs), have received great attention as 

one of the most prospective candidates due to their high capacities over 200 mAh g−1 as wel

l as their low cost and environmentally friendly property4. However, inherent poor rate capabi

lity and rapid capacity fading, which mainly results from the low electrical conductivity (~10−

9 S cm−1) and undesired side reactions on the unstable Li-rich outermost surface, pose the mo

st critical challenge of securing sustainable electrochemical performance in LIBs5. 

Enormous efforts have been undertaken to overcome the problems mentioned above. 

Nanostructured OLOs provide reduced diffusion paths of Li+ ions and enlarge interfacial reaction sites 

between the OLO and electrolytes6-8, however, the largely exposed surface also labilizes the nano-sized 

OLOs8. Elemental doping could be an effective approach to improve the electrical conductivity and 

reduce the electrochemical impedance9-12. Furthermore, surface modifications have been established as 

one of the most powerful tools to overcome the intrinsic shortcomings of the OLO13-16. The inorganic13-

14 and organic15-16 material-coated layer works as a protective layer against side reactions, leading to 

considerable improvements in electrochemical performances as well as thermal stability, due to the 

alleviated direct contact between the OLO surface and electrolytes5. In addition, with an aim to increase  

facilitated ion/electron conduction, mesoporous carbons have been extensively investigated for the 

surface modification17-19, however, the insufficient electrical conductivity of carbon layers demands 

further advances in material/structural designs constantly.  
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1.2. General requirements for battery cathodes 

Among Lithium-Ion Batteries (LIBs) compositions, cathode materials are demanded for 

excellent cycling stability, high rate capability and high energy density. Recently, newly developed 

cathode materials that are chemically modified through atomic or molecular engineering would provide 

considerably enhanced properties for energy storage systems. However, LIBs power density is still 

relatively low due to large polarization caused by low lithium diffusion rate in the cathode material 

during the charge/discharge process. To overcome polarization, cathode materials which have short 

diffusion distance and large surface area should be designed and fabricated for enhanced electrical 

conduction and ionic transportation. Moreover, the fundamental requirements for ideal cathode 

materials in LIBs are as follows. 

(1) Stability (Prevention of degradation and structural change. The host structure should not 

change during intercalation/deintercalation process). 

(2) Fast reaction with lithium during intercalation/deintercalation process. 

(3) Excellent electronic conductivity (allowing free electron movement within the material 

during electro-chemical reactions and enhancing the overall energy density by minimizing 

the necessity for inactive conductive diluents). 

(4) Low cost. 

(5) Environmental-friendly. 

 

Also, the Faradaic reactions related to energy storage occurs on the electrode surface, in which 

charge and mass transfer reactions are involved with the electrode; therefore, the transport distance and 

large surface area play significant roles in determining the battery performance (i.e. cyclic and rate 

stability) along with inducing structural durability for volume change that accompanies lithium 

intercalation/deintercalation20-21. 
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CHAPTER II. DUAL-DOPED MESOPOROUS CARBON/SWCNT 

NANOSHELLS FOR HIGH-PERFORMANCE BATTERY CATHODES 

2.1. Introduction 

The forthcoming ubiquitous energy era, which will involve widespread use of smart portable 

devices, internet of things (IOTs), and electric vehicles (EVs), has driven a relentless pursuit of high-

energy density/high-safety rechargeable energy storage systems with reliable electrochemical 

performance22-24. Among the numerous power sources reported to date, lithium-ion batteries (LIBs) are 

undoubtedly positioned as a compelling electrochemical system to meet these stringent demands3, 25. 

To promote sustainable development and to extend the applications of LIBs, tremendous efforts have 

been devoted to synthesizing and engineering electrochemically active components such as electrode 

materials and electrolytes, which play crucial roles in governing the redox reaction in cells26-28. 

 Formidable challenges facing LIBs involve performance deterioration and safety failures that 

occur during repeated charge/discharge cycling, which are known to mostly arise from electrode–

electrolyte interface issues27-28. In particular, unwanted side reactions, including byproduct generation, 

metal-ion dissolution, and exothermic reactions, often occur at the electrode–electrolyte interface, 

resulting in significant loss of electrochemical capacity and cell safety. Recently, high-capacity (e.g., 

over-lithiated layered oxide (OLO, 0.49Li2MnO3·0.51LiNi0.37Co0.24Mn0.39O2)29-30) and high-voltage 

(e.g., spinel-type oxide (LNMO, LiNi0.5Mn1.5O4)31-32) cathode materials have garnered great attention 

as attractive candidates for realizing high-energy (energy = capacity × voltage) density cells. However, 

safety concerns with the electrode–electrolyte interface tend to become more serious with these high-

capacity/high-voltage cathode materials because of their vigorous surface reactivity and structural 

instability. 

A vast variety of research has striven to resolve the electrode–electrolyte interface problems, 

most of which focused on electrolyte additive16, 33-34, elemental doping35-37, and surface modification38-

41 of electrode materials. In particular, covering the surface of cathode materials with a thin layer is 

known to effectively suppress their direct contact with electrolytes, thus mitigating unwanted interfacial 

side reactions. An ideal coating layer for electrode materials should provide high surface coverage (as 

a protective layer) and facilitate ion/electron transport (as an ion/electron conduction channel). However, 

most previous results failed to completely fulfill these requirements. 

Mesoporous carbons have attracted significant attention as a new coating substance for catalysts 

and as carbon electrode materials for LIBs, supercapacitors, and lithium-sulfur batteries17-19. However, 

mesoporous carbon shells require complicated and multiple synthetic steps for constructing their unique 

porous structure. Moreover, although a mesoporous structure is achieved (which allows ion transport), 

such carbon shells suffer from insufficient electronic conductivity. These drawbacks have prevented 

the application extension of mesoporous carbon shells. Meanwhile, polymeric ionic liquids (PILs), 
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which are defined as polymeric cations/counter anions or polymeric anions/counter cations (or 

polyzwitterions), have been extensively investigated for use in solid-state polyelectrolytes42-44. In 

addition, PILs have recently been explored as an alternative precursor of conductive carbons45-47, a 

heteroatom doping source45, and a polymeric dispersant of carbon nanotubes48. 

Here, as a PIL-mediated interfacial control strategy to address the long-standing challenges of 

electrode-electrolyte instability, we demonstrate a new class of molecularly-designed, ion/electron-

conductive nanoshields based on single-walled carbon nanotube (SWCNT)-embedded, dual (N and S)-

doped mesoporous carbon (referred to as “SMC”) shells for LIB electrode materials. We choose OLO 

as a high-capacity cathode material and LNMO as a high-voltage cathode material as model cathode 

materials to explore the feasibility and practical applicability of the proposed nanoshield concept. The 

SMC shell is formed on cathode materials through solution deposition of the SWCNT/PIL mixture and 

subsequent carbonization.  

 

  



17 

 

2.2. Experimental 

Materials 

SWCNTs (EC-P, purity > 99%, diameter 1.7−2.1 nm) were purchased from Meijo Nano Carbon 

Co., Ltd. Bromoethane (98%), 1-vinylimidazole (99%), and sodium dodecyl sulfate (99%) were 

purchased from Sigma-Aldrich, methanol (>99.8%), N,N-dimethylacetamide (DMAc) (>99.5%), and 

1-methyl-2-pyrrolidone (NMP) (>99.7%) were obtained from DAEJUNG Chemicals & Metals Co., Ltd. 

Chloroform (99.5%) and ,′-azoisobutyronitrile (98%) were purchased from Samchun Pure Chemical 

Co., Ltd. and Junsei Chemical Co., Ltd., respectively. All these chemicals were used as received. 

 

2.2.1. Synthesis of PVIm[DS] 

First, poly(1-vinyl-3-ethylimidazolium) bromide (referred to as “PVIm[Br]”) was synthesized 

via the traditional radical polymerization49-50. Bromoethane (40 g) was added to 1-vinylimidazole (20 

g) under stirring at room temperature. Next, the white precipitate (i.e., 1-vinyl-3-ethylimidazolium 

bromide (referred to as “VIm[Br]”)) was collected through vacuum filtration and rinsed with ethyl 

acetate. Then, VIm[Br] monomer (27 g) in chloroform (270 mL) was polymerized at 60 °C for 2 h, 

wherein ,′-azoisobutyronitrile (AIBN; 0.54 g) was used as an initiator. The yellowish-white solids 

were collected after rinsing with chloroform. Meanwhile, the PVIm[DS] was obtained using a modified 

anion exchange method49-50. SDS (20 g) solution (200 mL) was added to the PVIm[Br] (10 g) solution 

(200 mL) under stirring at room temperature, resulting in the precipitation of white solid powders. 

 

2.2.2. Synthesis of dual-doped mesoporous carbon shells on cathode particles 

The dual (N and S)-doped mesoporous carbon shell was formed on the OLO powders via the 

following procedures. The as-synthesized PVIm[DS] (5, 20, 50, and 100 mg) powders were dissolved 

in DMAc (50 mL) at 60 °C for 2 h. Into the PVIm[DS] solution, 1 g of OLO powders were added. After 

stirring for 20 h, the PVIm[DS]-deposited OLO powders were collected using a PTFE membrane filter 

(pore size ~ 0.45 m) after vacuum drying at 120 °C, and then heated to 600 °C at a rate of 5 °C min−1 

under an Ar atmosphere in a tube furnace. After carbonization at 600 °C for 2 h, the black powders were 

obtained. 

 

2.2.3. Synthesis of SWCNT-embedded, dual-doped mesoporous carbon shells 

The SWCNTs (1 mg) were mixed for 3 h with PVIm[DS] (50 mg) in DMAc (50 mL) using a 

sonicator. Subsequently, 1 g of OLO (or LNMO) powders were added and further mixed using an orbital 

shaker for 20 h. The SWCNT/PVIm[DS]-deposited OLO (or LNMO) powders were collected and then 

subjected to the same carbonization process as that used for the dual-doped mesoporous carbon shells 

described above. 
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2.2.4. Characterizations 

The Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy 

(HRTEM) characterization methods were carried out using an S-4800 (HITACHI, Japan) at 5 kV and 

a JEM-2100F (JEOL, Japan) at 100 kV, respectively. Thermogravimetric analysis (TGA) was 

conducted using a Q500 (TA Instruments, USA) under an ambient atmosphere by heating to 900 °C at 

the rate of 5 °C min−1. The differential scanning calorimetry (DSC) measurement was performed using 

a Q200 (TA Instruments, USA). The Fourier transform infrared (FT-IR) and Raman spectra were 

obtained using a Varian 660-IR (Varian Medical systems, Inc., USA) and an Alpha 300S (WITec, 

Germany) with a 532 nm laser, respectively. The specific surface areas were analyzed based on nitrogen 

adsorption-desorption measurements at 77 K using a physisorption analyzer ASAP2020 (Micromeritics, 

USA), and pore size distributions were determined by exploiting the density functional theory (DFT) 

method applied to the adsorption branch of the isotherm. The X-ray photoelectron spectroscopy (XPS) 

and x-ray diffraction (XRD) analysis were conducted using a K-Alpha™+ XPS system (Thermo 

Scientific™, USA) and a D8 Advance (Bruker, Germany) in the range of 10° < 2θ < 90° at 40 kV and 

40 mA (Cu Kα radiation, λ = 0.154 nm). The visible-near-infrared (vis-NIR) spectra were measured 

using an OPTIZEN α (Mecasys, Korea). 

 

2.2.5. Electrochemical analysis and application to Li-ion cells 

The cathodes were fabricated by casting NMP-based slurries (cathode materials/carbon black 

(Super P)/PVdF binder = 92/4/4 (w/w/w) in NMP) onto aluminum foils and followed by vacuum drying 

at 120 °C. Coin (2032)-type half cells were assembled by sandwiching a polyethylene separator 

(thickness = 20 m) between the composite cathode and a lithium metal foil anode, and then activated 

by filling the liquid electrolyte (1 M LiPF6 in ethylene carbonate (EC)/dimethyl carbonate (DMC) = 1/1 

(v/v)). The cell performance was investigated using a cycle tester (PNE Solution) under various 

charge/discharge conditions. 

 

 

  



19 

 

2.3. Results and discussion 

2.3.1. Fabrication and characterization of OLO@MC 

The PIL (denoted as “PVIm[DS]”) synthesized herein consists of poly(1-vinyl-3-

ethylimidazolium) cations and dodecyl sulfate counter anions, whose molecular structures are rationally 

designed to enable the multiple functions described below. PVIm serves as a precursor for the carbon 

shell featuring continuous/conformal nanothickness surface coverage, while the DS acts as a porogen 

(i.e., a pore-generating agent) for realizing the mesoporous structure in the carbon shell. The nitrogen 

(N) of PVIm and the sulfur (S) of DS provide a dual (N and S)-doping source. The embedding of 

SWCNTs into the dual-doped mesoporous carbon (MC) shell further increases the electronic 

conductivity. During the preparation of the PVIm[DS]/SWCNT coating solution, PVIm[DS] allows 

homogeneous dispersion of the SWCNTs even in the absence of traditional surfactants, revealing its 

additional function as a polymeric dispersant. Benefiting from the structural/physicochemical 

uniqueness mentioned above, the SMC shell exhibits unprecedented synergistic effects as an 

ion/electron-conductive nanoshield (i.e., mitigating interfacial side reactions between cathode materials 

and liquid electrolytes while facilitating redox reaction kinetics), thereby enabling significant 

improvements in the electrochemical performance and thermal stability of the cathode materials. 

First, the PVIm[Br] was synthesized using traditional radical polymerization49-50. Its reaction 

scheme is presented in Fig. 2A. The 1H NMR spectrum (Fig. 3)50-51 verified the successful synthesis of 

PVIm[Br]. Meanwhile, PVIm[DS] was obtained by adding sodium dodecyl sulfate (SDS) to the 

PVIm[Br] aqueous solution. The initially transparent yellowish solution turned abruptly into an 

opaque/white suspension (photographs in Fig. 2A) due to the difference in the hydrophilicity of the two 

PILs48-50. DS− anions are more hydrophobic than Br− anions, and thus cause the resulting PVIm[DS] to 

be less soluble in the aqueous solution, leading to the precipitation of PVIm[DS]. Details on the 

synthesis of these PILs were described in the experimental section. The anion exchange reaction (from 

Br− to DS− anions) was further confirmed by FT-IR spectra (Fig. 4). In addition to the characteristic 

peaks (1548, 1446, and 1158 cm−1) of imidazolium rings52, a new FT-IR peak (1209 cm−1) assigned to 

skeletal vibration of the S−O bridge (in SO4
− groups)53 appeared in PVIm[DS], demonstrating that the 

Br− anions were successfully exchanged with DS− anions. 

Prior to in-depth characterization of the MC-coated (or SMC-coated) OLO powders, a 

supplementary study was undertaken with a PVIm[DS]-derived model carbon film (carbonized at 

600 ˚C for 2 h in an Ar atmosphere) to better understand the dual-doped mesoporous carbon structure 

of the MC shell. It is known that the chemical structure of the PIL (or IL) affects the doping content, 

atomic composition, graphitization, and specific surface area of the resultant carbonized substances45, 

54. The XPS analysis of the model carbon film showed characteristic N 1s and S 2p peaks, verifying 

dual (N and S)-doping. The N 1s XPS peaks (shown in Fig. 2B) of the model carbon film were 
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deconvoluted into three peaks55: 398.4 (pyridinic N), 400.2 (pyridonic and/or pyrrolic N), and 401.1 eV 

(quaternary N), whereas PVIm[DS] itself (i.e., before carbonization) showed an XPS peak at 401.4 eV, 

which corresponds to imidazolium cations56-57. This result manifests the structural re-ordering of the 

PIL cation backbone during the carbonization. N-doping of carbons is believed to increase electrical 

conductivity and facilitate diffusion of lithium ions (through C=N bond edges and defects of graphitic 

carbons)58-59. In addition to N-doping, S-doping into the model carbon film was detected through the 

characteristic XPS peaks corresponding to sulfide groups (C–S–C, at 163.8 eV) and oxidized sulfur 

groups (C–SOx–C, at 169.0 eV)60 (Fig. 5). These XPS results confirm the dual (N and S)-doping in the 

model carbon film. 

The Raman spectra of the model carbon film were analyzed and compared with those of 

PVIm[DS] itself (i.e., before carbonization, Figure 2C). The characteristic peaks61 assigned to the G-

band (1597 cm−1, graphite-like in-plane mode) and D-band (1352 cm−1, disorder mode) were observed 

at the model carbon film. Moreover, the higher intensity of the G-band with respect to the D-band (ID/IG 

= 0.84) reveals the formation of a highly graphitized structure. The HRTEM images of the model carbon 

film verified that the graphitic layers were successfully formed (Fig. 2D). Furthermore, the intensity 

profiles (Fig. 6) showed that the graphitic d spacing (0.397 nm) is similar to the theoretical spacing 

(0.335 nm) between graphite sheets. In addition, a number of mesopores were formed in the model 

carbon film. This HRTEM result, along with the aforementioned XPS and Raman spectra, demonstrates 

that the carbonization of PVIm[DS] leads to the successful formation of dual (N and S)-doped 

mesoporous graphitic carbon. 
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Figure 2. Structural and electrochemical characterizations of OLO@MC. (A) Synthetic scheme of 

PVIm[Br] and PVIm[DS], along with photographs showing their solution state. (B) XPS N 1s spectra 

of the PVIm[DS]-derived model carbon film before/after carbonization. (C) Raman spectra of 

PVIm[DS]-derived model carbon film before/after carbonization. (D) HRTEM images of the 

PVIm[DS]-derived model carbon film (inset shows a low-magnification view). The yellow arrow 

indicates the formation of graphitic carbon layers. (E) TEM image of OLO@MC particles. (F) Pore size 

distributions of pristine OLO, OLO@MC, and OLO@PVIm[Br]-derived carbon. (G) Effect of 

OLO@MC on discharge rate capability of cells (OLO@MC cathode/polyethylene separator/Li metal 

anode) as a function of initial concentration (varying from 0.1 to 2.0 mg mL−1) of the PVIm[DS] coating 

solution. 
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Figure 3. 1H-NMR spectrum of PVIm[Br]. 
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Figure 4. FT-IR spectra of PVIm[Br] and PVIm[DS], along with their chemical structures. 
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Figure 5. XPS S 2p spectra of PVIm[DS]: (A) Before carbonization. (B) After carbonization (at 600 ˚C 

for 2 h in Ar atmosphere). 
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Figure 6. (Bottom) HRTEM image of PVIm[DS]-derived model carbon film and (Top) its intensity 

profile. 
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Based on this structural understanding of dual (N and S)-doped mesoporous graphitic carbon, 

MC shell-coated OLO (denoted as “OLO@MC”) particles were characterized and their application to 

LIB cathodes was explored. The OLO@MC particles were obtained by dispersing OLO particles in the 

PVIm[DS] coating solution (concentration = 1.0 mg mL−1), and then, undergoing carbonization at 

600 ˚C for 2 h. SEM images showed no significant difference in morphology between the OLO and 

OLO@MC particles (Fig. 7), indicating that continuous and extremely thin MC shells were formed on 

the OLO particles. In addition, the transmission electron microscopy (TEM) image of OLO@MC 

showed that OLO particles were coated with nanothick (<20 nm) MC shells (Fig. 2E). 

The mesoporous structure of the MC shells formed on the OLO particles was further 

characterized using N2 adsorption-desorption isotherms (Fig. 2F and Fig. 8). The specific surface area 

of OLO@MC (4.978 m2 g−1) was larger than that of pristine OLO (3.605 m2 g−1). Notably, the pore size 

distribution, which was obtained from the N2 adsorption isotherm by using the density functional theory 

(DFT) method62, clearly showed the presence of small-sized mesopores in the OLO@MC particles. As 

a control sample, PVIm[Br]-derived carbon shells were formed on OLO particles. Intriguingly, no 

appreciable levels of mesopores were detected in the control sample (Fig. 2F). These results 

demonstrate that the DS− anions of PVIm[DS] play a viable role as a porogen in the realization of 

mesoporous MC shells. In particular, the long alkyl chains (C12H25) of the DS− anions are responsible 

for mesopore generation after carbonization. In comparison, Br− anions do not contain such alkyl chains 

and are thus ineffective as porogens. These results underline the importance of the molecular design of 

PIL anions for generating mesoporous structures. 

The dual-doped mesoporous MC shells described above are expected to simultaneously facilitate 

ion (via the mesopores) and electron (through the dual-doped carbon) transport toward OLO materials 

while mitigating direct contact with the bulk liquid electrolyte. The effect of the MC shells on the 

electrochemical performance of OLO@MC was investigated using a coin-type cell (OLO@MC 

cathode/polyethylene separator/Li metal anode). The composition ratio and areal mass loading of the 

OLO@MC cathode were OLO@MC/carbon black/polyvinylidene fluoride (PVdF) binder = 92/4/4 

(w/w/w) and 7 mg cm−2, respectively. To elucidate the effect of the PVIm[DS] content on the cell 

performance, the initial concentration of the PVIm[DS] coating solution was varied from 0.1 to 2.0 mg 

mL−1. The cells were charged at a constant current density of 0.2 C (0.34 mA cm−2) and discharged at 

current densities varying from 0.2 to 3.0 C in a voltage range of 2.0–4.7 V. All of the OLO@MC 

cathodes examined herein showed higher discharge capacities than the pristine OLO cathode over a 

wide range of discharge-current densities (Figure 2G), demonstrating that MC shells improve the 

discharge rate capability due to their facile ion/electron conduction. The discharge rate capability of 

OLO@MC improved with increasing concentration of PVIm[DS] coating solution. The higher 

PVIm[DS] concentration led to an increase in the electrical conductivity of the resulting OLO@MC 

cathodes (Fig. 9), which could reasonably account for the enhanced discharge rate capability. Notably, 
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the discharge rate capability of the 1.0 mg mL−1 PVIm[DS] coating solution was the highest among all 

concentrations tested herein. For the 2.0 mg mL−1 PVIm[DS] coating solution, the electrical 

conductivity appeared similar to that of the 1.0 mg mL−1 PVIm[DS] coating solution. On the other hand, 

the considerably more MC shell was generated at the 2.0 mg mL−1 PVIm[DS] coating solution (Fig. 

10). Furthermore, the thick MC shells were inhomogeneously deposited on OLO particles (Fig. 11), 

which may not be favorable for electrolyte wettability and ionic migration through the MC shell. As a 

result, the relatively sluggish ionic transport through thick/irregularly deposited MC shells may give 

rise to the inferior discharge rate capability compared to the result for the 1.0 mg mL−1 PVIm[DS] 

coating solution. Meanwhile, the larger amount of MC shells in the OLO@MC particles (shown in Fig. 

10), along with the relatively poor electrolyte wettability, may negatively affect the initial gravimetric 

specific capacity. 
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Figure 7. SEM images of (A) pristine OLO and (B) OLO@MC powders. 
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Figure 8. N2 adsorption-desorption isotherms of the pristine OLO, OLO@MC, and OLO@PVIm[Br]-

derived carbon. 
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Figure 9. Electrical conductivity of the OLO@MC cathodes as a function of initial concentration 

(varying from 0.1 to 2.0 mg mL−1) of the PVIm[DS] coating solution. 
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Figure 10. TGA profiles of OLO@MC as a function of initial concentration (varying from 0.1 to 2.0 

mg mL−1) of the PVIm[DS] coating solution. 
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Figure 11. SEM and HRTEM (inset) images of OLO@MC prepared from PVIm[DS] coating solution 

with initial concentration of 2.0 mg mL−1. Yellow arrows indicate the thick and irregularly-deposited 

MC shell on the OLO surface. 
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2.3.2. Fabrication and characterization of OLO@SMC 

In an attempt to further increase the electrical conductivity of MC shells, 2 wt% (relative to the 

PVIm[DS] content) SWCNTs were added to the PVIm[DS] coating solution, eventually yielding 

SWCNT-embedded MC (denoted as “SMC”) shells. A prerequisite for the realization of SMC shells is 

the good dispersion of SWCNTs in the PVIm[DS] coating solution. The PVIm[DS] coating solution 

allowed a better dispersion state of SWCNTs than both the PVIm[Br] coating solution and the SDS 

surfactant-added N,N-dimethylacetamide (DMAc) solvent (Fig. 2A). The dispersion states of SWCNTs 

in the mixed solutions were further analyzed using vis-NIR spectroscopy, for which the samples were 

centrifuged (10,000 g) and the supernatant solutions were collected exclusively for this characterization. 

The SWCNT/PVIm[DS] coating solution exhibited a substantially higher absorbance than the other 

coating solutions (Figure 12B), verifying the good dispersion state of SWCNTs. These results 

demonstrate the synergistic effect of PVIm+ cations and DS− anions on the SWCNT dispersion, 

underscoring the important contribution of PVIm[DS] as a polymeric dispersant for SWCNTs. This 

advantageous function of PVIm[DS] is illustrated schematically in Figure 12A.  

As a next step, the OLO cathode materials were mixed with the above-prepared 

SWCNT/PVIm[DS] coating solution. Fig. 12C shows that the highly interconnected SWCNT networks 

were uniformly distributed over the OLO particles (inset shows pristine OLO). After carbonization at 

600 ˚C for 2 h, the SWCNT/PVIm[DS] coating layer transformed into SMC shells on the OLO particles 

(i.e., OLO@SMC). Fig. 12D shows that the SWCNT networks were formed on the OLO particles with 

being embedded into the conformal/continuous MC shell. No structural disruption of the OLO particle 

was proved after the introduction of SMC shells (Figure 13). The highly reticulated SWCNTs embedded 

in the MC shells act as electron highways that spatially connect the OLO particles in addition to offering 

additional electron-conductive routes to the MC shell, eventually boosting the electron transport of the 

resultant OLO@SMC (electrical conductivity [S cm−1] = 0.58 for OLO@SMC vs 0.06 for pristine OLO 

vs 0.13 for OLO@MC). These well-developed electron pathways, in combination with ion migration 

via mesopores of the MC shells, are expected to improve the electrochemical performance of the 

OLO@SMC particles. Such interesting ion/electron transport phenomena are illustrated schematically 

in Fig. 12E. 
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Figure 12. PVIm[DS]-assisted dispersion of SWCNTs and structural characterization of OLO@SMC. 

(A) (Top) Photographs of SWCNT/DMAc suspensions incorporating PVIm[Br], SDS, and PVIm[DS]. 

(Bottom) Schematic illustration depicting the advantageous effect of PVIm[DS] on the SWCNT 

dispersion (i.e., synergistic effect of PVIm+ cations and DS− anions). (B) vis-NIR absorption spectra of 

SWCNT/DMAc suspension incorporating PVIm[Br], SDS, and PVIm[DS], wherein the samples were 
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subjected to centrifugation (10,000 g) and the supernatant solutions were collected exclusively for this 

characterization. (C) SEM images of OLO powders coated with SWCNT/PVIm[DS] coating solution. 

(D) SEM (left) and HRTEM (right) images of OLO@SMC. The SWCNTs embedded in the MC shells 

were marked with yellow circles. (E) Conceptual illustration depicting the structural uniqueness of SMC 

shells and their contribution to the ion/electron transport phenomena. 
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Figure 13. XRD patterns of the pristine OLO and OLO@SMC powders. 
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We investigated the effect of OLO@SMC on cell performance using a coin-type cell 

(OLO@SMC cathode/polyethylene separator/Li metal anode). The composition ratio and areal mass 

loading of the OLO@SMC cathode were OLO@SMC/carbon black/PVdF binder = 92/4/4 (w/w/w) and 

7 mg cm−2, respectively. Figure 14A shows the discharge rate capability of cells, wherein the cells were 

charged at a constant current density of 0.2 C (0.34 mA cm−2) and discharged at various current densities 

ranging from 0.2 to 5.0 C. The discharge rate capability of OLO@SMC was superior to those of both 

pristine OLO and OLO@MC, which became more pronounced at higher discharge current densities. 

Such an improvement in the discharge rate capability of OLO@SMC is attributed to the presence of 

dual-doped mesoporous carbon and also to the additional electron pathways created by the SWCNT 

networks. To further verify the faster discharge rate performance of OLO@SMC, galvanostatic 

intermittent titration technique (GITT) analysis63 was conducted. Upon repeated current stimuli (at 

current density = 0.5 C, interruption time between each pulse = 60 min) during the charge/discharge 

reaction, the OLO@SMC effectively alleviated the rise in cell polarization compared with pristine OLO 

(Figure 14B). The internal cell resistances of OLO@SMC were compared with those of pristine OLO 

as a function of state of charge (SOC) and depth of discharge (DOD), confirming the advantageous 

effect of the SMC shell on the faster redox reaction of OLO cathode materials. 

The cycling performance of OLO@SMC was also examined, where the cells were cycled at 

charge/discharge current density of 3.0 C/3.0 C under voltage range of 2.0–4.7 V. Here, to clarify the 

beneficial effect of SMC shells, the areal mass loading of the cathodes was set to 14 mg cm−2, which is 

significantly higher than previously reported results (Table 1). Figure 14C shows that OLO@SMC 

retains higher capacity (79.0% after 50 cycles) than both pristine OLO (41.3%) and OLO@MC (60.8%). 

Moreover, the suppression of cell polarization with cycling was observed in the charge/discharge 

profiles (Figure 15).  

To better understand the beneficial effect of OLO@SMC on the cycling performance, a 

postmortem analysis of the cells was conducted after the cycling test. The surface of the OLO@SMC 

cathode was relatively clean (Fig. 14D), whereas the control OLO cathode was covered with a 

substantial amount of randomly aggregated byproducts (see inset of Fig. 14D). The byproducts that 

formed on the cathodes were further analyzed using XPS and time-of-flight secondary-ion-mass 

spectroscopy (TOF-SIMS). The XPS F 1s spectra (Figure 14E) revealed LiF formation on the cathodes, 

which is one of unwanted byproducts generated by hydrofluoric acid (HF, generated from residual 

water-induced decomposition of LiPF6-incorporating electrolytes)-triggered interfacial side reactions27, 

64-65. An intriguing finding is that the peak intensity of LiF was lower at the OLO@SMC cathode, 

indicating that SMC shells effectively suppressed the interfacial side reactions between OLO and liquid 

electrolyte during cycling. This contribution of the SMC shells to the LiF suppression was confirmed 

by TOF-SIMS images (Figure 14F). LiF was sparsely dispersed over a wide area of the OLO@SMC 

cathode and its absolute amount was less than that for the control OLO cathode.  
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Furthermore, the HF in the liquid electrolyte is known to attack OLO cathode materials, thereby 

accelerating dissolution of heavy metal ions (e.g., Mn2+) from the OLO cathode materials30, 64, 66. The 

dissolved Mn2+ ions migrate toward lithium anodes and are reduced to metallic Mn on the anode surface. 

The inductively coupled plasma-optical emission spectrometry (ICP-OES, Figure 14G) results showed 

that a considerable amount of metallic Mn (180 ppm) was deposited on the lithium anode assembled 

with the control OLO. In comparison, the OLO@SMC remarkably suppressed the Mn deposition to 4.4 

ppm, demonstrating the beneficial contribution of the SMC shell as a protective layer that mitigates the 

direct exposure of OLO to the HF-containing liquid electrolyte. The metallic Mn deposited on the 

lithium anode, along with the structural contamination of the OLO cathode materials mentioned above, 

is believed to provoke serious capacity fading during cycling29, 66. These postmortem results on the 

electrode surface underscore the advantageous effects of the SMC shells as exceptional ion/electron-

conductive nanoshields. 

Delithiated cathode materials tend to generate interfacial exothermic reactions upon exposure to 

liquid electrolytes40, 64, which becomes more serious with high-capacity/high-voltage cathode materials. 

The DSC thermograms (Figure 14H) showed that OLO@SMC (Hexo = 589 J g−1, Tpeak = 276 ˚C) 

noticeably improved the thermal stability compared to the control OLO (Hexo = 1089 J g−1, Tpeak = 

265 ˚C). This result demonstrates that the conformal/continuous SMC shell effectively prevents the 

exposure of OLO to bulk liquid electrolyte, thereby alleviating the unwanted exothermic reaction at the 

cathode–electrolyte interface. 
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Figure 14. Effect of OLO@SMC on the electrochemical performance of coin (2032-type) cells. (A) 

Discharge rate capability of pristine OLO, OLO@MC, and OLO@SMC, wherein the cells were charged 

at a constant current density of 0.2 C (0.34 mA cm−2) and discharged at various current densities ranging 

from 0.2 to 5.0 C. (B) (Left) GITT profiles of the cells assembled with pristine OLO and OLO@SMC 

cathodes. (Right) Change in internal cell resistances as a function of state of charge (SOC) and depth 

of discharge (DOD). (C) Comparison of cycling performance (at charge/discharge current density = 3.0 

C/3.0 C under voltage range of of 2.0–4.7 V) between pristine OLO, OLO@MC, and OLO@SMC. 

(D)–(G) Analysis of cells (OLO vs OLO@SMC) after cycling test (50 cycles): (D) SEM image of 

OLO@SMC cathode. The inset shows the morphology of the OLO cathode. (E) XPS F 1s spectra of 

the OLO and OLO@SMC cathodes. (F) TOF-SIMS images of the LiF byproducts formed on the OLO 

and OLO@SMC cathodes. (G) ICP-OES results showing the amount of metallic Mn deposited on the 

Li metal anodes assembled with the OLO and OLO@SMC cathodes. (H) DSC thermograms showing 

interfacial exothermic reaction between delithiated (charged to 4.7 V) OLO cathodes and liquid 

electrolyte. 
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Table 1. Comparison of composite ratio and areal mass loading used in this study with previously 

reported results. 

 

 

Publication 

/Chemical structure of OLO 

Composite ratio 

(%) 
Mass 

Loading 

(mg cm-2) 
Active 

material 

Conductive 

agent 
Binder 

This work 

/0.49Li2MnO3·0.51LiNi0.37Co0.24Mn0.39O2 
92 4 4 ~14 

Adv. Mater. 2015, 27, 3915. 

/Li[Li0.2Mn0.568Ni0.2X0.032]O2 (X = Si, Sn, 

and Mn) 

80 10 10 2 - 3 

Adv. Energy Mater. 2015, 5, 1500274. 

/Li1.17Ni0.17Co0.17Mn0.5O2(0.4Li2MnO3·0.6Li

Ni1/3Co1/3Mn1/3O2) 

80 10 10 4.5 

Adv. Energy Mater. 2013, 3, 1299. 

/Li1.2Ni0.13Mn0.54Co0.13O2 
80 10 10 2.9 

Nano Lett. 2014, 14, 5965. 

/hydrazine treated 0.5Li2MnO3-

0.5LiNi0.5Mn0.5O2 

90 5 5 6.2 

J. Mater. Chem. A 2015, 3, 17113. 

/Li[Li0.2Co0.13Ni0.13Mn0.54]O2 
80 10 10 2 

J. Mater. Chem. A 2015, 3, 13933. 

/0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 
85 10 5 3 

J. Mater. Chem. A 2015, 3, 17627. 

/Li(Li0.17Ni0.25Mn0.58)O2 
75 15 10 4.97 

ACS Appl. Mater. Interfaces 2015, 7, 8319. 

/Li1.17Ni0.17Mn0.5Co0.17O2 
80 10 10 4.97 

ACS Appl. Mater. Interfaces 2014, 6, 21711. 

/Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 
80 10 10 3 

 

 

  



41 

 

 

 

 

 

 

Figure 15. Charge/discharge profiles (for 1st and 50th cycles) of the pristine OLO, OLO@MC, and 

OLO@SMC cathodes, wherein the cells were cycled at charge/discharge current density = 3.0 C/3.0 C 

under voltage range of 2.0 – 4.7 V. 
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2.3.3. The versatility of the SMC shell concept: LNMO@SMC 

To explore the versatility of the SMC shell as an electrochemical/thermal protective layer, its 

application to high-voltage LNMO cathode materials was investigated in addition to the high-capacity 

OLO cathode materials described above. Figure 16A shows that the conformal/continuous SMC shell 

was successfully formed on the LNMO surface, which appeared similar to the morphology of the 

OLO@SMC in overall. Driven by the SMC shell, the LNMO@SMC provided the higher electrical 

conductivity than the pristine LNMO (Fig. 16B). As a result, over a wide range of discharge current 

densities (0.2–10.0C) at a fixed charge current density of 0.2C in a voltage range of 3.5–4.95 V, the cell 

assembled with the LNMO@SMC showed larger discharge capacities compared with pristine LNMO 

(Fig. 16C)67. Fig. 16D presents that the SMC shell allowed the LNMO@SMC to suppress the interfacial 

exothermic heat (Hexo = 143 J g−1) and to shift the exothermic peak temperature to a higher value (Tpeak 

= 304 ˚C), as compared with the pristine LNMO (Hexo = 286 J g−1, Tpeak = 276 ˚C). These results 

demonstrate that the SMC shell can be suggested as an effective and versatile platform technology for 

the surface modification of cathode materials. 
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Figure 16. Application of SMC shells to high-voltage LNMO cathode materials. (A) SEM image of 

LNMO@SMC, wherein the SWCNTs embedded in the MC shells were marked with yellow circles. 

The inset shows the morphology of pristine LNMO. (B) Electrical conductivity of pristine LNMO and 

LNMO@SMC. (C) Discharge rate capability of pristine LNMO and LNMO@SMC, wherein the cells 

were charged at a constant current density of 0.2C and discharged at various current densities ranging 

from 0.2 to 10.0C. (D) DSC thermograms showing the interfacial exothermic reaction between the 

delithiated (charged to 4.95 V) LNMO cathodes and liquid electrolyte. 
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2.4. Conclusion 

In summary, we presented a SWCNT-embedded, dual (N and S)-doped mesoporous car

bon (SMC) shell as a new concept of molecularly designed, ion/electron-conductive nanoshield

s to overcome the long-standing challenges (i.e., interfacial problems with liquid electrolytes) f

acing LIB electrode materials. The mixing of cathode particles with the SWCNT/PVIm[DS] c

oating solution and the subsequent carbonization led to the formation of SMC shells on the c

athode particles. The molecular structure of PVIm[DS] was rationally designed to achieve the 

following multiple functions: (i) precursor for conformal/continuous nanothickness carbon shell

s, (ii) dual (N and S)-doping source, (iii) porogen for the mesoporous structure, and (iv) SW

CNT dispersant. We comprehensively characterized the SWCNT/PVIm[DS]-derived SMC shells 

on OLO particles with a particular focus on nanothickness surface coverage, mesopore formati

on, and electronic conduction. Due to such chemical/structural uniqueness, the SMC shells pre

vented direct exposure of OLO to the bulk liquid electrolyte while facilitating the redox react

ion kinetics of OLO. As a consequence, the OLO@SMC significantly enhanced the cell perfo

rmance and mitigated the interfacial exothermic reaction between the delithiated OLO and liqu

id electrolyte, demonstrating the unusual contribution of the SMC shells as ion/electron-conduc

tive nanoshields. The beneficial effects of SMC shells were also observed in the LNMO mate

rials, verifying their versatile applicability. The SMC shell, driven by the molecularly designed 

PIL and synergistic combination with the SWCNTs, is anticipated to open a new route to an 

exceptional interfacial control strategy for high-energy density/high-performance electrode 

materials. 
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