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This work investigates wave attenuation and dissipation mechanisms in viscoelastic phononic

crystals (VPCs) having different inclusion types in a long-wavelength regime. After investigating the

intrinsic damping properties of VPCs for different inclusion sizes and materials, we carried out wave

simulations revealing the energy dissipation by a finite VPC structure inserted inside an elastic

medium. The simulations, supported by physical reasoning, showed that air- and metal-embedded

VPCs can indeed dissipate more wave energy than pure viscoelastic media in low and high frequency

ranges, respectively. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4795285]

In this work, we aim to investigate how and why the

overall damping properties of viscoelastic phononic crystals

(VPCs) are affected by the types (material and size) of

VPCs, especially in the frequency range where wavelengths

are much larger than the VPC unit cell size (see, e.g., Ref. 1

for theories on viscoelasticity). Several researchers previ-

ously studied the band structure of VPCs,2 but investigations

on wave attenuation of VPCs are relatively limited. The

effect of the mode conversion3 and the local resonance4 to

the attenuation of VPCs has been investigated, but the fre-

quency ranges considered in these works were relatively

higher or narrower than the range focused on this work.

Targeting at a broad low-frequency range, attenuation in

VPCs made of a viscoelastic matrix and hollow glass spheres

has been studied.5 However, the detailed wave phenomena

taking place inside VPCs were not given so that attenuation

mechanisms in VPCs need to be further investigated.

In this study, two types of VPCs made of a viscoelastic

rubber matrix and circular inclusions with varying sizes are

considered. Type 1 will consider air inclusions and Type 2,

tungsten inclusions. Air may be regarded as a representative

material softer than the matrix, while tungsten, a harder ma-

terial. For all types, inclusions are periodically arranged

to form a square-lattice crystal whose unit cell size is

8� 8 mm2. Here, wave attenuation in the long-wavelength

frequency range (from 30 Hz to 3000 Hz) is mainly focused.

When the host viscoelastic material is modeled by a lin-

ear viscoelastic theory,1 its damping effect can be expressed

in terms of a complex-valued stiffness matrix C�, which can

be written as

C� ¼ Cð1þ i tan dÞ ði ¼
ffiffiffiffiffiffiffi

�1
p

Þ; (1)

where tan d is the loss-tangent of a viscoelastic material. In

case of rubber, it can be approximated as tan d ¼ 0:1512

þ2p� 1e� 4� x (Ref. 6) where x denotes angular

frequency. Other material properties needed for simulations

are listed here: cl (longitudinal wave velocity) ¼ 1469 m=s,

ct (transverse wave velocity) ¼ 360 m=s, and q (density)

¼ 1039 kg=m3 for rubber, and cl ¼ 5027 m=s, ct ¼ 2822 m=s,

and q ¼ 17 800 kg=m3 for tungsten. Air inclusions are mod-

eled with cl ¼ 330 m=s, ct ¼ 0 m=s, and q ¼ 1 kg=m3.

To calculate the wave attenuation and the effective loss-

tangent of a VPC, the following procedure is used. First, the

complex band structure for a VPC is determined by the

extended plane-wave expansion method.7 Here, only in-

plane longitudinal bulk waves are considered. Then, the

complex wavevectors k ¼ aþ ib (a; b : real) are determined

from the calculated band structure at desired frequencies.

Finally, the attenuation and effective loss-tangent can be cal-

culated from the complex wavevectors as8

Attenuation ¼ b; Loss� tangent

¼ imagð�qx2=k2Þ=realð�qx2=k2Þ; (2)

where �q is the effective density of a VPC. At low frequencies,

�q for PCs having circular inclusions can be calculated as

�q ¼ qmatrixVmatrix þ qinclusionVinclusion,9 where Vmatrix and

Vinclusion denote the volume fractions of the matrix and inclu-

sion, respectively. Note that the attenuation is related to

decrease in wave amplitude along the propagating direction.

The loss-tangent is related to the ratio of the time-averaged dis-

sipated energy density with respect to the time-averaged total

energy density.8 The values of the attenuation and effective

loss-tangent for the two VPC cases are shown in Fig. 1. The

values in Fig. 1 are obtained for 30 Hz, but they are almost

unaltered at all other frequencies considered in this work.

In case of air inclusion (Type 1), the attenuation monot-

onically increases as the size of the inclusion increases while

the effective loss-tangent almost remains unaffected regard-

less of the size variation of the inclusion. To explain these

phenomena, the mode shape of the longitudinal wave and its

power distribution in the x direction are plotted in Fig. 2(a). It

shows that the wave power mainly flows through the matrix
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irrespective of the inclusion size, although inclusions are also

deformed. So, the amount of the time-averaged dissipated

energy density will remain the same. Because the effective

loss-tangent will not change for the same ratio of the time-

averaged dissipated energy to the time-averaged total wave

energy, its value will be almost the same irrespective of the

inclusion size as apparent in Fig. 1(b). On the other hand, Fig.

3(a) shows that the wave speed in the VPC of Type 1 monot-

onically decreases as the inclusion size increases. As

explained in previous slow light investigations,10 slow waves

result in higher amplitudes, yielding larger damping force per

length. The comparison of the attenuation in Fig. 1(a) and the

wave speed in Fig. 3(a) suggests that the attenuation is almost

inversely proportional to the wave speed. Therefore, the

change in the wave speed is found to be responsible for the

change in the attenuation for Type 1.

The situation for Type 2 is quite different from that of

Type 1. The attenuation increases until the size of the tung-

sten inclusion reaches d¼ 4 mm, and it decreases afterwards.

On the other hand, the effective loss-tangent decreases

monotonically as d increases. Because tungsten is a harder

material than the matrix, considerably a large amount of

wave energy passes through the tungsten inclusions, as

shown in Fig. 2(b). Note that wave energy inside the inclu-

sions is not dissipated. Therefore, the amount of the time-

averaged dissipated energy density and the effective loss-

tangent become reduced as the inclusion size increases, as

demonstrated in Fig. 1(b). On the other hand, Fig. 3(b) indi-

cates that the speed decreases as d increases, but it increases

as d becomes larger than a certain value d� (in the present

case, d� ¼ 6 mm). When d is smaller than d�, the inclusion

acts as a rigid mass while the rubber matrix acts as a spring,

meaning that the stiffness effect of the inclusion can be

ignored.9 Therefore, increasing the inclusion size is equiva-

lent to adding more mass in the system, lowering the wave

speed. When d becomes larger than d�, the stiffness of the

inclusion is brought into play,9 and also wave propagation

through the tungsten inclusion becomes more significant.

Consequently, the wave speed becomes larger. Therefore,

both the wave speed and effective loss-tangent are responsi-

ble for the change in the attenuation for Type 2.

Let us now investigate the effectiveness of finite VPC

structures when they are inserted in an elastic medium. For

the investigation, a one-dimensional wave simulation model

presented in Fig. 4 is adopted. For time-harmonic simula-

tions carried out with COMSOL,11 either Type 1 or Type 2

VPC structure composed of 10 unit cells is inserted in the

middle of an elastic Lucite medium (cl ¼ 2672 m=s,

cs ¼ 1091 m=s, and q ¼ 1200 kg=m3), and the following dis-

sipation measure is calculated:

n ¼ 1� ðPT þ PRÞ=PI; (3)

FIG. 1. The values of (a) the normalized attenuation and (b) normalized

effective loss-tangent for varying inclusion sizes in VPCs of Type 1 and

Type 2. Here, d is the inclusion’s diameter.

FIG. 2. The mode shape (left) and the x-directional wave power (right) for

the longitudinal waves propagating at 30 Hz in the 8 � 8 mm2 VPCs with

d ¼ 7 mm. (a) Type 1 and (b) Type 2.

FIG. 3. The longitudinal phase velocity for varying inclusion size at 30 Hz

for (a) VPC of Type 1 and (b) Type 2. The material loss in rubber is ignored

in the calculation of the phase velocity. (Normalized as in Fig. 1).

FIG. 4. Finite element time-harmonic wave simulation model of the VPC

inserted inside an elastic body.
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where PI, PT , and PR denote the incident, transmitted, and

reflected wave powers, respectively. The two point method12

was used to calculate PR and PI.

The calculated values of the dissipation measure n in

Fig. 5 show significant effects of the inclusion type; n tends

to increase at low frequencies for Type 1 while it does at

high frequencies for Type 2. To explain these phenomena,

we note that n is mainly affected by the following three fac-

tors: (1) the intrinsic attenuation of the VPC (as studied

above), (2) the amount of the energy transmitted from the

left Lucite medium to the VPC structure, and (3) the amount

of the energy trapped in the VPC. The trapped energy is due

to multiple-reflected waves from both boundaries of the VPC

structure.

In case of Type 1, both the effective density and wave

speed decrease as the inclusion size increases. As a result,

mismatch between the high impedance of the Lucite medium

and the low impedance of the VPC will increase. Since

waves can be transmitted sufficiently well from a high-

impedance medium into a low-impedance medium at low

frequencies (corresponding to waves of much longer wave-

length than the size of the VPC structure), the amount of the

transmitted energy from the left Lucite to the VPC structure

is quite significant. Therefore, n is dominantly controlled by

Factors 1 and 3, not by Factor 2. If the impedance difference

becomes larger, more energy can be trapped in the VPC

structure, resulting in larger n values. In this situation, the

attenuation also increases as in Fig. 1(a). Thereby, one can

now explain why n increases at low frequencies for the Type

1 VPC as d increases. At high frequencies, however, wave

transmission from the left Lucite to the VPC is affected

significantly by the impedance mismatch, making n most

affected by Factor 2. Since little energy is transmitted

into the VPC, other factors become less influential.

Consequently, n decreases at high frequencies for the Type 1

VPC as d increases.

In case of Type 2, the introduction of inclusions in the

rubber matrix may decrease the wave speed in the VPC but

considerably increases the effective density of the VPC.

Thus, the difference between the impedance of the VPC and

that of the Lucite medium becomes reduced as d increases.

While the severity of impedance mismatch does not influ-

ence much the transmitted energy into the VPC structure at

low frequencies, the reduction in the impedance mismatch

will affect Factor 3. This reasoning explains why n decreases

as d increases at low frequencies. In contrast, the reduced im-

pedance mismatch influences Factor 2 mostly at high fre-

quencies, and thus it increases n. However, the attenuation of

Type 2 VPC significantly drops when d reaches 5 mm (see

Fig. 1(a)). Therefore, the drop is primarily responsible for

the decreasing n values for d > 5 mm.

This study investigated how the type (material) of inclu-

sions in a VPC affects its damping properties. While air-

embed VPCs exhibit similar wave behavior regardless of

excitation frequencies, metal-embed VPCs do not. The spe-

cific amount of dissipated wave energy will be affected by

the selected VPC materials and the operating frequency, but

the findings from this study will remain valid for any VPC.
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