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Abstract 

Lithium ion batteries have been used for many devices such as cellular phone, digital camera, 

laptop computer, and tablet PC. Recently, the demands for high energy density and capacity has 

increased but commercialized lithium ion batteries have difficulties. The commercialized lithium 

cobalt oxide material has practical capacity is approximately 145 mAh g
-1

. It is relative low capacity 

compared to graphite anode. So cathode electrode need high loading density, but the process for high 

loading is not easy. Lithium nickel cobalt manganese oxide was investigated to get a high capacity 

and reduce the use of cobalt component. Reversible specific capacity of Lithium nickel cobalt 

manganese oxide can increase in 200 mAh g
-1

 but lithium nickel cobalt manganese oxide have to be 

charged up to high voltage with concomitant electrolyte decomposition. 

Even though difficulty of voltage fading and capacity decay exist, over-lithiated layered oxide 

cathode materials (OLO, Lithium-rich cathode) are investigated as prospective candidates. Over-

lithiated layered oxide cathode materials can deliver a discharge capacity above 200 mAh g
-1

 under 

the conditions of charging above 4.5 V vs. Li/Li
+
. but oxidative decomposition of organic electrolytes 

happening above 4.5 V vs. Li/Li
+
 is inevitable.  

Many efforts have been researched to improve limitation of over-lithiated layered oxide cathode. 

Surface modification with Al2O3 have been studied for many cathode active materials to scavenge a 

trace of acidic HF species in electrolyte. However, it was confirmed that Al2O3 coating layer was 

covert to AlF3 and unstable. Because of the unstable Al2O3 coating layer on the cathode, AlF3 coating 

was attempted to stabilize surface of cathode. AlF3 coating layer act as inactive site and reduce 

unstable surface on the cathode. Inactive AlF3 coating layer inhibit electrolyte decomposition on the 

interface of cathode and electrolyte. 

Surface modification with reduced graphene oxide and chemical activation with hydrazine was 

proposed to improve electrochemical performance of over-lithiated layered oxide cathode. This 

method reduced excessive initial charge capacity for activation of the Li2MnO3 component and initial 

irreversible capacity. Also, stabilizing the Li2MnO3 surface suppresses transformation from layered to 

spinel structure. 

Tris(pentafluorophenyl)borane (TPFPB) was used as additive for over-lithiated layered oxide 

cathode. Because TPFPB additive dissolve insulating salts LiF/Li2O formed by electrolyte 

decomposition, thin SEI layer on the cathode is maintained during the cycle.  

Also, lithium bis(oxalato)borate (LiBOB) additive was reported to effectively stabilize surface layer 
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on 5 V LiNi0.5Mn1.5O4 spinel cathode. Therefore, in this study, LiBOB was used as additive for over-

lithiated layered oxide cathode material. 
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CHAPTER I 

 

1. Introduction 

1.1. Lithium ion battery 

Lithium ion battery is energy storage system that transforms saved chemical energy into electric 

energy. Lithium ion battery have a high energy density compared to different batteries (Table 1).
1
 

Operating mechanism of lithium ion battery is based on oxidation/reduction reaction of lithium cation 

on the anode and cathode. Because lithium has most small molecular weight except for hydrogen, 

lithium can deliver high specific capacity and energy density. Therefore, lithium ion battery have 

served as power sources for a number of portable device. However lithium ion battery still has many 

problems of practical capacity related to battery components.  

Now, commercialized lithium ion battery was composed of lithium cobalt oxide cathode, graphite 

anode, electrolyte, and PE separator (Fig 1-1). Many efforts have been conducted to overcome this 

limitation. Silicon active material have been mainly researched to replace graphite anode material 

having a small specific capacity (372mAh g
-1

). Silicon anode materialsdeliver a high theoretical 

specific capacity (3580 mAh g
-1

) compared to graphite anode. However, silicon anode has a relatively 

high operating voltage about 0.3 V vs. Li/Li
+
 compared to graphite (0.1 V vs. Li/Li

+
) anode and 

suffers large volume expansion (about 400%) of active material compared to graphite (about 10%) 

anode.
2
 Because of this severe problem, silicon active material have been only partially applied to 

practical anode of lithium ion batteries. 

Lithium cobalt oxide cathode material have a specific capacity of 274 mAh g
-1

 but the practical 

capacity is only about 145 mAh g
-1

.
3
 Excess lithium extraction from lithium cobalt oxide reduce 

structural stability and then release oxygen. So the practical capacity of lithium cobalt oxide is 

comparatively limited. Many cathode material have been researched to get a high practical capacity 

and energy density. Lithium nickel cobalt manganese oxide (NCM), lithium nickel cobalt aluminum 

oxide (NCA), over-lithiated layered oxide (OLO) cathode materials have been improved. Under the 

condition of the charging up to high voltage, these cathode active materials are able to have the more 

high capacity and energy density. Despite the need for high voltage state, electrochemical stable 

window of electrolyte doesn’t reach proper voltage. So the studies in electrolyte have to be 

continuously conducted to meet surface stability of cathode at high voltage. 
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Table 1. Properties for the various battery systems.
1
 

 

 

 

Figure 1-1. Graphene/LiMO2 lithium ion battery system during the discharge.
4
 

 

 



 

15 

 

1.2. Cathode active materials of lithium ion battery 

Recently, lithium ion batteries have been utilized for many portable devices such as cellular phone, 

digital camera, laptop computer, and tablet PC. In addition, lithium ion batteries are investigated in 

application in electric vehicles and energy storage system. But this applications need high energy 

density, long-term cycling stability, cost competitiveness, and safety. Now, lithium ion battery 

consisting of graphite anode, lithium cobalt oxide (LCO), PE separator and organic electrolyte present 

limitation of capacity and price competitiveness. 

The cathode material component of Li-ion battery is partially responsible for this limitation of 

capacity and price competitiveness. The lithium cobalt oxide of cathode material has theoretical 

specific capacity of 276 mAh g
-1

 but the commercialized lithium cobalt oxide material has practical 

capacity is approximately 145 mAh g
-1

. This reason that practical capacity is about half of theoretical 

specific capacity is unstable state of delithiated Li1-xCoO2 cathode. The lithium cation in lithium 

cobalt oxide is reversible for insertion/deinsertion when charge up to 4.2-4.3 V vs. Li/Li
+
 (x≤0.5).

3
 

Because price of cobalt metal of lithium cobalt oxide is high, the lithium nickel cobalt manganese 

oxide (LiNi1/3Co1/3Mn1/3O2, stoichiometric NCM, 333 NCM) was investigated. Even though lithium 

nickel cobalt manganese oxide show a reversible specific capacity of 150 mAh g
-1

 with potential 

window between 2.5 and 4.3 V vs. Li/Li
+
, the working voltage of Lithium nickel cobalt manganese 

oxide is lower than working voltage of lithium cobalt oxide. When charge cut-off voltage increases 

above 4.5 V, a reversible specific capacity of lithium nickel cobalt manganese oxide can increase in 

200 mAh g
-1

.
3
 However, since the condition with 4.5 V vs. Li/Li

+
 negatively affect reversibility of 

phase on cathode material and interface between cathode electrode and electrolyte, it is not easy to use 

high cut-off voltage. 

Over-lithiated layered oxide (Lithium-rich cathode) materials are investigated by many researchers. 

Li1+x(M)1-xO2 composed with xLi2MnO3·(1-x)LiMO2 (M = Ni, Mn, Co) is promising candidates for an 

improvement in the energy of LIBs. Over-lithiated layered oxide cathode materials can deliver a 

discharge capacity above 200 mAh g
-1

 under the conditions of charging above 4.5 V vs. Li/Li
+
. but 

oxidative decomposition of electrolytes happening above 4.5 V vs. Li/Li
+
 is inevitable.

5
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Table 2.Properties of various cathode materials. 
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2. Over-lithiated layered oxide (OLO) cathode materials 

2.1. Introduction 

Over-lithiated layered oxide materials composed of LiMO2 (M = Ni, Co, and Mn) and Li2MnO3 

component is layered-layered structure. The LiMO2 component is electrochemically active and deliver 

capacity between 2.0 and 4.5 V. 

LiNi1/3Co1/3Mn1/3O2 Li
+
 + e

-
 + Ni1/3Co1/3Mn1/3O2 

The lithium ion consumption of the delithiated LiMO2 component during charge up to 4.5 V was 

replaced by diffusion of lithium ion from octahedral sites in the manganese layer of the Li2MnO3 

component to tetrahedral sites.
6
 In addition to this supply of Li cation, the electrochemically inactive 

property of Li2MnO3 component improves structural stability of over-lithiated layered oxide materials 

under the condition of charging up to 4.5 V vs. Li/Li
+
. The reason that the Li2MnO3 component with 

tetravalent manganese cation and monovalent lithium cation is inactive under 4.5 V is that it is not 

easy for tetravalent manganese cation to oxidize during the charging process. So, instead of increase 

in oxidation number of tetravalent manganese cation, the divalent oxygen anion oxidize and release of 

oxygen happen. 

 

One Li2MnO3 unit can deliver two Li cation but this reverse reaction is not possible. Because only 

one Li cation can insert into MnO2 structure, the large amount of initial irreversible capacity is 

inevitable. However, surplus Li cation can be expected to be provided in anode materials undergoing 

the initial irreversible reaction. Providing surplus lithium cation offset irreversible capacity loss of the 

anode and maintain capacity of full cell. 
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Figure 1-2.Phase diagram for explanation of the electrochemical reaction pathways of over-

lithiatedlayered oxide cathode.
5
 

 

 

 

Figure 1-3. Schematic illustration showing the 2-D spinel-like configuration in a delithiated 

Li2MnO3-like region of a xLi2MnO3·(1-x)LiMO2 electrode structure (M = Mn, Ni, Co).
5
 

 

 



 

19 

 

2.2. Problems of over-lithiated layered oxide cathode materials 

2.2.1. Effect of temperature and current density 

The operating temperature and the current density during the cycle are expected that it is very 

important factor to influence the degree of Li2MnO3 activation and the reversible capacity is utilized. 

As seen Fig 1-4(b), three respective cells were charged at the same rate of (1/20)C at room 

temperature, and then discharged at variousC rates of 0.1, 0.05, and 0.25 C, respectively.
7
 The low C 

rate (current density) and high temperature raise the reversible discharge capacity. Maybe, the 

condition with low discharge C rate cause decreasing polarization. Because this decrease of 

polarization delay reaching the cut-off voltage, the discharge capacity naturally increase. Besides 

current dinsity effect on the reversible capacity, temperature is also sensitive factor that impacts 

change of the capacity. The rising temperature act as a sort of the catalyst to make reaction of 

electrochemically inactive Li2MnO3 component easy. 
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Figure 1-4. (a) Voltage profiles of the Li/Li1.2Ni0.13Co0.13Mn0.54O2 cells (first cycle) in 1M LiPF6 

(EC/DMC) at a rate of 0.05 C. (b) Voltage profiles of the Li/Li1.2Ni0.13Co0.13Mn0.54O2 

cells at various rates in the voltage range of 2.0-4.8 V at room temperature or 60℃.
7 
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2.2.2. Voltage fading by phase transformation 

To reach a high discharge capacity, over-lithiated layered oxide cathode has to be charged up to 

above 4.6 V, to activate the Li2MnO3 component. The elimination of lithium cations and the 

concomitant oxygen release lead to the structural instability of the cathode and a phase transformation 

from layered to spinel structure. Reliable evidence for the phase transformation from layered to spinel 

has been researched with STEM by Gu et al.
8
 and Xu et al.

9
 Therefore, dQ/dV peak intensity meaning 

the spinel-like structure in 3.0 V region grow and dQ/dV peak intensity meaning the layered structure 

in 3.7 V and 4.2 V decline (Fig 1-5, 1-6).
10,11

 

In general, this phase transformation from layered to spinel is related to migration of transition 

metal ions into Li sites and Li ions into the tetrahedral sites after activation of Li2MnO3 component 

with a concomitant distortion of oxygen layer.
12

Obvious evidence for the formation of spinel-like 

phase on the cycled cathode surface has been researched for cycled Li[Li0.2Ni0.2Mn0.6]O2 material at 

high voltage.
9
 As researched, with the extensive elimination of lithium cations at high voltage, the 

migration of the transition metal cations into the Li site is energetically favorable at high voltage and 

thus could facilitate the formation of spinel-like structure. 

Most recently, long-term cycling of over-lithiated layered oxide cathode has also been 

demonstrated to extend the LiMn2O4-type spinel formation from the surface region to the interior of 

the particle.
8
 The phase transformation from layered to spinel is regarded as one of the main factors 

responsible for the voltage decay of over-lithiated layered oxide cathode. The voltage decay of the 

cycled cell can be directly correlated with the phase transformation from layered to spinel. However, 

the phase transformation from layered to spinel could not mean the continuous capacity fading 

because AlF3-coated over-lithiated layered oxide cathode material could accomplish considerably 

improved cycling performance even though the phase transformation from layered to spinel still 

happen.
13
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Figure 1-5. (a) Voltage profiles, (b) dQ/dV curves at room temperature of Li[Li0.2Ni0.2Mn0.6]O2.
10

 

 

 

Figure 1-6. (a) Voltage profileof Li/Li1.2Mn0.54Co0.13Ni0.13O2 half cells with Li1.2Mn0.54Co0.13Ni0.13O2 

prepared at 1000℃. (b) Corresponding dQ/dV curves.
11

 

 

 



 

23 

 

2.2.3. Capacity fading under the condition of high voltage 

There are two factors to cause the capacity fading. One is side reaction with electrolyte and cathode 

at high voltage. Because of getting the high capacity energy and density, over-lithiated layered oxide 

cathode with Li2MnO3 component has to be charged up to more high voltage with concomitant 

oxidative electrolyte decomposition above 4.4 V vs. Li/Li
+
. In order to use a high capacity over 

200mAh g
-1

, charge cut-off voltage was selected to above 4.6 V. the cycled over-lithiated layered 

oxide cathode with layered and spinel structure suffer the capacity fading at high voltage. As reported 

by Robertson and Bruce,
14

 in addition to hydrolysis of electrolytes with a trace amount of water, the 

oxidation of the alkyl carbonates would also lead to the generation of H
+
 and thus resulted in increase 

of acidity of the electrolyte. Oxidation of electrolytes at high voltage and the attack of acidic species 

(HF) would lead to degradation of cathode-electrolyte interface on the cathode and result in 

aggravated electrochemical performance of the cathode on long-term cycling. The other factor to 

cause the capacity fading is structural collapse extending from the surface, with poor effects on the 

continuous cycling capability. The capacity fading is associated with the further phase transformations 

from layered to NiO phase propagating from surface to the interior of the particle (Fig 1-7).
15

 

Reversible reaction of Li insertion/deinsertion can hardly happen on NiO phase. 
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Figure 1-7. Schematics of transformation from the layered to the cubic rock-salt structure during the 

cycling.
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CHAPTER II 

Additive for improving electrochemical performances of  

over-lithiated layered oxide cathode in lithium ion batteries 

 

1. Introduction 

1.1. Research trend 

Over-lithiated layered oxide is prospective cathode materials because of possibility of the relatively 

high capacity and energy density. However over-lithiated layered oxide cathode materials still has 

many problems such as temperature sensitivity, high resistance, voltage decay, and capacity fading. 

Many efforts for over-lithiated layered oxide cathode materials are attempted to attenuate these 

problems. 

Surface modification of cathode materials has also been knownfor a facile and beneficial methode 

to improve the electrochemical performance of cathode when they are charged up to high voltage. 

Al(OH)3-coated Li[Li0.2Ni0.2Mn0.6]O2 material has been researched to have a better rate capability and 

thermal stability compared to the pristine material. In addition to  Al(OH)3-coated Li[Li0.2Ni0.2Mn0.6-

]O2 material, Al2O3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 and Li[Li0.1-Mn0.43Ni0.23Co0.23]O2 cathode 

materials have been revealed to enhance the available discharge capacity and cycling performance .
16

 

Myung et al.
17

 also confirmed that the amphoteric Al2O3 coating layer with HF from electrolyte 

make surface layer composed of AlF3component by time of flight-secondary-ion mass spectrometry 

(TOF-SIMS) (Fig 2-1). However, the amphoteric Al2O3 coating layer will progressively convert to 

AlF3 via an intermediated stage after continuous cycling, suggesting that the amphoteric Al2O3 coating 

layer is unstable from the HF attack in the electrolyte (Fig 2-2). 

 

 

 

 

 



 

26 

 

 

 

 

 

Figure 2-1.High resolution TOF-SIMS results of cycled Al2O3-coated Li[Li0.05Ni0.4Co0.15Mn0.4]O2 

electrode at 60℃.
17

 

 

 

 

Figure 2-2. Possible reaction mechanisms for Al2O3 converted to AlF3 with a trace of HF in 

electrolyte.
17
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Therefore, AlF3-coated over-lithiated layered oxide cathode materials has been researched to be a 

endurable coating material to stabilize surface of pristine materials. The AlF3-coated LiCoO2,
18

 

LiNi0.8Co0.1Mn0.1O2,
19

 LiNi1/3Co1/3Mn1/3O2
20

 all indicated improved electrochemical performance 

compared to pristine materials. AlF3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 sample indicated ameliorated 

electrochemical performance such as loss of initial irreversible capacity, cycling performance, and rate 

capability.
21
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Recently, interesting surface modification of cathode materials has been introduced.This surface 

modification using reduced graphene oxide (rGO) coating and the chemical activation with hydrazine. 

The thin reduced graphene oxide layer serve as sustainable electron pathways improving surface 

electronic conductivity
22

 and protective layer suppressing metal dissolution on the cathode. And the 

chemical activation using the hydrazine improve initial low Coulombic efficiency and discharge 

voltage fading by stabilizing Li2MnO3 component on the surface.
15
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Figure 2-3.Schematics of (a) coated surface morphologies prepared from general sol-gel method, and 

(b) constructing hybrid surface layers consisting of rGO and chemical activationlayer.
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Using the additive in electrolyte is easy to improve the electrochemical performance of over-

lithiated layer oxide cathode materials because of the simple method. Recently, tris(pentafluoro-

phenyl)borane ((C6F5)3B, TPFPB) has been reported to improve the long-term cycling performance 

and formed the relatively thin passivation layer compared to baseline electrolyte on the surface of 

cycled Li[Li0.2Ni0.2Mn0.6]O2.
23

 TPFPB act as anion receptor dissolving the byproducts such as LiF and 

Li2O and trapping the released oxygen species such as oxygen anions (O2
2-

/O2
-
) and radicals(O2

●-
,O

●-
) 

attacking the electrolyte. Therefore, TPFPB additive suppresses the side reaction and maintains the 

thin surface. 
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Figure 2-4. Scheme of the functioning mechanism of TPFPB. (a) Thick surface film formation in 

baseline electrolyte; (b) thinsurface film formation in TPFPB added electrolyte.
23
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Recently, Lithium bis(oxalato)borate (LiBOB) additive was also investigated to form stable surface 

film and serve as a sort of anion receptor on the high voltage LiNi0.5Mn1.5O4 cathode.The LiBOB was 

proven to decompose that on cathode surface by measuring linear sweep voltammetry (LSV).
24

 

Besides, the LiBOB-derived SEI layer was confirmed to have a low leakage current compared to the 

reference electrolyte.  
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Figure 2-5. Schematic of the formation of LiBOB-derived surface film on the cathode.
24
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1.2. Research objective 

In this study, we apply lithium bis(oxalato)borate additive in electrolyte to Li/Li1.17Ni0.17Mn0.5Co0.17-

O2 half cells and graphite/Li1.17Ni0.17Mn0.5Co0.17O2 full cells. Ha et al.24 reported that Previous reported 

that LiBOB additive forms the durable surface film on the cathode and improve electrochemical 

cycling performance on the high voltage cathode. We confirmed LiBOB-derived surface film on the 

cathode by conducting X-ray photoelectron spectroscopy (XPS). Electrochemical performance of the 

LiBOB-derived SEI layer was confirmed by cycling coin cell test. Improved surface stability of high 

voltage cathode was confirmed by conducting electrochemical impedance spectroscopy (EIS) and 

scanning electron microscopy (SEM). 
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2. Experiment 

2.1. Preparation of electrolyte and electrode 

The electrolyte with and without 1 wt% lithium bis(oxalato)borate (LiBOB, Soulbrain Co. Ltd.) 

was composed of available 1.3 M lithium hexafluorophosphate (LiPF6, Soulbrain Co. Ltd.) dissolved 

in a solvent mixture of ethylene carbonate (EC), ethylmethyl carbonate (EMC), and dimethyl 

carbonate (DMC) at a 3:4:3 volume ratio. 

A slurry was prepared by mixing 80wt% Li1.17Ni0.17Mn0.5Co0.17O2 (0.5Li[Li1/3Mn2/3]O2· 

0.5LiNi1/3Co1/3Mn1/3O2) particles (Samsung Fine Chemicals Co. Ltd.), 10 wt% carbon black as the 

conducting material, and 10 wt% polyvinylidene fluoride (PVDF) binder dissolved in anhydrous N-

methyl-2-pyrrolidinone (NMP, anhydrous, 99.5%, Sigma-Aldrich). The resulting slurry was cast on 

aluminum foil. The composite cathode was then dried in a convection oven at 110℃ for 30 min. The 

electrode was next pressed to a thickness of approximately 45 μm. The specific capacity of the 

cathode and the active material loading were 0.994 mAh cm
−2

 and 4.97 mg cm
−2

, respectively. The 

composite cathodes were dried in vacuum at 110℃ for at 2 hrs prior to their assembly into cells. 
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Table 3. Properties of lithium salt used in experiment. 

 

 

 

Table 4. Properties of organic solvent used in experiment. 
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2.2. Electrochemical coin cell test 

A coin-type half cell (2032) with a Li1.17Ni0.17Mn0.5Co0.17O2 cathode and a Li metal electrode was 

assembled in an argon-filled glove box. The thickness and porosity of the microporous polyethylene 

film (PE, SK innovation Co. Ltd.) used as the separator were 20 μm and 38%, respectively. The coin-

type half cells were galvanostatically cycled at various rates and voltage windows at 30℃ using a 

computer-controlled battery measurement system (WonATech WBCS 3000). For the conditioning 

cycle, the first cycle was performed at a rate of C/10 between 2.0 V and 4.8 V followed by a second 

cycling at a rate of C/10 between 2.0 V and 4.6 V. Thereafter, the charge and discharge cycling for the 

half cells were performed at a rate of C/2 between 2.5 V and 4.6 V at 30℃ and 60℃. To investigate 

the high-temperature storage performances, graphite/Li1.17Ni0.17Mn0.5Co0.17O2 full cells were 

galvanostatically cycled once between 2.0 V and 4.8 V at a rate of C/10 at 30℃ using a computer-

controlled battery measurement system (WonATech WBCS 3000). Then, the cells were charged up to 

4.6 V with a constant current (CC) rate of C/10 followed by a constant voltage (CV) condition at 30℃ 

and then stored at 60℃. 
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2.3. Analysis 

Cell impedances of half cells were measured by means of an AC impedance analysis with an 

IVIUM frequency response analyzer over a frequency range of 10 mHz to 1 MHz. 

After the cycling test, the coin cells were guardedly opened in the glove box to regain their 

electrodes for surface analyses. The electrodes were then dipped in dimethyl carbonate to detach the 

residual LiPF6-based electrolyte, and the resulting electodes were dried at room temperature. The 

surface morphology of the electrodes was examined using a field-emission scanning electron 

microscope (FE-SEM; JEOL JSM-6700F). Ex-situ X-ray photoelectron spectroscopy (XPS, Thermo 

Scientific K-Alpha system) measurements on the dried electrodes were performed with Al Kα(hν= 

1486.6 eV) radiation under ultrahigh vacuum. XPS spectra were acquired using a 0.10 eV step and 50 

eV pass energy. The samples were prepared in a glove box and sealed with an aluminum pouch film 

before use. The prepared samples were rapidly transferred into a chamber of the instrument to 

minimize any possible contamination. All the XPS spectra were energy calibrated by the hydrocarbon 

peak at the binding energy of 285 eV. 

To measure the thermal properties of the delithiated cathodes, coin half-cells were charged up to 

4.6 V after the first conditioning cycle. Then, the half-cells were carefully opened in a dry room, and 

the retrieved cathodes were rinsed. The resulting cathodes were dried and transferred intact into a 

high-pressure stainless steel pan to preserve the products. Thermal analysis of the cycled 

Li1.17Ni0.17Mn0.5Co0.17O2 cathodes was conducted using differential scanning calorimetry (DSC1, 

Mettler Toledo). Each sample was heated at a rate of 5℃ min
−1

 over 50℃-330℃ under a nitrogen 

atmosphere. The amount of entrapped electrolyte was 50 wt% based on the electrode sample. 
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3. Results and discussion 

3.1. Electrochemical cell test and surface analysis for conditioning cycle of Li/Li1.17Ni0.17Mn0.5-

Co0.17O2 cells 

Figure 2-6 presents the voltage profiles of the Li/Li1.17Ni0.17Mn0.5Co0.17O2 half cells with and 

without 1% lithium bis(oxalato)borate (LiBOB) during the first and the second conditioning cycle at 

30℃. The Li1.17Ni0.17Mn0.5Co0.17O2 cathodes with the LiBOB-added electrolyte exhibited slightly 

reduced charge and discharge capacity of 322.7 mAh g
−1

 and 285.3 mAh g
−1

 with an initial 

Coulombic efficiency (ICE) of 88.4% compared with the reference electrolyte, which delivered 

charge and discharge capacity of 323.1 mAh g
−1

 and 296.5 mAh g
−1

 with an ICE of 91.8% in the first 

conditioning cycle. For the first conditioning cycle, the Li1.17Ni0.17Mn0.5Co0.17O2 cathodes in the 

LiBOB-added electrolyte delivered slightly reduced charge capacity, discharge capacity (0.1% and 

3.8%), and ICE (3.4%), as presented in Fig 2-6a. This finding is most likely due to the LiBOB 

additive undergoing the surface-filming process and consuming the Li
+
source. For the second 

conditioning cycle, the Li1.17Ni0.17Mn0.5Co0.17O2 cathode with 1% LiBOB exhibited an improved 

reversible capacity (Fig 2-6b). This result indicates that LiBOB as an additive decomposes on the 

cathode surface during the conditioning cycle between 2.0 V and 4.8 V, and the resulting LiBOB-

originated surface film is effective in improving the reversible electrochemical reactions of the 

cathode. This beneficial effect of the LiBOB additive on the electrochemical performance of the 

Li1.17Ni0.17Mn0.5Co0.17O2 cathode is similar to previous reports that LiBOB forms a protective layer on 

high-voltage cathodes and improves their cycling performance.
24,25, 26
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Figure 2-6. Voltage profiles of Li1.17Ni0.17Mn0.5Co0.17O2 cathodes during (a) first conditioning cycle in 

a voltage range between 2.0 and 4.8 V and (b) second conditioning cycle in a voltage 

range between 2.0 and 4.6 V at a rate of C/10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

41 

 

The formation of LiBOB-derived SEI on the Li1.17Ni0.17Mn0.5Co0.17O2cathode was confirmed by 

comparison of the XPS spectra for the cathodes in the reference and the LiBOB-added electrolyte. In 

both cases, the cells were applied only for the first conditioning cycle. A noticeable feature for the 

cathode in the LiBOB-added electrolyte is the increase in the peak intensity attributed to the 

semicarbonate-like species (–CO2–) at 288.8 eV, as observed in Fig 2-7. This result is most likely due 

to the SEI layer formed by the oxidative decomposition of the LiBOB additive containing 

semicarbonate-like species and covering the cathode surface. LiBOB, which makes the surface film 

with carbonyl-rich species (semicarbonate-like compounds) on a graphite anode, have been identified 

as one of very effective reducible additives.
27

Recently, it was reported that LiBOB can form the SEI 

on the high-voltage cathode and the LiBOB-derived SEI contains semicarbonate-like species.
28,24

 

It is worthy to note that the detailed structure and formation mechanisms of the SEI layers formed 

by reduction and oxidation of LiBOB are different.
28,27

Further evidence for the LiBOB-originated SEI 

is given by comparison of the carboxylate/carbonate (C=O) peak of the O 1s XPS spectra. The O 1s 

spectra for the Li1.17Ni0.17Mn0.5Co0.17O2cathode surface in the LiBOB-added electrolyte clearly 

exhibits a more pronounced peak corresponding to C=O at 531.8 eV. This result means that the 

oxygen in the LiBOB-derived SEI is relatively abundant.
24

The decomposition products formed on the 

cathode in the reference electrolyte and LiBOB-added electrolyte are identified in the P 2p and F 1s 

XPS spectra of Fig 2-8. For the cathode in the reference electrolyte, a peak corresponding to the 

LixPOyFz species clearly appeared at approximately 135 eV in the P 2p XPS of Fig. 5. However, the 

LixPOyFz species at 135 eV drastically decrease for the cathode in the LiBOB-added electrolyte 

compared with the C-O-C peak intensity observed in the C 1s spectra of Fig 2-7.
26, 29

As clearly seen in 

the F 1s spectra of Fig 2-8, the SEI formed on a cathode with the reference electrolyte is composed of 

a relatively large fraction of LiF compared with the C-O-C peak intensity in the C 1s spectra of Fig 2-

7. On the other hand, the C 1s and F 1s XPS spectra of Figs. 2-7 and 2-8 show that the LiF peak is not 

much stronger than that of the C-O-C peak intensity for the surface film of the cathode precycled in 

the LiBOB-added electrolyte. This finding indicates that the LiBOB-derived SEI remarkably restrains 

the formation of LiF and several possible fluorine compounds via electrochemical decomposition of 

PF5 and PF6
−
in the electrolyte. 
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Figure 2-7. C 1s and O 1s XPS spectra of Li1.17Ni0.17Mn0.5Co0.17O2 cathodes after the first 

conditioning cycle in electrolyte with and without 1% LiBOB. 

 

 

Figure 2-8. P 2p and F 1s XPS spectra of Li1.17Ni0.17Mn0.5Co0.17O2 cathodes after the first conditioning 

cycle in electrolyte with and without 1% LiBOB. 
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To investigate the thermal stability of delithiated cathodes, differential scanning calorimetry (DSC) 

measurements were performed. Figure 2-9 clearly demonstrates that the use of the LiBOB additive 

delays the onset temperature from 264℃ to 276℃ and reduces the exothermic heat due to the thermal 

decomposition reaction between the delithiated cathode and the electrolyte. The exothermic thermal 

reaction of the delithiated cathode with the electrolyte is known to be affected by the surface structure 

of the cathode particles and catalytic properties of surface metal ions such as Ni
4+

and Mn
4+

.
30,31

In this 

regard, it is possible that the LiBOB-derived SEI inhibits the exothermic reactions of the cathode via 

the minimization of physical contact with the electrolyte. 
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Figure 2-9.DSC heating curves of delithiated Li1.17-xNi0.17Mn0.5Co0.17O2cathodes charged up to 4.6V 

after the first conditioning cycle. 
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3.2. Electrochemical cell test and surface analysis for cycling of Li/Li1.17Ni0.17Mn0.5Co0.17O2 cells 

Figure 2-10a presents the discharge capacity retention of Li/Li1.17Ni0.17Mn0.5Co0.17O2 half cells with 

and without 1% LiBOB during 100 cycles at 30℃. The discharge capacity retention of the 

Li/Li1.17Ni0.17Mn0.5Co0.17O2 half cells with 1% LiBOB was significantly improved compared with the 

reference electrolyte from 70.9% to 90.8% after 100 cycles at 30℃. This result indicates that the Li- 

BOB additive preserves efficient electronic and ionic transport pathways at the cathode-electrolyte 

interface by maintaining a stable SEI. Therefore, the cathode realizes very good capacity retention 

during cycling. 

In addition, a high Coulombic efficiency of greater than 99.5%, which is vital for practical 

applications, was obtained during 100 cycles. However, the Coulombic efficiency of the cathodes 

cycled in the reference electrolyte was very low and continuously decreased, as observed in Fig 2-10b. 

This electrochemical result suggests that the LiBOB-derived SEI layer effectively mitigates the 

continuous electrolyte decomposition at the high-voltage Li1.17Ni0.17Mn0.5Co0.17O2 cathode. 

Figure 2-10c shows AC impedance spectra of Li/Li1.17Ni0.17Mn0.5Co0.17O2 half cells after 100 cycles 

at 30◦C. It is apparent that the interfacial resistance of the cell with the LiBOB additive is relatively 

lower than that of the cathode cycled in the reference electrolyte. This result is in good agreement 

with the previous result that LiBOB-containing cells display low impedance after extended cycling 

compared to the additive-free electrolyte.
28

This implies that the LiBOB additive makes the protective 

layer on the cathode and effectively suppresses the increase of the impedance by severe electrolyte 

decomposition at high voltages. 
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Figure 2-10. Electrochemical performance of Li1.17Ni0.17Mn0.5Co0.17O2 cathodes at 30℃: (a) cycling 

stability when cycled between 2.5 and 4.6 V at a rate of C/2, (b) Coulombic efficiency 

when cycled between 2.5 and 4.6 V at a rate of C/2 in the Ref and LiBOB-added 

electrolyte, (c) AC impedance spectra of Li1.17Ni0.17Mn0.5Co0.17O2 cathodes after 100 

cycles in electrolytes with and without 1% LiBOB. 
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To understand the effect of LiBOB additive on the voltage decay induced by the layered-to-spinel 

transformation of Li1.17Ni0.17Mn0.5Co0.17O2, the change of the average voltage of cathodes with and 

without LiBOB was monitored during cycling. Interestingly, relatively high average voltage for the 

cathode with the LiBOB-added electrolyte was maintained compared to the Ref electrolyte. Although 

the LiBOB additive did not completely prevent the layered-to-spinel transformation of 

Li1.17Ni0.17Mn0.5Co0.17O2, the irreversible voltage decay of the cathode cycled in the LiBOB-added 

electrolyte was much slower compared with the Ref electrolyte (Fig 2-11). 
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Figure 2-11. Comparison of the average voltage of cycled Li1.17Ni0.17Mn0.5Co0.17O2 cathodes at 30℃. 
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The cycling performance of the Li1.17Ni0.17Mn0.5Co0.17O2cathode was evaluated at various C rates to 

investigate the suitability of the LiBOB-derived SEI for facilitating charge transfer at the cathode 

electrolyte interface, as shown in Fig 2-12. It is clear that the LiBOB-added electrolyte leads to a 

superior rate capability compared with the reference electrolyte. The Li1.17Ni0.17Mn0.5Co0.17O2 cathode 

with the LiBOB additive delivered a discharge capacity of 115 mAh g
−1

at a high current density (514 

mA g
−1

, corresponding to 2 C) at 30℃. However, the cathode in the reference electrolyte exhibited 

rapid capacity fading upon increasing the applied current density and delivered a discharge capacity 

of only 25 mAh g
−1

 at a rate of 2 C. This result suggests that the LiBOB-originated SEI allows fast 

charge transfer at high C rates, while the SEI formed by the reference electrolyte impeded the reaction. 
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Figure 2-12. Rate capability of Li1.17Ni0.17Mn0.5Co0.17O2 cathodes at different C rates. 
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Figure 2-13 presents SEM images of the Li1.17Ni0.17Mn0.5Co0.17O2cathodes before and after being 

cycled in electrolytes with and without 1% LiBOB at 30℃. It is notable that a thick SEI layer formed 

by the decomposition of the reference electrolyte partially covers the cathode surface after 100 cycles, 

as presented in Fig 2-13a. However, the cathode surface cycled in the LiBOB-added electrolyte was 

relatively clean, and cathode particles were clearly observed after 100 cycles (Fig 2-13b). 
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Figure 2-13. SEM images of Li1.17Ni0.17Mn0.5Co0.17O2 cathodes before cycling, after the first 

conditioning cycle, and after 100 cycles in (a) Ref, (b) LiBOB-added electrolyte at 

30℃. 
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This morphological difference is further supported by the Co 2p XPS spectra of the 

Li1.17Ni0.17Mn0.5Co0.17O2cathodes retrieved after 100 cycles (Fig 2-14). The Co (2p1/2; 796 eV) and Co 

(2p3/2; 780 eV) peak intensities corresponding to the Co element are much weaker for the cathode 

cycled in the reference electrolyte. This result is attributed to the thick SEI layer formed by the 

decomposition of the reference electrolyte, blocking the Co signal from the cathode. This result is 

consistent with the SEM observation that a thick SEI layer was formed on the cathode cycled in the 

reference electrolyte. The cathode cycled in the LiBOB-added electrolyte exhibited a much stronger 

Co signal in the Co 2p XPS, as shown in Fig 2-14. Further evidence for the formation of a thin SEI 

layer on the cathode in the LiBOB-added electrolyte is given by the O 1s XPS spectra in Fig 2-14. 

The peak at approximately 529 eV, which is assigned to the metal oxide (M-O) of the cathode, was 

more intense for the LiBOB-containing electrolyte. Moreover, the F1s spectra reveal that the peak 

corresponding to the LixPOyFz and LixPFy is discernibly reduced for the cathode in the LiBOB-added 

electrolyte after 100 cycles. This finding indicates that the LiBOB-derived SEI greatly suppresses the 

oxidative decomposition of the electrolyte. 
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Figure 2-14. Co 2p, O 1s, and F 1s XPS spectra of Li1.17Ni0.17Mn0.5Co0.17O2 cathodes after 100 cycles 

in electrolytes with and without 1% LiBOB at 30℃. 
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From this result, the expected functions of the LiBOB-originated SEI are proposed, as depicted in 

Fig 2-15. Because the LiBOB additive may readily react with water traces to form B(C2O4)(OH) and 

LiB(C2O4)(OH)2,
32

the decomposition of LiPF6 salt and the formation of HF promoting the metal ion 

(Mn, Ni, Co) dissolution
33, 34

is expected to be suppressed. The ex situ XPS results presented in Figs 2-

8 and 2-14 indicated that the formation of LiF, LixPOyFz, and LixPFy species by the salt decomposition 

for the cathode with the LiBOB-added electrolyte was greatly suppressed. 

The EC solvent may undergo the oxidative decomposition resulting in radical cation (EC
•+

),
35

as 

depicted in Fig 2-15. In addition to the inhibition of LiPF6 decomposition and HF formation, the 

LiBOB-derived SEI layer on the cathode surface can be expected to have two additional positive 

effects, as illustrated in Fig 2-15. First, it is speculated that reduction of the oxygen (O2) gas evolved 

from the activation of Li2MnO3 may occur due to the acceptance of e
−
during the discharge process, 

and the resulting superoxide anion (O2
−
)

36
may be trapped by the electron-deficient boron atom in the 

LiBOB-originated SEI formed on the cathode surface; thus, the LiBOB-derived SEI can be expected 

to alleviate unwanted decomposition of electrolyte solvents by O2
−
attack (carbonate solvent + 

O2
−
→linear lithium alkyl carbonate, Li2CO3).

36
Second, the presence of the LiBOB-derived SEI on the 

cathode can minimize the reaction between O2 and Li to form Li2O
37

during the charging process. In 

this regard, it is believed that the presence of the surface film produced by LiBOB decomposition 

positively affects the cathode surface chemistry. 
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Figure 2-15. Schematic drawing for proposed functions of LiBOB-derived SEI. 
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The discharge capacity retention of Li/Li1.17Ni0.17Mn0.5Co0.17O2half cells with and without 1% 

LiBOB at 60℃ is shown in Fig 2-16. The discharge capacities of the cathodes with and without 

LiBOB obtained at the first cycle were 253 mAh g
−1

 and 273 mAh g
−1

, respectively. These discharge 

capacities of the cathodes at 60℃ were higher than those of the cathodes at 30℃ (212 mAh g
−1

 for 

LiBOB-containing cells and 202 mAh g
−1

 for cells with the reference electrolyte) because the inactive 

Li2MnO3 component in the cathode materials becomes active and contributes to the reversible 

capacity at high temperatures. Thackeray et al. clearly described that increasing the temperature 

makes the Li2MnO3 activation much more effective, and therefore, the lithium-rich cathode delivers a 

high reversible capacity at elevated temperature.
38

As shown in Fig 2-16a, an excellent cycling 

stability of the Li1.17Ni0.17Mn0.5Co0.17O2cathode at 60℃was achieved in the LiBOB-added electrolyte, 

which delivers a discharge capacity of 194 mAh g
−1

 without noticeable capacity loss. The discharge 

capacity retention was remarkably improved from 28.6% (reference electrolyte) to 77.6% (LiBOB-

added electrolyte) after 100 cycles at 60℃. At elevated temperature, the capacity fading of the 

cathodes in the reference electrolyte was considerably poor compared with the LiBOB-added 

electrolyte (Fig 2-16a). Importantly, a very unstable and low coulombic efficiency, which indicates 

significant consumption of Li
+
sources, was observed for the cathode in the reference electrolyte 

during cycling (Fig 2-16b). This finding suggests that the LiBOB-originated SEI layer inhibits direct 

contact of the electrolyte components with the high-voltage Li1.17Ni0.17Mn0.5Co0.17O2cathode and, thus, 

effectively suppresses the severe oxidative decomposition of the electrolyte upon prolonged cycling at 

60℃. 
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Figure 2-16. Electrochemical performance of Li1.17Ni0.17Mn0.5Co0.17O2 cathodes at 60℃: (a) cycling 

stability, (b) Coulombic efficiency when cycled between 2.5 and 4.6 V at a rate of C/2 in 

the Ref and LiBOB-added electrolyte. 
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3.3. Electrochemical cell test for cycling and storage test of graphite/Li1.17Ni0.17Mn0.5Co0.17O2 cells 

Figure 2-17 shows the discharge capacity retention of full cells based on graphite anode and 

Li1.17Ni0.17Mn0.5Co0.17O2cathode with and without 1% LiBOB after the first conditioning cycle at 30℃. 

The LiBOB-containing cell exhibited relatively improved cycling stability, compared with the 

reference electrolyte. This indicates that the presence of LiBOB additive effectively suppresses 

capacity fading of full cells during cycling. 
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Figure 2-17. Discharge capacity retention of graphite/Li1.17Ni0.17Mn0.5Co0.17O2 full cells when cycled 

between 2.5 and 4.6 V at a rate of C/2. 
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Figure 2-18a presents the voltage profiles of graphite/Li1.17Ni0.17Mn0.5Co0.17O2 full cells with and 

without 1% LiBOB during the first conditioning cycle and the next charge process at 30℃. Except for 

the slightly higher polarization of the cell with LiBOB during the conditioning cycle, there was no 

significant difference between the charge and discharge capacities of the two full cells. The charge 

capacity of the full cell with 1% LiBOB was marginally larger than that with the reference electrolyte 

during the following charge process. 

Figure 2-18b shows the open circuit voltage (OCV) of fully charged graphite/Li1.17Ni0.17Mn0.5Co0.17-

O2 full cells with and without the 1% LiBOB additive during storage at 60℃ for 20 days. The OCV of 

the full cell without LiBOB decreased considerably from 4.22 V to 3.67 V during the early 8 days, 

whereas the cell with LiBOB exhibited little OCV drop. The OCV drop of the full cell without the 

LiBOB additive at 60℃ can be explained by the metal dissolution from the delithiated cathode. The 

metal (Mn, Ni, and Co) ions dissolved from the cathode by the HF attack can move toward a lithiated 

graphite anode when the cell is stored at a high temperature such as 60℃. Recently, our group 

described this point when full cells were stored and cycled at 60℃.
39,40,41

These metal ions then deposit 

on the anode surface by taking the electrons from the lithiated graphite anode. This electron 

consumption via the metal reduction on the lithiated graphite anode results in an increase in the anode 

potential and thus a decrease in the full cell potential. For a full cell with 1% LiBOB, because the 

LiBOB-derived SEI formed on the cathode prevents the direct physical contact with the electrolyte, it 

is expected that the metal dissolution from the cathode is suppressed and that the OCV does not drop 

significantly. Thus, it is rational that the LiBOB-derived SEI effectively restrains the self-discharge of 

the fully charged cell via the metal deposit on the lithiated graphite anode. 
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Figure 2-18. (a) Voltage profiles of graphite/Li1.17Ni0.17Mn0.5Co0.17O2 full cells during after the first 

conditioning cycle between 2.0 and 4.8 V and when charged up to 4.6 V with a constant 

current (CC) rate of C/10 followed by a constant voltage (CV) condition, (b) OCV 

variations of graphite/Li1.17Ni0.17Mn0.5Co0.17O2 full cells that were charged in electrolytes 

with and without 1% LiBOB while storing at 60℃. 
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4. Conclusion 

The positive effect of the LiBOB additive on the electrochemical performance of 

Li1.17Ni0.17Mn0.5Co0.17O2cathodes in half- and full- cells was investigated. SEM and XPS studies 

confirmed that the surface film formed on the cathode cycled in LiBOB-added electrolyte was 

relatively thin and effectively mitigated the electrolyte decomposition, whereas that cycled in the 

reference electrolyte formed a thick and unstable surface film on the lithium-rich cathode surface, 

which presumably originated from the significant electrolyte decomposition. Furthermore, the 

LiBOB-derived protective layer greatly improved the storage performance of the fully charged 

graphite /Li1.17Ni0.17Mn0.5Co0.17O2full cells at 60℃. 
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