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Kaon condensation in neutron stars with Skyrme-Hartree-Fock models
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We investigate nuclear-matter equations of state in neutron stars with kaon condensation. It is generally known
that the existence of kaons in neutron star makes the equation of state soft so that the maximum mass of a
neutron star is not likely to be greater than 2.0M�, the maximum mass constrained by current observations.
With existing Skyrme force model parameters, we calculate nuclear equations of state and check the possibility
of kaon condensation in the core of neutron stars. The results show that, even with the kaon condensation, the
nuclear equation of state satisfies both the maximum mass and the allowed ranges of mass and radius.
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I. INTRODUCTION

The theory of nuclear matter has been tested by using
the properties of observed nuclei, whose number amounts
to approximately 3000 to date. The Skyrme-Hartree-Fock
(SHF) models have been widely used to describe the general
properties of the nuclear medium and heavy nuclei in the
nonrelativistic limit. However, depending on the selection of
the data and the methods used to fit the model parameters, there
are now more than 100 SHF models, and new models are still
being born due to the continuous update of the data. Although
most SHF models, even with different model parameters, can
explain consistently the properties of numerous known nuclei,
predictions of the properties of the infinite nuclear matter
strongly depend on the models, especially at high densities far
above the nuclear saturation density ρ0 (∼0.16 fm−3) [1]. As
a result, the maximum mass of stable neutron stars calculated
with known SHF models ranges from 1.4M� to 2.5M�, where
M� is the solar mass [2].

At the core of neutron stars there can be significant
contributions from the exotic states, such as strangeness
condensates, meson condensates, strange quark matter, etc.,
which are quite uncertain. The effect of strange particles,
such as hyperons, on the nuclear-matter equation of state
(EoS) has been studied within the SHF models [3,4]. In these
works the existence of hyperons softens the nuclear-matter
EoS substantially and, as a consequence, the maximum mass
of the neutron star decreases. Similar conclusion for the effect
of hyperons has been drawn from the calculations done with
the relativistic mean-field models (for example, see Ref. [5]).

Recently 2M� neutron stars in neutron-star–white-dwarf
binaries were observed in pulsars PSR J1614-2230 [6] and
PSR J0348+0432 [7]. This implies that any realistic EoS
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for the stable neutron star should be able to explain masses
equal to or greater than these values. With this criterion, SHF
models predicting maximum masses to be less than 2M�
can be excluded from the candidates for realistic models of
high-density nuclear matter.

In this work, we revisit the kaon condensation and inves-
tigate its effect on the EoS of neutron star matter. In general,
the EoS is very sensitive to the interactions of kaons in the
nuclear medium [8]. Since general SHF models do not include
inherent kaon interactions, we need to import kaon interactions
from other theories or models. In this work, we consider
the SU(3) nonlinear chiral effective model with kaons. We
investigate how the parameters in SHF and kaon interaction
model affect the mass and radius of neutron stars, and constrain
the parameter space by comparing our results with observed
neutron star masses, (1.97 ± 0.04)M� for PSR J1614-2230
and (2.01 ± 0.04)M� for PSR J0348+0432.

This paper is organized as follows: In Sec. II, we describe
the SHF models that we choose and the SU(3) nonlinear chiral
model for the interactions of kaons. In the same section, we
derive basic equations from which the EoS within neutron stars
is calculated. In Sec. III, we present our results on EoS, particle
fractions, and mass-radius relationships of neutron stars. Our
conclusion and discussion are given in Sec. IV.

II. MODELS

A. Skyrme-Hartree-Fock models

The general Skyrme force model is used to generate an
energy-density functional (EDF), in which an effective two-
body force between nucleons is introduced. Because EDFs
have been quite successful in explaining the properties of finite
heavy nuclei, they have also been applied to the infinite dense
system such as the interior of neutron stars. In the Skyrme-type
potential model, the effective interaction is given by

vij = t0(1 + x0Pσ )δ(ri − rj )

+ 1

2
t1(1 + x1Pσ )

1

�2

[
p2

ij δ(ri − rj ) + δ(ri − rj )p2
ij

]
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+ t2(1 + x2Pσ )
1

�2
pij · δ(ri − rj )pij

+ 1

6
t3(1 + x3Pσ )ρε(r)δ(ri − rj )

+ i

�2
W0pij · δ(ri − rj )(σ i + σ j ) × pij , (1)

where r = (ri + rj )/2, pij = −i�(∇i − ∇j )/2, Pσ is the
spin-exchange operator, and ρ(r) = ρn(r) + ρp(r). Using the
Skyrme force model, the Hamiltonian density of nuclei can be
written as [9]

HN = HB + Hg + HC + HJ . (2)

The bulk Hamiltonian density is given by

HB = �
2

2M
τn + �

2

2M
τp + ρ(τn + τp)

×
[
t1

4

(
1 + x1

2

)
+ t2

4

(
1 + x2

2

)]

+ (τnρn + τpρp)

[
t2

4

(
1

2
+ x2

)
− t1

4

(
1

2
+ x1

)]

+ t0

2

[(
1 + x0

2

)
ρ2 −

(
1

2
+ x0

) (
ρ2

n + ρ2
p

)]

+ t3

12

[(
1 + x3

2

)
ρ2 −

(
1

2
+ x3

) (
ρ2

n + ρ2
p

)]
ρε.

(3)

The gradient Hamiltonian density takes the form of

Hg = 1
2Qnn(∇ρn)2 + Qnp∇ρn · ∇ρp + 1

2Qpp(∇ρp)2, (4)

with

Qnn = Qpp = 3

16
[t1(1 − x1) − t2(1 + x2)],

(5)

Qnp = 1

8

[
3t1

(
1 + x1

2

)
− t2

(
1 + x2

2

)]
.

The Coulomb energy density is given by

HC = e2

2
ρn(r)

∫
d3r ′ ρp(r′)

|r − r′| − 3e2

4

(
3

π

)1/3

ρ4/3
p (r), (6)

and HJ comes from the spin-orbit interaction and is given by

HJ = −W0

2
(ρn∇ · Jn + ρp∇ · Jp + ρ∇ · J)

+ t1

16

(
J2

n + J2
p − x1J2

) − t2

16

(
J2

n + J2
p + x2J2

)
, (7)

where Jn(p) = ∑
i ψ

†
i,n(p)σ × ∇ψi,n is the neutron (proton)

spin-orbit density, and J = Jn + Jp.
In general, ten independent parameters (xi=0,1,2,3, ti=0,1,2,3,

ε, W0) in the Hamiltonian density are fixed by the properties of
finite nuclei [10]. With the ten parameters fixed, we calculate
the nuclear-matter properties of the infinite nuclear matter
(such as neutron stars), which determine the maximum mass
of neutron stars. In this work, we employ four SHF models,
all of which predict the maximum mass of neutron stars larger
than 2M� while each model shows distinct characteristics for

TABLE I. Nuclear matter properties and the maximum mass of
neutron stars calculated from the four SHF models that we select. ρ0

is the saturation density in units of fm−3, B is the binding energy of
the symmetric nuclear matter in units of MeV, Sv is the symmetry
energy at the saturation density in unit of MeV, L is the slope of
the symmetry energy at the saturation density in units of MeV, K is
the compression modulus of the symmetric matter at the saturation
density in units of MeV, m∗

N/mN is the ratio of the effective mass
of the nucleon at the saturation density (m∗

N ) to the free mass of the
nucleon (mN ), and Mmax/M� is the maximum mass of neutron star
in unit of solar mass (M�).

Model ρ0 B Sv L K m∗
N/mN Mmax/M�

SLy4 0.160 16.0 32.0 45.9 230 0.694 2.07
SkI4 0.160 16.0 29.5 60.4 248 0.649 2.19
SGI 0.155 15.9 28.3 63.9 262 0.608 2.25
SV 0.155 16.1 32.8 96.1 306 0.383 2.44

the symmetric nuclear-matter properties and the stiffness of
the EoS.

Table I summarizes nuclear-matter properties and the
maximum mass of neutron stars obtained from the four SHF
models. For the four models that we select, the basic saturation
properties ρ0 and B are almost identical or similar to each
other, but the values of Sv , L, and K vary significantly from
model to model even though they are in the range of general
acceptance. Note that larger K causes stiffer EoS. The table
confirms that the maximum mass of neutron stars increases
with K .

B. Kaon interactions

Several models describe the interaction of kaons in nuclear
medium. As for two examples, the kaonic optical potential
treats kaon interactions phenomenologically and the meson-
exchange model mediates the interaction of the kaon with
the background nuclear matter [11]. In this work, we employ
an SU(3) nonlinear chiral model which was first proposed
by Kaplan and Nelson [12]. The effective chiral Lagrangian
density is given as

L = f 2
π

4
Tr∂μU∂μU † + cTr[mq(U + U † − 2)]

+ iTrB̄γ μ∂μB + iTrB†[V0,B] − DTrB†σ · {A,B}
−FTrB†σ · [A,B]

+ a1TrB†(ξmqξ + H.c.)B + a2TrB†B(ξmqξ + H.c.)

+ a3TrB†BTr(mqU + H.c.), (8)

where fπ is the pion decay constant (�93 MeV). Chiral fields
U and ξ are defined by

U = ξ 2 = exp(
√

2iM/fπ ), (9)

and the mesonic vector and axial currents read

Vμ = 1

2
(ξ †∂μξ + ξ∂μξ †), Aμ = i

2
(ξ †∂μξ − ξ∂μξ †). (10)
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The meson and baryon octet fields M and B are defined as

M =

⎛
⎜⎜⎝

1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 −
√

2
3η

⎞
⎟⎟⎠ , (11)

B =

⎛
⎜⎜⎝

1√
2
0 + 1√

6
� + p

− − 1√
2
0 + 1√

6
� n

�− �0 −
√

2
3�

⎞
⎟⎟⎠ , (12)

and mq is the quark mass matrix

mq =
⎛
⎝0 0 0

0 0 0
0 0 ms

⎞
⎠ , (13)

where we assume massless up and down quarks (mu = md =
0) and ms is the finite current mass of the strange quark.
By expanding U in terms of meson fields, we can obtain the
kinetic energy and mass of the meson fields which correspond
to the first and second term, respectively, in the first line of
Eq. (8). Note that there are other interaction terms with higher
order in the meson fields due to the SU(3) symmetry. The
constant c in the mass term can be determined from the relation
m2

K = 2cms/f
2
π . The third term in the first line of Eq. (8)

represents the kinetic energy of octet baryons. The second and
third lines in Eq. (8) represent the interactions among mesons
and baryons. We use F = 0.44 and D = 0.81 which are fixed
by weak nucleon and semileptonic hyperon decays. For a1ms

and a2ms , we quote the values given in Ref. [13], where

a1ms = −67 MeV, (14)

a2ms = 134 MeV. (15)

In principle, the value of a3 can be fixed by using the
strangeness content of the proton 〈s̄s〉p or the kaon-nucleon
sigma term KN :

ms〈s̄s〉p = −2(a2 + a3)ms, (16)

KN = − 1
2 (a1 + 2a2 + 4a3)ms. (17)

However, due to the uncertainties in these quantities, we
choose four different values of a3ms , −134, −178, −222,
and −310 MeV, which correspond to the strangeness content
〈s̄s〉q = 0, 0.05, 0.1, and 0.2, respectively.

The amount of kaon condensation can be determined
from local flavor changing β equilibrium, e.g., n ↔ p + K−.
This chemical equilibrium implies μn = μp + μK− , where μi

denotes the chemical potential of particle i. For simplicity, we
use μK = μK− from here on. Other equilibrium conditions
will be discussed in the next section. With the s-wave
interactions only, the kaon condensate can be characterized
by the expectation value [14]

〈K−〉 = vKe−iμK t , (18)

where the amplitude vK determines the magnitude of the
condensate. Since the kaon field appears nonlinear in Eq. (9),

it is convenient to introduce a new parameter θ by

θ ≡
√

2
vK

fπ

. (19)

Expanding Eq. (8) in terms of meson and baryon fields and
retaining the terms relevant to kaons and nucleons, we obtain
the Lagrangian for the kaon and kaon-nucleon interactions as

LK = f 2
π

μ2
K

2
sin2 θ − 2m2

Kf 2
π sin2 θ

2

− n†n[−μK + (2a2 + 4a3)ms] sin2 θ

2

−p†p[−2μK + (2a1 + 2a2 + 4a3)ms] sin2 θ

2
. (20)

Taking μK as a Lagrangian multiplier to account for the charge
neutrality condition of the neutron-star matter, the Hamiltonian
density is derived from the kaon Lagrangian which is given by
Eq. (20). We obtain the Hamiltonian density for the kaon as

HK = −f 2
π

μ2
K

2
sin2 θ + 2m2

Kf 2
π sin2 θ

2
+ μKρp

−μK (ρ + ρp) sin2 θ

2
+ aK1ρp sin2 θ

2
+ aK2ρ sin2 θ

2
,

(21)

where aK1 = 2a1ms and aK2 = (2a2 + 4a3)ms .
In addition to the hadron parts discussed so far, leptonic

terms should be added for the complete description of the
EoS. We consider both electrons and muons in this work, and
their Hamiltonian densities are given as

H̃e = μ4
e

4π2
− μeρe, (22)

H̃μ = H (|μμ| − mμ)

{
m4

μ

8π2

[(
2x2

μ + 1
)
xμ

√
x2

μ + 1

− ln
(
xμ +

√
x2

μ + 1
)] − μμρμ

}
, (23)

where ρe = μ3
e/(3π2), H is the Heaviside step function,

ρμ = k3
μ/(3π2), μμ = (k2

μ + m2
μ)1/2, and xμ = kμ/mμ with

the Fermi momentum of muon kμ. Note that we allow negative
values of μe,μ in order to take into account the contributions
of e+ and μ+.

C. Equilibrium conditions

As mentioned earlier, ten parameters in the nucleon
Hamiltonian Eq. (3) are determined by fitting to the properties
of finite nuclei for a given density ρ. After determining the
ten parameters, we have only one independent variable ρp

with the constraint ρ = ρn + ρp. In the following, we use
x ≡ ρp/ρ for simplicity. In this work, we assume that only
protons and neutrons contribute to the baryon density even at
the high-density core of a neutron star. In the Hamiltonians
for kaons and leptons, Eqs. (21) to (23), there are four
independent variables μK , vK (or θ ), μe, and μμ. By neglecting
contributions from (anti)neutrinos which leave the system,
we can set μK = μμ = μe. As a result, we have only three
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independent variables x, μe, and θ , which are determined by
minimizing the total energy density given as

ε = εN + εK + εe + εμ. (24)

Three coupled equations are solved for x, μe, and θ :

∂ε

∂x
= 0 : μe = (

μSHF
n − μSHF

p

)
sec2 θ

2
− aK1 tan2 θ

2
, (25)

∂ε

∂μe

= 0 : f 2
π μ2

e sin2 θ + (ρ + ρp) sin2 θ

2
= ρp − ρe − ρμ,

(26)

∂ε

∂θ
= 0 : −μ2

e cos θ + m2
K − 1

2f 2
π

μe(ρ + ρp)

+ aK1

2f 2
π

ρp + aK2

2f 2
π

ρ = 0, (27)

where μSHF
n and μSHF

p are the chemical potential of the nucleon
in the general SHF model only. Equations (25) and (26) are
the beta equilibrium and local charge neutrality condition,
respectively, with kaons included. Note that Eq. (27) is valid
only for densities beyond the critical density where θ �= 0.
Once these equations are solved, we can calculate the pressure
from the thermodynamic relation

p = ρ2 ∂

∂ρ

(
ε

ρ

)
(28)

and determine the EoS as a function of density ρ.

III. NEUTRON STARS WITH KAON CONDENSATION

A. Equation of state and critical densities

The equation of state of nuclear matter, which in general is
the relationship between pressure and energy density, can be
calculated from Eqs. (24) and (28). We employ four Skyrme-
force models (SLy4, SkI4, SGI, and SV) to calculate the
uniform nuclear-matter EoS (ρ > 0.08 fm−3). In the regime
where the density is smaller than the density of uniform nuclear
matter (ρ < 0.08 fm−3), we use the liquid droplet model
to treat heavy nuclei and free gas of neutrons and electrons
(see appendix). Once we choose one specific SHF model for
the EoS calculation of the entire neutron star, we apply the
same model to both the uniform nuclear matter (high-density
regime) and the nonuniform lattice nuclear matter (low-density
regime).

Figure 1 shows the EoS for each of four models with four
values of a3ms that we select. Note that the local charge
neutrality is assumed for both cases with and without kaon
condensation. The results obtained without kaon condensation

FIG. 1. (Color online) Equation of state for each of four SHF
models. For a3ms = −178 and −222 MeV, Maxwell construction is
used to make the pressure constant for the unstable-energy-density
region. In the case of a3ms = −310 MeV, Maxwell construction is
not possible since the kaon condensation makes the system too soft
and thermodynamically unstable for the low-energy-density region,
hence the neutron star has finite surface density.

(black thick solid line in each panel) show that SLy4 is the
softest while SV is the stiffest EoS, which can be expected
from the values of L and K in Table I. As the energy density
increases from 0, the kaon starts to condense at the density
where the curves with kaons deviate from those without kaons.
Table II summarizes the numerical results for the critical
densities at which the kaon condensation appears. Numbers
in parentheses denote the critical densities in units of ρ0

for each model. As indicated in the Fig. 1 and Table II,
kaons condense earlier with smaller a3ms values (i.e., larger
strangeness content) for all models. Table II shows that the
change of the critical densities resulting from the change of
a3ms is the largest for SLy4 which has the softest EoS among
the four models. This implies that the softer nuclear models
are more sensitive to the existence of kaons. This sensitivity
can also be deduced from the EoS in Fig. 1 by noting that the
width of the band between the curves for a3ms = −134 MeV
and −222 MeV becomes narrower with a stiffer nuclear EoS.
In Fig. 1, with a3ms = −134 MeV, kaons soften the EoS in
the entire energy-density region. However, for other values of
a3ms , kaons harden the EoS at very high energy densities. The
nonlinear chiral model for the meson-baryon interactions has
already been employed in the work by Thorsson et al. [15].

TABLE II. Critical densities in units of fm−3 (values in parentheses are in units of ρ0) for four SHF models with kaon condensation
included. The critical density for kaon condensation decreases as a3ms decreases, i.e., the strangeness content increases.

Model a3ms = −134 MeV a3ms = −178 MeV a3ms = −222 MeV a3ms = −310 MeV

SLy4 0.8580 (5.36) 0.6887 (4.30) 0.5689 (3.56) 0.4183 (2.61)
SkI4 0.6813 (4.26) 0.5830 (3.64) 0.5070 (3.17) 0.3962 (2.48)
SGI 0.7002 (4.52) 0.5890 (3.80) 0.5060 (3.26) 0.3921 (2.53)
SV 0.5944 (3.83) 0.5139 (3.32) 0.4512 (2.91) 0.3608 (2.33)

055804-4



KAON CONDENSATION IN NEUTRON STARS WITH . . . PHYSICAL REVIEW C 89, 055804 (2014)

FIG. 2. (Color online) Particle fractions of nuclear matter defined
as the densities of each particle divided by baryon density for the
SkI4 model with kaon condensation included. A negative fraction
means an antiparticle corresponding to each particle. Band intervals
in panels (b) and (c) represent the Maxwell construction area where
the pressure is constant.

By assuming simple functional forms for the description of
nuclear forces and by considering various compression moduli
in the range of K = 120–240 MeV, they obtained critical
densities in the range of ρcrit = 2.30ρ0 to 4.95ρ0, which are
similar to what we obtain with more realistic nuclear models
in this work.

After the formation of kaon condensation, we have an
unstable part in the EoS where the derivative of pressure
with respect to the energy density is negative. This unstable

region can be treated by either Maxwell construction or Gibbs
condition. In this work we adopt the Maxwell constructions,
and the flat parts in the EoS are the consequences of the
Maxwell constructions. However, the Maxwell construction
is not possible for a3ms = −310 MeV because the pressure
decreases so much that the mean value of the pressure
is negative for the low-density region. Hence the neutron
star has finite surface density and the resulting mass and
radius of the neutron star with a3ms = −310 MeV are
far from current observations [6,7]. Therefore, we do not
include the results with a3ms = −310 MeV in the later
discussion.

B. Particle fractions

In Fig. 2, we show the particle fractions defined as the
densities of each particle divided by the baryon density, for
the SkI4 model. Both kaon and proton densities increase very
rapidly right after the critical densities due to the local charge
neutrality. Note that the local charge neutrality is implied in
this figure and, even though we plot particle fractions for all
densities, there exist density gaps in the interior of neutron
stars due to the Maxwell construction. In this figure, as a3ms

decreases, both proton and kaon fractions increase beyond
the neutron fraction, which enhances the contribution of the
symmetry energy to the EoS. Unlike leptons, kaons are not
constrained by Pauli blocking, and most of the leptons are
suppressed by kaons at high densities, making the fraction of
kaons almost equal to that of protons.

C. Mass and radius of neutron star

The relationship between the mass and radius of
a cold neutron star can be obtained by solving the

FIG. 3. (Color online) Mass-radius curve for each of the four
SHF models. Thick blue and thick orange solid straight lines are
recent observations [6,7]. Filled circles with error bars denote the
allowed mass and radius ranges obtained from the analysis by Steiner
et al. [16].
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TABLE III. Maximum mass of neutron stars (in units of M�) in the presence of kaons for each model.

Model a3ms = −134 MeV a3ms = −178 MeV a3ms = −222 MeV No kaons

SLy4 1.99 1.83 1.79 2.07
SkI4 2.07 1.91 1.85 2.19
SGI 2.20 2.04 1.94 2.25
SV 2.39 2.24 2.12 2.44

Tolman–Oppenheimer–Volkoff (TOV) equations numerically,

dp

dR
= −G(M(R) + 4πR3p/c2)(ε + p)

R[R − 2GM(R)/c2]c2
, (29)

dM

dR
= 4π

ε

c2
R2, (30)

where ε and p denote the energy density and pressure,
respectively.

In Fig. 3 we show the mass of neutron stars as a function of
radius for four SHF models. Thick blue and thick orange solid
straight lines indicate the mass range of PSR J1614-2230 and
J0348+0432, respectively [6,7], and filled circles with error
bars denote the allowed mass and radius ranges obtained from
the analysis by Steiner et al. [16]. Again, Fig. 3 confirms that
the maximum mass increases as the stiffness of EoS increases.

Table III summarizes the maximum mass of neutron stars
predicted from four SHF models with kaon condensation
included. For the comparison, the maximum mass obtained
from the same models without kaon condensation (from
Table I) is also shown in the last column of Table III. For
a3ms = −134 MeV, the effect of kaon condensation on the
maximum mass of neutron stars is rather weak, reducing the
maximum mass by less than 4%. With smaller a3ms values, the
curves deviate more dramatically from those without kaons.
Note that, in all models except SV, the existence of the
unstable part with a3ms = −222 MeV, which is near the kink
at R = 11 to 12 km having a positive slope in the mass-radius
curve (Fig. 3), is an artifact of the Maxwell construction. With
the Gibbs condition, the kink generally disappears and the
curve becomes smooth (see, e.g., Ref. [17]). Since the Gibbs
condition only affects the unstable region, our conclusion in
this work remains unchanged.

In Fig. 3, the results with a3ms = −222 MeV are not
consistent with either of the observed neutron-star masses
or the mass-radius ranges obtained by Steiner et al. [16],
regardless of any choice of the SHF models. In contrast, with
a3ms = −134 MeV, both SLy4 and SkI4 are consistent with
observations.

Recently, Guillot et al. [18] measured the small radii of
neutron stars R∞ = 9.1+1.3

−1.5 km with 90% confidence level
(see Ref. [19], however, for an alternative interpretation of this
data) by using the thermal spectra from quiescent low-mass
x-ray binaries inside five globular clusters. The smaller radii
of neutron stars that they measured prefer the softer EoS
such as that of Wiringa et al. [19] and rule out most of
the presently popular EoS. It is interesting that our results
with kaon condensation could explain the existence of such a
neutron star that has a radius of ∼9 km and a mass of ∼2.0M�
[e.g., see the a3ms = −222 MeV case of SGI in Fig. 3(c)].

IV. CONCLUSION

This work is motivated by the fact that many SHF models,
which are excellent in reproducing the properties of known
nuclei, are inconsistent in predicting nuclear-matter proper-
ties at supranuclear densities. We select four SHF models
that are consistent with recent observations of neutron-star
masses [6,7] in order to investigate and understand the effect
of kaon condensation. Since the interactions of kaons in the
nuclear medium are quite uncertain, we employ four different
parameter sets to cover a wide range of kaon interactions.

As one can see in Fig. 3, SLy4 and SkI4 are consistent
with the recent constraints [6,7,16], even without kaon con-
densation. Adding kaons to these models, the mass-radius
relationships with kaons deviates from those without kaons
more drastically for smaller a3ms values. As a result, the
behavior with a3ms = −222 MeV satisfies the mass-radius
relationship constraints in a limited manner. This result shows
that the observation of the neutron star can provide constraints
on the strangeness content of the proton, and our result
implies that kaon condensation, if it occurs, should occur
only for heavy neutron stars (>1.9M�), with a3ms being
greater than −178 MeV (or the strangeness content being
smaller than 0.05). This small allowed strangeness content
of the proton is in accordance with experiments [20], lattice
calculations [21], and a recent updated calculation with a chiral
effective theory [22]. This would be also consistent with the
recent observation of Cas A and its cooling simulation [23]
because kaon condensation does not affect thermal evolution
of neutron stars with smaller mass (M < 1.9M�).

We have discussed the contribution of strangeness by
focusing only on the kaon in this work, but we have to
consider hyperons as well for consistency. In the current SHF
approach, to our knowledge, there are more than ten models
for hyperon-nucleon interactions and three models for the
hyperon-hyperon interactions in nuclear matter. Our recent
analysis shows that the EoS at high densities and the resulting
mass and radius of neutron stars are also highly sensitive to the
hyperon-nucleon and hyperon-hyperon interactions in nuclear
medium. We will present the work with hyperons in the future.
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APPENDIX: HEAVY NUCLEI WITH DRIPPED NEUTRONS

We follow the discussion of Lattimer and Swesty [24]. The
total energy density (without electron contribution) is given by

F = unifi + 3s(u)

rN

[σ (x) + μsνn]

+ 4π

5
(rNnixie)2c(u) + (1 − u)nnofo, (A1)

where u is a volume fraction of heavy nuclei in a Wigner–Seitz
cell, ni is the density of heavy nuclei inside, fi is the energy
per baryon of the heavy nuclei, s(u) is surface shape factor,
rN is the radius of heavy nuclei, σ (x) is a surface tension as
a function of proton fraction x, μs is the neutron chemical
potential on the surface, νn is the areal neutron density on the
surface, xi is the proton fraction of heavy nuclei, c(u) is the
Coulomb shape function, nno is the neutron density outside of
heavy nuclei, and fo is the energy per baryon outside of the
heavy nuclei.

We employ the Lagrange-multiplier method with con-
straints (baryon number density and charge neutrality); thus,
for given baryon number density (n) and proton fraction (Yp),
we have

G = F + λ1

[
n − uni − 3s(u)

νn

rN

− (1 − u)nno

]
+ λ2(nYp − unixi). (A2)

In the above equations, the unknowns are ni , xi , rN , x, νn

rN
, u,

and nno.

∂G

∂ni

= 0 : u(μni − xiμ̂i)

+ 8π

5
(rNxie)2nic(u) − λ1u − λ2uxi = 0, (A3)

∂G

∂xi

= 0 : −uniμ̂i + 8π

5
(rNnie)2xic(u) − λ2uni = 0,

(A4)

∂G

∂rN

= 0 : −3s(u)

r2
N

σ + 8π

5
(nixie)2c(u) = 0, (A5)

∂G

∂x
= 0 :

3s(u)

rN

(
∂σ

∂x
+ νn

∂μs

∂x

)
= 0, (A6)

∂G

∂(νn/rN )
= 0 : 3s(u)(μs − λ1) = 0, (A7)

∂G

∂u
= 0 : nifi + 3s ′

rN

(σ + μsνn) + 4π

5
(rNnixie)2c′

− λ1

(
ni + 3s ′ νn

rN

− nno

)
− λ2nixi = 0, (A8)

∂G

∂nno

= 0 : (1 − u)μno − (1 − u)λ1 = 0, (A9)

∂G

∂λ1
= 0 : ni − uni − 3s(u)

νn

rN

= 0, (A10)

∂G

∂λ2
= 0 : nYp − unixi = 0, (A11)

where μ̂i = μni − μpi . μni and μpi are neutron and proton
chemical potential, respectively, inside the heavy nuclei.

Multiplying Eq. (A3) by ni and (A4) by xi and subtracting
the latter from the former gives λ1 = μni . From Eq. (A7), we
have λ1 = μs . From Eq. (A9), λ1 = μno, so μni = μno = μs .

Similarly we have λ2 from Eq. (A4):

λ2 = −μ̂i + 1

uni

8π

5
(rNnie)2xic(u)

= −μ̂i + 1

unixi

2

3
βD(u),

(A12)

where β = 9[(πe2x2
i n

2
i σ

2)/15]1/3, and D = [c(u)s2(u)]1/3 is
a geometric shape function which corresponds to nuclear pasta
phase in the liquid-droplet model [24].

Finally, if we plug Eq. (A12) into Eq. (A8) to get

nifi + βD′ − μnini + nixiμ̂i

− 2

3u
βD + μnonno − nnofo = 0, (A13)

⇒ Pi − Po − β

(
D′ − 2D

3u

)
= 0,

where Pi (Po) is pressure inside (outside) of the heavy nuclei.
Thus, we have four equations to solve:

Pi − Po − β

(
D′ − 2D

3u

)
= 0,

unixi − nYp = 0,
(A14)

uni + 2β

3σ
Dνn + (1 − u)nno − n = 0,

μni − μno = 0,

with four unknowns, u (or ln u), ni , nno (or ln nno), and xi .
Thermodynamic quantities for this case are given by the

same formalism with hot dense matter but without the alpha
particle and translational term, so

μ̂ = μ̂i − 2

3unixi

βD,

μn = μno,

P = Po − β(D − uD′). (A15)

In the case of a neutron star’s outer crust, we can construct
Eq. (A1) without nno and follow the same methodology as for
the case of a neutron star’s inner crust.
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