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ABSTRACT

This thesis presents a methodology for the development of control barrier func-

tions (CBFs) through a backstepping inspired approach. Given a set defined as the

superlevel set of a function, h, the main result is a constructive means for generating

control barrier functions that guarantee forward invariance of this set. In particu-

lar, if the function defining the set has relative degree n, an iterative methodology

utilizing higher order derivatives of h provably results in a control barrier function

that can be explicitly derived. To demonstrate these formal results, they are ap-

plied in the context of bipedal robotic walking. Physical constraints, e.g., joint

limits, are represented by control barrier functions and unified with control objec-

tives expressed through control Lyapunov functions (CLFs) via quadratic program

(QP) based controllers. The end result is the generation of stable walking satisfying

physical realizability constraints for a model of the bipedal robot AMBER2.
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1. INTRODUCTION

Humans can perform many difficult dynamic behaviors with ease, including:

crawling, climbing and — of special focus in this thesis — walking. Bipedal robots

provide simplified prototypes of human systems and, as such, provide a means in

which to understand human behaviors from a formal perspective. Current state of

the art in robotic walking technology is still inferior to the performance of the hu-

man walking behaviors. Regardless, robotic walking has progressed by leaps and

bounds in the last couple of decades. For the purpose of conserving energy, passive

walking robots have been designed in a very efficient fashion [10, 27, 28]. Without

any torque input, passive walking robots can save the energy from previous step and

walk forward. Another model that represents energy efficient walking, called the

SLIP model, has also been studied [32, 17], in which the robots can save energy by

springing into the next forward step. On the other hand, Zero Moment Point (ZMP)

is the most popular approach in bipedal robotics [19, 35, 36]. However, ZMP criterion

is typically applied only to the case of flat-foot walking, and it does not guarantee

stable dynamic walking [37]. Another approach to walking robot has been studied

through Hybrid Zero Dynamics (HZD) [37, 16, 38, 2], which creates low-dimensional

representations and renders highly dynamic locomotion through the use of nonlinear

control methods.

At the core of performing robotic walking is the ability to satisfy structural and

physical constraints while simultaneously realizing dynamics based control objective.

Realizing this balance between safety constraints and control objectives in the context

of dynamic behaviors has yet to be fully realized on robotic systems. A core issue

preventing this is the unification of safety and control objectives in a single unified
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framework—one that can be solved online in real-time, i.e., does not require a priori

optimization, while still yielding formal guarantees of correctness. The goal of this

thesis is to present a methodology for realizing physical constraints on robotic systems

through control barrier functions, and balancing these constraints through control

objectives represented as control Lyapunov functions expressed through a unified

quadratic program based control methodology. The application of these ideas to

robotic walking will demonstrate their affectiveness in ensuring physical constraints

during dynamic behaviors.

Control Lyapunov functions (CLFs), which were mainly pioneered by Artstein

and Sontag [8, 33], have been widely used in nonlinear control [24, 11, 12]. The

concept of control Lyapunov functions is to design a set of controllers, which ensures

that the derivative of a Lyapunov function is negative. Given a nonlinear system as

an example,

ẋ = f(x, u), where f(0, u) = 0

for all x 6= 0, if there exists u such that

V̇ (x, u) < 0,

where V (x) is a positive definite function, then V (x) is a control Lyapunov function.

By utilizing u, the system converges to the equilibrium point x = 0. In the field of

bipedal robotic locomotion, the method has been applied both in simulations and

experiments [5, 3, 13].

Barrier functions, which are firstly utilized in numerical optimization methods

[9, 40], are continuous functions whose values approach infinity when the state ap-
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proaches the boundary of a set. For instance, given a set C, B(x) is a barrier function,

if B(x)→∞ as x→ ∂C. The concept recently has been related to control Lyapunov

functions for the purposes of constructing nonlinear controllers [39]. In particular,

Lyapunov-like barrier functions have been established; that is, employing derivatives

of barrier functions guarantees the invariance of set C, e.g. Ḃ(x) < 0 [30, 34, 31].

With a view towards expanding the class of control inputs that imply set invariance,

recent work has focused on a new class of barrier functions that ensure set invariance

while yielding a larger set of control inputs [4]. In particular, if C is the superlevel

set of a function h(x), there is the corresponding barrier function candidate:

B(x) = − log

(
h(x)

1 + h(x)

)
(1.1)

which is a valid barrier function if it satisfies the condition:

Ḃ(x, u) <
γ

B(x)
(1.2)

for γ ≥ 0. Importantly, this allows for B(x) to grow when it is far from the bound-

ary of the set C while still provably yielding set invariance [4]. Similar to CLFs, a

control law can be designed such that the control barrier function (CBF) condition

(1.2) is satisfied. Comparing with CLFs, which drive the system to a fixed point,

barrier functions prevent the system from leaving a “safe” set. When formulating

control barrier functions, it is important to determine if there exists a control law.

For instance, in the case of a set defined as the superlevel set of a function of rela-

tive degree 2 [18], the control inputs do not appear in the derivative of the barrier

function. This naturally points to the use of backstepping methods, first developed

by Kokotović [21, 22, 25], in the context of constructing control barrier functions.
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The concept of the backstepping method is to design a new function as a “virtual”

input which stabilizes the subsystem and steps back the virtual input that stabilizes

the next subsystem until the “true” control input is reached.

In this research, a quadratic program (QP) is formulated based on CLFs and

CBFs. While CLFs drive actual outputs to desired outputs, CBFs keep outputs

in a “safe” set. Thus, a conflict between the CLFs and the CBFs happens if the

desired outputs are out of the set. This issue can be addressed by considering the

CLFs as soft constraints, which results in the CBF constraints being satisfied. By

relaxing the CLF constraints, they will be violated when approaching the boundary

of the set; otherwise, the CLF constraints will be satisfied in the set. The end result

is the unification of control objectives (formulated as CLFs) together with safety

constraints (formulated as CBFs).

The goal of this research is to develop control barrier functions via methods

motivated by Lyapunov backstepping. Ultimately, these methods will be applied to a

7-link bipedal robot, AMBER2. The following list enumerates the specific objectives

of this research:

• Prove that CBFs can be constructed through methods motivated by Lyapunov

backstepping so as to achieve forward invariance of sets defined as the superlevel

set of functions.

• Formulate a QP based on CLFs and CBFs and apply the method to a simple

nonlinear system example to show the improved performance of the method

versus existing approaches.

• Formulate CBFs for bipedal robots so as to capture essential physical con-

straints in the system.
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• Apply the resulting CBFs to AMBER2 in simulation so as to achieve a stable

walking gait.

To summarize, the main result of this thesis is a novel methodology for developing

control barrier functions with direction application to bipedal robotic walking.

The following contents are presented in the thesis. Section 1 briefly introduces a

concept of walking bipedal robot, control Lyapunov functions, control barrier func-

tions, and quadratic programs, together with a brief literature review. Section 2

gives a brief overview of control Lyapunov functions, control barrier functions and

quadratic programs, and proves that a control barrier function designed through

backstepping methods is a true control barrier functions that renders the corre-

sponding set forward invariant; a simple example is presented that demonstrates the

CLF-CBF-QP formulation. Section 3 describes the model of a 7-link bipedal robot,

AMBER2, as a hybrid system (following from the fact that it displays both contin-

uous and discrete dynamics). Section 4 introduces Human-Inspired Control through

CLF-CBF-QP, and explicitly designs both CLFs and CBFs. Section 5 presents sim-

ulation results for the resulting stable walking gait achieved along with a discussion

on the performance of the simulation. Finally, a conclusion based on the method

and results is included in Section 6.

5



2. CONTROL LYAPUNOV FUNCTIONS, CONTROL BARRIER FUNCTION,

AND QUADRATIC PROGRAMS

This chapter presents a brief overview of rapidly exponentially stabilizing con-

trol Lyapunov functions and control barrier functions for a nonlinear system, and

a quadratic program is introduced to unify control Lyapunov functions and control

barrier functions. More details can be found in [4] and [3].

Beside, This chapter develops and presents the main formal results of this re-

search: a backstepping inspired methodology for constructing control barrier func-

tions (CBFs). We begin by introducing the form of barrier functions considered in

the thesis, as introduced in [4], defined for a set C that is the super level set of a

function of the form: z(x) = h(x) − k(x). Motivated by the use of backstepping in

generating Lyapunov functions [34, 21], we assume that h has relative degree n and

utilize the higher order derivatives of h and k to iteratively construct valid control

barrier functions. The end product of this procedure yields the main result: a formal

guarantee that the resulting control barrier function is valid, i.e., that control inputs

exist that satisfy the barrier function condition (1.2).

2.1 Control Lyapunov Functions

Consider an affine nonlinear control system as follows:

ẋ = f(x) + g(x)u, (2.1)

ż = q(x),

where x ∈ Rn and u ∈ U = Rm with f and g assumed to be locally Lipschitz.

In addition, assume that f(0) = 0, resulting in an invariant surface Z defined by
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x = 0. To achieve exponential stability of x to 0 we utilize a special class of control

Lyapunov functions [3]:

Definition 1. For the system (2.1), a one-parameter family of continuously differ-

entiable function Vε : X → R is an rapidly exponentially stabilizing control

Lyapunov function (RES-CLF) if there exists positive constants c1, c2, c3 > 0

such that for all 0 < ε < 1 and for all x ∈ X × Z

c1‖x‖2 ≤ Vε(x) ≤ c2

ε
‖x‖2, (2.2)

inf
u∈U

[
LfVε(x) + LgVε(x)u+

c3

ε
Vε(x)

]
≤ 0. (2.3)

Given a RES-CLF, we define the set

Kε(x) =

{u ∈ U : LfVε(x) + LgVε(x)u+
c3

ε
Vε(x) ≤ 0}, (2.4)

for which it follows that for any locally Lipschitz continuous feedback control law

u(x) such that u(x) ∈ Kc(x), the solutions to the system (2.1) satisfy

‖x(t)‖ ≤ 1

ε

√
c2

c1

e−
c3
2ε
t‖x(0)‖, (2.5)

implying that every u(x) ∈ Kc(x) exponentially stabilizes the system (2.1) to the zero

dynamics, Z. In addition, the control value of minimum norm can be determined as

follow:

m(x) = argmin{‖u‖ : u ∈ Kc(x)}, (2.6)
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which is known as the min-norm controller [12]. In particular, (2.6) can be presented

as a quadratic program (QP):

m(x) = argmin
u∈U

uTu (2.7)

s.t. ψ0(x) + ψT1 (x)u ≤ 0,

where

ψ0(x) = LfV (x) +
c3

ε
V (x), (2.8)

ψ1(x) = LgV (x)T . (2.9)

Moreover, the solution to the QP (2.7) can be stated in closed form as:

m(x) =

{
− ψ0(x)ψ1(x)
ψ1(x)Tψ1(x)

if ψ0(x) > 0

0 if ψ0(x) ≤ 0
, (2.10)

The QP-based control method (2.7) has been applied to robotic locomotion and

manipulation [5], experimental robotic walking [3, 13], and adaptive cruise control

[4].

2.2 Control Barrier Functions

Considering the affine nonlinear control system (2.1) and given a set C ⊂ Rn, we

determine conditions on functions B : C → R such that solutions to (2.1), with initial

condition in C, remain in C for all time. First, we note that since (2.1) is assumed to

be locally Lipschitz, for any initial condition x0 ∈ Rn there exists a maximum time

interval I(x0) = [0, τmax) such that x(t) is the unique solution to (2.1) on I(x0); in

the case when f is forward complete, τmax =∞. The set C is forward invariant if for
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every x ∈ C, x(t) ∈ C for all t ∈ I(x).

For simplicity, suppose that

C = {x ∈ Rn : h(x) ≥ k(x)}, (2.11)

∂C = {x ∈ Rn : h(x) = k(x)}, (2.12)

Int(C) = {x ∈ Rn : h(x) > k(x)}, (2.13)

where h(x) : Rn → R represents a safety constraint, and k(x) : Rn → R is a boundary

that h(x) cannot violate. In addition, we can define z1(x) = h(x)−k(x), from which

it follows that

C = {x ∈ Rn : z1(x) ≥ 0}, (2.14)

∂C = {x ∈ Rn : z1(x) = 0}, (2.15)

Int(C) = {x ∈ Rn : z1(x) > 0}. (2.16)

It is noted that (2.14)-(2.16) are identical to (2.11)-(2.13).

To ensure that x stays in the set C, we have the following definition:

Definition 2. Let C ⊂ Rn be defined by (2.11)-(2.13) for a continuously differentiable

function h : Rn → R, then a function B : C → R is a control barrier function

(CBF) if there exists class K functions α1, α2 and 0 < γ such that

1

α1(z1(x))
≤ B(x) ≤ 1

α2(z1(x))
, (2.17)

inf
u∈U

[LfB(z) + LgB(x)u− γ

B(x)
] ≤ 0. (2.18)
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Using the definition of a CBF, we can define a set

KB(x) =

{u ∈ U : LfB(x) + LgB(x)u− γ

B(x)
≤ 0}, (2.19)

which yields the following result from [4]:

Theorem 1. Given a set C ⊂ Rn defined by (2.14)-(2.16) with associated barrier

function B, any Lipschitz continuous controller u(x) ∈ KB(x) for the system (2.1)

renders the set C forward invariant.

2.3 Combining CLFs and CBFs via QPs

To unify CLFs and CBFs, we can combine (2.7) and (2.19) into a QP as follows:

u∗(x) = argmin

u=


u

δ

∈Rm+1

1

2
uTH(x)u + F (x)Tu (2.20)

s.t. ψ0(x) + ψT1 (x)u ≤ δ, (CLF)

LfB(x) + LgB(x)u ≤ γ

B(x)
, (CBF)

where H(x) ∈ Rm+1×m+1 and F (x) ∈ Rm+1 are arbitrary cost functions that can be

chosen based upon desired (state based) weighting of the control inputs, and δ ∈ R

is a violation of the CLF constraint, which can be chosen to guarantee a feasible

solution to the QP.

The solution to the CLF-CBF-QP is a control u which forces the control objective

to be achieved by using CLF constraint while rendering the set C forward invariant

via the CBF constraint. Therefore, following from [29, 4] it follows that:
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Theorem 2. Given a set C ⊆ Rn defined by (2.11)-(2.13) with B an associated con-

trol barrier function, for any positive definite H(x), the control law u∗(x) obtained by

solving the QP (2.20) is Lipschitz continuous and renders the set C forward invariant.

In practice, if x ∈ Int(C) are far away from the boundary, ∂C, the control objective

will be achieved exponentially; otherwise, it will be violated depending on how x close

to ∂C.

2.4 CBFs with Backstepping Method

Considering the QP (2.20), it may not be possible to solve the constraint as-

sociated with the control barrier function due to disappearance of the input u, i.e.

LgB = 0. This happens when h(x) has relative degree greater than one. Therefore,

motivated by [34], we introduce backstepping method to CBFs so that the inputs can

be explicit. In the following of this section, we prove that CBFs with backstepping

method render the set C forward invariant. The concept is to show a CBF with

backstepping method is also a CBF and Theorem 2 applies.

To make inputs explicit, h(x) has to be developed with dynamic extension. Sup-

pose h(x) is an output required to be greater than a function k(x), and has relative

degree 2 as illustrated by the following relationship:

φ1(x) = h(x), (2.21)

φ̇1(x) = φ2(x), (2.22)

φ̇2(x, ẋ) = LfLfh(x) + LgLfh(x)u, (2.23)

and a set C is defined by (2.14) to (2.16). Therefore, we can pick a control barrier
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function, B1(x), so that B1(x) has the inequalities:

1

α1,1(z1(x))
≤ B1(x) ≤ 1

α1,2(z1(x))
, (2.24)

Ḃ1(x) ≤ γ

B1(x)
, (2.25)

where α1,1 and α1,2 are class K functions, and z1(x) = h(x)− k(x). In addition, we

let

z2(x) = φ2(x)− ξ,

where ξ is a stabilizing function we have to design. The time derivative of B1(x) is

thus given by:

Ḃ1 =
dB1(x)

dt

=
dB1(x)

dz1

ż1

=
dB1(x)

dz1

[φ2 − k̇(x)]

=
dB1(x)

dz1

[z2 + ξ − k̇(x)].

Picking ξ = k̇(x) results in:

Ḃ1 =
dB1(x)

dz1

z2. (2.26)

Following the backingstepping method [20], we can define another candidate barrier

function with z2

B2(x) = B1(x) +
1

2
z2(x)2, (2.27)
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which gives the main result.

Theorem 3. Given a set C ⊂ Rn defined by (2.11) to (2.13), if h(x) defined by

(2.21) to (2.23) has relative degree 2, there exists a Lipschitz continuous controller

u(x) ∈ KB(x), with the control barrier function is defined by (2.27), such that the

set C is forward invariant.

Proof. Reformulating (2.24), we have

α−1
1,1

(
1

B1(x)

)
≤ z1 ≤ α−1

1,2

(
1

B1(x)

)
, (2.28)

where α−1 represents the inverse of α. Moreover, substituting the reciprocal of (2.24)

into (2.28) yields

α∗1,1(z1) ≤ z1 ≤ α∗1,2(z1, ),

where

α∗1,1(z1) =: α−1
1,1 (α1,2(z1)) ,

α∗1,2(z1) =: α−1
1,2 (α1,1(z1)) .

Since the time derivative of z1 is z2, we can write

α̇∗1,1 (z1) ≤ z2 ≤ α̇∗1,2 (z1) . (2.29)

It is noted that α∗1,1(z1) and α∗1,2(z1) are class K functions [20]. It is also noted

that α̇∗1,1 and α̇∗1,2 are greater than zero because class K functions must be strictly

13



increasing. Utilizing (2.24), (2.27) and (2.29) yields:

1

α2,1(z1)
≤ B2(x) ≤ 1

α2,2(z1)
,

where

α2,1(z1) =
α1,1(z1)

1 + α1,1(z1)1
2
(α̇∗1,1(z1))2

,

α2,2(z1) =
α1,2(z1)

1 + α1,2(z1)1
2
(α̇∗1,2(z1))2

.

Since α2,1(0) = α2,2(0) = 0, α2,1(z1) > 0 and α2,2(z1) > 0 for every z1 6= 0, α2,1 and

α2,2 are positive definite functions. Two new bounds are thus established according

to Lemma 4.3 in [20]

α−2,1(z1) ≤ α2,1(z1) ≤ α+
2,1(z1), (2.30)

α−2,2(z1) ≤ α2,2(z1) ≤ α+
2,2(z1), (2.31)

where α−2,1(z1), α+
2,1(z1), α−2,2(z1), and α+

2,2(z1) are ClassK functions. Letting α∗2,1(z1) =

α+
2,1(z1) and α∗2,2(z1) = α−2,2(z1), it follows:

1

α∗2,1(z1)
≤ B2(x) ≤ 1

α∗2,2(z1)
, (2.32)

On the other hand, take the time derivative of B2, which becomes

Ḃ2 = Ḃ1 + z2ż2

=
dB1(x)

dz1

z2 + z2(LfLfh(x) + LgLfh(x)u− ξ̇),
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where ξ̇ = k̈(x). Therefore, we have the following condition

dB1(x)

dz1

z2 + z2(LfLfh(x) + LgLfh(x)u− ξ̇) ≤ γ

B2(x)
. (2.33)

Rearranging (2.33) to obtain the control law,

u ≤ 1

z2LgLfh(x)

(
γ

B2(x)
− dB1(x)

dz1

z2

)
− LfLfh(x)− ξ̇

LgLfh(x)
. (2.34)

LgLfh(x) is non-singular because h(x) has relative degree two by assumption, so

the input u is guaranteed to be obtained. According to Definition 2, B2 is a control

barrier function because (2.32) and (2.33) hold. Finally, based on Corollary 1 in [4],

any Lipschitz continuous control input u satisfying (2.33) renders the set C forward

invariant.

Having established Theorem 3, the CBF can be extended to a more general case.

Suppose h(x) is an output which desires to be greater than a boundary k(x) and has

relative degree n as following relationship:

φ1(x) = h(x),

φ̇1(x) = φ2(x),

φ̇2(x) = φ3(x), (2.35)

...

φ̇n(x, ẋ) = Lnfh(x) + LgL
n−1
f h(x)u,

where n ≥ 2. Following the backstepping methodology, and motivated by the control

barrier function considered in (2.27), define the following control barrier function

15



candidate:

Bn(x) = B1(x) +
1

2

n∑
i=2

z2
i , (2.36)

where

z1 = h(x)− k(x),

zi = φi − ξi−1 for i ≥ 2,

and the stabilizing functions given by:

ξ1 = k̇(x),

ξ2 = −dB1(x)

dz1

+ ξ̇1,

ξi = −zi−1 + ξ̇i−1 for i ≥ 3.

The derivative of Bn(x) thus can be represented as

Ḃn(x) = zn−1zn + zn

(
Lnfh(x) + LgL

n−1
f h(x)u− ξ̇n−1

)
,

so the control law can be determined through the inequality:

u ≤ 1

znLgL
n−1
f h(x)

(
γ

Bn(x)
− zn−1zn

)
−
Lnfh(x)− ξ̇n−1

LgL
n−1
f h(x)

, (2.37)

where LgL
n−1
f h(x) is non-singular because h(x) has relative degree n by assumption,

and u is guaranteed to be obtained.

Since B2(x) = B1(x)+ 1
2
z2

2 is a CBF by the proof of Theorem 3, it can similarly be

shown that B3(x) = B2(x) + 1
2
z2

3 is also a CBF with the same arguments. Similarly,
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by induction, it follows that for a relative degree n output h(x), the function Bn(x)

defined by (2.36), is also a CBF. this is summarized in the following theorem:

Theorem 4. Given a set C ⊂ Rn defined by (2.11) to (2.13), if h(x) defined by (2.35)

has relative degree n, there exists a Lipschitz continuous controller u(x) ∈ KB(x),

with the control barrier function is defined by (2.36), such that the set C is forward

invariant.

2.5 Example

To show the performance of the CLF-CBF-QP, in this section, we apply the

method to a simple nonlinear system and choose constrained outputs, which have

relative degree 2.

Consider a nonlinear system:

ẋ1 = x2
1 + x2,

ẋ2 = x1x2 + x1 + (1 + x2
1)u,

where u is the control law we have to design. The goal is for x1 to track the desired

trajectory, yd = 0.5 sin t, and subject to |x1| ≤ 0.4. Hence, a CLF can be applied to

achieve tracking of yd and CBFs can be used to satisfy the constraints on x1. As x1

has relative degree 2, the backstepping method outlined in the previous section will

need to be applied.

2.5.1 CLFs

Let z1 = x1 − yd and z2 = x2 − ξc, where ξc will be designed, define a Lyapunov

function candidate

V =
1

2
z2

1 ,

17



and take derivative of V

V̇ = z1ż1

= z1(ẋ1 − ẏd)

= z1(x2
1 + x2 − ẏd)

= z1(x2
1 + z2 + ξc − ẏd).

Following the backstepping method, we choose ξc = −x2
1 + ẏd − kcz1, where kc is

a positive constant. It follows that V̇ = −kcz2
1 + z1z2, so we define an additional

candidate Lyapunov function as

V ∗ =
1

2
z2

1 +
1

2
z2

2 ,

and we can take the derivative again:

V̇ ∗ = −kcz2
1 + z1z2 + z2ż2

= −kcz2
1 + z1z2 + z2(x1x2 + x1 + (1 + x2

1)u− ξ̇c).

Hence, the CLF constraint can be stated as

V̇ ∗ ≤ −εcV ∗ + δc, (2.38)

where εc is a positive constant,and δc is the relaxation so that CBFs have priority to

be satisfied.
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2.5.2 CBFs

To constrain |x1| ≤ 0.4, we can formulate 2 constraints, x1 ≥ −0.4 and x1 ≤ 0.4,

so we let zl,1 = x1 + 0.4, zu,1 = −x1 + 0.4, zl,2 = x2 − ξl, and zu,2 = x2 − ξu. Picking

two control barrier functions

B∗l = − log
zl,1

1 + zl,1
+

1

2
z2
l,2,

B∗u = − log
zu,1

1 + zu,1
+

1

2
z2
u,2,

and designing ξl = ξu = −x2
1 results in

Ḃ∗l =− zl,2
zl,1 + z2

l,1

+ zl,2(x1x2 + x1 + (1 + x2
1)u− ξ̇l),

Ḃ∗u =
zu,2

zu,1 + z2
u,1

+ zu,2(x1x2 + x1 + (1 + x2
1)u− ξ̇u).

Therefore, the CBF constraints can be stated as

Ḃ∗l ≤
γl
B∗l

, (2.39)

Ḃ∗u ≤
γu
B∗u

. (2.40)
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2.5.3 CLF-CBF-QP

Given the CLF constraint (2.38) and CBF constraint (2.39) and (2.40), A QP

can be formulated by:

u∗(x1, x2) = argmin
u,δc

uTu+ pCLF δc

s.t. ACLFu ≤ bCLF ,

ACBFu ≤ bCBF ,

where

ACLF = z2(1 + x2
1),

bCLF = δc + kcz
2
1 − z1z2 − z2(x1x2 + x1 − ξ̇c) + εcV,

ACBF =

zl,2(1 + x2
1)

zu,2(1 + x2
1)

 ,
bCBF =

 zl,2
zl,1+z2l,1

− zl,2(x1x2 + x1 − ξ̇l + γl
B∗

l
)

− zu,2
zu,1+z2u,1

− zu,2(x1x2 + x1 − ξ̇u + γu
B∗

u
)

 .
By choosing an appropriate penalty, pCLF , the control value can be guaranteed to

be obtained through solving the QP.

2.5.4 Results

Table 2.1 shows the parameters used in the simulation, and Fig 2.1 shows the

simulation results with the initial condition (x1, x2) = (0, 0). As seen in Figure 2.1,

the output x1 is convergent to the desired output but constrained between -0.4 and

0.4.
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Parameter Value Unit
pCLF 105 Unitless
kc 10 Unitless
εc 2 Unitless
γl 1 Unitless
γu 1 Unitless

Table 2.1: The parameters used in the simulation.
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Figure 2.1: Simulation results from a simple nonlinear system example including the
output, input, and barrier functions.
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3. BIPEDAL ROBOT MODEL

The main goal of this research is to apply control barrier functions to the control

of bipedal robots. In this chapter, we therefore review the preliminaries in modeling

that will set the stage for the introduction of control barrier functions in the context

of robotic walking. We introduce a mathematical model of a 7-link bipedal robot

AMBER2 [26, 41], which is a fully actuated system because there are 6 actuators,

shown in Figure 3.1. In addition, We consider the AMBER2 as a hybrid system,

which contains continuous dynamics and discrete dynamics. The discrete dynamics

shows up only when an impact happens [14], and the states will be reset through a

reset map.

3.1 Hybrid System

A walking robot can be modeled as a hybrid control system which is a tuple [7, 1],

H C = (D, U, S,∆, f, g), (3.1)

where

• D is the domain with D ⊆ Rn a smooth submanifold of the state space Rn,

• U ⊆ Rm is the set of admissible controls,

• S ⊂ D is a proper subset of D called the guard or switching surface,

• ∆:S → X is a smooth map called the reset map,

• (f, g) is a control system on D, i.e., in coordinates: ẋ = f(x) + g(x)u
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Figure 3.1: The bipedal robot AMBER2 that serves as the basis for simulation results
demonstrating the formal results presented.
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Figure 3.2: The configuration space of AMBER2 [26].

For AMBER2, which has 7 links (2 feet, 2 calves, 2 thighs and a torso.), the config-

uration space Q can be defined by:

q = (θsa, θsk, θsh, θnsh, θnsk, θnsa), (3.2)

where θsa, θsk, θsh, θnsh, θnsk, and θnsa represent the joint angles of stance ankle, stance

knee, stance hip, non-stance hip, non-stance knee, and non-stance ankle. The con-

figuration space is shown in Figure 3.2.

According to the statement above, AMBER2 can be modeled as a hybrid control

system, H C . D ⊂ TQ is the domain given by the constraint hR(θ) ≥ 0, where hR

is the height of the non-stance foot, U ⊂ R6 is the set of admissible controls, S ⊂ D

is the guard, and ∆ is the reset map which changes the velocity at the impact.
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3.2 Continuous Dynamics

Given the configuration q, the mass, length and inertia properties of each link of

the robot, the Lagrangian, L : TQ → R, can be computed in the form of the kinetic

minus potential energy as follows:

L(q, q̇) =
1

2
q̇TD(q)q̇ − v(q),

which yields the equations of motion for AMBER2 in the form of a set of first order

ODEs:

D(q)q̈ +H(q, q̇) = B(q)u, (3.3)

where D is the inertia matrix, H is a vector containing the Coriolis and gravity

terms, and B ∈ R6×6 is the actuation matrix which determines the way in which the

torque inputs, u ∈ R6 actuate the system. Moreover, the equations of motion can be

converted to the affine control system (f, g):

f(q, q̇) =

 q̇

−D−1(q)H(q, q̇)

 , g(q) =

 0

D−1(q)B(q)

 ,
where 0 ∈ R6×6 is a matrix of zeros.

3.3 Domain and Guard

The allowable configurations, i.e. the domain of the AMBER2 model, are ones

in which the height of the non-stance foot is on-or-above the ground. In particular,

the domain D can be defined by:

D = {(q, q̇) ∈ TQ : hR(q) ≥ 0} (3.4)
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The guard is the boundary of the domain with another constraint, which requires

that the non-stance foot velocity to be negative. Therefore, the guard can be defined

by:

S = {(q, q̇) ∈ TQ : hR(q) = 0 and dhR(q)q̇ < 0}, (3.5)

where dhR(q) is the Jacobian of hR(q) at q.

3.4 Discrete Dynamics

The discrete dynamics of AMBER2 describes the change of the states, i.e. the

angles and angular velocities, after the non-stance foot impacts the ground. Hence,

the reset map ∆ is defined by:

∆ : S → D, ∆(q, q̇) =

 ∆qq

∆q̇(q)q̇

 , (3.6)

where ∆q is a relabeling matrix which switches the stance and non-stance leg at

impact, e.g. non-stance foot to stance foot. ∆q̇ determines the change in velocity at

impact; more detail about the computation can be found in [7] and[15].
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4. HUMAN-INSPIRED CONTROL

Human-inspired control [7, 1, 23] is the methodology used to achieve robotic

walking on bipedal robots. By observing human walking data [6, 7], Canonical

Walking Function (CWF), which is the specific function of time and joint angle,

is picked as the reference behavior, i.e., the actual output. Based on the CWFs,

human-inspired outputs can be determined, which in turn yield outputs (or virtual

constraints) that can be driven to zero through the use of control Lyapunov functions

(CLFs).

In order to achieve human-like walking, human walking data should be considered

first. By observing the human output data, which is shown in Fig. 4.1, hip position

is a linear function of time ,δpHhip(t) = vhipt, and other outputs can be considered

as the solution of a mass-spring-damper system. Therefore, the canonical walking

functions can be defined by:

yH(t, α) = e−α4t(α1 cos(α2t) + α3 sin(α2t)) + α5, (4.1)

where α = (α1, α2, α3, α4, α5), so by picking up different α, each CWF can fit the

human data very well.

According to the human outputs produced by CWFs, which are desired outputs,

the actual outputs for AMBER2 are defined, so that AMBER2 has the same walking

behavior as a human being. With the goal of controlling the velocity of AMBER2,

the actual and desired relative degree 1 outputs can be defined by:

ya,1(q, q̇) = δṗhip(q, q̇) = dδphip(q)q̇, yd,1 = vhip (4.2)
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Figure 4.1: The human output data and the canonical walking function fits for each
subjects.

where δphip(q) is the linearized position of the hip, which is given by:

δphip(q) = Lc(−θsa) + Lt(−θsa − θsk), (4.3)

where Lc is the length of the calf and Lt is the length of the thigh. Moreover, the

actual linearized relative degree 2 outputs and desired relative degree 2 outputs also

can be defined by:

ya,2(q) =



θsk

θnsk

δmnsl(q)

θtor(q)

θnsf (q)


, yd,2(t, α) =



yH(t, αsk)

yH(t, αnsk)

yH(t, αnsl)

yH(t, αtor)

yH(t, αnsf )


, (4.4)

where α = {vhip, αsk, αnsk, αnsl, αtor, αnsf} ∈ R26, and δmnsl(q) is the linearization of
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Figure 4.2: The outputs of AMBER2 [26].

the slope of the non-stance leg:

δmnsl(q) = −θsf − θsk − θsh + θnsh +
Lc

Lc + Lt
θnsk, (4.5)

θtor(q) is the angle of the torso from vertical:

θtor(q) = θsf + θsk + θsh, (4.6)

θnsf is the angle of the non-stance foot from vertical:

θnsf = θsf + θsk + θsh − θnsh − θnsk − θnsf . (4.7)

Fig. 4.2 shows the detail of the outputs of AMBER2.

In order to simplify the complexity of the walking, the desired angle of the non-

stance foot from vertical will be considered as zero; that is, the flat foot surface

will be always parallel with the ground. In particular, αnsf = 0, which results

yH(t, αnsf ) = 0.
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In order to create an autonomous controller, which is more robust than a time-

based controller, the state-based parameterization of time can be defined by:

τ(q) =
δphip(q)− δphip(q+)

vhip
, (4.8)

where δphip(q
+) is the linearized hip position at the beginning of a step. Therefore,

the time base can be converted to state base, which means t can be converted to

τ(q), which renders the desired outputs as yd,2(t, α) = yd,2(τ(q), α).

Based on the outputs defined above, the human-inspired outputs is defined by:

y1(q, q̇, vhip) = ya,1(q, q̇)− vhip, (4.9)

y2(q, α) = ya,2(q)− yd,2(τ(q), α), (4.10)

which means the differences between actual and desired outputs. It is important to

note that the parameters α of yd,2 are typically chosen through nonlinear optimization

methods to yield hybrid zero dynamics and, thereby, guarantee a stable walking gait

[15]. In this thesis, we will instead choose α to be parameters obtained directly from

human data [1] and utilize control barrier functions to achieve robotic walking.

4.1 Control Lyapunov Functions and Quadratic Programs

With the goal of driving y1 → 0 and y2 → 0, utilizing the method from [3], we

differentiate the relative degree 1 output once and relative degree 2 output twice:

ẏ1

ÿ2

 =

Lfy1(q, q̇)

L2
fy2(q, q̇)


︸ ︷︷ ︸

Lf

+

 Lgy1(q, q̇)

LgLfy2(q, q̇)


︸ ︷︷ ︸

A

u, (4.11)
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and pick

u = A−1(−Lf + µ), (4.12)

for some µ ∈ R6. Combining (4.11) and (4.12) results

ẏ1

ÿ2

 = µ. (4.13)

By defining η = (y1, y2, ẏ2) ∈ R11, (4.13) can be converted to a linear control system:

η̇ =


0 0

0 I

0 0


︸ ︷︷ ︸

F

η +


1 0

0 0

0 I


︸ ︷︷ ︸

G

µ. (4.14)

Therefore, we can formulate the continuous time algebraic Riccati equation(CARE):

F TP + PF − PGGTP +Q = 0, (4.15)

where Q = QT > 0 and P = P T > 0 is the solution, then we can use P to construct

an rapidly exponentially stabilizing control Lyapunov function (RES-CLF) that can

be used to stabilize the dynamics (4.14). More detail can be found in [3].

By defining V (η) = ηTPη, it follows that

V̇ (η) = LfV (η) + LgV (η)µ, (4.16)

where

LfV (η) = ηT (F TP + PF )η,

LgV (η) = 2ηTPG.

(4.17)
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To stabilize η to zero, we have to find µ such that:

V̇ (η) ≤ −γ
ε
V (η), (4.18)

or in another form:

LfV (η) + LgV (η)µ ≤ −γ
ε
V (η), (4.19)

for some γ > 0. Therefore, a quadratic program(QP) can be formulated to search

the optimal µ:

m(η) =argmin
µ∈R6

µTµ (4.20)

s.t. ψ0(η) + ψT1 (η)µ ≤ 0, (CLF)

where

ψ0(η) = LfV (η) +
γ

ε
V (η),

ψ1(η) = LgV (η)T .

(4.21)

It is important to note that the solution of the QP is basically the same as the

min-norm controller [12], which can be presented in close form by:

m(η) =

{
− ψ0(η)ψ1(η)
ψ1(η)Tψ1(η)

ifψ0(η) > 0

0 ifψ0(η) ≤ 0
. (4.22)

Therefore, the control low based on the QP is obtained:

u(q, q̇) = A−1(q, q̇)(−Lf (q, q̇) +m(q, q̇)), (4.23)

where m(q, q̇) can be expressed in terms of (q, q̇) because η is a function of (q, q̇). To

32



make u explicit, we can combine (4.20) with (4.12), and it follows that

m(q, q̇) =argmin
u∈R6

uTATAu+ 2LTfAu (4.24)

s.t. ψ0(q, q̇) + ψT1 (q, q̇)(Au+ Lf ) ≤ 0. (CLF)

The most important advantage of making u explicit in the QP is that any constraints

in terms of u can be included directly, such as torque bounds. To obtain a feasible

solution from CLF-QP with torque bounds, we have to introduce relaxation for CLF,

and it follows that

argmin
(δ,u)∈R7

pδ2 + uTATAu+ 2LTfAu (4.25)

s.t. ψ0(q, q̇) + ψT1 (q, q̇)(Au+ Lf ) ≤ δ, (CLF)

u ≤ umax, (Max Torque)

− u ≤ umax, (Min Torque)

where p > 0 is a large number that is chosen to penalize violation (δ) of the CLF

constraint, and umax ∈ R6 are maximum torques.

Another issue that has to be concerned is the reaction force from the ground, so

contact forces, F ∈ R3, should be determined. First of all, holonomic constraints are

given: h(q) = 0 ∈ R3 and we can obtain the Jacobian Jh(q) = ∂h(q)
∂q

, then the contact

forces can be added to dynamics (3.3) and it follows that

D(q)q̈ +H(q, q̇) = B(q)u+ JTh F, (4.26)

where JTh F projects the contact wrench into joint-space coordinates. To make sure
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F are always valid, they have to satisfy following constraints [5]

D(q)q̈ +H(q, q̇) = B(q)u+ JTh F, (4.27)

J̇hq̇ + Jhq̈ = 0, (4.28)

−lhF fz < Fmy < ltF
fz, (4.29)

F fx < µkF
fz, (4.30)

where µk is the coeficient of static friction between AMBER2 and the ground, lt is

the length of the toe, lh is the length of the heel, F = (F fx, Fmy, F fz) are contact

forces on the stance foot, F fx is the horizontal ground reaction force, F fz is the

vertical ground reaction force and Fmy is the ground reaction torque. (4.29) is the

constraint named zero moment point (ZMP), which ensures that the stance foot

does not rotate during walking so that 2-domain walking can be maintained. (4.30)

ensures the stance foot does not slip. Combining F with u, we introduce ū and B̄(q),

so (4.26) can be rewritten as:

D(q)q̈ +H(q, q̇) =

[
B JTh

]
︸ ︷︷ ︸

B̄

u
F


︸ ︷︷ ︸
ū

. (4.31)

Moreover, we can substitute (4.28) into (4.31) and add contact constraints into (4.25),
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then the QP can be rewritten as

argmin
(δ,ū)∈R10

pδ2 + ūT ĀT Āū+ 2LTf Āū (4.32)

s.t. ψ0(q, q̇) + ψT1 (q, q̇)(Āū+ Lf ) ≤ δ, (CLF)

J̇hq̇ + JhD(q)−1(B̄ū−H(q, q̇)) = 0, (Constrained Dynamics)

u ≤ umax, (Max Torque)

− u ≤ umax, (Min Torque)

− lhF fz < Fmy < ltF
fz, (ZMP)

|F fx| < µkF
fz, (Friction)

where Ā is determined by ḡ =

 0

D−1(q)B̄(q)

. It is important to note that the

solution to the QP (4.32) guarantees that the relative degree 1 output and relative

degree two outputs converge exponentially while contact forces satisfy the contact

constraints.

Since it is hard to find a feasible solution in some cases, we have to separate CLF

into three parts [29], i.e. ψ1 for the relative degree 1 output, ψ3 for the non-stance

foot, and ψ2 for the rest of the relative degree 2 outputs. By doing so, three CLFs

have relaxation separately depending on their own needs. Therefore, (4.32) can be
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modified as

argmin
(δ,ū)∈R11

δTpδ + ūT ĀT Āū+ 2LTf Āū (4.33)

s.t. ψ1,0(q, q̇) + ψT1,1(q, q̇)(Āū+ Lf ) ≤ δ1, (CLF1)

ψ2,0(q, q̇) + ψT2,1(q, q̇)(Āū+ Lf ) ≤ δ2, (CLF2)

ψ3,0(q, q̇) + ψT3,1(q, q̇)(Āū+ Lf ) ≤ δ3, (CLF3)

J̇hq̇ + JhD(q)−1(B̄ū−H(q, q̇)) = 0, (Constrained Dynamics)

u ≤ umax, (Max Torque)

− u ≤ umax, (Min Torque)

− lhF fz < Fmy < ltF
fz, (ZMP)

|F fx| < µkF
fz, (Friction)

where p =


p1 0 0

0 p2 0

0 0 p3

 and δ =


δ1

δ2

δ3

.

4.2 Control Barrier Functions and Quadratic Programs

Since it is essential to satisfy certain physical constraints, control barrier functions

will be utilized to enforce constraints of this form, including: avoiding foot scuffing,

higher foot clearance, or other specific physical condition we desire. To do so, we

constrain the human-inspired outputs, which include relative degree 1 and relative

degree 2 outputs, i.e. hip velocity, non-stance foot height, stance knee, and non-

stance slope. In this research, we will formulate a set of control barrier functions

with the backstepping method developed and add them as additional constraints to

a CLF-QP, so that a stable walking is obtained.
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4.2.1 Hip velocity

Since CLF1 has relaxation parameter, the hip velocity will not converge to the

desired velocity and it even increases to an unreasonable value in some cases. To

deal with it, a hip velocity constraint is considered. In particular, we constrain

ya,1(q, q̇) ≤ Vmax.

Therefore, we can let zvmax = Vmax − ya,1(q, q̇), and formulate a control barrier

function

Bvmax = − log
zvmax

1 + zvmax
,

so the constraint can be presented as

Ḃvmax ≤
γvmax
Bvmax

, (CBF1)

where γvmax is a positive constant.

4.2.2 Non-stance foot height boundary

In general, the non-stance foot height is based on the desired outputs, but some-

times the foot height is not high enough to cross an obstacle. Moreover, the angle of

the foot strike is too small, so that foot scuffing may occur. To deal with this prob-

lem, we can constrain the foot height in a reasonable region by using control barrier

functions. However, the foot height has relative degree 2, which can be presented as
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a nonlinear system of the form

xh,1 = h(q), (4.34)

ẋh,1 = xh,2,

ẋh,2 = LfLfxh,1 + LgLfxh,1u,

so the backstepping method should be applied, which is similar to the example in

Section 2. Before formulating the CBFs, we should set up two state-based functions

to build up two boundaries, i.e. fl : R→ R and fu : R→ R, which represents lower

boundary function and upper boundary function respectively. Here we choose

fl(xfoot) = alx
3
foot + blx

2
foot + clxfoot + dl,

fu(xfoot) = aux
2
foot + buxfoot + cu,

where al, bl, cl, dl, au, bu and cu are the parameters dependent on the x-position of

the non-stance foot before and after the impact, and the desired maximum values

of the functions. Figure 4.3 depicts the shapes of two boundaries, which enforce the

actual foot height to the ground eventually. Based on the boundary functions above,

two CBFs can be set up. Let zfl,1 = h(q) − fl, zfu,1 = fu − h(q), zfl,2 = xh,2 − ξfl,

and zfu,2 = xh,2 − ξfu, we can pick up two control barrier functions

Bfl = − log
zfl,1

1 + zfl,1
, Bfu = − log

zfu,1
1 + zfu,1

,
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Figure 4.3: Upper and Lower boundaries enforcing yfoot to zero in the end.

and take derivatives

Ḃfl = − żfl,1
zfl,1 + z2

fl,1

= −xh,2 + ξfu − ḟl
zfl,1 + z2

fl,1

,

Ḃfu = − żfu,1
zfu,1 + z2

fu,1

= − ḟu − xh,2 − ξfu
zfu,1 + z2

fu,1

.

Designing ξfl and ξfu as ξfl = ḟl and ξfl = ḟl results

Ḃfl = − xh,2
zfl,1 + z2

fl,1

,

Ḃfu =
xh,2

zfu,1 + z2
fu,1

.
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Next, we add quadratic functions to Bfl and Bfu:

B∗fl = − log
zfl,1

1 + zfl,1
+

1

2
z2
fl,2, B∗fu = − log

zfu,1
1 + zfu,1

+
1

2
z2
fu,2,

and take derivatives again

Ḃ∗fl = − xh,2
zfl,1 + z2

fl,1

+ zfl,2żfl,2

= − xh,2
zfl,1 + z2

fl,1

+ zfl,2(LfLfxh,1 + LgLfxh,1u− ξ̇fl),

Ḃ∗fu =
xh,2

zfu,1 + z2
fu,1

+ zfu,2żfu,2

=
xh,2

zfu,1 + z2
fu,1

+ zfu,2(LfLfxh,1 + LgLfxh,1u− ξ̇fu),

so the control effort is explicit and the CBF constraints are given by

Ḃ∗fl ≤
γfl
B∗fl

(CBF2)

Ḃ∗fu ≤
γfu
B∗fu

, (CBF3)

where γfl and γfu are positive constants.

4.2.3 Stance knee angle

In some cases, the stance knee angle may be lower than 0 degrees, which means

that the knee angle violates physical realizability conditions, to satisfy other con-

straints in the QP. Hence, a constraint that keeps the angle to be larger than 0

degrees will be considered. Similar to (4.34), the stance knee can be presented as a
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form

xsk,1 = θsk, (4.35)

ẋsk,1 = xsk,2,

ẋsk,2 = LfLfxsk,1 + LgLfxsk,1u,

so we can follow the same procedure with previous subsection. Letting zsk,1 = xsk,1

and zsk,2 = xsk,2 − ξsk, we can pick up a control barrier function

B∗sk = − log
zsk,1

1 + zsk,1
+

1

2
z2
sk,2

and design ξsk = 0. Taking a derivative of B∗sk results

Ḃ∗sk = − zsk,2
zsk,1 + z2

sks,1

+ zsk,2(LfLfxsk,1 + LgLfxsk,1u),

so the constraint is given by

Ḃ∗sk ≤
γsk
B∗sk

, (CBF4)

where γsk is a positive constant.

4.2.4 Non-stance slope

Since CLF1 and CLF2 have relaxation, the actual outputs cannot track the de-

sired outputs, which may affect the non-stance foot not moving forward. Hence,

non-stance slope constraint is introduced into the QP, so that the slope can stay in a

meaningful region and the non-stance foot can keep moving forward. Similarly, the
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non-stance slope has the following property

xnsl,1 = δmnsl, (4.36)

ẋnsl,1 = xnsl,2,

ẋnsl,2 = LfLfxnsl,1 + LgLfxnsl,1u,

and should be constrained under the desired slope yH(t, αnsl). In particular, following

condition should be satisfied

δmnsl < yH(t, αnsl) + knsl +
1

1 + cnslt
,

where knsl is a constant that offsets the boundary, 1
1+ct

is the function which guarantee

that mnsl can be smaller than yH(t, αnsl) + knsl after the impact. Therefore, we can

let znsl,1 = 1
1+cnslt

+ knsl + yH(t, αnsl)− δmnsl and znsl,2 = xnsl,2− ξnsl, pick up a CBF

B∗nsl = − log
znsl,1

1 + znsl,1
+

1

2
z2
nsl,2,

design ξnsl = ẏH(t, αnsl)− cnsl

(1+cnslt)2
, and take a derivative of B∗nsl. It follows

Ḃ∗nsl =
znsl,2

znsl,1 + z2
nsl,1

+ znsl,2(LfLfxnsl,1 + LgLfxnsl,1u)− ξ̇nsl,

so the constraint is given by:

Ḃ∗nsl ≤
γnsl
B∗nsl

, (CBF5)

where γnsl is a positive constant.
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4.2.5 CLF-CBF-QP

In order to modify the robotic walking behavior given by the QP (4.33), the

CLF-CBF-QP is given by

argmin
(δ,ū)R11

δTpδ + ūT ĀT Āū+ 2LTf Āū (4.37)

s.t. ψ1,0(q, q̇) + ψT1,1(q, q̇)(Āū+ Lf ) ≤ δ1, (CLF1)

ψ2,0(q, q̇) + ψT2,1(q, q̇)(Āū+ Lf ) ≤ δ2, (CLF2)

ψ3,0(q, q̇) + ψT3,1(q, q̇)(Āū+ Lf ) ≤ δ3, (CLF3)

J̇hq̇ + JhD(q)−1(B̄ū−H(q, q̇)) = 0, (Constrained Dynamics)

u ≤ umax, (Max Torque)

− u ≤ umax, (Min Torque)

− lhF fz < Fmy < ltF
fz, (ZMP)

|F fx| < µkF
fz, (Friction)

(CBF1)-(CBF5).

However, it is not guaranteed to obtain a feasible solution due to the conflict between

these physical conditions, so some parameters and constraints should be tuned to

feasibly solve (4.37), e.g. δ1, δ2, δ3 , the desired foot height, the desired foot length,

and so on. Section 5 will show a stable walking gait through (4.37) with the specific

parameters we tested.
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5. RESULTS AND DISCUSSIONS

This chapter shows the results of 7-link bipedal robotic walking through control

Lyapunov functions, control barrier functions, and quadratic program (CLF-CBF-

QP), and the stability of the walking is also shown by using Poincare map. In

particular, we being with parameters vhip and α of the the human-inspired outputs

(4.9) and (4.10) obtained by directly fitting the desired outputs to human data (see

[7, 1, 26] for a more complete discussion). This is in contrast to the methods presented

in [1], since we do not perform an a priori optimization to obtained parameters that

guarantee (partial) hybrid zero dynamics [15]. If the control law (4.33) obtained

from these outputs is simulated directly with the parameters vhip and α obtained

by fitting human data, the robot would stumble and fall. Yet, through the addition

of the control barrier functions (CBF1)-(CBF5), the biped displays a stable walking

gait (with the proper choice of parameters of the barrier functions); this points to

the importance of enforcing physical constraints in the synthesis of robotic walking

gaits. It is noted that to obtain a stable walking gait on the model of AMBER2, the

parameters in Table 5.1 were chosen.

The initial condition, (q0, q̇0), was chosen by assuming that human-inspired out-

puts are zeros and the non-stance foot is flat on the ground in the beginning. In

particular, q0 can be found by solving the inverse kinematics problem outlined in [1]:

q0 = θ s.t.


y2(∆θ)

hR(θ)

θnsf

 =


0

0

0

 .
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Parameter Value Unit
p1 1 unitless
p2 10−5 unitless
p3 1010 unitless
µk 1000 unitless
al -2.8885 unitless
bl -2.0900 unitless
cl -0.0991 unitless
dl 0.0914 unitless
au -0.9272 unitless
bu -0.1748 unitless
cu 0.2418 unitless
cnsl 50 unitless
knsl 0.1 unitless
γvmax 8 unitless
γfl 30 unitless
γfu 20 unitless
γsk 1 unitless
γnsl 10 unitless

Table 5.1: The parameters of the walking which are specifically tuned.
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In addition, q̇0 can be determined by

q̇0 = θ̇ s.t. θ̇ = Y −1(θ)

v
0

 ,

where Y (θ) =

dyH1 (θ)

dy2(θ)

 is invertible [1]. The initial condition obtained is

q0 = {0.2707, 0.1569,−0.3525, 0.2056, 0.3370,−0.4675},

q̇0 = {−0.7807,−0.1932, 0.2514,−0.2094, 0.2446,−1.3356}.

Figure 5.1 and 5.2 show the angles of each output and the torques on each joint,

Figure 5.3 shows that the outputs are constrained inside the boundaries we designed

via the CBF constraints, and Figure 5.5 shows the gait tiles for 1-step walking;

importantly, the actual outputs do not converge to the desired outputs by design,

i.e., the use of control barrier functions prevent exact convergence since they enforce

physical constraints that dominate the control law. Yet a stable walking gait is still

achieved, as evidenced by Figure 5.4 showing the phase plot for 20 steps implies

that the walking converges to a limit cycle. The stability can be determined by the

Poincare map as well, and the maximum value of eigenvalue is 0.4432 (and hence

smaller than 1) indicating stability. It is noted that the torque bounds cannot be

added into the QP, since the whole combined constraints are coupled and too strict.

On the other words, if torque bounds are added, some constraints will be violated

and the solution will be infeasible. Hence, to achieve the physical limitation of the

torques from motors, we have to tune the parameters from the QP to get both the

reasonable walking gait and torques.
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Figure 5.1: Desired (dot lines) and actual (solid lines) outputs during stable periodic
walking.
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Figure 5.2: Torques on each joint during stable periodic walking.
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Figure 5.3: Outputs constrained onside the boundaries we desired.
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condition away from the fixed point; convergence to a stable periodic orbit can be
seen.

50



F
ig

u
re

5.
5:

G
ai

t
ti

le
s

fo
r

on
e

st
ep

of
a

st
ab

le
w

al
k
in

g
ga

it
.

51



6. CONCLUSION

This thesis presented a novel method for constructing control barrier functions

through a backstepping inspired approach. In particular, we began by introducing

a type of control barrier function that gives the maximum control authority (by

allowing B to grow aware from the boundary of the set C); this allowed for the

unification of safety constraints and control objectives through CLF-CBF based QPs.

Yet the existence of control barrier functions of this form are not guaranteed to exist,

i.e., there may not be control inputs that satisfied the required derivative conditions

on the CBF. This motivated the main result of this thesis: formal guarantees on the

existence of CBFs under assumptions on the relative degree of the function defining C.

To demonstrate the usefulness of these results, they were applied to a simple nonlinear

and system bipedal robotic walking –which is the main objective of this research.

Physical constraints that the robot must satisfy while locomoting were encoded as

CBFs and combined with control objectives and torque/force constraints through a

single QP based control law. The end result was stable walking in simulation.
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