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ABSTRACT 

 

 

Meiotic silencing refers to the mechanism of silencing genes or 

chromosomes without a homologous counterpart (unpaired) during meiotic 

prophase I. Meiotic silencing has been described in several eukaryotes, 

including humans. Failure to complete meiotic silencing may be detrimental to 

the organism. There is a necessity for understanding the regulation of the 

process. Neurospora is a powerful model system to study gene silencing 

phenomena. Numerous genes have been determined to be involved in meiotic 

silencing in Neurospora; however, very little is known about the molecular 

mechanisms underlying the process. To understand the regulation of meiotic 

silencing, it is required to combine different approaches such as genetics, 

proteomics and biochemical analyses. 

There is a need for introducing biochemical approaches to the study of 

meiotic silencing and other processes occurring during sexual development in N. 

crassa. However, protein extraction from sexual tissue is challenging due to the 

mechanical difficulties associated with disruption of sexual structure. I 

standardized a strategy that optimizes protein extraction from sexual tissue. 

Using this strategy, I studied protein-protein interactions among components of 

the meiotic silencing machinery and determine the proteome of sexual 

development. 
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I identified new protein interactions during meiotic silencing in N. crassa, 

and established protein-binding partners for the suppressor of meiotic silencing 

SMS-5. These interacting partners, PAF400 and Pianissimo represent new 

molecular components involved in the nuclear initial stage of the meiotic 

silencing mechanism. Interactions between SMS-5, PAF400, and Pianissimo 

may represent the connection between chromatin remodeling, DNA repair, 

signaling transduction pathways and meiotic silencing. 

I describe the experiments and data analyses used to develop a 

comprehensive proteomics data set and a functional catalogue for N. crassa 

sexual development. I used a global proteomics approach and comparative 

protein functional analysis to investigate the potential molecular differences 

between two stages of sexual development in filamentous fungi. The data show 

that secondary metabolites biosynthesis and cellulase activity are required in 

fruiting body maturation. N. crassa functional catalogue of sexual development 

proteins will serve as a reference tool for further studies related to sexual 

development not only in N. crassa, but also in other filamentous ascomycetes. 
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CHAPTER I 

INTRODUCTION 

 

From a biological perspective, the purpose for life of an organism is to 

reproduce and pass its genes on to the next generation, assuring the 

propagation of the species. There are two general mechanisms for reproduction: 

asexual and sexual. Sexual reproduction introduces genetic variation, which 

facilitates the adaptation to the constant changes in the environment. It is also a 

mechanism for purging deleterious mutations from the species. Therefore, 

sexual reproduction offers evolutionary and selective advantages over asexual 

reproduction (HORANDL 2009).  

Sexual reproduction involves the fusion of two gametes, from different 

individuals, to form a zygote, through a process known as fertilization. Gametes, 

or sex cells, contain only one set of chromosomes (haploid cells) while the 

zygote, which receives one set from each parent, contains two sets of 

chromosomes (diploid cell). These complementary chromosomes are called 

homologous chromosomes. Therefore, sexual reproduction in eukaryotes, such 

as animals, plants and fungi relies on the precise reduction of chromosome 

number during gamete formation. Haploid gametes are produced by a special 

type of cell division called meiosis. 
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MEIOSIS 

 Meiosis was first described by Edouard van Beneden in 1883. He 

discovered that germs cells contained half the number of chromosomes as 

regular cells by performing cytological studies on female worms (HAMOIR 1992). 

Meiosis is a double-division cycle preceded by only one DNA replication event. 

Its primary purpose is to generate haploid daughter cells—gametes in animals 

and plants or spores in fungi—from a diploid progenitor. This reduction in the 

number of chromosomes is essential for ensuring continuity of the species 

(PETRONCZKI et al. 2003). Errors in meiosis result in the production of aneuploid 

gametes (i.e. gametes with an incorrect number of chromosomes), and 

abnormal chromosome number can cause defective or inviable progeny (PAGE 

and HAWLEY 2003). 

The transition from diploid to haploid is achieved by two consecutive 

meiotic divisions. In meiosis I, or reductional division, homologous chromosomes 

separate. During meiosis II, or equational division, sister chromatids—identical 

DNA strands product of chromosome replication––separate. Therefore, four 

daughter haploid cells are formed from a unique parental diploid cell 

(PETRONCZKI et al. 2003).  

Another important characteristic of meiosis is the genetic diversity that 

results from genetic recombination between DNA molecules of homologous 

chromosomes, called homologous recombination (HR). HR not only provides a 

potent source of genetic variation, which is crucial for speeding the evolution of 
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eukaryotic genomes, but also plays an important mechanical role by ensuring 

proper chromosome segregation at the first meiotic division. This process occurs 

in a very early stage of meiosis I known as prophase I (COHEN et al. 2006). 

 

Prophase I  

Prophase of the first meiotic division is the longest phase of meiosis. 

Many crucial molecular and cellular events, such as homolog pairing, synapsis 

and meiotic recombination, take place to ensure that homologous chromosomes 

accurately segregate (BAUDAT et al. 2013).  

Prophase I is divided into five stages (Figure 1.1): 1) Leptotene, at this 

stage individual chromosomes, each consisting of two sister chromatids, change 

from diffuse chromatin to a condense stage, becoming visible strands within the 

nucleus. In most organisms, a programmed induction of DNA double-strand 

breaks (DSBs) is observed. These DSBs initiate pairing of homologs and meiotic 

recombination (SUN et al. 1989; MAHADEVAIAH et al. 2001). Axial elements of the 

synaptonemal complex (SC)—a protein complex that connects the homologous 

chromosomes—are assembled during the transition from leptotene to zygotene 

(PAGE and HAWLEY 2004). 2) Zygotene, at this stage homologous chromosome 

pairs line up and begin synapsis, forming bivalents, with the assistance of the 

central element of the SC (HARPER et al. 2004). Telomere clustering occurs at 

the nuclear envelope, called the bouquet configuration; the bouquet promotes 

initial homolog interactions and may be involved in pairing (ZICKLER and 
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KLECKNER 1998; YAMAMOTO and HIRAOKA 2001). 3) Pachytene, the longest stage 

of prophase I. At this stage the homologs are synapsed along their entire length, 

forming mature bivalents. Non-sister chromatids of the homologous 

chromosomes may exchange segments over regions of homology by HR, 

resulting in crossover events (GUILLON and DE MASSY 2002). 4) Diplotene, at this 

stage elements of SC start to degrade and homologous chromosomes repeal 

each other, but remain connected through to the final stage of prophase I at the 

chiasmata, where the recombination event occurs, (PAGE and HAWLEY 2004). 5) 

Diakinesis. Chromosomes condense further and much of the SC structure is lost 

at this stage. The sites of crossing over entangle together ensuring that 

homologs remain paired through to metaphase I (reviewed in (TSAI and MCKEE 

2011; BAUDAT et al. 2013)). Several studies in different organisms have 

contributed to understanding the meiotic recombination process and the role it 

plays in holding homologous chromosomes together through to first meiotic 

division (KEENEY et al. 1997; DERNBURG et al. 1998; MCKIM et al. 1998; DAVIS 

and SMITH 2001; MAHADEVAIAH et al. 2001; PHADNIS et al. 2011; BAUDAT et al. 

2013). However, less is known about the mechanism by which homologs 

recognize each other and synapse (YAMAMOTO and HIRAOKA 2001; TSAI and 

MCKEE 2011). 
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Figure 1.1 An overview of prophase I. During prophase of meiosis I pairing, 
synapsis and recombination between homologous chromosomes (HC) occur. 
Interactions between one pair of HC (red and blue) are schematically 
represented. Sister chromatids, which are products of DNA replication, are 
shown as different shades of red or blue. (a) During the leptotene stage 
chromosomes begin to condense (upper box), HC pair up, DNA double-strand 
breaks (DSBs) form (orange circles) and each pair of sister chromatids begins to 
assemble axial elements (AE) (green) of the synaptonemal complex (SC). (b) By 
the zygotene stage chromosomes are completely condensed and cluster at the 
nuclear envelope through the telomeres forming a bouquet configuration. HC 
begin synapsis via the central element (gray) to form a SC. (c) The beginning of 
the pachytene stage is marked by the completion of synapsis and formation of a 
mature bivalent. DSBs are repaired, with some of the breaks resolving into 
crossover events. (d) SC is disassembled during diplotene. Chiasmata resulting 
from the crossover events are observed during diplotene and diakinesis stages 
and play an important role by holding together HC through to anaphase I, when 
HC migrate to opposite cellular poles Figure adapted from (Burgoyne et al. 
2009). 
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Recombination Events 

Recombination is initiated by the formation of DSBs, followed by DNA 

damage repair and DSB processing. DSBs are resolved into homologous 

recombination (crossover) or non-homologous recombination end-joining 

(NHEJ). The evolutionary conserved topoisomerase, Spo11 in yeast and its 

homolog in other organisms, is responsible for the formation of meiotic DSBs 

(KEENEY et al. 1997; KEENEY 2001). In most eukaryotes, failure to induce DSBs 

is associated with meiotic recombination impairment, that may cause sterility 

(PAGE and HAWLEY 2004). However, in worms and flies, DSBs are not required 

for synapsis, indicating the existence of more than one mechanism to achieve 

recombination (DERNBURG et al. 1998; MCKIM et al. 1998).  

Even though DSBs are essential for recombination, they have the 

potential to be deleterious for the cell. Therefore, they must be repaired before 

normal cell division proceeds. Initiation of synapsis facilitates DSB repair during 

zygotene and pachytene stages by allowing ccess to a DNA repair template in 

the homologous chromosomes (Figure 1.2) (PETRONCZKI et al. 2003). The 

majority of DSBs are resolved into non-homologous recombination. The 

remaining DSBs are resolved into crossover events forming chiasmata 

structures that hold homologous chromosomes together after recombination is 

completed and chromosomes are desynapsed (BORNER et al. 2004).  
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Figure 1.2 A simplified model of recombination events during meiosis. The 
conserved topoisomerase SPO11 is responsible for the formation of DNA 
double-strand breaks (DSBs), which are essential for initiation of meiotic 
recombination. DSBs stimulate phosphorylation of H2AX by ATM. The MRN 
complex (MRE11, RAD50, and NBS1) is required for DNA repair. After DSBs 
are formed in one of the homologs, MRN complex is recruited and the resulting 
breaks are resected from 5 ’to 3’, creating a free 3’ single stranded DNA 
(ssDNA) end. RAD51 binds the ssDNA end and facilitates invasion of the intact 
homologous duplex where high sequence identity is found. DNA synthesis starts 
from the 3’ end using the invaded DNA molecule as a template. Holliday junction 
structures are formed and resolved into crossover or non-crossover events. 
Figured adapted from (Phadnis et al. 2011) 
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Like a positive feedback mechanism, correct initial processing of DSBs 

ensures complete synapsis between homologs. Failure to process the breaks 

results in partial synapsis or unsynapsed chromosome regions that retain 

markers of unrepaired DSBs during zygotene, resulting in early meiotic arrest 

(MARCON and MOENS 2005).  

 

Pachytene Checkpoint 

Errors in chromosome synapsis are associated with sterility. This 

association has been attributed to the presence of surveillance mechanisms or 

checkpoints that detect problems at the different stages and promote the 

elimination of defective cells (COHEN et al. 2006). Even though sterility is the 

major consequence of asynapsis, these checkpoints are beneficial because they 

reduce the frequency of aneuploid gametes which generate chromosomally 

unbalanced zygotes (BURGOYNE et al. 2009). 

Asynapsis interferes with the process of repairing DSBs, affecting 

genome integrity. Therefore, it is crucial that cell division does not proceed in the 

presence of this DNA damage. In many organisms, including budding yeast 

(ROEDER and BAILIS 2000), flies (GHABRIAL and SCHUPBACH 1999), worms 

(BHALLA and DERNBURG 2005) and mammals (ASHLEY et al. 2004), if a threshold 

of unrepaired DSBs is detected after pachytene stage, a pachytene checkpoint 

is activated and meiotic cells arrest or undergo programmed cell death 

(HOCHWAGEN and AMON 2006). Studies in the budding yeast Saccharomyces 
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cerevisiae have identified elements of the pachytene checkpoint machinery. 

Some of these elements are meioitic-specific proteins, and others are factors 

that play roles in DNA damage signaling in mitotic cells that have been 

specifically adapted to meiosis (ROEDER and BAILIS 2000). Homologs for most of 

these proteins have been found, including in humans, and these are also 

involved in the meiosis checkpoint. This observation underscores the 

conservation of this mechanism  (MACQUEEN and HOCHWAGEN 2011). A number 

of these factors are recruited to the DSBs at zygotene and are retained into 

pachytene when chromosome regions fail to synapse. A common denominator 

of pachytene checkpoint regulation between different organisms is the activation 

of ATM/ATR. The checkpoint kinases ATM and ATR are key factors for signaling 

the presence of unrepaired DSBs. Once activated, they phosphorylate a large 

set of substrates to activate the DNA damage response (MACQUEEN and 

HOCHWAGEN 2011). After that, the DNA damage response protein BRCA1 and 

the phosphorylated form of the variant nucleosomal histone H2AX (H2AX) are 

responsible for signal amplification. During the transition between zygotene and 

pachytene stages, BRCA1 and ATR proteins accumulate and spread along the 

unsynaped chromosomes (BURGOYNE et al. 2009). 

In addition to the accumulation of unrepaired DSBs and checkpoint 

activation, unsynapsed chromosomal regions undergo a process of 

transcriptional repression (BAARENDS et al. 2005; TURNER et al. 2005). Asynapsis 

triggers the activation of meiotic silencing mechanisms, which are responsible 
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for the repression of gene expression. Therefore, there is a direct link between 

asynapsis and meiotic silencing (BURGOYNE et al. 2009). It has been proposed 

that transcriptional inactivation by meiotic silencing may contribute to the arrest 

of meiotic division at the pachytene stage by affecting genes necessary for 

meiotic progression (TURNER et al. 2005).  

 

MEIOTIC SILENCING MECHANISMS 

During meiosis, homologous chromosomes sense each other and pair, 

both critical steps that assure the correct chromosome alignment for genetic 

recombination. Meiotic silencing refers to the mechanism of transcriptional or 

post-transcriptional silencing of genes, genetic regions, or chromosomes without 

a homologous counterpart (unpaired) during meiotic prophase I.  

In higher eukaryotes, meiotic silencing was initially reported as an 

exclusive phenomenon occurring only in the unpaired sex chromosomes in 

organisms with heteromorphic sex chromosomes. This phenomenon was called 

Meiotic Sex Chromosome Inactivation (MSCI) (MCKEE and HANDEL 1993; 

TURNER 2007). Some of the organisms involved are XO male nematodes (e.g., 

Caenorhabditis elegans) (BEAN et al. 2004), XY male mammals (e.g., Mus 

musculus) (HANDEL 2004), and ZW female birds (e.g., Gallus gallus) 

(SCHOENMAKERS et al. 2009). Afterwards, it was found that any unpaired 

chromosome region, even in autosomal chromosomes, is subjected to silencing 

during meiosis by a phenomenon named Meiotic Silencing of Unsynapsed 
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Chromatin (MSUC) (SCHIMENTI 2005; TURNER et al. 2005). Therefore, it was 

hypothesized that MSCI evolved as a consequence of MSUC, an evolutionarily 

conserved pathway and a more general meiotic silencing mechanism (TURNER 

et al. 2006).  

MSUC resembles a silencing phenomenon that was originally described 

in filamentous fungi, in which unpaired chromosome regions––products of 

ectopic insertions or novel sequences in the genome––are detected by a 

mechanism known as meiotic trans-sensing (ARAMAYO and METZENBERG 1996). 

Then, the unpaired regions are post-transcriptionally silenced by the process 

called Meiotic Silencing by Unpaired DNA (MSUD) (SHIU et al. 2001). The 

current hypothesis proposes that MSUD is an ancient genome defense 

mechanism for silencing foreign sequences (e.g., transposons) that has evolved 

and adapted to other biological roles like MSUC and MSCI in order to ensure 

proper chromosome segregation during meiosis (KELLY and ARAMAYO 2007). 

 

MEIOTIC SEX CHROMOSOME INACTIVATION 

Meiotic Sex Chromosome Inactivation (MSCI) is a repressive mechanism 

that transcriptionally silences the heteromorphic sex chromosomes (e.g. X and 

Y). In the case of mammals, sex chromosomes are compartmentalized into a 

heterochromatic structure called the XY body (MONESI 1965) during the meiotic 

phase of gametogenesis (HANDEL 2004). Because of the heteromorphic nature 

of sex chromosomes, chromosome pairing during meiosis occurs either partially 
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or not at all. The X and Y chromosomes of eutherian mammals pair through their 

small pseudo-autosomal regions (PAR); but in the case of marsupial mammals, 

sex chromosomes lack significant homology and come together without 

synapsis (HANDEL 2004; NAMEKAWA et al. 2007). Further experiments in mice 

and nematodes have shown that silencing of sex chromosomes is avoided when 

either the X or Y chromosome is provided with a homologous partner, forming a 

synapsed bivalent that is actively transcribed (TURNER et al. 2006). This data 

demonstrated that MSCI is triggered by the lack of pairing. 

Originally, MSCI was thought of as a transient silencing process active 

only during meiosis. However, it has been demonstrated that the repressive 

stage is maintained in some extent after meiosis, imposing a heritable chromatin 

imprint on the X chromosome (NAMEKAWA et al. 2006). 

MSCI is not exclusive to mammals; its presence has been demonstrated 

in metazoans as diverse as the grasshopper (CABRERO et al. 2007), nematode 

worm (BEAN et al. 2004), and birds (SCHOENMAKERS et al. 2009). Failure to 

inactivate partnerless regions of sex chromosomes results in elevated germline 

apoptosis in both worms and mice (TURNER et al. 2006), and may contribute to 

male infertility in humans (ROYO et al. 2010), suggesting that MSCI is required 

for efficient meiotic progression (CHECCHI and ENGEBRECHT 2011).  

Several hypotheses have been proposed to explain the biological function 

of this silencing mechanism. MSCI could be a meiotic adaptation to prevent 

deleterious recombination events in non-homologous regions of the X and Y 
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chromosomes (MCKEE and HANDEL 1993; INAGAKI et al. 2010). Also, it has been 

proposed that MSCI is a genomic defense mechanism against selfish genetic 

elements (KELLY and ARAMAYO 2007), or the consequence of sexual 

antagonism, in which genes that enhance reproductive fitness in one sex, 

reduce it in the other (MEIKLEJOHN and TAO 2010).  

Studies of MSCI during mouse spermatogenesis have revealed some of 

the molecular events that lead to MSCI (Figure 1.3). Chromatin remodeling 

events, such as replacement of core histones with histone variants (H2A.1) and 

de novo incorporation of histone variants (H3.3) occur in the nucleosomes 

placed within the XY body. Accumulation of dimethylated and trimethylated 

histone H3 (H3K9me2/3); and deacetylation of histones H3 and H4 are also 

hallmarks of MSCI. They all together, physically exclude active RNA polymerase 

II from sex chromosomes (VAN DER HEIJDEN et al. 2007). Additionally, enrichment 

of phosphorylated histone H2AX (H2AX) and ubiquitinated histone H2A 

(UbH2A) have been observed during MSCI in mouse (CELESTE et al. 2002). 

Further work demonstrated that phosphorylation of H2AX by the sensor kinase 

ATR occurs after the tumor suppressor protein BRCA1 recruits ATR to the XY 

body (TURNER et al. 2004). 
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Figure 1.3 Representation of MSCI events during spermatogenesis. (A) During leptotene, widespread ATM-
dependent phosphorylation of H2AX occurs in response to meiotic DSBs formation. Axial elements (AE) begin to 
assemble and associate with BRCA1 and ATR proteins. (B) During zygotene, BRCA1, ATR and γH2AX remain as 
foci on the AEs of chromosomes (sexual or autosomal) that have not yet synapsed and disappear from synapsed 
chromosome regions. (C) During zygotene-pachytene transition, complete autosomal synapsis is observed and 
recombination-related γH2AX disappears. BRCA1 and ATR are enriched on the AEs of sexual chromosomes (XY). 
DNA is arranged in loops (zoom). (D) At early pachytene, ATR dissociates from the AE and re-localizes along DNA 
loops, where it phosphorylates H2AX, resulting in MSCI and the formation of the sex body. (E) During mid-to-late 
pachytene, other histone modifications, including H3K9me2 and uH2A ensure the maintenance of MSCI. (F) During 
the transition from diplotene-to-diakinesis, BRCA1, ATR and γH2AX are lost from the X and Y chromosomes and 
the sex body migrates to the centre of the nucleus. The other histones modifications are maintained ensuring MSCI 
proceeds throughout the meiotic divisions and continue in the spermatids. This process is known as post-meiotic 
sex chromosome repression (PSCR) (Turner et al. 2006). Vertical lines show transcriptional activity of the X and Y 
chromosomes at different stages; high gene expression (green) and repress transcription (red). Figure adapted 
from (Turner 2007). 
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Figure 1.3 Representation of MSCI events during spermatogenesis 
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Although establishment of repressive chromatin structure and 

transcriptional silencing are common features of MSCI in mammals, worms and 

birds, each organism has its own molecular machinery to accomplish this feat. 

Accumulation of UbH2A and H2AX in chicken is transient. Histone variant H3.3 

has not been observed during MSCI in chicken and is depleted from the X 

chromosome during worm spermatogenesis There is no worm homolog of 

H2AX, and the worm homolog of BRCA1 is not required for MSCI (CHECCHI and 

ENGEBRECHT 2011). In C. elegans, the single X chromosome of male meiotic 

cells is enriched in dimethylation of histone H3 (H3K9me2), a repressive histone 

mark (BEAN et al. 2004). Therefore, MSCI in these organisms appears to be 

solely dependent upon a condensed chromatin architecture that blocks 

transcriptional machinery recruitment. Another difference observed among 

organisms is the timing relative to chromosome synapsis. In eutherian 

mammals, failure of synapsis during prophase pachytene activates MSCI. 

However, in marsupial mammals MSCI occurs in early pachytene before co-

localization of X and Y (NAMEKAWA and LEE 2009). The same is observed in 

chickens in which meiotic silencing precedes synapsis of Z and W, suggesting 

that a homology search mechanism––rather than asynapsis itself–– might be the 

trigger for MSCI (SCHOENMAKERS et al. 2009).  
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MEIOTIC SILENCING OF UNSYNAPSED CHROMATIN 

Meiotic Silencing of Unsynapsed Chromatin (MSUC) is the process 

responsible for the transcriptional silencing of unsynapsed autosomal 

chromosome region, during meiotic prophase in male and female mammals 

(SCHIMENTI 2005). In mammals, asynapsis of the X and Y chromosomes, and 

their silencing through MSCI, is essential for spermatogenesis. However, non-

synapsis of autosome regions increases the risk of meiotic segregation errors–– 

aneuploidy––and may be detrimental for meiotic progression causing 

gametogenic failure and sterility (NAUMOVA et al. 2013). Studies of MSUC during 

male meiosis showed that transcriptional silencing of the unpaired autosomal 

region precedes and affects silencing of sex chromosomes. It has been 

proposed that MSUC interferes with the silencing of sex chromosomes, which 

may be the cause of sterility (HOMOLKA et al. 2012). 

There are some mechanistic parallels between MSUC and MSCI. As 

observed in MSCI during male spermatogenesis, BRCA1 protein senses and 

localizes to unsynapsed chromosome regions, in this case to the autosome, and 

is responsible for recruiting the kinase ATR followed by the phosphorylation of 

histone H2AX (TURNER et al. 2005). Localization of these three markers and late 

accumulation of ubiquitinated histone H2A to the unsynapsed region are 

causally related to transcriptional repression (BAARENDS et al. 2005). In the case 

of unsynapsed autosomes in C. elegans, enrichment in H3K9me2 was also 

observed. This modification is the same repressive histone mark found during 
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sex chromosome inactivation (BEAN et al. 2004). In mammals, MSUC activation 

depends on the presence of unrepaired meiotic DSBs. Unrepaired DSBs 

accumulate on the unsynapsed chromosome regions and are then detected by 

BCRA1 and ATR proteins, key players in the DSB checkpoint (MAHADEVAIAH et 

al. 2008; SCHOENMAKERS et al. 2008).  

Additional work on mice demonstrated that meiotic silencing also 

occurred in the single X chromosome of the XO female mouse, where the lone X 

was covered by BRCA1, ATR and γH2AX, and was transcriptionally quiescent 

during pachytene-stage of meiotic prophase (TURNER et al. 2005). Interestingly, 

it was demonstrated that in these females, heterologous synapsis and escape 

from silencing occur. Turner et al. showed that homologous synapsis is not 

required for transcription. Transcriptional repression or chromatin modifications 

were absent in XO oocytes where the lone X looped back on itself to self-

synapse non-homologously (TURNER et al. 2005). It is not clear whether the lack 

of MSUC activation allows heterologous synapsis, or whether heterologous 

synapsis prevent MSUC activation. 

All these observations led to the conclusion that silencing of unsynapsed 

chromosome regions is a conserved mechanism in mammals. Therefore, it is 

proposed that MSUC is the general meiotic silencing mechanism and that it 

evolved into MSCI, a more specialized process, responsible for silencing sex 

chromosomes during normal male meiosis. It has been hypothesized that MSUC 

plays a role similar to a meiotic checkpoint and contributes to meiotic arrest 
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through the silencing of genes that are crucial to meiosis, and, in doing so, may 

protect against aneuploidy in subsequent generations (TURNER 2007).  

This general silencing mechanism resembles a phenomenon described in 

Neurospora crassa in 2001, MSUD, a mechanism that requires components of 

the RNA interference (RNAi) machinery (SHIU et al. 2001). A link with RNA-

mediated silencing has also been hypothesized for MSUC/MSCI. Costa and 

colleagues (COSTA et al. 2006) showed that the MAEL protein (mammalian 

MAELSTROME) was associated not only with XY body, but also with 

unsynapsed autosomes and interacted with proteins involved in gene silencing, 

i.e. SNF5 (RAYMAN et al. 2002) and SIN3B (PAN et al. 2005). MAEL is a 

component of the chromatoid body, a perinuclear germline granule where RNA 

and RNA processing proteins, including proteins involved in microRNA (miRNA) 

pathway, accumulate (COSTA et al. 2006). Although the exact role of MAEL has 

not been determined, it is essential for meiotic chromosome synapsis (SOPER et 

al. 2008). Similar to Drosophila Maelstrome (FINDLEY et al. 2003), MAEL shuttles 

between the nucleus (unsynapsed chromosomes) and the chromatoid body, 

probably transporting miRNAs, thus suggesting a link between RNAi and MSUC. 

 

MEIOTIC SILENCING BY UNPAIRED DNA 

Meiotic Silencing by Unpaired DNA (MSUD) was originally described in 

the filamentous fungus N. crassa (SHIU et al. 2001). MSUD comprises two 

stages: meiotic trans-sensing, the process responsible for detecting unpaired 
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DNA (ARAMAYO and METZENBERG 1996) and meiotic silencing, the actual 

destruction of the transcripts expressed from the unpaired region (SHIU et al. 

2001). Meiotic silencing is activated during N. crassa sexual development after 

karyogamy, when unpaired DNA is detected. In Neurospora, meiosis occurs 

inside the zygote and is essential for production of sexual ascospores. The 

zygote is formed after two haploid nuclei from individuals of opposite mating type 

are fused. During meiosis, unpaired DNA is silenced, but in contrast to MSUC, 

all DNA sequences homologous to the unpaired region are also silenced, even if 

those sequences are synapsed. Because detection of odd DNA regions 

(unpairedness) triggers this silencing mechanism and not only unsynapsis, the 

distinction between asynapsis and unpairing was highlighted in the name of the 

phenomenon (SHIU et al. 2001). The participation of core components of the 

RNA-mediated silencing mechanism, RNA interference (RNAi), suggests that 

gene silencing in MSUD occurs at the post-transcriptional level, after mRNA 

molecules are synthesized and exported from the nucleus (ARAMAYO and 

SELKER 2013). Post-transcriptional silencing in MSUD differs from the 

transcriptional silencing that occurs in MSUC. 

Understanding meiotic trans-sensing and meiotic silencing is not only 

important from the molecular perspective of genome defense mechanisms, but 

also from an evolutionary point of view. It was proposed that MSUD works as a 

meiosis-specific defense mechanism that protects the genome from infectious 

genetic parasites (e.g. transposable elements (TE)). Therefore, MSUD assures 
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that the integrity of the genome is maintained during sexual reproduction by 

preventing foreign DNA from being expressed (KELLY 2006; SHIU et al. 2006; 

KELLY and ARAMAYO 2007). Another interesting hypothesis is that meiotic 

silencing could play a major role in reproductive isolation and speciation. 

Evolving organisms could accumulate mutations in regions that are not required 

for activation of meiotic silencing or required for normal meiosis progression, 

without affecting the interbreeding ability. On the contrary, if genes whose 

products are essential for meiosis are rearranged, that would activate meiotic 

silencing and the evolving organism becomes reproductively isolated (LEE et al. 

2004). According to this idea, interspecific crosses within the genus Neurospora 

become more fertile if the N. crassa parent carries a mutation in one of the 

suppressors of meiotic silencing (SHIU et al. 2001) (S. Gajjar and R. Aramayo, 

unpublished data). 

 

Neurospora Biology 

Neurospora crassa is the best understood filamentous fungus and is one 

of the first eukaryotic model systems. Important features make this fungus 

attractive for a variety of genetic, biochemical, subcellular and developmental 

studies. N. crassa grows fast and propagates easily on defined growth media, it 

has a moderate complexity compared with other eukaryotes, a complete 

genome sequence is available, and the fungal community has access to a 
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knockout mutant collection (DAVIS and PERKINS 2002; GALAGAN et al. 2003; 

BORKOVICH et al. 2004; COLOT et al. 2006). 

Depending on environmental conditions, N. crassa undergoes asexual or 

sexual development. Under conditions that favor asexual or vegetative phase, a 

haploid asexual spore (conidium) germinates, forming branch filaments called 

hyphae. The hyphal system spreads out to form a mycelium, which then 

produces aerial hyphae or conidiophores where new conidia are formed. Each 

conidium can start new vegetative growth or fertilize strains of the opposite 

mating type to start sexual development (ARAMAYO and SELKER 2013).  

N. crassa possesses two mating types referred to as “A” and “a”, both of 

which can act either as female or male cells during sexual development. 

Detection of nutrient limitation activates the sexual phase by inducing the 

formation of female structures (protoperithecia). When a specialized hyphal 

structure (trichogyne) comes out from a protoperithecium of one mating type and 

finds a conidium from the opposite mating type, fertilization occurs and sexual 

development proceeds. Plasmogamy initiates the development of perithecia or 

fruiting bodies, which is the sexual apparatus. After plasmogamy, the nuclei from 

both mating types coexist in heterokaryotic tissue. Multiple mitotic divisions 

occur until the nuclei are sorted into dikaryotic tissue in which each cell has one 

nucleus from each mating type. The crozier––a hook-shaped cell precursor of 

the ascus cell––is formed and the two nuclei get into proximity and undergo 

several mitotic divisions. A coordinated mitosis and septum formation yield two 
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uninucleated cells and one ascus mother cell. Inside the ascus, two haploid 

nuclei from opposite mating types fuse together, forming a transient diploid 

zygote, where meiotic trans-sensing takes place (BORKOVICH et al. 2004). After 

karyogamy two meiotic and one post-meiotic mitotic divisions occur. As a result, 

8 individual haploid ascospores are formed inside each ascus arrayed in an 

order that reflects their lineage (RAJU 1980; RAJU and LESLIE 1992). Once 

activated, MSUD is maintained through sexual development until ascospores 

are compartmentalized. Up to 200 asci are developed inside each perithecium. 

Once mature, the ascospores are ejected from the ascus finalizing the sexual 

phase (Figure 1.4) (ARAMAYO et al. 1996). Meiotic segregation and 

recombination can be studied in Neurospora by analyzing individual asci or 

random spores ejected from numerous asci (ARAMAYO and SELKER 2013). Gene 

products responsible for ascospores phenotypes such as pigmentation (dark 

color versus white) or shape (spindle versus round) can be used as reporters of 

chromosome segregation and gene regulation during sexual development (Raju 

2009). 
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Figure 1.4 Life cycle of N. crassa. Half of developed ascospores are mating type A (red) and half are mating type a 
(blue). Sexual spores (ascospores) and vegetative spores (conidia) germinate and build mycelia, from which 
conidiophores rise up, forming conidia. Under low nitrogen conditions mycellium from either mating type form the 
female structure (protoperithecium). Once the protoperithecium is fertilized by the male structure (conidia) from the 
opposite mating type, the perithecium or fruiting body is formed. After fertilization, ascogenous hyphae with nuclei 
from both mating types undergo karyogamy, meiosis I, meiosis II and a post-meiotic mitosis division. As a result, 
eight individual ascospores are formed inside each ascus. More than 200 asci are held in each perithecium. The 
time period where meiotic silencing mechanism is functional is shown. Figure adapted from (ARAMAYO and SELKER 
2013). 
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Also, N. crassa is a perfect eukaryotic model system for RNAi studies. In 

addition to MSUD, another RNAi mechanism is induced by repetitive transgenic 

sequences during the vegetative cycle called quelling (ROMANO and MACINO 

1992). This demonstrates the diversity of RNAi phenomena in this organism. 

The identification of components in both, MSUD and quelling mechanisms have 

contributed to the general understanding of RNAi pathways not only in 

filamentous fungi but also in metazoans.  

In MSUD, nuclear and perinuclear stages are necessary for meiotic 

silencing completion. At the beginning of meiosis, unpaired DNA is detected by 

meiotic trans-sensing (ARAMAYO and METZENBERG 1996). This step is 

indispensable for activation of the perinuclear phase where the actual 

destruction of the transcripts expressed from the unpaired region (SHIU et al. 

2001). 

 

Meiotic trans-sensing 

In N. crassa, genes sense each other during meiotic chromosomal pairing 

through the meiotic trans-sensing mechanism. Here, unpaired DNA regions are 

detected and a silencing signal (e.g., aberrant RNA (aRNA)) is synthesized. 

aRNA is a diffusible signal that activates meiotic silencing machinery and 

triggers gene silencing during meiosis. In 1996 Aramayo and Metzenberg 

demonstrated that deletion mutants of Asm-1 (Ascospore maturation-1) gene–– 

whose product is required for the formation of female structures and ascospore 
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maturation––are ascus-dominant. Asm-1∆ deletion strains carrying ectopic DNA 

copies of this gene rescued the normal phenotype in vegetative but not in sexual 

phase. Opposite to that, strains carrying frameshift alleles (asm-1fs) had the 

same vegetative defects as Asm-1∆ strains but had different effects on sexual 

development. Hence, several gene replacement experiments demonstrated that 

for proper expression of the gene, asm-1+ must be paired to its allelic 

counterpart before meiotic division occurs (Figure 1.5) (ARAMAYO and 

METZENBERG 1996; ARAMAYO and SELKER 2013). 

The proposed hypothesis is that meiotic trans-sensing is the mechanism 

that detects unpaired DNA in the zygotic cell immediately after karyogamy, but 

before the first meiotic division begins. If an unpaired chromosomal region is 

detected via trans-sensing, meiotic silencing is activated and a sequence-

specific signal, such as aRNA, is produced and maintained throughout the post-

meiotic mitotic division, ensuring the silencing of unpaired genes and all genes 

sharing homology in the genome (ARAMAYO et al. 1996; SHIU et al. 2001). If the 

unpaired DNA encodes a protein that is required for normal meiosis progression 

and/or ascospore development, MSUD will arrest the sexual cycle at the stage 

where the gene product of the silenced gene has a function (SHIU and 

METZENBERG 2002).  
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Figure 1.5 Discovery of meiotic trans-sensing. Genetic experiments are 
illustrated. Ascospore maturation-1 (Asm-1) gene was used as reporter gene. 
Genotype of the haploid parents is shown for each cross. Red, chromosomes 
from mating type A; blue, chromosomes from mating type a. Violet boxes 
represent the diploid cells. Asci phenotypes are shown. Black represents mature 
(viable) ascospores; white represents immature (inviable) ascospores. Key 
genetic experiments illustrate the characterization of meiotic trans-sensing and 
meiotic silencing. (A) Wild-type cross. (B) Crosses between asm-1+ strain and 
asm-1fs strain produced 4:4 segregation of viable and inviable ascospores, 
suggesting that asm-1fs is recessive. (C) Interestingly, crosses between deletion 
mutant (Asm-1∆) and wild-type (asm-1+) result in nearly all the ascopores being 
inviable, including those carrying the wild-type allele. Therefore, Asm-1∆ allele 
was ascus-dominant, contrasting with the recessive behavior in vegetative cells. 
Haplo-insufficiency could be the cause of the observed dominance. (D) For 
testing this possibility, the authors evaluated crosses between wild-type strain 
with deletion strains carrying ectopical functional copies (asm-1+  X Asm-1∆, 
asm-1+ (ectopic)). The functional ectopic copy of the gene failed to rescue the 
spore maturation. It was proposed that an interaction between alleles at 
homologous chromosomal positions was required for normal gene expression. 
(E) The hypothesis was tested by crossing strains which both carried an ectopic 
copy of the gene in an Asm-1∆ background (Asm-1∆, asm-1+ (ectopic) X Asm-1∆, 
asm-1+ (ectopic)). Indeed, the two ectopic alleles localized at the same 
homologous chromosomal position produced normal progeny. (F) Finally, it was 
demonstrated that meiotic silencing results from the presence of unpaired alleles 
rather than from absence of paired ones. For that, crosses between wild-type 
strains with strains carrying an ectopic copy of the gene plus the wild-type allele 
were tested. All ascospores were inviable, indicating that silencing occurred 
Figure adapted from (ARAMAYO and SELKER 2013). 
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Figure 1.5 Discovery of meiotic trans-sensing. 
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Unpaired DNA must fulfill some molecular requirements in order to be 

recognized and silenced: 1) A minimum region of DNA (~700 nucleotides) must 

be unpaired; 2) the length of the unpaired region is proportional to the efficiency 

of silencing; 3) unpaired DNA must have homology to the actual gene transcript; 

4) intergenic regions do not trigger silencing of the reporter gene; and 5) gene 

silencing does not required the presence of promoters in the unpaired region 

(LEE et al. 2004). In addition, the silencing signal produced by unpaired DNA is 

very specific and does not propagate onto adjacent paired regions (KUTIL et al. 

2003). Together, these observations support the idea that MSUD is a post-

transcriptional gene regulation that involves RNA molecules. These observations 

also raise the possibility that unpaired DNA is transcribed by an unconventional 

mechanism, in which promoter elements are not needed (LEE et al. 2004).  

Although meiotic trans-sensing and meiotic silencing are coupled 

processes, they work independently. By studying homeology or partial 

homology, it was demonstrated that DNA methylation affects chromosome 

sensing without having an effect on silencing (PRATT et al. 2004).  

 

Meiotic Silencing 

Components of RNA- interference (RNAi) Mechanism 

Numerous gene products essential for MSUD have been identified using 

forward and reverse genetics; the genes are referred to as suppressors of 

meiotic silencing because mutations in these genes suppress the silencing of 
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unpaired DNA. Some of these suppressors are homologous to proteins that 

participate in regulation of gene expression via RNA interference (RNAi) 

pathways, including post-transcriptional gene silencing processes (PTGS) 

(MELLO and CONTE 2004). These proteins include: RNA dependent RNA 

polymerase (RdRP/SAD-1) (SHIU et al. 2001), Argonaute-like protein (SMS-2) 

(LEE et al. 2003), and Dicer-like protein (DCL-1) (ALEXANDER et al. 2008). These 

RNAi-related proteins are highly conserved and found in a variety of organisms. 

The participation of these three proteins in MSUD suggests that the mechanism 

of silencing unpaired DNA may involve the production of small interfering RNAs. 

Therefore, a link between MSUD and RNAi was established and it was proposed 

that MSUD is a PTGS mechanism (LEE et al. 2004).  

In N. crassa, RdRP is encoded by the Sad-1 (Suppressor of ascus 

dominance-1) gene. Mutations in Sad-1 (Sad-1∆) suppress “ascus-dominant” 

phenotypes, like the one observed in crosses with heterozygous Asm-1∆ 

deletion mutant (Figure 1.5 (C)). It was proposed that mutations in this gene 

suppress meiotic silencing and subsequently ascus-dominance (SHIU et al. 

2001). SAD-1 homologous proteins in other organisms are required for double-

strand RNA (dsRNA) synthesis and have been implicated in PTGS, in which 

mRNA of targeted genes are degraded (COGONI and MACINO 1999a; SMARDON et 

al. 2000; CARTHEW 2001). In addition, a second RdRP in N. crassa, encoded by 

the qde-1 (quelling defective-1) gene is also involved in MSUD (Aramayo Lab 

unpublished data). QDE-1 protein was originally reported as a main player in 
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quelling, another PTGS mechanism that silences genes homologous to 

transgenes in N. crassa vegetative cells (COGONI and MACINO 1999a). 

Transcripts of sad-1+ are only detected in cells undergoing sexual development 

and their expression is independent of the presence of unpaired DNA. 

Furthermore, homozygous Sad-1 mutant crosses are sterile. This evidence 

indicates that SAD-1 not only plays a role in MSUD, but also may have another 

function required for normal meiotic progression (SHIU and METZENBERG 2002). 

SAD-1 protein is localized in the perinuclear region, where it has been 

hypothesized that actual degradation of the transcripts occurs (SHIU et al. 2006).  

Along that line, an Argonaute-like protein is also required for MSUD, and 

it is encoded by the Sms-2 (Suppressor of meiotic silencing-2) gene (LEE et al. 

2003). Argonaute proteins are highly conserved and are the catalytic 

components of the protein complexes responsible for the silencing of gene 

expression through RNA-silencing pathways (MEISTER 2013). Argonaute binds 

directly to sequence-specific small RNAs (siRNAs), which guide the cleavage of 

targeted mRNAs via the RNA-induced silencing complex (RISC) by 

complementary base pairing (KAWAMATA and TOMARI 2010). In N. crassa, the 

SMS-2 protein seems to have a role exclusively during the sexual phase. Sms-2 

mutant strains proceed normally through vegetative growth. However, they show 

sexual development impairment, in which homozygous mutant crosses are 

completely barren and arrested in meiotic prophase. Heterozygous crosses 

reduce meiotic silencing to a low level, indicating that Sms-2 behaves as a 
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dominant suppressor (LEE et al. 2003). Interestingly, by using fluorescent fusion 

proteins, it was established that the Argonaute protein (SMS-2) and the RNA 

polymerase (RdRP; SAD-1) protein co-localize in the perinuclear cellular region 

in N. crassa (ALEXANDER et al. 2008).   

By testing the behavior of single and double Sms-2 and Sad-1 mutants in 

the presence of unpaired DNA––and calculating the percentage of mature 

ascospores as an indirect form of estimating suppression of meiotic silencing–– 

Lee et al. demonstrated that Sms-2 and Sad-1 are both necessary, but not 

sufficient, for meiotic silencing (LEE et al. 2003). 

The last key component of RNAi or PTGS mechanism is the RNaseIII-

type endonuclease Dicer, which cleaves long double-stranded RNA (dsRNA) 

molecules to produce small interference RNAs (siRNAs) (BERNSTEIN et al. 2001). 

In N. crassa, the Dcl-1/Sms-3 (dicer like protein-1/Suppressor of meiotic 

silencing-3) gene encodes a Dicer enzyme required for meiotic silencing (LEE et 

al. 2004; ALEXANDER et al. 2008). The dcl-1+ gene is expressed during 

vegetative growth and sexual development. In fact, DCL-1 is one of two Dicer 

enzymes needed for quelling (CATALANOTTO et al. 2004). Sexual development 

arrests at an early stage in crosses homologous for Dcl-1∆ mutation.  

 

Other Suppressors of Meiotic Silencing 

Other gene products with unknown function are required for meiotic 

silencing. Sad-2 (Suppressor of ascus dominance-2) dominant mutant 
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suppresses the meiotic silencing of unpaired loci with similar efficiency as Sad-

1∆. SAD-2 protein is also required for normal meiosis progression and ascospore 

formation. Homozygous crosses for Sad-2 mutant are blocked at prophase I. 

Moreover, expression of the sad-2+ gene is limited to the sexual phase, from 

pre-karyogamy until diplotene stage in meiosis (SHIU et al. 2006). The RNA 

polymerase (i.e.,SAD-1) and SAD-2 proteins co-localize in the perinuclear region 

throughout meiotic prophase and physical interaction between them was 

observed (SHIU et al. 2006; BARDIYA et al. 2008). It has been proposed that 

SAD-2 may recruit the RNA polymerase to the perinucleus, based on the 

observation that SAD-1 distribution was scattered in the cytoplasm in the Sad-2 

mutant strain. This observation also implies that the proper localization of SAD-1 

may be important for its activity; however, SAD-2 function remains undetermined 

(SHIU et al. 2006).  

The gene product of qip (quelling defective-2 interacting protein) is 

involved in meiotic silencing and necessary for normal sexual development in 

Neurospora. QIP localizes in the perinuclear region, as does SMS-2 (LEE et al. 

2010a; XIAO et al. 2010). QIP, an exonuclease responsible for the degradation of 

one strand of the siRNAs duplex (passenger strand) which is already bound to 

the Argonaute protein, was originally described as an essential protein for 

quelling (MAITI et al. 2007). Like the majority of suppressors of meiotic silencing, 

a homozygous cross for Qip∆ deletion mutant is completely barren and meiosis 

is arrested at an early stage.  
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Parallel analyses testing the involvement of qip+ in meiotic silencing 

produced different results in terms of how efficiently qip mutant alleles suppress 

meiotic silencing. When silencing is induced by homeologous alleles of the 

reporter gene, Qip∆ acts as a dominant suppressor of meiotic silencing (LEE et 

al. 2010a). However, Qip∆ does not act as a dominant suppressor when 

silencing is induced by a deletion of one copy of the reporter gene (XIAO et al. 

2010). These results suggest that homeology––partial correspondence between 

homologous chromosomal regions––and heterology conditions are treated 

differently and each one activates a specific meiotic silencing response. 

Interestingly, this discrepancy revealed an important aspect of meiotic silencing: 

the nature of the unpaired DNA has an effect on the meiotic silencing response. 

This evidence suggests that the cell can differentiate between diverse classes of 

unpaired conditions (homeology versus heterology) and that they are silenced in 

a different fashion via MSUD (R. Millimaki and R. Aramayo, unpublished data).  

Other suppressors of meiotic silencing with perinuclear localization have 

been identified. However, their molecular function and involvement in meiotic 

silencing are still unknown (Table 1.1). 

In 2008 Pratt reported the first suppressor that has a nuclear localization 

called Sms-4 (Suppressor of meiotic silencing-4) (PRATT 2008). Sms-4 gene 

product is predicted to bind RNA, and is required for meiotic silencing, but not for 

sexual development. Crosses homozygous for Sms-4 mutant do not block 

meiosis. Sms-4 transcripts are detected in all stages of N. crassa vegetative and 
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sexual development (PRATT 2008). Recently, another nuclear protein was 

reported and named SAD-5 (Suppressor of Ascus Dominance-5). However, its 

function is undetermined (HAMMOND et al. 2013b). Because of their cellular 

localization, it has been proposed that SMS-4 and SAD-5 may be involved in 

meiotic trans-sensing and unpaired DNA detection. It was also proposed that 

SMS-4 may play a role connecting meiotic trans-sensing and meiotic silencing 

by transporting RNA molecules from the nucleus to the perinuclear region 

(PRATT 2008). 

Many other suppressors of meiotic silencing have been identified in the 

Aramayo Lab using a reverse genetic screen coupled to the N. crassa knockout 

library (COLOT et al. 2006). Suppression of meiotic silencing is determined using 

reporter genes (e.g., Rsp (Round spore) gene). The percentage of spores with 

wild-type phenotype (e.g., spindle shape) compared to mutant phenotype (e.g., 

round shape) is calculated from crosses between a heterozygous knockout 

mutant strain and an unpaired reporter gene strain. When MSUD is active, 

crosses involving an unpaired reporter gene produce nearly 100% mutant 

phenotype spores. When MSUD is suppressed, due to mutations in a gene 

involved in meiotic silencing, the percentage of mutant phenotype decreases.  

From those characterized suppressors of meiotic silencing, a significant 

number are localized in the nucleus. It is reasonable to think that they are 

involved in the initial nuclear stage of meiotic silencing, participating in the 

recognition of the unpaired DNA regions. The second group of suppressors is 
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localized in the perinuclear region (Table 1.1) (Aramayo Lab unpublished data). 

A model for meiotic silencing is presented in Figure 1.6. 

The perinuclear localization of some suppressors, including SAD-1, SAD-

2, SMS-2, DCL-1, and QIP, suggests the possibility of a protein complex being 

formed in this cellular space. It also indicates that the perinuclear region is the 

center of RNAi activity for MSUD. This is reminiscent of another perinuclear 

structure observed in the germline of diverse eukaryotes, i.e. germline granules 

(EDDY 1975). These bodies are referred to as P granules in C. elegans (UPDIKE 

and STROME 2010), nuage in D. melanogaster (LIM and KAI 2007), or chromatoid 

bodies in mammals (KOTAJA and SASSONE-CORSI 2007). Ribonucleoprotein 

complexes localize to germline granules and participate in mRNA transport and 

translation control. More specifically, they play a role in transposon repression 

(SOPER et al. 2008). In Drosophila and mouse, RNAi-related proteins co-localize 

in germline granules, suggesting that this structure functions as an intracellular 

focal domain where RNA processing occurs (KOTAJA and SASSONE-CORSI 2007; 

PANE et al. 2007). 



 

37 

 

Table 1.1 Suppressors of meiotic silencing in N. crassa 
 

Gene Name 
Accession 

# 
Molecular Function 

Cellular 
Localization 

Reference 

Sad-1 NCU02178 RdRP Perinuclear (SHIU ET AL. 2001) 

Sad-2 NCU04294 Unknown Perinuclear (SHIU ET AL. 2006) 

Sad-3/Sms-7 NCU09211 Helicase Perinuclear (HAMMOND ET AL. 2011) 

Sad-4/Sms-10 NCU01591 Unknown Perinuclear (HAMMOND ET AL. 2013B) 

Sad-5 NCU06147 Unknown Nuclear (HAMMOND ET AL. 2013B) 

Dcl-1/Sms-3 NCU08270 Dicer Perinuclear (LEE ET AL. 2004; ALEXANDER ET AL. 2008) 

Qip NCU00076 Exonuclease Perinuclear (LEE et al. 2010a; XIAO et al. 2010) 

Sms-1 NCU02495 mRNA splicing Nuclear Aramayo et. al. Unpublished  

Sms-2 NCU09434 Argonaute Perinuclear (LEE ET AL. 2003) 

Sms-4 NCU01310 RNA Binding Nuclear (PRATT 2008) 

Sms-5 NCU02088 SET domain Perinuclear/Nuclear Aramayo et. al. Unpublished  

Sms-6 NCU04083 Unknown Nuclear Aramayo et. al. Unpublished  

Sms-8 NCU04236 Unknow Nuclear Aramayo et. al. Unpublished  

Sms-9 NCU06190 Helicase Nuclear Aramayo et. al. Unpublished  

Sms-11 NCU01917 RNA recognition Nuclear Aramayo et. al. Unpublished  

Sms-12 NCU08504 Unknown Unknown Aramayo et. al. Unpublished  

Sms-13 NCU09064 Kinase Perinuclear Aramayo et. al. Unpublished  

Sms-14 NCU05246 Helicase Nuclear Aramayo et. al. Unpublished  

Sms-15 NCU06316 Argonaute siRNA chaperone  Perinuclear Aramayo et. al. Unpublished  

Sms-16 NCU09093 Helicase Perinuclear Aramayo et. al. Unpublished  

Sms-17 NCU07579 Unknown Nuclear Aramayo et. al. Unpublished  

Qde-1 NCU07534 D/RdRP Nuclear (COGONI and MACINO 1997) 
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Figure 1.6 Model for meiotic trans-sensing and meiotic silencing. Left, an image 
of a sexual-spore bearing cell (ascus) at early meiosis. Inside this cell, the 
nucleus (blue), delineated by its nuclear membrane, is surrounded by a 
perinuclear structure (green). Right, close-up of nuclear and perinuclear cellular 
compartments. After karyogamy, homologous chromosomes are sensed (trans-
sensing) and paired. In the nucleus, aberrant RNA (aRNA) is produced as a 
result of unpaired DNA detection. aRNA migrates to the perinuclear region 
where components of the meiotic silencing apparatus are localized. RdRP SAD-
1 synthesizes dsRNA using aRNA as a template. Dicer SMS-3 dices dsRNA, 
forming siRNA duplexes, which are loaded into Arognaute SMS-2. Exonuclease 
QIP degrades the sense strand of the siRNA duplex. SMS-2, in partnership with 
the siRNA guide strand, identifies targeted transcript (mRNA) by sequence 
complementary and degrades it. SAD-2 is required for recruiting SAD-1, and 
probably other suppressors of meiotic silencing, to the perinuclear region. Other 
nuclear and perinuclear suppressors have been identified; however, their 
functions are still unknown (SHIU et al. 2006; ALEXANDER et al. 2008; ARAMAYO 
and PRATT 2010; HAMMOND et al. 2013b). 
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A great number of suppressors of meiotic silencing are essential for 

sexual development and ascospore formation. Therefore, although 

heterozygous crosses for suppressor mutants may develop normally, 

homozygous crosses are barren, stopping sexual development at different 

stages. For instance, Sad-1 or Sad-2 homozygous crosses are arrested in 

meiotic prophase I after asci are formed; however dcl-1 or qip homozygous 

crosses arrest at a much earlier stages. This evidence suggests that some 

suppressors are important for ascus development (SHIU et al. 2006; ALEXANDER 

et al. 2008; LEE et al. 2010a). However, suppressors of meiotic silencing that are 

homozygous fertile (i.e., Sad-4, sad-5, Sms-4, and Sms-5) demonstrate that 

meiotic silencing and sexual development are uncoupled processes. 

 

Small-interfering RNAs (siRNAs) in MSUD 

Because MSUD is an RNAi-like mechanism, siRNA molecules are 

expected to be involved in this process. It was hypothesized that after unpaired 

DNA regions are detected, aberrant RNAs (aRNAs) form and translocate from 

the nucleus to the perinuclear region. In the perinucleus, they serve as 

templates for the synthesis of dsRNAs, which then are processed into siRNA. 

Argonaute protein, in partnership with siRNA, detects and silences targeted 

transcripts. Hammond et al. presented the first evidence of siRNAs associated 

with MSUD by sequencing and comparing RNA extracted from sexual tissue of 

wild-type (rsp+ X rsp+) and reporter-unpaired crosses (rsp X rsp+). A significant 
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increase in small RNAs targeting the unpaired region were observed in the cross 

carrying the deletion. These small RNAs were called MSUD-associated small 

interfering RNAs (masiRNAs) (HAMMOND et al. 2013a). Most masiRNAs are 

around 25 nt in length and have a nucleotide bias towards Uridine (U) at the 5’ 

end, which are similar features to small RNA molecules in other systems. The 

majority of masiRNAs are anti-sense with respect to the unpaired transcript, and 

therefore are complementary (CZECH and HANNON 2011). 

 

RESEARCH AIMS 

Important efforts have been made in order to determine the mechanism 

by which unpaired DNA is silenced during meiosis in N. crassa. It has been 

proposed that two individual and sequential processes work together. First, cells 

recognize the lack of homology or the presence of unpaired DNA regions via 

trans-sensing at a very early stage of meiosis. Second, the unpaired DNA 

recognition triggers the activation of the silencing machinery which silences all 

transcripts homologous to the unpaired region (i.e., meiotic silencing). Despite 

the numerous gene products that have been determined to be involved in 

MSUD, very little is known about the molecular mechanisms underlying this 

intricate process.  

Due to the similarities found between meiotic silencing and RNAi 

mechanisms, much is known and also speculated about the functions of the 

suppressors and the regulation of silencing in the perinuclear region. However, 
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less is known about the initial nuclear stage and how detection of unpaired DNA 

in the nucleus activates the meiotic silencing machinery in the perinucleus. It is 

reasonable to speculate that a molecular connection between the two stages 

must exist, especially because they occur in different cellular compartments. 

Several questions need to be answered to fulfill the proposed meiotic silencing 

model (Figure 1.6). Some of these questions are: How is the unpaired DNA 

recognized at the beginning of meiosis? How are aRNAs synthesized? How are 

aRNAs translocated to the perinuclear region? What is the nuclear molecular 

signal responsible for the activation of the perinuclear silencing machinery?  

In order to answered those questions and continue with the study of the 

molecular mechanisms and regulations behind meiotic silencing, it is critical to 

combine different approaches, such as genetic, biochemical, bioinformatics, and 

proteomics analyses. Thanks to previous genetic studies in conjunction with 

bioinformatics analyses, several components required in the silencing process 

have been identified. However, there is little data relating to biochemical and 

molecular interactions during meiotic silencing. The difficulties associated with 

the scarcity of the sexual tissue, the manipulation and disruption of sexual 

structures, and the low protein yield obtained from sexual material are the main 

reasons for the lack of biochemical data. Despite these difficulties, there is a 

necessity for incorporating biochemical analyses in the study of meiotic silencing 

in an attempt to get a better understanding of its molecular basis.  



 

42 

 

It is of great relevance to understand how the meiotic silencing process is 

regulated in fungi. This knowledge can be extrapolated to higher eukaryotes, 

allowing for a greater comprehension of other meiotic silencing processes, such 

as MSCI and MSUC. This would also help to elucidate the process by which 

meiotic silencing errors cause sterility in humans. 

In addition to the biochemical analyses, proteomics studies are also 

required in order to get a better understanding of the diverse biological and 

molecular mechanisms observed in cells. Data produced from the study of 

genes and proteins are complementary and will yield a more complete 

panorama of how biological processes are regulated. Therefore, a greater 

understanding of the proteome of model organisms such as Neurospora is 

crucial not only to uncover molecular processes exclusive to the organism, but 

also because discoveries and knowledge generated from these models can be 

used to understand more specialized biological processes in higher organisms.  

My dissertation research focused on determining the proteome of sexual 

growth for N. crassa. Establishing the proteome of sexual development will not 

only deepen our understanding of phenomena related to meiosis and sexual 

development, including MSUD, but it would also provide important insights into 

the process of cell differentiation in eukaryotes.  

The long term goal of this work is to understand the molecular regulation 

of meiotic trans-sensing and silencing mechanisms in N. crassa. The specific 

objectives of my research were to: 1) Introduce biochemical approaches to the 
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study of meiotic silencing, 2) Determine the role that suppressor SMS-5 plays in 

meiotic silencing, 3) Establish a molecular connection between meiotic trans-

sensing and meiotic silencing, and 4) Generate the first proteomic data set and 

functional catalog for N. crassa sexual development that will serve as a 

reference for the study of phenomena related to meiosis and sexual 

differentiation.  
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CHAPTER II 

CHROMATIN REMODELING AND SIGNALING TRANSDUCTION 

PATHWAYS ASSOCIATED WITH MEIOTIC SILENCING 

 

INTRODUCTION 

Meiotic Silencing by Unpaired DNA (MSUD) is a process in Neurospora 

that silences transcripts synthesized from an unpaired DNA region and any other 

transcripts with homology to the unpaired region (KELLY and ARAMAYO 2007). 

This process is composed of two stages: an initial nuclear stage, where unpaired 

DNA is detected by trans-sensing of homologous chromosomes (ARAMAYO and 

METZENBERG 1996), and a perinuclear stage where the actual silencing of the 

transcripts occurs. Silencing of the transcripts takes place in a sequence-specific 

manner. In the perinucleus, an antisense RNA molecule is required for the 

recognition and degradation of the target transcripts. Shiu and colleagues 

proposed that the antisense RNA is synthesized by the action of an RNA-

dependent RNA polymerase (SAD-1), which synthesizes dsRNA (SHIU et al. 

2001; SHIU et al. 2006). Recently, Hammond et al. reported evidence for the 

presence of antisense RNA fragments originated from an unpaired reporter gene 

(HAMMOND et al. 2013a).  

The RNA molecule used by the RNA polymerase as a template for 

producing dsRNA is unknown. One possible scenario is that the synthesis of the 

RNA template occurs during the initial stage in the nucleus. The meiotic 
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silencing model proposes that an aberrant RNA (aRNA) molecule is synthesized 

from the detected unpaired DNA. This aRNA acts as a diffusible signal that is 

exported from the nucleus (PRATT 2008). Then, aRNA serves as the template for 

the synthesis of dsRNA, hence activating meiotic silencing (see Chapter I). 

Although most of the components involved in the silencing stage at the 

perinuclear region have been described, less is known about the nuclear stage. 

Therefore, the molecular basis behind the production of the aRNA and the 

system responsible for its transportation to the perinucleus needs to be 

determined.  

If aRNA is synthesized directly from unpaired DNA, a special mark or 

signature characteristic of the unpaired DNA would be expected. Therefore, the 

machinery responsible for the production of aRNAs may recognize the DNA 

region that needs to be specially transcribed. Diverse organisms use epigenetic 

marks for similar purposes. Chemical modifications (e.g., DNA, RNA and protein 

methylation) and structural modifications (i.e., chromatin remodeling) are 

examples of epigenetic markers and are involved in gene regulation and 

silencing processes (BERNSTEIN et al. 2007; BONASIO et al. 2010).  

In plants, DNA methylation and chromatin structure are common 

regulators of post-transcriptional gene silencing (PTGS) (MOREL et al. 2000). 

Methylated DNA transgenes trigger PTGS of homologous endogenous genes 

and inhibition of DNA methylation represses PTGS (KOVARIK et al. 2000). 

Therefore, it has been proposed that DNA methylation acts as a special 
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signature on the transgenes that may induce biosynthesis of aRNAs 

(BAULCOMBE 1996). In mammals, DNA methylation is associated with different 

phenomena, including X-chromosome inactivation and suppression of repetitive 

elements (BOURC'HIS and BESTOR 2004; BASU and ZHANG 2011). In Neurospora, 

DNA methylation contributes to the regulation of expression of repeated 

sequences. In the filamentous fungus, DNA methylation is closely tied to a 

genome defense mechanism named RIP, for Repeat Induced Point Mutation. 

RIP detects and introduces mutations to repeated sequences in the haploid 

phase of early sexual development. Thereafter, mutated sequences are 

recognized and methylated during vegetative growth (SELKER et al. 2003; 

GALAGAN and SELKER 2004).  

DNA is not the only molecule that could be chemically labeled. RNA could 

also be chemically modified. More than a hundred chemical modifications are 

reported in different types of cellular RNAs (CANTARA et al. 2011), yet the role of 

these modifications are still unknown. It has been proposed that RNA 

modifications function as regulators of gene expression at the post-

transcriptional level (HE 2010). Recently, a connection between RNA 

methylation and the correct processing of non-coding RNAs (ncRNAs) into small 

regulatory RNAs was found. These small RNAs participate in post-transcriptional 

regulation of gene expression in humans (HUSSAIN et al. 2013a). In addition, one 

of the components of mouse’s chromatoid body––RNA-processing organelle 

(Chapter I)–– is an RNA methyltransferase (HUSSAIN et al. 2013b).  
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Protein methylation is also an important chemical modification. SET 

domain methyltransferases catalyze the methylation of lysine residues in specific 

proteins, including histones. The SET domain is an evolutionary conserved 

sequence and is found in proteins of diverse functions ranging from yeast to 

mammals (DILLON et al. 2005; THORSTENSEN et al. 2011). Methylation of proteins 

is also associated with regulation of gene expression and chromatin 

conformation (DEL RIZZO and TRIEVEL 2011). For instance, histone methylations 

act epigenetically to activate or repress gene expression (KOUZARIDES 2007). In 

addition, a connection between different chemical modifications has been 

observed. For example, in Neurospora, histone methylation controls DNA 

methylation (TAMARU and SELKER 2001).  

In the Aramayo lab, it was found that a SET-domain protein is a 

suppressor of meiotic silencing (i.e., SMS-5). It is therefore reasonable to 

hypothesize that chemical modifications may be a key factor in meiotic silencing. 

Epigenetic signals like DNA or protein methylation might be responsible for 

labeling unpaired DNA/chromatin regions and activating aRNA synthesis. It is 

also possible that chemical modifications may confer stability to the aRNAs 

during their translocation to the perinuclear region. To date, DNA methylation by 

DIM-2 is the only chemical modification tested in meiotic silencing. Pratt et al. 

found that DIM-2-dependent DNA methylation affects meiotic trans-sensing––by 

enhancing RIP alleles recognition––but not meiotic silencing (PRATT et al. 2004). 

This observation suggests that DIM-2-dependent DNA methylation does not 
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work as an epigenetic signal for the unpaired DNA. Even though all known 

cytosine methylation in N. crassa are the product of DIM-2, we cannot discard 

the possibility that other undescribed DNA methyltransferase would be 

responsible for DNA methylation during meiosis.  

It is of great interest to study whether DNA, RNA and/or protein chemical 

modifications are part of the molecular mechanism driving meiotic silencing. The 

SMS-5 protein is an excellent candidate to start with for this investigation. SMS-

5 is a SET-domain protein that is not essential for sexual development, but is 

required for meiotic silencing.  

In a previous study, histone methyltransferase (HMTase) activity was not 

detected when purified SMS-5 protein was tested (Lee and Aramayo, 

unpublished). This result suggests that SMS-5 has a different protein target for 

methylation or a different function. The aim of this research was to study the role 

that SMS-5 plays in meiotic silencing. I hypothesize that SMS-5 is involved in the 

initial nuclear stage of unpaired DNA silencing. In order to determine SMS-5 

function, I identified possible SMS-5 target protein(s). I developed a set of 

biochemical experiments that allowed me to study protein interactions in N. 

crassa sexual tissue. I constructed and affinity purified a GST-SMS-5 

recombinant protein. This purified protein was used for pulling-down SMS-5-

interacting proteins from whole cell extract from N. crassa sexual tissue. SMS-5-

binding proteins were identified by mass spectrometry (MS) analysis. 

Interactions were verified by in vitro binding assay and protein binding partners 
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for SMS-5 were established. Determining SMS-5 interacting partners revealed 

other aspects of the molecular mechanism of the nuclear stage of meiotic 

silencing. 

 

RESULTS 

Preliminary Data 

In N. crassa, the product of the NCU02088 gene (Broad Institute) is 

required for silencing unpaired reporter genes, but is not needed for meiosis. 

The gene was named Sms-5 (Suppressor of meiotic silencing-5). Crosses 

homozygous for Sms-5 mutants undergo normal meiosis (Lee and Aramayo; 

unpublished data). This is different from what has been observed with the 

majority of meiotic silencing suppressors, suggesting not only that the SMS-5 

protein function is directly involved in meiotic silencing, but also that meiotic 

silencing is not required for meiosis or ascus development.  

 

SMS-5 is Localized to Both the Nucleus and the Perinucleus 

Meiotic silencing occurs in two sequential stages at different cellular 

compartments. In the nucleus, unpaired DNA is detected via trans-sensing; then 

in the perinucleus, the transcripts generated from the unpaired DNA are 

silencing. Therefore, to determine the cellular localization of the protein is the 

first step in order to establish in which stage of meiotic silencing the protein 

participates. Cellular localization of the SMS-5 protein was tested using 
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fluorescent reporter genes fused to sms-5+ (i.e., sms-5+::mKO+ and sms-

5+::sGFP+). Fusion proteins expressed at the canonical position were partially 

functional in meiotic silencing, but the fluorescent signal was not observed (Lee 

and Aramayo, unpublished data). These results suggested that cellular SMS-5 

accumulation might be low under normal conditions, due either to low protein 

biosynthesis or high protein turnover rate. Another possibility is that the fusion 

could affect normal SMS-5 protein biosynthesis and/or regulation. To overcome 

the possibility of low protein biosynthesis, the fusion construct was introduced 

into an ectopic position under the regulation of the ccg-1 (clock controlled gene-

1) promoter (HONDA and SELKER 2009). Although a fluorescent signal was 

detected in the perinuclear region, the signal was very weak (Figure 2.1 (A)) 

(Lee and Aramayo, unpublished data).  

Based on previous results, we cannot discard the possibility that SMS-5 

localizes in the nucleus; but cannot be detected due to technical limitations. For 

that reason, I used bioinformatics analysis to predict SMS-5 subcellular 

localization using PredictProtein automatic service 

(http://www.predictprotein.org) (GOLDBERG et al. 2012). In addition, a nuclear 

localization signal (NLS) analysis using the cNLS Mapper software predicted a 

bipartite NLS at the C-terminus of SMS-5. The bipartite signal received a score 

of 3.9 (http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi). Using this 

software, proteins with a score between 3 and 5 are predicted to likely localize to 

both the nucleus and the cytoplasm (KOSUGI et al. 2009) (Figure 2.1 (B)). 

http://www.predictprotein.org/
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Together these results suggest that SMS-5 may be present in both cellular 

compartments: nucleus and perinucleus. 

 

 

 

 

Figure 2.1 SMS-5 cellular localization. (A) Displayed image is from Prophase I. 
An individual ascus expressing the fusion protein SMS-5+::sGFP+ is shown. Left 
image is a cartoon of the right picture. (B) Predicted Nuclear Localization Signal 
(NLS) in SMS-5 using cNLS Mapper.  
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SMS-5 is a Novel SET Domain Hypothetical Protein Found in Some 

Ascomycetes and a few Basidiomycetes Fungi 

 The translated SMS-5 sequence consists of 465 amino acid residues with 

a molecular weight of 50.6 kDa. Although SMS-5 has a putative SET domain, it 

is a novel hypothetical fungal protein only found in a few members of the 

subkingdom Dikarya. A BLAST analysis of SMS-5 against non-redundant protein 

sequences displayed the highest percentage of sequence identity within 

Ascomycetes, especially within the order of Sordariales, i.e., N. tetrasperma 

(84%) and Sordaria macrospora (58%). Nevertheless, a conserved region exists 

among other Sordaryomycetes at the SET domain position (250-450 amino acid 

residues). Additionally, very low sequence similarity was observed with few 

Basidiomycetes (Figure 2.2; Table 2.1).  

BLAST analysis using the UniProt/SwissProt protein database revealed 

very poor homology of SMS-5 with proteins from other eukaryotes. This data 

suggests that the SET domain of SMS-5 is conserved among Ascomycetes; 

however, the entire SMS-5 protein is highly conserved among some Sordariales 

fungi. 
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Figure 2.2 SMS-5 protein sequence analysis. (A) Conserved domain analysis 
results. A putative SET domain was detected at the C-terminus (~ 130 amino 
acid residues). (B) BLAST results. Database sequence hits are shown aligned to 
the query sequence (SMS-5) displayed in (A). Of the aligned sequences, the 
most similar are shown closest to SMS-5. Scoring matches are represented in 
colors. Initials of organism’s names are shown next to the aligned sequences. 
Nc, Neurospora crassa; Nt, Neurospora tetrasperma; Sm, Sordaria macrospora; 
Tt, Thielavia terrestris; Ct, Chaetomium thermophilum; Pa, Podospora anserina; 
Mo, Magnaporthe oryzae; Fv Fusarium verticillioides. 
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Table 2.1 SMS-5 and homologous proteins 
 

 

a
Broad = Broad Institute (http://www.broadinstitute.org/); NCBI = National Center of Biotechnology Information 

(http://www.ncbi.nlm.nih.gov/) 
b
ID Number according to the source 

c
Percentage of identical amino acid residues 

Organism Scientific Name Source
a
 ID Number

b
 Score % Identity

c
 Division 

Neurospora crassa Broad NCU02088.7 947 100 Ascomycetes 

Neurospora tetrasperma Broad NEUTE1DRAFT_54310 774 84 Ascomycetes 

Sordaria macrospora Broad SMAC_04985 506 58 Ascomycetes 

Thielavia terrestris Broad THITE_2091683 138 40 Ascomycetes 

Chaetomium thermophilum NCBI XP_006696199.1| 135 39 Ascomycetes 

Myceliophthora thermophila Broad MYCTH_2122106 128 40 Ascomycetes 

Grosmannia clavigera NCBI GL629765.1 118 37 Ascomycetes 

Gaeumannomyces graminis Broad GGTG_00363  114 33 Ascomycetes 

Ophiostoma piceae NCBI EPE06191.1 112 36 Ascomycetes 

Magnaporthe oryzae  Broad MGG_00673 110 32 Ascomycetes 

Podospora anserina NCBI XP_001912535.1 105 35 Ascomycetes 

Fusarium verticillioides Broad FVEG_16600 102 34 Ascomycetes 

Trichoderma virens Broad TRIVIDRAFT_157176 74 46 Ascomycetes 

Trichoderma reesei NCBI ETS07049.1 73 43 Ascomycetes 

Heterobasidion irregulare NCBI ETW78294.1 73 29 Basidiomycetes 

Ceriporiopsis subvermispora NCBI EMD31248.1 62 24 Basidiomycetes 

Arthroderma benhamiae NCBI XP_003016650.1 60 28 Basidiomycetes 
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 Although SMS-5 is a unidomain protein, the SET domain is frequently 

present in multi-domain nuclear proteins with diverse functions (JENUWEIN et al. 

1998). This domain is associated with protein lysine methyltransferases. The 

most studied ones are histone methyltransferases (HMTs); however, SET-

domain proteins also methylate non-histone proteins (DILLON et al. 2005). For 

instance, human SET7/9 methylates the transcription factor TAF10, resulting in 

an increase affinity for RNA polymerase II and transcriptional activation of 

TAF10-dependent genes (KOUSKOUTI et al. 2004). SET7/9 also methylates the 

tumor-suppressor protein p53 and increases its stability (CHUIKOV et al. 2004). In 

addition, the SET domain is a protein-protein interaction domain; it mediates 

conserved interactions with dual-specific lipid phosphatases (CUI et al. 1998). A 

subset of SET domains, called PR domains, is involved in protein-protein 

interaction (HUANG et al. 1998). Because of this diversity in SET domain 

function, knowing the binding partners for SMS-5 may help in uncovering the 

function of this suppressor.  

 

Identification of Potential Protein Binding Partners for SMS-5 

 Due to the cellular localization of SMS-5 and the predicted functions of 

the SET domain, I hypothesize that SMS-5 is an important component for the 

initial nuclear stage of meiotic silencing. This protein might be involved in the 

synthesis and/or processing of aRNAs. It may also be the connection between 

the nuclear and the perinuclear stages of this silencing mechanism. Therefore, it 
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was my interest to investigate the role that this SET-domain protein has in a 

mechanism like meiotic silencing. For that purpose, I developed a biochemical 

strategy to identify potential protein binding partners for SMS-5 (Figure 2.3). I 

used a pull-down biochemical assay as a discovery method for identifying 

unknown interactions. 

Glutathione S-transferase (GST) tag was fused to Sms-5 and cloned into 

pGEX-6P-1 vector. GST-SMS-5 recombinant protein was expressed in 

Escherichia coli cells. Protein was purified by affinity chromatography and 

immobilized in a solid matrix of glutathione agarose beads (GST-SMS-5 

column). As a control column, referred to as GST column, only GST was purified 

and immobilized. Whole cell extract from N. crassa sexual tissue was loaded 

into the experimental and control columns. Affinity purification of the SMS-5 

interacting proteins was achieved by large-scale capture and elution of binding 

proteins with reduced glutathione and PreScission protease. Proteins were 

resolved by SDS-PAGE and stained with Coomassie blue. The elute fraction 

from the GST-SMS-5 column contained several protein bands that were not 

present in the GST column (Figure 2.4). The high number of observed bands 

suggested that––in addition to the proteins that directly interact with SMS-5––

proteins that indirectly interact were also detected. 
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Figure 2.3 Strategy for identifying possible protein binding partners for SMS-5. 
The strategy was split in three modules: 1) Preparation of affinity columns. 
Recombinant proteins were expressed in E. coli cells. GST-SMS-5 
(experimental) and GST (control) proteins were purified by affinity 
chromatography and immobilized in glutathione agarose beads; 2) Pull-down 
assay. Whole cell extract from N. crassa sexual tissue was prepared and loaded 
into the two columns. After several washes, binding proteins were eluted; 3) 
Protein identification. Half of the elution fraction was resolved in a protein gel, 
while the proteins in the other half were precipitated and concentrated. The two 
samples (“in gel” and “in solution”) were analyzed by mass spectrometry (MS) 
and followed by protein identification. Protein interactions were verified using an 
in vitro transcription and translation (TNT) assay. 
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Figure 2.4 Affinity protein purification and pull-down assay results. SDS-PAGE 
analysis of the affinity chromatography and purification of (A) recombinant 
protein (GST-SMS-5) and (B) control (GST). TP, total protein; FT, flow-through; 
W, wash; E, elution fraction. (C) SDS-PAGE analysis of one of the pull-down 
assays. Whole cell extract from N. crassa sexual tissue was passed through the 
GST and GST-SMS-5-immobilized columns. Non-bound proteins were washed 
off the column and the binding proteins were eluted. Elution fractions were 
resolved by SDS-PAGE and visualized by Coomassie blue staining.  
 

 

A fraction of eluted proteins was resolved by SDS-PAGE (i.e., in gel 

samples); the remaining fraction was precipitated and proteins concentrated 

(i.e., in solution samples). Proteins isolated from both the in gel and in solution 

samples were identified by mass spectrometry analysis. Results from three 

independent experiments were analyzed (Figure 2.5; Table 2.2). 
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Figure 2.5 Venn diagram showing the results from three independent pull-down 
experiments. Proteins that bound specifically to GST-SMS-5 column and 
identified by mass spectrometry with a Confident Interval (C.I. %) > 95% are 
represented (Appendix A; Table A.1).  
 

 

I determined potential SMS-5-interacting proteins by comparing results 

from the two columns, GST-SMS-5 and GST. Only proteins bound specifically to 

the GST-SMS-5 column were used for further analysis. These proteins were 

classified depending on the number of experiments where they were detected. A 

total of 99 proteins were detected with a Total Ion Score and/or Protein Score 

Confidence Interval (C.I.%) higher than 95% (Appendix A; Table A.1). From 

these proteins, only three were consistently pulled-down in all three 

experiments, including the bait protein SMS-5. The other two proteins are: 1) the 

histone acetylase complex subunit PAF400 (NCU01379); a Neurospora 

homolog of the yeast Tra1 protein, and 2) the cytosolic regulator Pianissimo 

(NCU07854). In addition, 12 proteins were found in two pull-downs (Table 2.2).  
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Table 2.2 Proteins recovered from more than one pull-down assay 
 
Sequence

a 

ID # 
Protein Description Frequency

b 
Experiment 1 Experiment 2 Experiment 3 

C.I. %
c
 C.I. %

c
 C.I. %

c
 

In 
solution

d 
In 

gel
e 

In 
solution

d 
In 

gel
e 

In solution
d 

In gel
e 

NCU02088 Suppressor of Meiotic Silecing-5 
SMS-5 

3 100 99.8 100 99.2 100 100 

NCU01379 histone acetylase complex subunit 
PAF400 

3 100  99.9 22 99.6  

NCU07854 cytosolic regulator Pianissimo 3  97.5 99.9  99.5  
NCU01680 plasma membrane ATPase-1 PMA-1 2 100    100  
NCU08936 clock-controlled gene-15 CCG-15 2 100    100  
NCU01323 cohesin complex subunit 2 100    99.8  
NCU10021 high affinity glucose transporter-1 

HGT-1 
2   100  100  

NCU05488 RNA-binding protein Vip1 2   99.9 18.3 100  
NCU07554 chromosome segregation protein 

SudA 
2 99.9  99.9    

NCU04865 polyketide synthase-3 2 99.9 0  70.4   
NCU01634 histone H4-1 2  99.9   99.9 0 
NCU08600 hypothetical protein 2   99.9  99.3  
NCU10346 hypothetical protein 2   99.9  98.5  
NCU06701 cephalosporin C regulator 1 RFX 2    57.1 99.8  
NCU03072 hypothetical protein 2    0 99.1  
a
Broad = Broad Institute (http://www.broadinstitute.org/). 

b
Frequency, total number of times the protein was detected. 

c
C.I. %, Total Ion Score and/or Protein Score Confidence Interval. “0” under this column means that the protein was detected but the C.I. 

% was zero or lower. 
d
In solution, eluted proteins were precipitated and concentrated. The whole protein mix was enzymatically digested followed by MS 

identification.  
e
In gel, eluted proteins were separated by SDS-PAGE. Protein bands were cut from the gel, enzymatically digest followed by MS 

identification. 
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Interestingly, although the HMTase assay showed no methylation of 

histones in the presence of SMS-5, the histone H4 was recovered as a possible 

protein binding partner for SMS-5. Assuming that indeed an interaction between 

SMS-5 and hH4 exists, the negative result previously observed in the HMTase 

assay could be explained by two possibilities. First, SMS-5 has another function 

different from transferring methyl groups to histones. Second, SMS-5 might need 

an unknown cofactor to transfer the methyl group. A cofactor requirement has 

been observed in other systems (TAN et al. 2006).  

From this exploratory phase, I expected to recover new suppressors of 

meiotic silencing and reveal possible interactions between the already known 

components of this silencing phenomenon. Suppressors SMS-2 (Argonaute 

protein) and SMS-9 (a helicase ortholog of the human ATRX protein) were 

present in one of the pull-downs. In addition, the DNA helicase QDE-3 was also 

identified. QDE-3 is required for quelling, the other PTGS mechanism present in 

N. crassa. (Appendix A; Table A.1). Although these proteins were only 

recovered once, detecting other suppressors supported the biochemical strategy 

applied in this study.  

For further analysis, I selected three of the possible SMS-5-interacting 

proteins. The criteria for selecting these proteins were: 1) frequency of protein 

recovery from the pull-down assays and 2) protein predicted function. Therefore, 

I sought to determine the interactions between SMS-5 and the Neurospora 

homolog of the yeast Tra1 protein PAF400, and the cytosolic regulator 
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Pianissimo. Both proteins were detected with C.I. % > 95% in all three 

experiments. Because meiotic silencing is a mechanism that involves RNA 

molecules, the third protein selected was an RNA-binding protein identified from 

two pull-down assays.  

 

Testing the Involvement of an RNA-Binding Protein in Meiotic Silencing 

A protein similar to the RNA-binding protein Vip1 in 

Schizosaccharomyces pombe was identified and selected as a possible 

interacting partner for SMS-5. In Neurospora, this RNA-binding protein is 

NCU05488 (from now on, referred to as RBP). RBP was detected twice from the 

pull-down assays and characterized by MS with C.I. % > 99.9%. The translated 

sequence consists of 284 amino acids with a molecular weight of 30.3 kDa. RBP 

has an RNA recognition motif domain (i.e., RRM domain) at its N-terminus 

(Figure 2.6). RRM-containing proteins bind single-stranded RNAs and are 

involved in post-transcriptional gene expression processes, including mRNA and 

rRNA processing, RNA export and RNA stability in different eukaryotes 

(DAUBNER et al. 2013). The RRM domain is not only involved in RNA recognition 

but also in protein-protein interaction and is one of the most abundant domains 

in eukaryotes (CLERY et al. 2008).  
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Figure 2.6 Protein structure of the RNA-binding protein NCU05488. The protein 
has an RNA recognition motif (RRM) domain localized at the N-terminal region. 
RRM domain is highly abundant in eukaryotes and is found in proteins involved 
in mRNA and rRNA processing, RNA export and RNA stability. 
 

 

To study protein conservation and also infer a possible protein function 

for this RNA-binding protein, I did a protein BLAST analysis. First, the RBP 

protein sequence was compared against the non-redundant protein sequence 

database, but excluding all fungal proteins. Higher match scores were not 

evident. Only low protein similarities were observed with proteins from few 

amoebas (kingdom protozoa) and some eudicotyledons (kingdom plantae). 

Protein BLAST analysis against the entire non-redundant protein database 

showed high sequence similarity with other fungal proteins, especially from 

Ascomycota. This result suggested protein conservation between Ascomycota 

RRM-domain proteins. The highest percentage of protein identity was found 

among Sordariales (i.e., N. tetrasperma (99%) and S. macrospora (92%)). 

Hence, NCU05488 had the same conservation pattern observed with SMS-5, 
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suggesting that both proteins may evolve together and might be involved in 

similar mechanisms in these fungi.  

Because my hypothesis states that SMS-5 participates in the initial 

nuclear stage of meiotic silencing, and the nuclear stage is associated with 

synthesis and translocation of aRNAs, it is reasonable to expect RNA binding 

molecules associated directly or indirectly with SMS-5. For that reason, I sought 

to evaluate whether RBP (NCU05488) was involved in meiotic silencing. To do 

that, I followed a genetic strategy. 

A strain deletion mutant for NCU05488 is available at the N. crassa 

knockout library (i.e., FGSC21956), indicating that this is not an essential protein 

for vegetative development. I evaluated whether the NCU05488 gene was 

essential for sexual development. For that purpose, I constructed strains of both 

mating types carrying the deletion at NCU05488 locus and studied the 

phenotype and ascospore production of homozygous crosses (Figure 2.7; cross 

4). For comparison, wild-type crosses were also analyzed. Sexual development 

and ascospore production proceeded normally on those crosses, suggesting 

that NCU05488 gene product was not essential for sexual development.  

Then, I investigated whether NCU05488 is required for meiotic silencing. 

If this were the case, then I expected to observe a suppression of silencing of an 

unpaired reporter gene in crosses carrying NCU05488 deletion mutant. To test 

this possibility, I evaluated meiotic silencing of an unpaired reporter gene in 

heterozygous and homozygous crosses for NCU05488 deletion mutant. I used 
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Round spore (Rsp) gene as a reporter. To create the unpaired condition and 

induce meiotic silencing, I worked with a dominant RIP allele of the Rsp gene 

(i.e., RspRIP93) (PRATT et al. 2004). RIP alleles carry G:C to A:T transition 

mutations and cytosine methylations. Therefore, RIP alleles are homeologous to 

their counterpart wild-type alleles. All crosses performed in this study are listed 

in table 2.3.  

I observed ascospore morphology and quantified the number of spindle-

shaped asocospores (wild-type phenotype) versus round-shaped ascospores 

(mutant phenotype) produced in each cross (Figure 2.7). Wild-type crosses 

served as control to show there was not silencing in paired DNA conditions. It 

produced 100% of spindle spores (rsp+ X rsp+; cross 1). Homozygous crosses 

for RspRIP93 served as control to show that Rsp gene product is responsible for 

spindle-shaped spore morphology. It produced almost 0% of spindle spores 

(RspRIP93 X RspRIP93; cross 2). Heterozygous crosses for RspRIP93 served as 

control to show meiotic silencing in the presence of unpaired DNA. It produced 

13.5% of spindle spores, demonstrating that silencing of a fraction of the 

transcripts from the wild-type allele occurred (RspRIP93 X rsp+; cross 3). 

Homozygous crosses for NCU05488 allowed evaluating the requirement of 

NCU05488 gene product for sexual development. Cross 4 (NCU05488 X 

NCU05488) and cross 5 (RsprRIP93; NCU05488∆ X RsprRIP93; NCU05488∆) both 

ended with abundant ascospores production, indicating that NCU05488 is not 

essential for sexual growth. 



 

66 

 

 

 

Figure 2.7 The RNA binding protein NCU05488 is not required for silencing 
homeologies. RspRIP93 allele was used as a reporter of meiotic silencing. Wild-
typed crosses and RspRIP93 homozygous crosses were used as controls. 
Heterozygous and homozygous crosses for NCU05488∆ were evaluated in the 
presence and absence of the unpaired reporter gene. Each percentage number 
indicated is the average of three crosses with a mean of 1430 ascospores 
counted per cross. 
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Table 2.3 Crosses analyzed during the evaluation of the involvement of NCU05488 in meiotic silencing 
 

Cross 
Number 

Strains 
Relevant Diploid 

Genotype 
Brief Description Female (mating 

type A) 
Male (mating 

type a) 

1 FGSC2489 FGSC2490 wt / wt Control. Paired rsp
+ 

allele; No meiotic silencing  

2 RPNCR074 RPNCR073 Rsp
RIP93 

/
 
Rsp

RIP93 
Control. Paired  Rsp

RIP93 
allele; No meiotic silencing  

3 RPNCR074  FGSC2490 Rsp
RIP93 /

 wt Control. Unpaired Rsp
RIP93

 allele; Meiotic silencing  

4 VSNCR063 VSNCR060 NCU05488
∆
 / NCU05488

∆ 
Test NCU05488 requirement for sexual development  

5 VSNCR068  VSNCR067 Rsp
RIP93

; NCU05488
∆
 / 

Rsp
RIP93

; NCU05488
∆ 

Test NCU05488 requirement for sexual development 
in  Rsp

RIP93
 homozygous condition 

6 RPNCR074  FGSC21956 Rsp
RIP93 

/ NCU05488
∆ 

Test meiotic silencing in NCU05488
∆
 heterozygous 

condition; unpaired Rsp
RIP93

 allele 

7 VSNCR068 VSNCR060 Rsp
RIP93

; NCU05488
∆
 / 

NCU05488
∆ 

Test meiotic silencing in NCU05488
∆
 homozygous 

condition; unpaired Rsp
RIP93

 maternal allele 

8 VSNCR063 VSNCR067 NCU05488
∆
 / Rsp

RIP93
; 

NCU05488
∆ 

Test meiotic silencing in NCU05488
∆
 homozygous 

condition; unpaired Rsp
RIP93

 paternal allele 
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To test for the effect of heterozygous NCU05488 deletion mutant in 

meiotic silencing, cross 6 (RspRIP93 X NCU05488) was analyzed. If NCU05488 

was involved in meiotic silencing, I expected an increase in the number of 

spindle spores compared to cross 3. However, I observed a similar percentage 

of spindle spores (13.9%). This data indicated that heterozygous NCU05488 

did not have an effect on meiotic silencing. There were two explanations for the 

results observed in heterozygous crosses. First, NCU05488 was not involved in 

meiotic silencing. Second, the presence of one copy of the wild-type NCU0588+ 

gene was enough to proceed with meiotic silencing, indicating that the gene 

itself escaped from silencing. If this were the case, a basal expression level of 

this gene produced enough protein to participate in meiotic silencing. To test 

these possibilities, homozygous crosses for NCU05488 were analyzed in the 

presence of RspRIP alleles. Those were cross 7 (RspRIP93; NCU05488∆ / 

NCU05488∆) and cross 8 (NCU05488∆ / RspRIP93; NCU05488∆). There was no 

increase in the number of spindle spores in these crosses. In fact, I observed a 

decrease in spindle spore number. The difference was not statistically 

significant. Therefore, I conclude that the RNA-binding protein NCU05488 was 

not required for silencing RspRIP93 unpaired DNA.  

Although NCU05488 gene product is not necessary for silencing 

homeologies (RIP alleles), it is still possible that this protein play a role in 

silencing other types of unpairedness, such as heterology (product of a genetic 
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deletion or insertion). Therefore, I continued investigating the interaction 

between SMS-5 and NCU05488.  

To determine physical interactions between proteins, I performed in vitro 

protein binding and co-immunoprecipitation (co-IP) assays. Proteins were 

expressed in rabbit reticulocyte lysate (RRL) as T7-tagged proteins and/or 35S-

methionine radiolabeled proteins. Both proteins were incubated together to allow 

interaction and then immunoprecipitated using T7-tag antibody beads. 

Precipitates were collected and analyzed by SDS-PAGE. T7-tagged protein 

binding partners were detected by autoradiography. As the negative control, 

radiolabeled proteins were incubated with the beads in the absence of the T7-

tagged protein. As the positive control, Ku70-Ku80 protein interaction was 

evaluated (RIHA et al. 2002). 

SMS-5 and NCU05488 were expressed in RRL as T7-tagged protein and 

35S-methionine radiolabeled protein, respectively. After mixing both proteins and 

incubated together, T7-tagged SMS-5 was immunoprecipitated using T7-tag 

antibody beads. Co-immunoprecipitation of radiolabeled NCU05488 was 

evaluated by SDS-PAGE and autoradiography. As shown in Figure 2.8, 

radiolabeled NCU05488 was not precipitated in the presence of T7-tagged SMS-

5 (lanes 4 and 6). In control reactions, no interaction was seen between T7 

antibody and untagged NCU05488 (Figure 2.8, lane 2). As positive control, 

interaction between radiolabeled Ku70 and T7-tagged Ku80 was observed 
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(Figure 2.8, lanes 11-14). Therefore, I conclude that NCU05488 and SMS-5 do 

not interact directly in vitro. 

 

 

 

 

Figure 2.8 In vitro SMS-5 binding assay. Co-IP was conducted with 35S-
methionine labeled (asterisk) and T7-tagged protein expressed in RRL. 
Radiolabeled protein is co-immunoprecipitated on T7-beads when bound to a 
tagged partner. Precipitates were collected and analyzed on 10% SDS-PAGE, 
followed by autoradiography. S, supernatant; B, beads. Radiolabeled NCU05488 
is not co-immunoprecipitated with T7-tagged SMS-5. Ku70-Ku80 interaction 
served as Co-IP positive control.  
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Many multi-protein complexes contain homodimers, such as nucleosome 

(BENTLEY et al. 1984) and proteasome (BOCHTLER et al. 1999). It has been 

demonstrated that homodimers have twice as many interacting partners than 

non-self-interacting proteins (ISPOLATOV et al. 2005). To test whether SMS-5 

forms homodimers that contribute to the interaction with other proteins, SMS-5 

was expressed in RRL as T7-tagged proteins or 35S-methionine radiolabeled 

proteins. No interaction between radiolabeled SMS-5 and T7 antibody was 

observed in the control reaction (Figure 2.8, lane 8). Because radiolabeled SMS-

5 was not precipitated with T7-tagged SMS-5 (Figure 2.8, lane 10), I conclude 

that SMS-5 does not form homodimers. 

An indirect protein interaction between SMS-5 and NCU05488 could be 

the reason for the negative result observed in the in vitro co-IP. Indirect 

interactions can be detected by pull-down assays when multi-protein complexes 

are precipitated. However, the in vitro protein binding assay tested for direct 

physical interaction between the two proteins. Another possibility could be the 

necessity of post-translational protein modifications that induce protein 

interactions. Because I used an in vitro system for protein synthesis, post-

translational modifications were not taking in consideration. Together these 

results suggested that the homolog of RNA binding protein Vip1 was not a direct 

protein binding partner for SMS-5 in vitro and it was not required for silencing of 

unpaired RspRIP93 allele. 
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The Histone Acetylase Complex Subunit PAF400 is a Protein Binding 

Partner for SMS-5 

 Two proteins were considered strong candidates as interacting partners 

for SMS-5, because they were detected in all three affinity purification assays. 

One of them was the homolog of the histone acetylase complex subunit PAF400 

(NCU01379). Recently, in a global analysis of protein kinases in N. crassa, this 

protein was classified as an atypical serine/threonine-protein kinase (stk-18 

gene) (PARK et al. 2011). For simplicity, I will refer to this protein as PAF400. 

The translated PAF400 sequence consists of 3896 amino acid residues 

with a molecular weight of 443.3 kDa. The predicted amino acid sequence of 

PAF400 was compared to the UniProt/SwisProt protein database. BLAST 

analysis revealed that PAF400 is homologous to Tra1/TRRAP proteins, which 

are highly conserved and present in several eukaryotes, including yeast, flies, 

humans, and mice. PAF400 is between 26% and 36% identical to its homologs. 

However, when conservative substitutions are allowed, the total similarities 

between PAF400 and its homologs are higher than 50%. This data suggested 

that PAF400 is related to Tra1/TRRAP proteins (Table 2.4). PAF400 

homologous proteins are major components of the nucleosomal 

acetyltransferase protein complexes SAGA and NuA4 (GRANT et al. 1998; 

MCMAHON et al. 1998; BROWN et al. 2001). Both complexes have important roles 

in chromatin remodeling, transcriptional regulation and DNA double-strand 

breaks (DSBs) repair (BIRD et al. 2002; ROBERT et al. 2006). 
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Table 2.4 N. crassa histone acetylase complex subunit PAF400 and homologs 
 

Organism 
Scientific Name 

Protein name 
Sequence 
length (aa) 

Uniprot 
Accession # 

Identity 
(%) 

Similarity 
(%) 

Neurospora crassa Histone acetylase complex subunit PAF400 3896 Q7S7K6 100 100 

Saccharomyces 
cerevisiae 

Transcription-associated protein 1 (Tra1) 3744 P38811 36 56 

Schizosaccharomyces 
pombe 

Transcription-associated protein 1 (Tra1) 3699 Q9HFE8 34 52 

Schizosaccharomyces 
pombe 

Uncharacterized PI3/PI4-kinase family 
protein (Tra2) 

3655 Q10064 34 53 

Drosophyla melanogaster Transcription-associated protein 1 (dTRA1) 3803 Q8I8U7 27 45 

Homo sapiens 
Transformation/transcription domain-
associated protein (TRRAP) 

3859 Q9Y4A5 28 47 

Mus musculus 
Transformation/transcription domain-
associated protein (Trrap) 

2565 Q80YV3 22 45 

Dictyostelium discoideum 
Probable transcription-associated protein 1 
(Tra1) 

4582 Q54T85 28 46 
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Tra1/TRRAP proteins are very large proteins and belong to the 

phosphatidylinositol 3 kinase-related kinase (PIKK) family of proteins, which 

regulate a diverse set of signaling pathways (HELMLINGER et al. 2011). The PIKK 

family includes the key cellular regulators serine/threonine-protein kinases, such 

as ATM, ATR, DNA-PKcs, and TOR (LOVEJOY and CORTEZ 2009). 

PIKK proteins consist of three distinct domains found at the extreme C-

terminus of these very large proteins: The FAT domain (named after 

representative proteins sharing the domain (FRAP, ATM and TRRAP)), PI3-

kinase catalytic domain, and FATC (FAT-C-terminus) domain (BOSOTTI et al. 

2000). Tra1/TRRAP proteins also have these three domains; however, the PI3-

kinase domain is catalytically inactive since it lacks the DXXXXN and DFG 

motifs, critical residues necessary for protein phosphorylation (MCMAHON et al. 

1998). However, the PI3-kinase domain in Tra1/TRRAP proteins conserves the 

three-dimensional folding structure that has been proposed to be necessary for 

mediating protein-protein interaction (MUTIU et al. 2007). A phylogenetic analysis 

using several representative PIKK proteins demonstrated that PAF400 cluster 

with Tra1/TRRAP sub-group (Figure 2.9).  
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Figure 2.9 Phylogenetic tree and domain architecture of the PIKK protein family. Several representative proteins of 
the phosphatidylinositol 3 kinase-related kinase (PIKK) family, including TRRAP proteins are aligned. All members 
share the same domain architecture (right); however, the kinase domain is catalytically inactive in the Tra1/TRRAP 
protein subgroup. The lack of activity is denoted by a hollow in the domain (PI3K). N. crassa PAF400 protein 
clustered with Tra1/TRRAP proteins. The phylogenetic tree was generated by ClustalW2 Multiple Sequence 
Alignment and Phylogeny (LARKIN et al. 2007) using UPGMA clustering method with pairwise gap removal and 
PAM distances. UniProt identifiers are described in front of the tree with the name of the protein and the organism. 
The name of some organisms is abbreviated: Arabidopsis thaliana, ARATH; Drosophyla melanogaster, DROME; 
Schizosaccharomyces pombe, SCHPO; Caenorhabditis elegans, CAEEL; Neurospora crassa, NEUCR. 
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In addition, the conserved domain analysis of PAF400 showed that all 

three domains were present and localized at the C-terminus. This analysis also 

predicted that the PI3-kinase domain lacked the catalytic residues (Figure 2.10). 

Therefore, it was conclude that PAF400 belongs to the PIKK family, more 

specific to the Tra1/TRRAP protein sub-group. 

 

 

 

 

Figure 2.10 Protein structure of the N. crassa histone acetylase complex subunit 
PAF400. PAF400 is related to Tra1/TRRAP proteins, members of the PIK-
related protein kinases (PIKK) family. PIKK family members consist of three 
distinct domains: FAT (FRAP, ATM and TRRAP) domain (gray); PI3K catalytic 
domain, which is inactive in Tra1/TRRAP (red); and FATC (FAT-C-terminus) 
domain (orange). Top, representation of the entire 3895 amino acid residues of 
PAF400. Bottom, zoom to the C-terminal region, where the domains are 
localized. 
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All PIKK proteins are nuclear localized. Therefore, I wanted to determine 

whether PAF400 was a nuclear protein. As expected, PAF400 contains a 

predicted monopartite nuclear localization signal consensus at amino acids 

2051-2061 (http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi) 

(KOSUGI et al. 2009). In order to confirm nuclear localization, a fluorescent 

reporter gene was fused to Paf400 gene (sGFP+::Paf400+) at the canonical 

position. Nuclear fluorescent signal was observed under the microscope, 

confirming that PAF400 is a nuclear protein (Figure 2.11). 

 

 

 

 

Figure 2.11 PAF400 is a nuclear protein. Localization of PAF400, relative to the 
nuclear DNA is shown. Displayed images are from Prophase I asci expressing 
GFP::Paf400. DNA was stained with dye Hoechst 33258. One of the ascus is 
outlined in white in the merged image (Pictures by Dong Lee). 
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In order to confirm interaction between SMS-5 and PAF400, I performed 

the in vitro co-IP assay, previously described. The large size of PAF400 made it 

difficult to express the entire protein in vitro. It has been demonstrated that the 

domains localized in the C-terminal region of Tra1/TRRAP proteins are 

necessary for interaction with other proteins (BOSOTTI et al. 2000; MUTIU et al. 

2007). For that reason, I cloned and tested the last 1100 amino acids at the C-

terminal region (Figure 2.10). This fragment included all three predicted 

domains.  

PAF400 (C-ter) and SMS-5 were expressed in rabbit reticulocyte lysate 

as T7-tagged protein and 35S-methionine radiolabeled protein, respectively 

(Figure 2.12A), or vice versa (Figure 2.12B). Radiolabeled proteins were 

incubated with the T7 antibody as the negative control. Ku70-Ku80 protein 

interaction was used as the positive control (Figure 2.12C) (RIHA et al. 2002). As 

shown in Figure 2.12A, radiolabeled SMS-5 was detected in the PAF400 (C-ter) 

IP (lane 4) with a signal just above background with the control reaction (lane2). 

Along that line, PAF400 (C-ter) bound and was precipitated with T7-tagged 

SMS-5 (Figure 2.12B, lane 2).  
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Figure 2.12 SMS-5 interacts with the PAF400 C-terminal region. Co-
immunoprecipitation was conducted with 35S-methionine labeled (asterisk) and 
T7-tagged protein expressed in RRL. Labeled protein is co-immunoprecipitated 
on T7-beads when bound to a tagged partner. S, supernatant; B, beads. (A) 
PAF400 C-terminus (C-ter) was T7-tagged and served as the bait protein; SMS-
5 was radiolabbeled and acted as the prey protein. (B) SMS-5 was T7-tagged 
and served as the bait protein; PAF400 (C-ter) was radiolabbeled and acted as 
the prey protein. (C) Ku70-Ku80 interaction served as positive control.  
 

 

The reciprocal co-immunoprecipitation of SMS-5 and PAF400 confirmed 

the interaction originally detected by the pull-down assays. Therefore, I conclude 

that the homolog of the histone acetylase complex subunit PAF400 is a protein 

binding partner for SMS-5. The approaches used to study further the role of 

PAF400 in meiotic silencing depend on whether Paf400 is an essential gene. 

Paf400 deletion mutant strains were never recovered in the lab and a mutant 

strain is not available in the N. crassa mutant collection. Together, these 
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observations suggest that the deletion of PAF400 is lethal and that PAF400 is an 

essential protein in Neurospora. As it happens, Tra1/TRRAP are essential 

proteins for cellular viability in yeast and mammalian cells (KNUTSON and HAHN 

2011). For that reason, it was not possible to evaluate silencing of unpaired DNA 

during sexual growth in the absence of PAF400. 

 

Cytosolic Regulator Pianissimo is a Protein Binding Partner for SMS-5 

In the exploratory phase conducted to establish possible interacting 

partners for SMS-5, the cytosolic regulator Pianissimo (NCU07854) was also a 

strong candidate. Pianissimo was consistently pulled-down with SMS-5 in all 

affinity purifications. Until now, the function of Pianissimo has not been 

determined in Neurospora. Therefore, I used a set of bioinformatics analyses to 

determine the level of conservation of this protein sequence. By establishing 

homologous proteins, I expected to gain new insights into the possible 

function(s) Pianissimo could have, especially during meiotic silencing.  

The translated Pianissimo sequence consists of 1547 amino acid 

residues with a molecular weight of 172.4 kDa. I conducted a protein BLAST 

analysis using UniProt/SwisProt protein database. The result revealed that 

Pianissimo is highly conserved in evolution, showing similarity of 47-59% with 

homologous proteins (Table 2.5). In addition, BLAST analysis against the non-

redundant protein sequences (nr) database showed high conservation of 

Pianissimo protein among numerous Ascomycetes and Basidiomycetes; 
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however the majority of these proteins are reported as hypothetical with 

unknown function.  

Pianissimo homologs belong to a highly conserved protein family, named 

the Pianissimo family. Members of this family are found in diverse organisms, 

including slime mold, yeast, mouse, and human. Pianissimo shares homology 

with the previously described PiaA protein, which is implicated in cAMP-induced 

cell migration by activation of adenylyl cyclase via Ras signaling in Dictiostelium 

discoidieum (CHEN et al. 1997); Ste20 protein requires for fertility in S. pombe 

(HILTI et al. 1999); Avo3/Tsc11 protein in Saccharomyces cerivisiae (LOEWITH et 

al. 2002); and RICTOR protein in mammals (SARBASSOV et al. 2004).  

Avo3 and RICTOR proteins have a conserved interaction with the protein 

kinase TOR––member of the PIKK protein family––in the multi-protein complex 

“Target of Rapamycin Complex 2” (TORC2). It has been showed that TORC2 

complex participates in signaling transduction by phosphorylating AGC (PKA, 

PKG, and PKC) protein kinases and AKT or protein kinase B (OH and JACINTO 

2011). In mammals and budding yeast, TORC2 complex regulates the 

organization of the actin cytoskeleton (LOEWITH et al. 2002; JACINTO et al. 2004). 

In fission yeast, TORC2 complex is required to maintain genome integrity by 

protecting the cells from DNA damage during S phase (SCHONBRUN et al. 2013). 

Furthermore, TORC2 interacts with ribosomes and has been implicated in co-

translational processing or maturation of nascent polypeptides in mammals cells 

(OH and JACINTO 2011).  
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Table 2.5 N. crassa Pianissimo protein and homologs 
 

Organism 
Scientific Name 

Protein name 
Sequence 
length (aa) 

Uniprot 
Accession # 

Identity 
(%) 

Similarity 
(%) 

Neurospora crassa Cytosolic regulator Pianissimo 1541 Q7SBV4 100 100 

Schizosaccharomyces 
pombe 

Target of rapamycin complex 2 subunit 
Ste20 

1309 Q09743 36 59 

Saccharomyces cerivisiae 
Target of rapamycin complex 2 subunit 
Tsc11 (Avo3) 

1430 P40061 27 47 

Dictyostelium discoideum Protein pianissimo A PiaA 1148 O77203 27 49 

Homo sapiens 
Rapamycin-insensitive companion of 
mTOR (hAVO3 / RICTOR) 

1708 Q6R327 29 49 

Mus musculus 
Rapamycin-insensitive companion of 
mTOR (mAVO3 / Rictor) 

1708 Q6QI06 29 50 
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To establish Pianissimo conserved domains, an analysis of the protein 

sequence was done and five domains were predicted. These domains are: HR1 

at the N-terminus; RICTOR domains that represent conserved sections along 

the mammalian RICTOR proteins (RICTOR N, RICTOR M, and RICTOR V); and 

the Ras exchanger motif or REM domain (Figure 2.13).  

 

 

 

 

Figure 2.13 Protein structure of N. crassa Pianissimo. Pianissimo belongs to the 
Pianissimo protein family. Members of this family are subunits of the TORC2 
complex. Five conserved domains were predicted. RICTOR N (light blue), 
RICTOR M (orange), REM (pink), and RICTOR V (purple) are present in all 
Pianissimo members. HR1 domain is only present in Pianissimo proteins of 
Dikarya organisms. Top, representation of the entire 1547 amino acid residues 
of Pianissimo. Bottom, the two fragments used for in vitro co-IP are shown and 
referred as N-terminus and C-terminus. 
 

 

Domains architecture was shared among members of the Pianissimo 

family. The observed high protein conservation implied that Pianissimo may be 

required for essential cellular functions in N. crassa, as it has been 

demonstrated in other organisms (HO et al. 2005; JONES et al. 2009). 
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Interestingly, the HR1 domain was only present in Pianissimo proteins of the 

fungal subkingdom Dikarya. In general, HR1 is a Rho-binding domain frequently 

found in Rho effector proteins such as protein kinases, lipid kinases, and 

scaffold proteins (BISHOP and HALL 2000). The GTP-bound form of Rho protein 

activates HR1-domain-containing proteins (FLYNN et al. 1998). The fungal 

specificity showed by HR1 domain suggested that this domain may be required 

for an additional Pianissimo function, exclusive to Ascomycetes and 

Basidiomycetes. Together these data suggested that Pianissimo is a highly 

conserved protein that belongs to the Pianissimo family and may be a subunit of 

TORC2 complex. 

Pianissimo homologs are reported to be mainly cytolosolic proteins. 

However, the mammalian homolog RICTOR protein has been detected not only 

in the cytoplasm, but also in the nucleus (ROSNER and HENGSTSCHLAGER 2008). 

To predict cellular localization of N. crassa Pianissimo, I performed a 

bioinformatics analysis. A cytoplasmic localization was predicted by 

PredictProtein server (ROST et al. 2004). However, a nuclear localization signal 

(NLS) analysis using the cNLS Mapper software predicted a monopartite NLS in 

the middle of the protein, at residue 583, suggesting that Pianissimo is partially 

localized to the nucleus (http://nls-mapper.iab.keio.ac.jp/cgi-

bin/NLS_Mapper_form.cgi).  

To verify the cellular localization of Pianissimo, several attempts to fuse 

GFP to the C-terminal or N-terminal regions of the protein were made. However, 
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strains carrying the construct were not recovered. This result suggested that the 

fusions were not functional and that disruption of Pianissimo may have lethal 

effects in N. crassa. Along that line, Avo3 is an essential protein that is required 

for the regulation of the actin cytoskeleton through the TORC2 complex in S. 

cerevisiae (HO et al. 2005). In addition, disruption of Rictor in mice causes 

embryonic lethality (SARBASSOV et al. 2004). Although I did not obtain 

experimental data that demonstrates cellular localization of Pianissimo, the 

bioinformatics analysis and cellular localization of homologous proteins 

suggested that Pianissimo might be localized mainly in the cytoplasm, but 

partially in the nucleus. 

In order to verify the interaction between SMS-5 and Pianissimo, I applied 

the same in vitro co-IP strategy described above. Due to the large size of the 

protein, I tested two overlapping fragments of Pianissimo. They were called the 

N-terminal half and the C-terminal half (Figure 2.13). Proteins were expressed in 

RRL; SMS-5 as 35S-methionine radiolabeled protein. Both, N-terminal and C-

terminal Pianissimo fragments were expressed as T7-tagged proteins. Proteins 

were precipitated using T7-tag antibody beads. Precipitates were collected and 

analyzed by SDS-PAGE and binding proteins were detected by 

autoradiography. The results showed that Pianissimo is an interacting partner for 

SMS-5 (Figure 2.14). Both, N-terminal and C-terminal Pianissimo fragments 

interacted with SMS-5. However, N-terminal region showed a strong interaction, 

as it was exhibited by the intensity of SMS-5 band in the autoradiography. This 



 

86 

 

result confirmed the interaction originally detected by the pull-down assays. 

Therefore, I conclude that the homolog of the cytosolic regulator 

Pianissimo/RICTOR protein is a protein binding partner for SMS-5. 

 

 

 

 

Figure 2.14 Pianissimo is a protein binding partner for SMS-5. Co-
immunoprecipitation was conducted with 35S-methionine labeled (asterisk) and 
T7-tagged protein expressed in RRL. Labeled protein is co-immunoprecipitated 
on T7-beads when bound to a tagged partner. S, supernatant; B, beads. Ku70-
Ku80 interaction served as positive control.  
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Homologs of Pianissimo are essential proteins in several organisms. 

Avo3 is an essential protein for Saccharomyces cervisiae (WULLSCHLEGER et al. 

2005). Ste20 is essential for sexual differentiation and meiosis in S. pombe 

(HILTI et al. 1999). Rictor is essential for the development of both embryonic and 

extra-embryonic tissues in mouse (SHIOTA et al. 2006). In N. crassa, Pianissimo 

may be also an essential protein. A deletion mutant strain was never recovered 

in the laboratory and a mutant strain for Pianissimo is not available in the N. 

crassa knockout collection. For that reason, it was not possible to test its direct 

involvement in meiotic silencing. 

 

DISCUSSION 

Biochemical work on N. crassa sexual tissue is technically challenging. 

Disruption of the tissue for extraction of meiotic cells is not trivial. A large amount 

of tissue is required to obtain a sufficient concentration of total protein for 

biochemical assays, requiring an enormous amount of media, reagents and 

other materials, as well as a lot of laboratory space. As a consequence, there is 

a lack of studies using biochemical approaches in sexual development in 

Neurospora. I developed a strategy that allowed me to grow a substantial 

amount of sexual tissue using limited resources and laboratory space. As a 

result, protein yield was improved. To my knowledge, this is the first biochemical 

study of N. crassa protein interactions during sexual development. This 
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standardized procedure could be used for further proteomic and biochemical 

studies in filamentous fungi during sexual differentiation. 

In this study, I sought to reveal the function of SMS-5 by uncovering its 

protein binding partners to provide insight into the role of SMS-5 in meiotic 

silencing. For that purpose, I found that the nuclear Tra1/TRRAP homologous 

protein PAF400 and Pianissimo/RICTOR homologous protein are binding 

partners for SMS-5 during sexual development in N. crassa. Although 

Pianissimo is predicted to be mainly a cytoplasmic protein, it might be localized 

partially in the nucleus. If this were the case, it is likely that a nuclear protein 

interaction occurs between SMS-5 and Pianissimo. Alternatively, SMS-5 may 

interact in the nucleus with PAF400 and in the cytosol with Pianissimo. 

I was not been able to test directly the involvement of these two proteins 

in meiotic silencing because PAF400 and Pianissimo are both essential proteins 

for N. crassa. This lethality may also be the reason that these two proteins were 

not detected as suppressor of meiotic silencing in previous genetic screens. The 

fact that two essential proteins were uncovered in my study shows the relevance 

of combining genetic and biochemical approaches when investigating a 

molecular mechanism. However, further studies are required in order to 

establish their functions in meiotic silencing. 

Although it was not possible to analyze directly meiotic silencing in a 

PAF400 or Pianissimo mutant genetic background, indirect evidence indicate 

that both proteins play a role in meiotic silencing. These two proteins interact 



 

89 

 

directly with SMS-5, which in turn is a suppressor of meiotic silencing. 

Furthermore, Sms-5 mutant strains do not have any other evident phenotype; 

both vegetative and sexual growth proceed normally. This observation suggests 

that SMS-5 does not participate in other cellular processes and may be only 

involved in meiotic silencing. Therefore, the direct interaction of PAF400 and 

Pianissimo with SMS-5 implies a participation of these two essential proteins in 

MSUD. 

 

What is the Role of PAF400 in Meiotic Silencing? 

PAF400 homologous proteins Tra1/TRRAP are essential proteins, which 

act as an important scaffold for several histone acetylase (HAT) complexes, 

including SAGA and NuA4 (GRANT et al. 1998). These complexes are targeted 

to gene regulatory regions by transcription activators and are associated with 

chromatin remodeling and transcriptional regulation. Tra1/TRRAP is the 

component responsible for the recruitment of these complexes to chromatin 

during transcription (MURR et al. 2007).  

PAF400 and its homologs are essential proteins. It is has been proposed 

that the lethality observed in Tra1 and TRRAP mutations is due to disruption of 

NuA4 complex function(s). Several features support this hypothesis. 

Tra1/TRRAP is the only component shared by SAGA and NuA4 complexes. 

Tra1/TRRAP is the only subunit essential for viability in the SAGA complex 

(KNUTSON and HAHN 2011). In addition, Tra1 is not essential in S. pombe. 
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However, fission yeast has two paralogous proteins, Tra1, which associates 

specifically with SAGA, and Tra2, which associates specifically with NuA4. In 

contrast to Tra1, Tra2 is required for viability (HELMLINGER et al. 2011).  

The function of Tra1/TRRAP proteins is not limited to transcriptional 

control. Acetylation of histone H4 by NuA4 complex is required for DNA DSBs 

repair (BIRD et al. 2002). It was demonstrated that histone acetylation by Trrap-

containing complex modulates loading of repair proteins to DNA DSBs in Mouse 

Embryonic Fibroblast cells (MEFs) (MURR et al. 2006). Furthermore, TRRAP is 

also associated with non-HAT complexes such as MRN (MRE11, RAD50, and 

NBS1) complex, which play an important role in the initial processing of DSBs 

prior to repair (Chapter I). TRRAP-MRN complex is involved in detection and 

repair of DNA DSBs (Robert 2006). Thus, TRRAP contributes to DNA DSBs 

repair through its participation in both HAT and non-HAT complexes. Together 

these observations suggested that Tra1/TRRAP proteins may function as a link 

between DSBs signaling, repair, and chromatin remodeling.  

The participation of a Tra1/TRRAP homologous protein in meiotic 

silencing is consistent with the hypothesis that PAF400 together with SMS-5 are 

involved in chromatin remodeling around the unpaired DNA during meiosis. This 

chromatin modification would help to relax the chromatin conformation around 

the unpaired region and allow the accessibility of other proteins or complexes, 

such as the transcriptional machinery. This could be an essential step in the 

synthesis of aRNAs from the unpaired DNA. It is possible that an accumulation 
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of DSBs occurs in the unpaired DNA. In this view, DSBs would work as a mark 

for the unpaired region to activate the nuclear stage of meiotic silencing. 

SPO11 protein is responsible for the formation of DSBs during meiosis, 

an essential step for initiation of meiotic recombination (KEENEY 2001). However, 

Pratt demonstrated that meiotic silencing proceeds normally in the presence of a 

mutant spo11RIP allele, suggesting that SPO11-dependent DSBs are 

dispensable for meiotic silencing. Therefore, it was concluded that 

recombination and silencing are not related in Neurospora (PRATT 2008). It was 

recently showed that there is a spo11-independent mechanism for initiation of 

recombination in Neurospora (BOWRING et al. 2013), suggesting that SPO11-

independent DSBs may be formed during meiosis. Therefore, it is possible that 

SPO11-independent DSBs participate in unpaired DNA recognition and 

activation of meiotic silencing.  

I hypothesize that PAF400 may function during meiotic silencing as a 

scaffolding protein that brings different proteins together to the unpaired DNA 

region. One of these proteins could be SMS-5. Together, this multi-protein 

complex could be involved in the biosynthesis of aRNAs by remodeling the 

chromatin structure surrounding the unpaired DNA to facilitate access to 

transcriptional machinery. If this were the case, PAF400 may function as a 

molecular link between chromatin modification and the activation of the nuclear 

stage of meiotic silencing. 
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What is the Role of Pianissimo in Meiotic Silencing? 

Pianissimo is a RICTOR-like protein. In mammals and other organisms, 

RICTOR is a core component that interacts with the catalytic subunit TOR in the 

TORC2 complex. In budding yeast and mammals the TORC2 complex is an 

important regulator of cytoskeleton that function to mediate phosphorylation of 

Protein Kinase C (PKC) (CYBULSKI and HALL 2009). TORC2 complex regulates 

many kinases (MATSUO et al. 2003; LEE et al. 2005b; JONES et al. 2009) and is 

proposed to participate in signaling transduction pathways. However, the 

molecular mechanism by which TORC2 works and the mechanism in which it 

participates remains unclear.  

RICTOR proteins have also been found to associate with other proteins 

independently of TOR kinase. For that reason, it has been hypothesized that 

RICTOR proteins participates in other biological processes in which TORC2 

complex is not involved (Oh 2011). However, its function still remains elusive. 

Finding the interaction between SMS-5 and Pianissimo suggested that 

signaling transduction pathways could be involved in the regulation of meiotic 

silencing. It would be of interest to explore whether Pianissimo participates in 

meiotic silencing as a component of the TORC2 complex or if Pianissimo and 

PAF400 are components of a different and new multi-protein complex together 

with SMS-5. The possibility of direct interaction between PAF400 and 

Pianissimo needs to be explored.  
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What is the Role of SMS-5 in Meiotic Silencing? 

A histone methyltransferase analysis did not show histone methylation in 

the presence of purified SMS-5 protein, suggesting that SMS-5 does not have a 

HMTase activity. Interestingly, histone H4 protein was found in association with 

GST-SMS-5 affinity column. This result could reflect an indirect interaction 

between these two proteins. In fact, histone H4 could be a direct target for 

PAF400-containing complex, such as NuA4 complex, which acetylases histone 

H4 during chromatin remodeling. Although this is an attractive explanation, a 

direct interaction between SMS-5 and histone H4 must be tested. It has been 

demonstrated that histone H4 methylation plays important roles to ensure 

genome integrity, especially during DNA damage repair, in several organisms 

(JORGENSEN et al. 2013). Therefore, a new evaluation of SMS-5 HMTase activity 

should be made.  

On the other hand, assuming that SMS-5 is indeed a HMTase, the 

negative result observed by Lee (Lee and Aramayo, unpublished data) could be 

explained by a couple of possibilities. For examples, SMS-5 may need the 

presence of an activator or cofactor to transfer the methyl group to its target 

protein. An activator requirement has been observed in other systems, such as 

zebrafish, in which heat shock protein 90 (HSP90) acts as a cofactor of the 

HMTase SmyD1 (TAN et al. 2006). Because the HMTase assay was performed 

with purified SMS-5 in the absence of any cellular extract, the lack of a cofactor 

in the reaction could explain previous results.  
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HSP90 was not recovered from the initial pull-down assays. However, 

another heat shock protein HSP70 was identified in all affinity purifications. 

HSP70 is also a chaperone protein that assists in protein folding. This protein 

was not taken into consideration for further analysis because HSP70 was 

recovered from both GST-SMS-5 and GST columns. Even though HSP70 did 

not show specificity for SMS-5, it would be interesting to establish whether 

HSP70 does interact with SMS-5 and test whether it is a cofactor for HMTase 

activity. 

Direct interaction between SMS-5 and two other proteins, PAF400 and 

Pianissimo, were verified in this study. Although a biochemical function has not 

been demonstrated for SMS-5 and its SET domain, the possibility that SMS-5 

works as a chemical modifier of non-histone proteins still needs to be tested. 

Based on the results obtained in this study, these non-histone proteins could be 

PAF400 and/or Pianissimo. It would be of great interest to investigate protein 

post-translational modifications in PAF400 and Pianissimo in the presence of 

SMS-5.  

In order to know whether PAF400 and Pianissimo have methylation sites, 

which could be the targets for SMS-5, I performed a protein methylation site 

prediction analysis using PMeS program (SHI et al. 2012). The analysis showed 

that both PAF400 and Pianissimo have predicted methylation sites. PAF400 has 

8 arginine residues that may be methylated; one of them has a high statistical 

probability (>0.9 support vector machine (SVM) probability). The program also 
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predicted 3 methylation sites for Pianissimo, one lysine residue and 2 arginine 

residues with >0.6 SVM probability (Table 2.6). 

 

 

Table 2.6 Protein Methylation Sites Prediction using PMeSa 
 

Protein Position Site Flanking residues 
SVM

b
 

Probability 

PAF400 364 HIINFNF-R-KIFLPKI 0.6013 

PAF400 720 KKSAILL-R-RLFKLAFM 0.6440 

PAF400 837 PHLSYLM-R-RPLVVALR 0.6415 

PAF400 844 RPLYYAL-R-RAGTELVG 0.6486 

PAF400 1330 PIFAKPL-R-ALAFGIQ 0.9416 

PAF400 1815 EPAKGGQ-R-FLDRAVI 0.6168 

PAF400 2679 AKAFPEC-R-RLPPHVLK 0.6308 

PAF400 3743 PHKFNIA-R-GSGNIWG 0.6031 

PIANISSIMO 566 LLAIFV-K-SGVVQGL 0.6902 

PIANISSIMO 845 IQMLDRW-R-IFNMMYR 0.6475 

PIANISSIMO 907 ALRKYAT-R-PRISTQG 0.6787 
a
PMeS: Prediction Methylation Site (http://bioinfo.ncu.edu.cn/inquiries_PMeS.aspx) 

b
SVM refers to support vector machine probability 

 

 

The identification of these predicted methylation sites in both SMS-5-

interacting proteins, prompts the hypothesis that SMS-5 is a protein 

methyltransferase. Protein methylation is an important post-translational 

modification involved in several biological process, including signaling, RNA 

processing and transport, transcription, and DNA repair (PAHLICH et al. 2006; 

PAIK et al. 2007). Protein methylation, especially at arginine residues could 

promote or inhibit protein interactions (LEE et al. 2005a). Now that putative 

targets for SMS-5 have been determined, it will be possible to test SMS-5 
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biochemical function and establish whether SMS-5 has a methyltransferase 

activity when interacting with these proteins.  

 

The RNA-binding Protein NCU05488 was not Essential for Silencing of 

RspRIP93 Allele 

The RNA-binding protein NCU05488 was recovered in the affinity 

purification assays. However, the direct interaction between SMS-5 and 

NCU05488 was not observed using in vitro co-IP assays. In addition, this RNA-

binding protein was not required for silencing the unpaired reporter gene. The 

most obvious conclusion would be that NCU05488 was recovered in the affinity 

purification assays as a false positive. Therefore, NCU05488 is not a real 

binding partner for SMS-5 and is not required for meiotic silencing. However, 

there are other possibilities that need to be considered.  

NCU05488 was recovered from the pull-down assays, suggesting an 

interaction with SMS-5. This could be an indirect interaction, in which SMS-5 

and NCU05488 share a protein partner. NCU05488 and SMS-5 may be 

components of the same multi-protein complex and for that reason both proteins 

were pulled-down together in the affinity purification assays. Because the co-IP 

was designed to test direct protein interactions, indirect interactions would yield 

negative results. Alternatively, a tag on the protein could prevent interaction in 

vitro, giving a negative result.  
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Participation of an RNA-binding protein in meiotic silencing seems to be 

necessary; RNA molecules are involved not only in the initial nuclear phase, but 

also in the perinuclear stage, where actual silencing of transcripts occurs. Now 

that direct interacting partners for SMS-5 were established, I proposed to test 

whether NCU05488 interacts with PAF400 and/or Pianissimo. If this were the 

case, that could explain the affinity purification results. 

The involvement of NCU05488 in meiotic silencing was tested using a 

homeology RIP allele of the reporter gene Rsp. It has been observed that the 

nature of the unpaired DNA (i.e., homeology, heterology or deletion) and the 

reporter gene (e.g., Rsp, Asm-1) used to evaluate meiotic silencing have an 

effect on the meiotic silencing response (Chapter I) (LEE et al. 2010a; XIAO et al. 

2010). Therefore, it would be worthwhile to test whether NCU05488 is involved 

in silencing different unpaired reporter genes under different unpairedness 

conditions. 

 

Proposed Model for the Nuclear Phase of Meiotic Silencing 

The results presented above lead me to propose a simple threshold 

hypothesis for the activation of the nuclear phase of meiotic silencing. This 

model includes possible roles for SMS-5 in conjunction with PAF400 and 

Pianissimo after the detection of unpaired DNA during meiosis, and how the 

nuclear and the perinuclear phase of meiotic silencing could be connected.  
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The model is displayed and described in Figure 2.15. (a) After karyogamy 

homologous chromosomes come into proximity, pair and proceed to evaluate 

the molecular identity of their pairing partners via trans-sensing mechanism. (b) 

Programmed DNA DSBs are formed by SPO11. SPO11-independent DSBs or 

other DNA damage signal may also be present in early meiosis. This SPO11-

independent breaks might be the product of persistent unrepaired DSBs, forming 

during DNA replication (BOWRING et al. 2013). Synapsis initiates and DSBs are 

repaired by meiotic homologous recombination. However, breaks localized in the 

unpaired DNA region cannot be repaired due to lack of homology. Hence, DSBs 

accumulate and this accumulation becomes the signal that activates the initial 

nuclear phase of meiotic silencing. (c) Reaching a threshold of unrepaired DNA 

damage stimulates the recruitment of several molecules to the unpaired region. 

The threshold hypothesis fits well into the requirements for meiotic silencing 

activation. A minimum region of DNA must be unpaired (~700 nucleotides) and 

the length of the unpaired region is proportional to the efficiency of silencing 

(Chapter I).  

PAF400-containing complexes, such as NuA4-like complex with histone 

acetyltransferase activity binds to the chromatin surrounding sites of DSBs and 

initiates chromatin remodeling, possibly by histone H4 acetylation (MURR et al. 

2006). (d) Chromatin relaxation facilitates the accessibility for other proteins to 

the unpaired DNA region, such as the MRN complex.  
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Figure 2.15 Proposed model for the activation of trans-sensing. Possible 
functions for SMS-5, PAF400, and Pianissimo are described. Interactions 
between one pair of homologous chromosomes (red and blue) are schematically 
represented. Sister chromatids, which are products of pre-meiotic DNA 
replication, are shown as double red or blue lines. Unpaired DNA region (red 
bubble) could be formed as consequence of gene insertion in the red 
chromosome or gene deletion in the blue chromosome. (a) After karyogamy 
homologous chromosomes pair and sense. (b) SPO11-dependent and 
independent DNA DSBs are formed (stars). DSBs remain unrepaired and 
accumulate in the unpaired DNA region. Accumulation of DSBs may be the 
signal that activates meiotic silencing nuclear phase. (c) Reaching a threshold of 
unrepaired DSBs stimulates the recruitment of NuA4-like complex to the 
unpaired DNA region. NuA4-like complex, formed by PAF400 and a histone 
acetyltransferase (HAT), binds to the chromatin surrounding sites of DSBs and 
initiates chromatin remodeling. (d) Chromatin relaxation facilitates the 
accessibility for other proteins to the unpaired DNA region, such as the 
components of the MRN complex. MRN complex is responsible for DNA 
damage repair through non-homologous end-joining (NHEJ) process. (e) 
Proteins involve in biosynthesis of aRNA are also recruited to the chromatin, 
including an RNA polymerase (POL). (f) Next, methylation of PAF400 and 
Pianissimo (PIA) by SMS-5 induces structural changes in these proteins 
allowing them to interact. (g) PAF400-Pianissimo interaction activates a signal 
transduction cascade mediated by protein kinases (PK) and proteins 
phosphorylation (P). The signaling transduction triggers activation of the meiotic 
silencing machinery (MS) in the perinuclear region. aRNA also migrates to the 
perinuclear region and incorporates into the meiotic silencing apparatus. Dashed 
lines represent the nuclear membrane. 
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Figure 2.15 Proposed model for the activation of trans-sensing. 
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MRN complex is responsible for DNA damage repair through non-

homologous end-joining (NHEJ) process (ROBERT et al. 2006). In addition, 

proteins involved in the generation of aRNA may also be recruited to the 

remodeled chromatin. PAF400 homologs are involved in transcriptional 

activation by recruiting the basal transcriptional machinery to DNA (SAGA 

complex) (MUTIU et al. 2007). (e) Using the same mechanism, PAF400-

containing complex could bind the transcription machinery and mediate loading 

on the unpaired DNA region. This machinery would then be responsible for the 

transcription of an aRNA molecule from the unpaired DNA. A nuclear DNA/RNA-

dependent RNA polymerase QDE-1 could be the catalytic component of this 

transcription (LEE et al. 2010b). QDE-1 is responsible for the generation of 

aRNAs and dsRNAs during the silencing of transgenes via quelling. 

Furthermore, QDE-1 has an effect on meiotic silencing when the mechanism is 

induced by homeologies. In quelling, QDE-1 interacts with QDE-3 a DNA 

helicase, also involved in DNA damage repaired. QDE-3 was precipitated once 

from the GST-SMS-5 column. 

I also propose that (f) methylation of PAF400 and Pianissimo (PIA) by 

SMS-5 induces structural changes in these proteins allowing them to interact. (g) 

PAF400-Pianissimo interaction activates a signal transduction cascade 

mediated by protein kinases that triggers activation of the meiotic silencing 

machinery (MS) in the perinuclear region. aRNA also migrates to the perinuclear 
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region and incorporates into the meiotic silencing apparatus where the real 

silencing of the transcripts occurs (Figure 2.15).  

 

Conclusions 

This work has uncovered new and unexpected aspects regarding meiotic 

silencing. I determined two protein binding partners for the suppressor of meiotic 

silencing SMS-5. One of these partners belongs to the PIKK protein family and 

is associated with chromatin remodeling and DNA damage repair pathways. The 

other protein belongs to the Pianissimo protein family and is involved in signaling 

transduction mechanisms. Both proteins, PAF400 and Pianissimo are essential 

proteins, which explained why they were not detected as suppressor of meiotic 

silencing previously during the genetic screen. Finding essential proteins in this 

study points out the strength of combining genetic and biochemical approaches 

in order to study molecular mechanisms.  

Now that protein binding partners for SMS-5 have been found, I 

hypothesize the biochemical function that SMS-5 may have as an essential 

component of meiotic silencing. SMS-5 may be a protein methyltransferase that 

regulates protein interaction and function of its targets during meiotic silencing. 

Although additional studies are required to test this hypothesis, the interaction 

between SMS-5-PAF400 and SMS-5-Pianissimo not only provide new insights 

into our understanding of the role SMS-5 could be executed in MSUD, but also 
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connects chromatin remodeling and signaling transduction pathways with 

meiotic silencing.  

 

MATERIALS AND METHODS 

Strains, Plasmids and Oligonucleotides 

All N. crassa strains used in this study are described in Table A.3 

(Appendix A). FGSC2490 (mating type a) strain and RANCR49A strain (mating 

type A) were used for setting up sexual crosses, induction of sexual growth, and 

extraction of endogenous proteins from sexual tissue. FGSC21956 strain was 

crossed with RANCR49A, KBNCR05A and RPNCR74A strains to construct 

VSNCR strains carrying the deletion mutant at the NCU05488 allele.  

Standard Neurospora culturing techniques (DAVIS 1970) were used 

throughout the study, except for the preparation of sexual tissue for protein 

extraction (described later on the document under “Preparation of N. crassa 

Sexual Tissue). Vegetative mycelium was cultivated in Vogel’s Medium with 2% 

sucrose and sexual development was induced in Westergaard’s Medium with 

1.5% sucrose. The formulas for Vogel’s Medium N and the Westergaard’s 

Medium have been described by Davis and de Serres (1970) (DAVIS 1970)  

Escherichia coli BL21 (DE3) cells were the host for all bacterial 

manipulation. All the plasmids used in this study are described in Table A.4 

(Appendix A). All the oligonucleotides used in this study are described in Table 

A.5 (Appendix A) 
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The expression vector pGEX-6P-1 was used to construct and express 

GST-SMS-5 fusion protein and GST tag. The expression vector pET-28a(+) was 

used to construct and express T7-tagged proteins. The expression vector 

pCITE-4a(+) was used to clone and express 35S-methionine radiolabeled 

proteins. 

 

Purification of GST Fusion Proteins 

GST and GST-SMS-5 recombinant proteins were expressed in 

Escherichia coli BL21 (DE3) cells. GST fusion proteins were purified based on 

the method described by Kellogg and Moazed (KELLOGG and MOAZED 2002). 8 g 

of E. coli cells expressing the recombinant protein were ground in liquid nitrogen. 

5 volumens of room temperature phosphate buffer saline (PBS) containing 0.5% 

(v/v) Tween 20, 1 mM phenylmethylsulfonyl fluoride (PMSF), and 1 M NaCl was 

added to the cells. The cell powder was resuspended by stirring in a cold room 

for 10 min. To reduce viscosity the lysate was sonicated for 20 seconds and 

Dithiothreitol (DTT) was added to a final concentration of 10 mM. Lysate was 

centrifuged for 2 hours at 15,000 rpm in a Beckman JA-20 rotor. The 

supernatant was loaded onto a 5 ml pre-equilibrated glutathione agarose column 

(SIGMA) over a period of 2 hours. 50 ml of washing buffer 1, containing 1X PBS 

pH 7.4, 0.05% Tween 20, 0.5 mM DTT, and 0.25 M KCl, were passed through 

the column. Then, the column was washed with 25 ml of washing buffer 2, 

containing 1X PBS pH 7.4, 0.5 mM DTT, and 0.25 M KCl. GST fusion protein 
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was eluted in seven fractions of 0.8 ml of elution buffer, containing 50 mM Tris, 

pH 8.1, 0.25 M KCl and 5 mM reduced glutathione. The fractions were analyzed 

in 10% SDS-PAGE, and the peak fractions were combined and dialyzed into 50 

mM HEPES, pH 7.6, 150 mM KCl, and 30% (v/v) glycerol. Protein concentration 

was calculated using Bradford assay (OLSON and MARKWELL 2007). Affinity 

columns were prepared by loading 12-15 mg of purified recombinant protein into 

2.5 ml pre-equilibrated glutathione agarose column (SIGMA). 

 

Preparation of N. crassa Sexual Tissue  

Protein extraction from the sexual stage of Neurospora is challenging, 

due to the physical characteristics of the tissue. The small size of the sexual 

structure (perithecium) and the thickness of its wall make it very difficult to 

disrupt the tissue and extract all meiotic cells. As a result, a large amount of 

material is required to obtain a sufficient concentration of proteins. For that 

reason, I developed a strategy that allowed me to growth a substantial amount 

of sexual tissue using limited resources and laboratory space.  

Instead of regular petri dishes, I used Pyrex glass pie plates (9-1/2-inch) 

to grow N. crassa under mating conditions. 200 ml of Westergaard’s Medium 

was poured per plate and 10 plates were used in each extraction. Two pie plates 

were coupled together in a way that one plate served as the lid for the other 

plate. Therefore, a reduced spaced for incubation was achieved. Sexual growth 

is activated in the presence of light. Uniform distribution of light was assured to 
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both, the bottom and the top plates, due to the large surface area of the plate 

and the transparency of the glass. By using these conditions, I obtained 

approximately 7 g of sexual tissue per pie plate, for a total of ~ 70 g of tissue per 

extraction. This represents 6 times more tissue, comparing to the growth in 

traditional petri dishes using the same volume of media (Figure 2.16).  

Westergaard’s solid media was covered with stripes of pre-washed 

cellophane (7 X 1.5”). The cellophane enhanced the harvesting of the tissue by 

facilitating the separation of the tissue from the media. Three plugs, containing 

approximately the same amount of vegetative cells of RANCR49A strain, were 

used to inoculate each pie plate. Plates were incubated at 25°C with constant 

light for 6 days to induce female structure development. Following that, plates 

were fertilized with FGCS2490 strain by spreading male conidia suspension on 

top of the female tissue. Plates were incubated at 25°C for another 4 days to 

allow sexual tissue to form before protein extraction  

The cellophane stripes were prepared as follow: cellophane was cut into 

stripes (7 X 1.5’’), placed into 1 liter of deionized water and boiled in the 

microwave for 10 minutes. This step was repeated three times after replacing 

the water. The washed cellophane was transferred to a beaker with deionized 

water and autoclaved for 20 min.  
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Figure 2.16 Diagram for the preparation of N. crassa sexual tissue. 1) Glass pie plates (9” X 1.2”) are washed with 
abundant hot water and sterilized. 2) 200 ml of sterile Westergaard’s Media are poured per plate and 10 plates are 
prepared for each protein extraction. 3) A stripe of pre-washed/sterile cellophane (grey square) is laid on the 
surface of the media and the media is inoculated with three plugs (orange cylinders) of vegetative cells of the 
desired strain. Plugs are equally distributed in the plate. 4) Two inoculated pie plates are coupled together in a way 
that one plate serves as the lid for the other plate. 5) Each paired plate is placed into a closed plastic container to 
avoid dehydration and incubated for 6 days at 25°C to induce growing of maternal sexual tissue (orange). 6) After 
the six days, maternal tissue is fertilized with conidial suspension from the strain of the opposite mating type. Using 
a cotton swab, the conidial suspension is carefully spread over the area covered with the cellophane. 7) Paired 
plates are coupled and incubated for another 4 days at 25°C. 8) At the fourth day after fertilization, perithecia 
(sexual tissue; black area) are peeled off from the cellophane, frozen in liquid nitrogen, ground using a mortar and 
pestle, and transferred into a clean tube. 9) The tissue harvested from each pie plate is weighed. 10) Tissue from 
all ten plates is combined and placed into a pre-cooled Mill machine plastic container that already has a pre-cooled 
stainless-steel impactor. 11) Tissue is pulverized in the pre-cooled Mill machine. 12) Pulverized tissue is 
transferred to a clean tube and is frozen until ready for protein extraction. 
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Figure 2.16 Diagram for the preparation of N. crassa sexual tissue. 
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Protein Extraction from Sexual Tissue for Affinity Chromatography 

Sexual tissue was peeled off from the cellophane, frozen in liquid nitrogen 

and then ground using a mortar and pestle. Ground tissue was placed into pre-

cooled Mill machine-plastic containers with a pre-cooled stainless-steel impactor 

and pulverized in the Mill machine (SPEX 6850 Freezer/Mill). The cycles were 

as follow: 10 minutes pre-cooling, 2 minutes milling, 1 minute pre-cooling and 2 

minutes milling. All the following steps were performed at 4°C. The frozen 

powder was weighed and transferred to a clean beaker. The powder was 

resuspended into 1.5 volumes of extraction buffer (50 mM HEPES pH 7.4, 137 

mM NaCl, 10% Glycerol, 0.1% NP-40, 1X Protease Inhibitor Cocktail (PIC), and 

1 mM PMSF) by stirring in a cold room for 10 minutes. The lysate was filtered 

using pre-treated and pre-cooled cheesecloth/Miracloth. The crude extract was 

centrifuged at 12,000 rpm for 15 minutes in a Beckman JA14 rotor. The 

supernatant was transferred to a clean pre-cooled conical tube and total protein 

concentration was calculated using Bradford assay (OLSON and MARKWELL 

2007). Approximately 70 mg of total protein from whole cell extract was load into 

the GST-SMS-5 or GST affinity column. 

 

Affinity Chromatography 

The whole procedure was done in a cold room at 4°C. N. crassa cell 

extract was loaded in parallel on both, GST and GST-SMS-5 columns. Once the 

first drops of flow-through appeared, the flow from the column was closed to let 
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the proteins interact overnight. To optimize binding interactions, sample loading 

was run at a flow-rate of about 10 ml per hour. Flow-through aliquots were taken 

at the beginning and at the end of the experiment. The column was washed with 

25 ml of washing buffer 1 (1X PBS pH 7.4, 0.05% Tween 20, 0.5 mM DTT, and 

0.25 M KCl). Then, 10 ml of washing buffer 2 (1X PBS pH 7.4, 0.5 mM DTT, and 

0.25 M KCl) were passed through the column. A last wash was done by passing 

10 ml of 1X PBS pH 7.4. Samples from each wash step were taken and total 

protein concentration calculated using Bradford assay. If total protein was 

detected in the last wash faction, another 10 ml of 1X PBS pH 7.4 were passed 

through the column, until all the unbound proteins were washed out. For the 

elution of binding proteins, PreScission Protease enzyme (GE Healthcare) was 

used to cleave the proteolytic site localized in between the GST-tag and the 

fusion protein. Therefore, binding proteins were eluted without the GST-tag. The 

column was equilibrated with 20 ml of PreScission Protease Buffer (PPB), 

containing 50mM Tris-HCl pH 8, 100 mM NaCl, 1 mM 

Ethylenediaminetetraacetic acid (EDTA) and 1 mM DTT. 125 U of protease were 

resuspended in 2 ml of PPB and added to the column with closed flow. The 

column was kept close overnight to allow the catalytic reaction to occur. Proteins 

were eluted from the column by adding another 2 ml of PPB. The elution fraction 

was passed into a second 1 ml glutathione agarose column (GSTtrap column) 

and eluted by adding an additional 1 ml of PPB. A total of 4 ml represented the 

elution protein fraction. The purpose of the GSTtrap was to get rid of any extra 
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GST-tag. Hence, it was reduced the possibility for GST to interfere with the 

mass spectrometry analysis. Elution fraction was divided into two samples; one 

sample was precipitated and resolved on SDS-PAGE. Proteins were excised 

from the gel and identified by mass spectrometry analysis (In gel samples). The 

second elution sample was precipitated and directly submitted for mass 

spectrometry analysis (In solution sample). 

 

Gel Electrophoresis and Identification of Bound Proteins 

Proteins from flow-through, wash, and elution fractions were precipitated 

with Trichloroacetic acid (TCA). For that, sodium deoxycholate (DOC) was 

added to the sample to a final concentration of 0.2%, mixed and incubated on 

ice for 30 minutes. 15% of Trichloroacetic acid (TCA) was added to the mix and 

incubated for 1 hour on ice. The sample was centrifuged 10 min at 13,000 g. 

After that, the supernatant was aspirated and the pellet was washed with 1 ml of 

pre-cold acetone. After 5 min of incubation at room temperature, the sample was 

spun down and the pellet air-dried. Pellet was resuspended into 50 µl of 1X 

SDS-loading buffer (Laemmli buffer). Protein suspension was left at room 

temperature for 1 hour and then boiled for 5 min. 10 µl of sample were resolved 

in 10% SDS-PAGE. Proteins were visualized by Coomassie blue staining. 

Samples from GST and GST-SMS-5 affinity columns were compared.  
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In vitro Binding Assay 

For in vitro co-immunoprecipitation, Sms-5, NCU05488, Paf400 C-

terminal region, and Pianissimo N-terminal and C-terminal regions cDNAs were 

cloned into pET-28a and pCITE-4a vectors (Novagen). pET-28a (T7-tag fusion) 

and pCITE-4a (untagged) constructs were expressed using rabbit reticulocyte 

lysate (RRL) according to manufacturer’s instructions (Promega). Expression 

occurred in the absence or presence of 35S-methionine (PerkinElmer). 

Cyclohexamide (2 mg/ml) was added to stop translation reaction. Translation of 

T7-tagged proteins was verified in the presence of [35S] methionine on a small 

aliquot from the same master mix. T7-tagged and untagged radiolabeled 

proteins were immunoprecipitated using agarose beads (Novagen) containing 

the T7 monoclonal antibody (BRYAN et al. 2000).  

20 µl of T7-agarose beads were washed 4 times in 1.5 ml of Wash Buffer-

100 (20 mM Tris acetate, pH 7.5, 10% glycerol, 1 mM EDTA, 5 mM MgCl2, 0.1% 

Nonidet P-40, 1 mM DTT, 100 mM potassium glutamate), centrifuging at 1,500 

×g for 1 min between washes. The beads were incubated 3 times with 1 ml of 

Blocking Buffer (20 Mm Tris acetate, pH 7.5, 10% glycerol, 1 mM EDTA, 5 mM 

MgCl2, 0.1% Nonidet P-40, 1 mM DTT, 100 mM potassium glutamate, 0.5 

mg/ml lysozyme, 0.5 mg/ml bovine serum albumin, 0.05 mg/ml glycogen) for 1 

hour at 4 °C with agitation.  

20 µl of T7-tagged and 60 µl of untagged radiolabeled proteins were 

combined and incubated at 30°C for 20 min, followed by 20 min at 4°C. 240 μl of 
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Blocking Buffer were added to the protein mix. The solution was incubated for 1 

hour at 4 °C and centrifuged at 16,000 × g for 10 min at 4 °C to remove any 

particulates. The supernatant was transferred to a tube containing 20 μl of 

blocked beads. Proteins and beads were incubated overnight at 4 °C under 

agitation. The beads were washed 7 times in 750 µl of Wash Buffer-400 (20 mM 

Tris acetate, pH 7.5, 10% glycerol, 1 mM EDTA, 5 mM MgCl2, 0.1% Nonidet P-

40, 1 mM DTT, 400 mM potassium glutamate), 2 times in 750 µl of TMG (10 mM 

Tris acetate, pH 8.0, 1 mM MgCl2, 10% glycerol), and resuspended in 20 μl of 

TMG. 7.5 μl of 5 X SDS-loading buffer were added to the precipitated and 

supernatant samples, boiled for 3 min, and resolved in a 10% SDS-PAGE. The 

gel was fixed in 25% isopropyl alcohol, 10% acetic acid for 30 min, dried at 

80 °C, and exposed to an autoradiography film overnight.  

 

Meiotic Silencing Assay 

For testing the involvement of NCU05488 in meiotic silencing, strains 

containing the deletion mutant at NCU05488 allele were constructed under 

different genetic backgrounds. Deletion of the NCU05488 gene was verified by 

PCR amplification using oligonucleotides that annealed upstream and 

downstream of the gene. RspRIP93 genotype was verified by DNA digestion with 

restriction enzymes and Southern blot analysis (PRATT 2008).  

Control and experimental crosses were set up under conditions that 

induced sexual development. Strains from opposite mating type were point 
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inoculated in Westergaard’s Medium and incubated in the presence of light at 

25 °C for 16 days. Once ascospores were shooting into the plate’s lid, spores 

were harvested in 0.5 ml of water and immediately quantified under the 

microscope using a hemocytometer. Pictures from different field of view were 

taking and used for spore quantification. An average of 1500 spores were 

counted per cross. Three independent crosses were analyzed. 
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CHAPTER III 

COMPARATIVE PROTEOMIC ANALYSIS OF TWO STAGES OF SEXUAL 

DEVELOPMENT IN Neurospora crassa 

 

INTRODUCTION 

N. crassa is a powerful eukaryotic model system to study cell 

differentiation and phenomena related to meiosis and sexual development, 

largely because of its ability to sense environmental changes and adapt to them 

by switching between the vegetative and the sexual growth state (ARAMAYO and 

SELKER 2013). Under specific environmental conditions, sexual differentiation is 

activated and several sexual structures develop (Figure 3.1). While numerous 

studies have used these model system to study development (NELSON et al. 

1997b; KIM and NELSON 2005; NOWROUSIAN et al. 2007; LICHIUS et al. 2012), our 

understanding is still limited regarding the regulation and molecular control of the 

morphological and physiological changes observed during the sexual cycle of N. 

crassa.  

  



 

116 

 

 

 

Figure 3.1 N. crassa development. N. crassa undergoes (a) vegetative or (b,c) 
sexual development depending on growing conditions. Under nitrogen 
starvation, exposure to light and low temperature, sexual differentiation is 
activated. Sexual growth is divided into two main stages: (b) pre-fertilization 
(unfertilized sexual tissue), in which female reproductive structures called 
protoperithecia are formed, and (c) post-fertilization (fertilized sexual tissue), in 
which perithecia, asci and spores developed. 
 

 

While important efforts have been made to establish genes that are 

expressed during sexual growth, still little is known in terms of protein content 

and metabolic processes associated with sexual differentiation. Over 200 genes 

associated with various sexual development stages have been identified by 
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genetic mutations that alter normal sexual cycle progression in N. crassa 

(JOHNSON 1978; DELANGE and GRIFFITHS 1980; PERKINS et al. 1982; NELSON and 

METZENBERG 1992; RAJU 1992). Despite this research, molecular function 

directly related to sexual growth has been established for only a few of these 

gene products (JOHNSON 1979; GLASS et al. 1990; STABEN and YANOFSKY 1990; 

NELSON et al. 1997b; KIM et al. 2002; NOWROUSIAN et al. 2007). More importantly, 

the majority of the mutant genes with a defect in sexual development are likely 

not directly involved in sexual growth. Analysis of expressed sequences tags 

(ESTs) gave the first approximation of genes specifically expressed at different 

stages of the sexual cycle, such as in unfertilized tissue and/or during fruiting 

body maturation (NELSON et al. 1997a; DOLAN et al. 2000). Subsequently, 

transcriptome analyses were used to determine specific gene expression 

patterns under different growth conditions, including those that activate sexual 

growth (LI et al. 2005; PARK et al. 2008; LICHIUS et al. 2012; WANG et al. 2012). 

Those studies revealed the numerous genes and identified molecules that are 

potentially relevant for the development of sexual structures. Despite this, little is 

known about protein accumulation at the different stages and a global proteomic 

approach has not been implemented. While transcriptome analyses have the 

potential to identify differential protein expression, various studies have shown 

poor correlations between mRNA and protein abundance (GREENBAUM et al. 

2003). Therefore, it is clear that analyses of mRNA and protein accumulation are 
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complementary: both are required for a complete understanding of how the cell 

works.  

With plenty of genomic data for Neurospora, further functional research 

can provide more information at the protein and metabolic levels, which would 

enable better understanding of fundamental processes such as cell 

differentiation and sexual development.  

Although the complete genome of N. crassa is sequenced 

(http://www.broadinstitute.org/annotation/genome/neurospora/MultiHome.html) 

(GALAGAN et al. 2003), and around 10,000 protein-coding genes have been 

predicted (BORKOVICH et al. 2004), functional classification of Neurospora 

proteins has remained challenging. The Munich Information Center for Proteins 

Sequences (MIPS) Neurospora crassa Genome Database (MNCDB) 

(http://mips.helmholtz-muenchen.de/genre/proj/ncrassa/) presents information 

on the molecular structure and functional network on the completely sequenced 

N. crassa genome; yet as to date, only 43% of predicted proteins have functional 

annotation according to MIPS Functional Catalogue (FunCat) (RUEPP et al. 

2004). Furthermore, a complete Gene Ontology database for Neurospora is still 

missing. Until now, a general proteomic approach has not been applied for 

studying sexual development in N. crassa; mainly because of the technical 

difficulties associated with the scarcity of the sexual tissue and the challenges 

associated with tissue disruption for protein extraction. Therefore, new 
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approaches must be implemented in order to extend the functional annotation 

for the N. crassa proteome. 

The goal of this study was to develop a comprehensive proteomics data 

set and a functional catalogue for N. crassa sexual development. To overcome 

the challenges associated with amount and disruption of the sexual tissue, I 

developed a culturing strategy for growing a considerable amount of tissue and 

applied a mechanical disruption that yielded a higher breakage of sexual 

structures. I then used a mass spectrometry-based proteomic approach followed 

by functional annotation and metabolic pathways analyses to visualize the 

potential molecular differences between unfertilized and fertilized sexual tissues. 

In this study, a total of 841 distinct proteins were identified, hereafter 

referred as the proteome of N. crassa sexual tissue. Enrichment analysis 

revealed metabolic processes related to the morphological changes observed in 

sexual development, such as significant over-representation of biosynthesis of 

secondary metabolites and carbohydrate degradation during fruiting body 

formation. To the best of my knowledge, this is the first study that uses 

proteomics to investigate the potential biochemical differences between two 

stages of sexual development in filamentous fungi. This functional catalogue will 

serve as a reference tool for further studies related to sexual development not 

only in N. crassa, but also in other filamentous ascomycetes. The proteome, 

functional annotation and comparative proteomic analyses presented in this 

study, combined with the available gene expression data, can provide insights 
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into the biological processes activated at different developmental stages of N. 

crassa. 

 

RESULTS 

Proteome of N. crassa Sexual Development  

The proteome of N. crassa sexual development was determined by 

identifying proteins extracted from two stages of N. crassa sexual growth: an 

early stage, before fertilization (unfertilized tissue) and a middle stage, four days 

after fertilization (fertilized tissues). Proteins were identified by two independent 

mass spectrometry analyses. The workflow for the identification and analyses of 

the proteome is summarized in Figure 3.2. From unfertilized sexual tissue, 620 

proteins were characterized; 676 proteins were characterized from tissue 

harvested four days post-fertilization. The complete list of proteins identified in 

each stage and the protein confidence score are shown in Table B.1 (Appendix 

B). Combining the two data sets resulted in a final list of 841 distinct proteins 

that I referred to as the proteome of N. crassa sexual development. Unique 

proteins were divided into three sub-groups depending on tissue-specificity: (i) 

common proteins group (CP), which were detected in both sexual 

developmental stages and contained 455 proteins (54%), (ii) unfertilized-specific 

proteins (USP) with 165 proteins (19.6%), and (iii) fertilized-specific proteins 

(FSP) with 221 proteins (26.3%) (Figure 3.3).  
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Figure 3.2 Workflow of the comparative proteomic analysis. The proteome of 
sexual development was determined by identifying proteins extracted from two 
different tissues: 6 days old unfertilized sexual tissue in which protoperithecia 
structures were formed (head arrow), and fertilized tissue yielded 4 days after 
fertilization, in which mature perithecia were developed. Mass spectrometry 
(MS) analyses were done to the extracted proteins and the MS data were 
searched against the N. crassa database for protein identification. Proteins were 
classified depend on tissue-specificity in: Common proteins (CP) identified in 
both sexual tissues; unfertilized-specific proteins (USP) identified only in 
unfertilized tissue, and fertilized-specific proteisn (FSP) detected exclusively in 
the fertilized tissue. Bioinformatics analyses were done to determined protein 
coverage, Gene Ontology (GO) terms by Blast2GO, Functional annotation via 
MIPS FunCat, and metabolic pathways and genetic processes using Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis. 
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Figure 3.3 Distribution of the proteome of N. crassa sexual development. 841 
distinct proteins were classified depending on tissue-specificity (unfertilized or 
fertilized) then divided into three protein sub-groups: common proteins, which 
were present in both tissues (CP) (green), unfertilized-specific proteins (USP) 
(blue), and fertilized-specific proteins (FSP) (red). 
 

 

Bias Analysis 

To assess the extent of proteome coverage achieved by the proteins 

identified in this study, I performed bias analysis of the protein length and Gene 

Ontology (GO) terms. These analyses revealed undetected proteins that were 

likely expressed at low levels, only in specialized cells, or only at particular 

developmental stages, such as during vegetative growth. The identified proteins 

from sexual development cover 8.4% of the proteins predicted from the total N. 

crassa genome. Because Neurospora spends most of its life cycle in the haploid 

stages of the vegetative cycle, it was not surprising to find low genome protein 
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coverage from proteins expressed during sexual growth.  

By comparing the ratio of identified and expected proteins, I detected 

biases against short proteins (<100 amino acids) and long proteins (> 1000 

amino acids) (Figure 3.4). This result is expected because short proteins yield 

less peptides and hence are less likely to be detected by LC-MS/MS. The bias 

against long proteins demonstrated that small proteins (100-500 amino acids) 

were more abundant than long proteins in the studied tissues. Similar results 

were observed with the fission yeast proteome (GUNARATNE et al. 2013) and my 

results are in accordance with the biosynthetic cost minimization hypothesis. 

This hypothesis states that smaller proteins tends to be more highly expressed 

than large proteins (WARRINGER and BLOMBERG 2006). 

To analyze bias in terms of functional annotation, GO terms were 

assigned to the identified proteins using Blast2GO software coupled with the 

InterProScan program (CONESA et al. 2005; GOTZ et al. 2008). A total of 92% 

(774) of the identified proteins received at least one GO term. GO terms are 

divided in three categories, biological process, molecular function and cellular 

components. By analyzing the distribution of GO terms, I found that under the 

category of biological process, metabolic processes (87.2%) and cellular 

processes (61.6%) had the highest percentages of proteins (Figure 3.5A). Under 

metabolic process, a notorious over-representation of GO terms associated with 

protein synthesis, such as protein metabolic process, gene expression and  
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Figure 3.4 Bias analysis of protein length. The distribution of protein length for 
all N. crassa predicted proteins (10,066) was plotted as a histogram (grey bars, 
corresponding to the left vertical axis). The analysis was repeated for the 
proteins identified in this study (841) (red bars overlapping grey bars). The 
percentages of identified proteins in comparison to the total predicted for each 
histogram bar was calculated and is depicted as green triangles (right vertical 
axis), connected with lines for clarity. 
 

 

translation, were observed (Figure 3.6). In addition, metabolic processes related 

to growth, reproduction, and embryo development showed high frequency in the 

proteome when compared with the genome. Interestingly, carbohydrate 

metabolism and secondary metabolic process were also observed as relevant 

biological processes during N. crassa sexual development (Figure 3.6). The 

molecular function GO term binding was also highly represented (77.3%). From 

this group, protein binding, carbohydrate binding, and RNA binding GO terms 
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showed high frequency compared with the total predicted proteins (Figure 3.5B; 

Figure 3.7). In addition, the analysis of cellular component categories showed 

that our set of data included proteins localized not only in the cytoplasm, but also 

in different intracellular compartments, including the nucleus (Figure 3.5C; 

Figure 3.8).  

No large biases against specific biological process GO terms were found 

(Figure 3.6). However, biases were observed against molecular function GO 

categories related to transcription factor activity (GO:0001071; 0003700) (Figure 

3.7). In addition, biases against proteins under the cellular component GO term 

nuclear chromosome (GO:0000228) were also detected (Figure 3.8) (Table B.2). 

Biases against transcription factors and chromosome-binding proteins could be 

explained by the low abundance that characterizes these proteins (JIANG et al. 

2009). Taken together, the available data suggest that the majority of annotated 

GO categories were represented by the proteome of N. crassa sexual 

development. However, we cannot rule out that some proteins, such as poorly 

soluble, low-abundance, very short or very long proteins are missing in the 

dataset. This could be the result of potential technical limitations, such as 

protein/peptides that are difficult to extract and/or detect using our procedure. 
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Figure 3.5 Gene Ontololgy (GO) terms assigned to the proteome of N. crassa sexual development. Major GO 
terms associated with (A) biological process, (B) molecular function and (C) cellular component identified in the 
proteome of N. crassa sexual development. Percentages refer to the ratios of mapped proteins for each term to the 
total number of sexual developmental proteins identified with GO annotation. 
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Figure 3.5 Gene Ontololgy (GO) terms assigned to the proteome of N. crassa sexual development 
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Figure 3.5 Continued. 
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Figure 3.5 Continued. 
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Figure 3.6 Biological Process (BP) GO terms bias analysis. Distribution of annotated BP GO terms of all proteins 
identified in this study (proteome; red bars) in comparison to total predicted proteins (genome; grey bars) according 
to Table B.2 (Appendix B). GO terms are separated based on the log10 of the frequency. Frequency= ((Number of 
detected proteins associated with corresponding GO term/ Number of total detected proteins annotated with BP 
GO-terms)/(Number of genome predicted proteins associated with corresponding GO term/ Number of total 
genome predicted proteins annotated with BP GO-terms)). 
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Figure 3.6 Biological Process (BP) GO terms bias analysis 
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Figure 3.7 Molecular Function (MF) GO terms bias analysis. Distribution of annotated MF GO terms of all identified 
proteins (proteome; red bars) in comparison to total predicted proteins (genome; grey bars) according to Table B.2 
(Appendix B). GO terms are separated based on the log10 of the frequency. Frequency= ((Number of detected 
proteins associated with corresponding GO term/ Number of total detected proteins annotated with MF GO-
terms)/(Number of genome predicted proteins associated with corresponding GO term/ Number of total genome 
predicted proteins annotated with MF GO-terms)).  
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Figure 3.8 Cellular Component (CC) GO terms bias analysis. Distribution of 
annotated CC GO terms of all identified proteins (proteome; red bars) in 
comparison to total predicted proteins (genome; grey bars) according to Table 
B.2 (Appendix B). GO terms are separated base on the log10 of the frequency. 
Frequency= ((Number of detected proteins associated with corresponding GO 
term/ Number of total detected proteins annotated with CC GO-terms)/(Number 
of genome predicted proteins associated with corresponding GO term/ Number 
of total genome predicted proteins annotated with CC GO-terms)). 
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Functional Annotation Analysis  

In order to determine the molecular processes that regulate sexual development 

in N. crassa, I performed a functional analysis using the N. crassa functional 

annotation established by MIPS Functional Catalogue (FunCat: 

http://mips.helmholtz-muenchen.de/funcatDB/). FunCat is a classification system 

enabling the description of proteins based on their biological function. Contrary 

to Gene Ontology, FunCat is organized into a smaller number of categories; 

biological and molecular processes are described in 28 main functional 

categories (RUEPP et al. 2004). This compact classification gives a more general 

picture of the cellular processes and therefore facilitates the interpretation of 

enrichment analysis. From approximately 10,000 predicted coding genes in N. 

crassa, 4213 proteins are classified by FunCat in at least one functional 

category. Out of the 841 unique proteins identified in the two stages of sexual 

development, 689 proteins (83%) were functionally annotated using FunCat 

(Table 3.1). Interestingly, when I analyzed each tissue-specific group of proteins 

separately, I observed a slight increase in the number of annotated proteins in 

the unfertilized and common groups (80.6% and 87.5%, respectively) compared 

with the fertilized group (75.6%) (Table 3.1). This result is consistent with 

previous observations in which mycelial and perithecial EST libraries had lower 

percentage of annotated genes and greater percentages of cDNAs encoding 

apparently novel genes (unannotated proteins) compared with conidial or 

unfertilized tissue libraries (DOLAN et al. 2000). The observation that fertilized-
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specific proteins contain lower numbers of annotated proteins shows the 

potential that studies in fungal sexual structures have for the discovery of novel 

proteins. 

 

 

Table 3.1 Summary of N. crassa proteins functionally classified via MIPS 
FunCat  
 

FunCat 
Classification 

Genome 
Proteins

a
 

Sexual Development Proteome 

Unfertilized 
Proteins

b
 

Fertilized 
Proteins

c
 

Common 
Proteins

d
 

Total
e
 

Classified 4213 
(41.8%) 

133 
 (80.6%) 

167  
(75.6%) 

398  
(87.5%) 

698 
(83.0%) 

Unclassified 5853 
(58.2%) 

32  
(19.4%) 

54 
(24.4%) 

57 
(12.5%) 

143 
(17.0%) 

Total 10066 165 221 455 841 
a
Total

 
genome proteins predicted in N. crassa 

b
Proteins identified in this study present only in unfertilized tissue 

c
Proteins identified in this study present only in fertilized tissue 

d
Proteins identified in this study  present in both tissues 

e
Total proteins identified in this study 

 

 

Interestingly, the percentage of unclassified proteins in the total 

experimental data (17%) was not as elevated as the percentage from the total 

genomic pool (58.2%). The same is true for other previously reported studies. 

For example, out of the 358 mitochondrial proteins reported in the N. crassa 

mitochondrial proteome, 58 (16.1%) were FunCat unclassified (KEEPING et al. 

2011). This difference between the number of proteins annotated from 

experimental and predicted data could reflect some limitations with protein-

coding gene predictions. 
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Distribution of the total number of identified proteins into main FunCat 

functional categories and the percentage of observed proteins compared to the 

percentage of expected proteins from the whole genome are summarized in 

Table 3.2. Due to the large differences detected between the percentages of 

observed and predicted unclassified proteins discussed above, I calculated and 

compared only percentages of functionally classified proteins. 

The majority of proteins reported in this study were involved in 

metabolism and/or had a binding function or cofactor requirement. To establish if 

categories were over- or under-represented, I performed a Z-test analysis based 

on the difference between the proportions of observed and expected proteins. 

The results revealed statistically significant (P-value <0.01) over-representation 

of proteins involved in metabolism, energy, protein synthesis, cell fate, and cell 

type differentiation, among others. This analysis also revealed an under-

representation or depletion of proteins involved in transcription process, 

especially in RNA processing (Table 3.2).  
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Table 3.2 Distribution of Main Functional Categories among Identified Proteins Compared with the Total Predicted 
Genome Proteins 
 

Main Functional Categories According to FunCat 

Total Predicted 
Genome Proteins 

Total Identified 
Proteins 

Z-test P-value 
Expected 
Proteins 

(%) 
Observed 
Proteins 

(%) 

01 Metabolism 1740 41.3 344 49.3 3.952 7.74E-05 
02 Energy 375 8.9 162 23.2 11.219 3.28E-29 
10 Cell cycle and DNA processing 622 14.8 101 14.5 -0.203 8.39E-01 
11 Transcription 725 17.2 71 10.2 -4.672 2.98E-06 
12 Protein synthesis 362 8.6 134 19.2 8.612 7.16E-18 
14 Protein fate (folding, modification, destination) 862 20.5 182 26.1 3.358 7.86E-04 
16 Protein with binding function or cofactor requirement 
(structural or catalytic) 

1375 32.6 406 58.2 12.994 1.32E-38 

18 Regulation of metabolism and protein function 216 5.1 52 7.4 2.502 1.23E-02 
20 Cellular transport, transport facilities and transport 
routes 

970 23.0 186 26.6 2.090 3.66E-02 

30 Cellular communication/ signal transduction 
mechanism 

286 6.8 50 7.2 0.363 7.16E-01 

32 Cell rescue, defense and virulence 594 14.1 150 21.5 5.044 4.55E-07 
34 Interaction with environment 473 11.2 97 13.9 2.040 4.14E-02 
36 Systemic interaction with environment 7 0.2 3 0.4 1.431 1.52E-01 
40 Cell fate 241 5.7 75 10.7 5.011 5.42E-07 
41  Development (systemic) 45 1.1 14 2.0 2.106 3.52E-02 
42 Biogenesis of cellular components 523 12.4 122 17.5 3.669 2.43E-04 
43 Cell type differentiation  280 6.6 72 10.3 3.481 5.00E-04 
Total proteins

a
 4213  698    

a
Total functionally classified proteins 

Over-represented category (p<0.01)  
Under-represented category (p<0.01) 



 

138 

 

The enrichment analysis of functional categories determined by MIPS 

FunCat was consistent with the results obtained previously with Blast2GO 

analysis. Both analyses showed that most of the proteins from the proteome of 

sexual development in N. crassa participated in metabolic processes, protein 

synthesis, and/or had a function binding with other molecules. The consistency 

of both analyses suggested that Blast2GO could be used as an effective tool to 

improve the functional annotation of the complete genome of N. crassa. 

To determine whether the enrichment/depletion pattern observed was 

specific for the sexual development proteome, I compared our protein dataset 

with gene expression data reported for a different developmental and cellular 

stage: conidial germination during vegetative growth. The comparison with 

genetic data was necessary because proteomic data is lacking. I used the 

conidial germination transcription profile data set reported for 1-4 hours post-

germination (KASUGA et al. 2005) and performed a functional analysis via 

FunCat. I observed enrichment in protein synthesis category and depletion in 

metabolism category (data not shown), as was reported originally by Kasuga et 

al. Therefore, I conclude that two different sets of gene products from N. crassa 

generate different functional enrichment/depletion patterns.  

This result suggested that the functional enrichment observed depended 

on growth conditions and development stages. If this hypothesis were true, I 

expected to observe enrichment in similar functional categories when comparing 

similar data sets. To test the hypothesis, I compared the proteomic data 
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generated in this study with previously reported genomic data, in which gene 

expression during fruiting body development was analyzed (WANG et al. 2012). 

Both proteomic and genomic studies were performed under similar growth 

conditions that induced sexual development. In the genomic study, the authors 

observed a statistically significant enrichment in genes whose products are 

related to metabolism, proteins with binding function, protein fate, cellular 

transport, cell fate and cell type differentiation (Table S4 from (WANG et al. 

2012)). These results are consistent with my observations. Therefore, I conclude 

that the functional enrichment pattern observed in the present study reflects the 

protein population of sexual development. 

Wang et al. also reported enrichment in genes involved in transcriptional 

processes (WANG et al. 2012). However, I observed depletions in this category, 

mainly in proteins involved in RNA processing. This finding could be explained 

because gene expression does not always correlate with protein synthesis, as 

both transcription and translation are highly regulated processes (HAIDER and 

PAL 2013). Genes can be transcribed but not necessarily translated in parallel.  

Other biological aspects could explain the discrepancy observed in the 

transcriptional category between genomic and proteomic data. These aspects 

are: protein concentration and protein turnover. Protein concentration can affect 

protein population results because a threshold is required for protein detection 

via mass spectrometry analysis. Therefore, low-abundance proteins would not 

be detected in proteomic analyses, unless the method used for protein 
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extraction targets those low concentrated proteins. An example of low-

abundance proteins is transcription factors (TFs). TFs are expressed in very low 

concentrations in most of the cells, thus making their identification difficult in 

proteomic studies (JIANG et al. 2009).  

 

Tissue-Specific Proteins Pathway Analysis 

Because the proteome of sexual development showed a specific 

enrichment pattern in molecular functions, I wanted to establish whether each 

stage of sexual development also presents a distinctive over-representation of 

functional categories. To do this, I functionally analyzed all three sub-groups of 

proteins individually (common, unfertilized-specific and fertilized-specific 

proteins). All main functional categories and sub-categories showing statistically 

significant enrichment of proteins (P-value<0.01) in at least one of the protein 

sub-groups are summarized in Table 3.3. This analysis revealed that each stage 

of development (unfertilized and fertilized) has enrichment on different functional 

categories. The difference observed in the enrichment pattern could explain the 

molecular and biological processes specific for each stage. For example, the 

formation of female structures in unfertilized tissue and the maturation of the 

fruiting body that takes place after fertilization. 
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Table 3.3 Protein Functional Analysis of Different Stages of N. crassa Sexual Development 
 

ID Functional Categories 

Genome Unfertilized Fertilized Common 

Exp
a
 % Obs

b
 % 

Z-
score 

P-
value 

Obs
c
 % 

Z-
score 

P-
value 

Obs
d
 % 

Z-
score 

P-
value 

01 Metabolism 1740 41.3 60 45.1 0.9 0.380 98 58.7 4.5 0.000 189 47.5 2.4 0.017 
01.01 Amino acid 
metabolism 

319 7.6 16 12.0 1.9 0.058 23 13.8 2.9 0.003 45 11.3 2.6 0.008 

01.01.03.02.02 degradation 
of glutamate 

16 0.4 1 0.8 0.7 0.498 4 2.4 3.8 0.000 5 1.3 2.5 0.013 

01.01.05.01 metabolism of 
polyamines 

15 0.4 0 0.0 -0.7 0.491 3 1.8 2.9 0.004 3 0.8 1.2 0.224 

01.01.05.03 metabolism of 
urea (urea cycle) 

10 0.2 3 2.3 4.2 0.000 2 1.2 2.3 0.020 2 0.5 1.0 0.321 

01.02 nitrogen, sulfur and 
selenium metabolism 

150 3.6 12 9.0 3.3 0.001 9 5.4 1.2 0.215 15 3.8 0.2 0.831 

01.05 C-compound and 
carbohydrate metabolism 

759 18.0 27 20.3 0.7 0.500 58 34.7 5.4 0.000 105 26.4 4.1 0.000 

01.05.03 polysaccharide 
metabolism 

169 4.0 1 0.8 -1.9 0.056 17 10.2 3.9 0.000 12 3.0 1.0 0.328 

01.05.11 aromate 
metabolism 

40 0.9 3 2.3 1.5 0.134 6 3.6 3.3 0.001 3 0.8 0.4 0.698 

01.06.05 fatty acid 
metabolism 

71 1.7 7 5.3 3.1 0.002 6 3.6 1.8 0.066 19 4.8 4.3 0.000 

01.20 secondary 
metabolism 

245 5.8 12 9.0 1.5 0.123 24 14.4 4.5 0.000 21 5.3 0.4 0.659 

01.20.01 metabolism of 
primary metabolic sugar 
derivatives 

17 0.4 0 0.0 -0.7 0.463 4 2.4 3.7 0.000 0 0.0 1.3 0.204 

01.20.35 metabolism of 
secondary products derived 
from L-phenylalanine and 
L-tyrosine 

33 0.8 1 0.8 0.0 0.968 7 4.2 4.5 0.000 1 0.3 1.2 0.236 
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Table 3.3 Continued. 
 

ID Functional Categories 

Genome Unfertilized Fertilized Common 

Exp
a
 % Obs

b
 % 

Z-
score 

P-
value 

Obs
c
 % 

Z-
score 

P-
value 

Obs
d
 % 

Z-
score 

P-
value 

02 Energy 375 8.9 26 19.5 4.2 0.000 26 15.6 2.9 0.003 111 27.9 11.8 0.000 
02.11 electron transport 
and membrane-associated 
energy conservation 

116 2.8 9 6.8 2.7 0.006 8 4.8 1.6 0.120 31 7.8 5.5 0.000 

02.13 respiration 138 3.3 9 6.8 2.2 0.028 7 4.2 0.6 0.516 36 9.0 5.8 0.000 
02.19 metabolism of 
energy reserves (e.g. 
glycogen, trehalose) 

40 0.9 0 0.0 -1.1 0.259 5 3.0 2.6 0.010 14 3.5 4.6 0.000 

02.25 oxidation of fatty 
acids 

38 0.9 4 3.0 2.4 0.015 5 3.0 2.7 0.007 5 1.3 0.7 0.482 

12 Protein synthesis 362 8.6 23 17.3 3.5 0.001 15 9.0 0.2 0.860 98 24.6 10.2 0.000 
12.01 ribosome biogenesis 221 5.2 9 6.8 0.8 0.440 7 4.2 -0.6 0.548 70 17.6 9.7 0.000 
12.01.01 ribosomal 
proteins 

152 3.6 8 6.0 1.5 0.147 6 3.6 0.0 0.992 65 16.3 11.5 0.000 

12.04 translation 188 4.5 21 15.8 6.0 0.000 12 7.2 1.7 0.098 84 21.1 13.5 0.000 
12.04.01 translation 
initiation 

50 1.2 10 7.5 6.2 0.000 2 1.2 0.0 0.990 7 1.8 1.0 0.324 

12.10 aminoacyl-tRNA-
synthetases 

38 0.9 4 3.0 2.4 0.015 2 1.2 0.4 0.694 13 3.3 4.3 0.000 

16 Protein with binding 
function or cofactor 
requirement (structural 
or catalytic) 

1375 32.6 71 53.4 5.0 0.000 71 42.5 2.7 0.008 269 67.6 13.9 0.000 

16.01 protein binding 678 16.1 37 27.8 3.6 0.000 39 23.4 2.5 0.013 168 42.2 12.9 0.000 
16.02 peptide binding 9 0.2 2 1.5 2.9 0.004 1 0.6 1.0 0.306 3 0.8 2.0 0.043 
16.07 structural protein 
binding 

30 0.7 2 1.5 1.1 0.293 5 3.0 3.2 0.001 14 3.5 5.5 0.000 
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Table 3.3 Continued. 
 

ID Functional Categories 

Genome Unfertilized Fertilized Common 

Exp
a
 % Obs

b
 % 

Z-
score 

P-
value 

Obs
c
 % 

Z-
score 

P-
value 

Obs
d
 % 

Z-
score 

P-
value 

16.13 C-compound binding 21 0.5 1 0.8 0.4 0.685 4 2.4 3.2 0.001 6 1.5 2.5 0.012 
20.09.07.03 ER to Golgi 
transport 

55 1.3 2 1.5 0.2 0.843 7 4.2 3.1 0.002 7 1.8 0.8 0.453 

32 Cell rescue, defense 
and virulence 

594 14.1 25 18.8 1.5 0.127 34 20.4 2.3 0.024 92 23.1 4.8 0.000 

32.01 stress response 351 8.3 19 14.3 2.4 0.015 26 15.6 3.3 0.001 74 18.6 6.8 0.000 
36 Systemic interaction 
with environment 

7 0.2 2 1.5 3.3 0.001 1 0.6 1.3 0.199 1 0.3 0.4 0.697 

36.20 fungal specific 
systemic sensing and 
response 

4 0.1 2 1.5 4.3 0.000 1 0.6 1.9 0.059 1 0.3 0.9 0.365 

40 Cell fate 241 5.7 15 11.3 2.7 0.007 14 8.4 1.4 0.149 47 11.8 4.8 0.000 
40.01 cell growth / 
morphogenesis 

186 4.4 13 9.8 2.9 0.004 12 7.2 1.7 0.091 30 7.5 2.8 0.005 

40.10 cell death 63 1.5 5 3.8 2.1 0.038 3 1.8 0.3 0.754 22 5.5 5.7 0.000 
41 Development 
(systemic) 

45 1.1 0 0.0 -1.2 0.231 2 1.2 0.2 0.873 12 3.0 3.4 0.001 

41.01 
fungal/microorganismic 
development 

45 1.1 0 0.0 -1.2 0.231 2 1.2 0.2 0.873 12 3.0 3.4 0.001 

42 Biogenesis of cellular 
components 

523 12.4 18 13.5 0.4 0.700 30 18.0 2.1 0.034 74 18.6 3.5 0.000 

42.10 nucleus 110 2.6 4 3.0 0.3 0.778 9 5.4 2.2 0.030 20 5.0 2.8 0.005 
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Table 3.3 Continued. 
 

ID Functional Categories 

Genome Unfertilized Fertilized Common 

Exp
a
 % Obs

b
 % 

Z-
score 

P-
value 

Obs
c
 % 

Z-
score 

P-
value 

Obs
d
 % 

Z-
score 

P-
value 

43 Cell type 
differentiation  

280 6.6 11 8.3 0.7 0.461 17 10.2 1.8 0.075 45 11.
3 

3.5 0.001 

43.01.03.09 development of 
asco- basidio- or zygospore 

93 2.2 7 5.3 2.3 0.021 10 6.0 3.2 0.002 18 4.5 2.9 0.004 

Total
e
 4213  133    167    398    

a
Exp referes to the total number of genome predicted proteins that were expected to be annotated in the functional category 

b
Obs referes to the total number of unfertilized-specific proteins identified that were annotated in the functional category 

c
Obs referes to the total number of fertilized-specific proteins identified that were annotated in the functional category 

d
Obs referes to the total number of identified common proteins that were annotated in the functional category 

e
Total number of proteins functionally annotated in each protein group 

Over-represented category (p<0.01) 
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I further investigated the metabolic pathways that undergo changes in 

sexual development. The KEGG pathway database has been used as a 

reference for the systematic analysis of gene function and for mapping cellular 

processes and organism behaviors from molecular data sets (KANEHISA et al. 

2008). In this study metabolic pathways were determined for each protein group 

using the KEGG Automatic Annotation Server (KAAS). From the proteome, a 

total of 452 proteins were mapped to 97 metabolic pathways, 17 genetic 

processes, and 13 cellular processes. In addition, enzyme codes (EC) were 

assigned to 266 proteins. Complete annotation of the proteome of N. crassa 

sexual development, showing the metabolic pathways and enzyme codes 

determined by KAAS are displayed in Table B.1. Then, I sought to determine 

whether specific pathways were associated with different stages of sexual 

growth. For that, I compared the most predominant metabolic pathways and/or 

genetic processes for each protein sub-group. In all three protein sub-groups, 

the biosynthesis of secondary metabolites was the pathway with the highest 

representation of identified proteins, suggesting fundamental functions for these 

compounds during sexual development in N. crassa (Figure 3.9). 
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Figure 3.9 Top 15 KEGG pathways. Metabolic pathways and genetic processes, for each protein sub-group from 
the proteome of N. crassa sexual development. (A) Common proteins. (B) Unfertilized-specific proteins. (C) 
Fertilized-specific proteins. (D) Predicted total genome proteins. 
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Figure 3.9 Top 15 KEGG pathways    
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Protein Synthesis and Energy Metabolism are Enriched Processes 

throughout Sexual Development 

Proteins classified as common were detected in both tissues, suggesting 

their role in vital processes required for normal cellular growth such as the 

synthesis of essential molecules, energy production, mechanical support, 

transport of small molecules and storage. In addition, over-representation of 

functional categories in this protein sub-group may reveal details about the 

biological and cellular processes associated with sexual growth in N. crassa. 

Such as, biological processes that lead cells to switch from vegetative to sexual 

cycle. Functional analysis results showed statistically significant enrichment in 

proteins with binding function, mainly proteins that bind to other proteins, 

proteins required for translation, ribosomal proteins, and proteins involved in 

ribosomal biogenesis. Also over-representation of amino acid metabolism was 

revealed (Figure 3.10A). Together, this result indicates an active translation 

process throughout sexual development. The functional analysis data was 

consistent with the KEGG pathway analysis. After biosynthesis of secondary 

metabolites, the genetic processes ribosome and protein processing in 

endoplasmic reticulum, jointly with metabolic pathways such as biosynthesis of 

amino acids and aminoacyl-tRNA biosynthesis, were the most represented 

categories by the common proteins (Figure 3.9A). Together, these results 

demonstrated that active protein synthesis occurred before and after fertilization 

during sexual development. 
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Figure 3.10 Functional classification and enrichment analysis of common 
proteins. Functional categories with statistically significant enrichment by 
common protein sub-group (green bars) (P-value <0.01) compared with the total 
predicted genome proteins (gray bars). (A) Categories with percentages of 
observed proteins equal or higher than 10%. (B) Categories with percentages of 
observed proteins below 10%. 
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The functional analysis of common proteins also showed that proteins 

involved in cell growth and morphogenesis, cell death, fungal and ascospore 

development, and stress response were enriched (Figure 3.10B). It is known 

that changes of some abiotic factors in the environment, like low nitrogen 

concentration, lower temperature, and increased light exposure will result in 

activation of the sexual cycle. Therefore, genetic and morphological changes are 

expected as a response to stressed situations. The only category under-

represented was transcription, more specifically RNA processing. As I 

mentioned above, this result could be explained by the low-abundance 

characteristic of some proteins involved in transcription regulation, such as 

transcription factors. 

Cell differentiation demands energy; therefore pathways associated with 

energy production represented by common proteins were expected. Via KEGG 

pathway analysis we found that oxidative phosphorylation, 

glycolysis/gluconeogenesis, and pyruvate metabolism were highly represented 

by common proteins. Carbon utilization was also enriched in this group of 

proteins, as carbon metabolism, citrate cycle, and methane metabolism were 

part of the top 15 pathways. The citrate cycle (TCA cycle) is a central metabolic 

pathway that completes the oxidative degradation of three essential molecules, 

carbohydrates, fatty acids, and amino acids, which are all required for essential 

biological and cellular processes (Figure 3.9A). Therefore, I conclude that 

essential biological processes were represented by the common group of 
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proteins. To reach any further conclusion in terms of sexual cycle specificity, it 

would be necessary to compare these results with vegetative mycelium 

proteomic data and determine which categories are over-represented only 

during sexual progress. 

 

Systemic Interaction with the Environment and Morphogenesis are 

Processes Enriched in Unfertilized Tissue 

MIPS functional analysis of unfertilized-specific proteins showed 

statistically significant over-representation in proteins involved in processes such 

as protein synthesis, specifically translation. Other functional categories that 

were enriched were proteins with binding function, especially those that bind to 

other proteins and peptides (Figure 3.11A). This active protein metabolism in the 

unfertilized tissue was also revealed by the KEGG pathway analysis, in which 

RNA transport, ribosome, biosynthesis of amino acids, and aminoacyl-tRNA 

biosynthesis were the metabolic pathways/genetic processes represented 

(Figure 3.9B). Together, these data are consistent with previously reported gene 

expression data from unfertilized tissue (WANG et al. 2012). In addition, KEGG 

analysis revealed that after the biosynthesis of secondary metabolites, oxidative 

phosphorylation was the second metabolic pathway represented by unfertilized-

specific proteins (Figure 3.9B). Oxidative phosphorylation is necessary for ATP 

production. Thus, large amounts of energy may be required for the 

morphological changes, including protoperithecia formation, which occurs once 
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sexual growth is activated.  

Because switching from vegetative to sexual growth depends on 

environmental changes, I expected to observe enrichment of proteins that 

participate in sensing and response to those changes. As expected, I observed 

enrichment in the categories of specific systemic sensing and response, urea 

cycle and nitrogen /sulfur metabolism. In addition, it has been shown that the 

fatty acid composition of sexual tissue differs greatly from the composition in 

asexual tissue, and those changes correlate with several events through sexual 

development (GOODRICH-TANRIKULU et al. 1998). Acordingly, fatty acid 

metabolism was another enriched category in this group of proteins. Due to 

morphological changes associated with protoperithecia formation, also expected 

to observe enrichment in proteins associated with cell fate, and this prediction 

was confirmed, especially in the subcategory of cell growth/morphogenesis 

(Figure 3.11B). 

  



 

153 

 

 

 

Figure 3.11 Functional classification and enrichment analysis of unfertilized-
specific proteins. Functional categories with statistically significant enrichment by 
unfertilized-specific protein sub-group (blue bars) (P-value <0.01) compared with 
the total predicted genome proteins (gray bars). (A) Categories with percentage 
of observed proteins equal or higher than 10%. (B) Categories with percentage 
of observed proteins below 10%. 
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Secondary Metabolites Synthesis, Carbohydrates Metabolism, and Cell 

Type Differentiation are Enriched Processes in Fertilized Tissue 

Once fertilization occurs, cellular morphogenesis and tissue differentiation 

is observed: perithicium is formed, meiosis and post-meiotic mitosis divisions 

occur, and ascospores develop. Therefore, I expected that proteins related to 

energy production, response to stress, and cell type differentiation would be 

present in fertilized tissue. As expected, the MIPS functional analysis of 

fertilized-specific proteins showed an enrichment in categories such as proteins 

with binding function or cofactor requirement, protein fate, energy, stress 

respond, cell type differentiation, cellular transport and various subcategories 

under metabolism (Figure 3.12). Consistent with my observations, enrichment in 

stress response, proteins with binding function and cell fate categories were 

reported in a functional analysis of genes up-regulated at 96 h after fertilization 

(WANG et al. 2012). Over-representations of proteins involved in diverse 

metabolic processes, including metabolism of amino acids, carbohydrates, 

polysaccharides and secondary metabolites were also statistically significant (P-

value <0.01) (Figure 3.12A).  
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Figure 3.12 Functional classification and enrichment analysis of fertilized-
specific proteins. Functional categories with statistically significant enrichment by 
fertilized-specific protein sub-group (red bars) (P-value <0.01) compared with 
the total predicted genome proteins (gray bars). (A) Categories with percentage 
of observed proteins equal or higher than 10%. (B) Categories with percentage 
of observed proteins below 10%. 
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Likewise, results observed from KEGG pathway analysis were in 

agreement with functional analysis. After biosynthesis of secondary metabolites, 

the subsequent metabolic pathway represented was starch and sucrose 

metabolism, which is crucial not only for the allocation of carbon resources but 

also for the initiation of hexose-based sugar signals (Figure 3.9C). Interestingly, 

tyrosine metabolism was also represented. Tyrosine is the precursor to the 

pigment melanin (MASON 1948; EISENMAN and CASADEVALL 2012), which is 

responsible for the black color of the sexual structures, perithecia and 

ascospores, in N. crassa. Melanin offers protection from UV rays, solar radiation, 

desiccation, enzymatic lysis and extreme environmental conditions (PAL et al. 

2014). 

 

Carbohydrate and Polysaccharide Metabolism are Important Processes for 

Ascus Maturation and Ascospore Development 

Several enzymes with cellulose degradation activity were found 

exclusively in fertilized tissue. For example, four β-glucosidases out of the seven 

predicted in N. crassa––including, cellobiohydrolase I and II, exoglucanase 3, 

and endoglucanase II and IV––were identified in tissue harvested four days 

post-fertilization. In addition, two sugar transporters from the cellodextrin 

transport system (cellodextrin-1 and -2) were also accumulated after fertilization 

(Table 3.4). The high content of cellulase enzymes explains the enrichment of 

categories related to carbohydrate and polysaccharide metabolism observed in 
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fertilized tissue. Interestingly, previous reports have mainly focused on the 

cellulose system in mycelia (asexual cycle) (TIAN et al. 2009; GALAZKA et al. 

2010; WU et al. 2013a). Recently, the secretome of vegetative cells of N. crassa 

during growth in microcrystalline cellulose was reported, and the core 

component of the cellulase system responsible for 43% of total cellulose 

degradation activity was established (PHILLIPS et al. 2011). I found that the same 

core components of the secretome are expressed in tissue harvested four days 

after fertilization, and the same proteins were undetected in unfertilized tissue. 

This evidence suggests that cellulases play an important role in fruiting body 

formation in N. crassa. In addition to the cellulase complex and the enrichment 

in carbohydrate metabolism, over-representation of proteins involved with 

secondary metabolites derived from sugar metabolism were also observed as 

described below. 
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Table 3.4 Proteins with cellulose degradation activity found specifically in 
fertilized tissue in N. crassa 
 

Accession # Protein name Predicted function Reference 

NCU00130 GH1-1 β-glucosidases  (WU et al. 2013b) 
NCU04952

a
 GH3-4 β-glucosidases  (PHILLIPS et al. 2011) 

NCU00577 GH3-5 β-glucosidases  (WU et al. 2013b) 
NCU07487 GH3-6 β-glucosidases  (WU et al. 2013b) 
NCU07340

a
 CBHI Cellobiohydrolase (PHILLIPS et al. 2011) 

NCU09680
a
 CBHII Cellobiohydrolase (PHILLIPS et al. 2011) 

NCU07190 GH6-3 Exoglucanase 3 (PHILLIPS et al. 2011) 
NCU00762

a
 EG-II  Endoglucanase II (PHILLIPS et al. 2011) 

NCU01050 EG-IV Endoglucanase IV (PHILLIPS et al. 2011) 
NCU00801 CDT-1 Cellodextrin-1 (GALAZKA et al. 2010) 
NCU08114 CDT-2 Cellodextrin-2 (GALAZKA et al. 2010) 

a
These four proteins are responsible for 43% of total cellulase activity observed in N. crassa 

vegetative cells (PHILLIPS et al. 2011) 

 

 

First Evidence of DHN-melanin Biosynthesis in N. crassa Sexual 

Development 

Another important metabolic pathway that appeared enriched in fertilized-

specific proteins was secondary metabolism, particularly metabolism of primary 

metabolic sugar derivatives, secondary products derived from L-glutamic acid, L-

proline and L-ornithine, and secondary products derived from L-phenylalanine 

and L-tyrosine (Figure 3.12B). This result was consistent with the results 

obtained from KEGG analysis (Figure 3.9C). Filamentous fungi are well known 

for the production of a wide range of secondary metabolites (SMs); in many 

cases the benefits of these compounds on the organism’s growth and 

development are unknown. However, the majority of these compounds are of 

medical, industrial and/or agricultural importance (KELLER et al. 2005). 

Biosynthesis of these natural products has been associated with fungal 



 

159 

 

development and cell differentiation, such as fruiting body formation and 

sporulation in Aspergillus (CALVO et al. 2002).  

One of the most described secondary metabolites in filamentous fungi is 

Melanin, a component of the fungal cell wall required for protection of sexual 

spores and fruiting bodies (EISENMAN and CASADEVALL 2012). Two metabolic 

pathways are involved in the biosynthesis of melanin: L-3,4-

dihydroxyphenylalanine (DOPA) and 1,8-dihydroxynaphthalene (DHN). 

Synthesis of DOPA-melanin requires the enzyme tyrosinase that catalyzes the 

convertion of tyrosin to DOPA (L-3,4-dihydroxyphenylalanine), which then is 

polymerized to form melanin. (JACOBSON 2000). On the other hand, several 

enzymes catalyze DHN-melanin synthesis, such as polyketide synthase, 

hydroxynaphthalene reductase, and ascytalone dehydratase (Figure 3.13). 

DHN-melanin has been associated mainly with pathogenic fungi where this 

macromolecule serves as a virulence factor. Genes encoding DHN-melanin 

enzymes have been found organized in a gene cluster in several fungi, such as 

Aspergillus fumigatus and Penicillium marneffei (TSAI et al. 1999; WOO et al. 

2010), or dispersed in the genome as in Colletotrichum lagenarium and Sordaria 

macrospora (TSUJI et al. 2003; ENGH et al. 2007).  
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Figure 3.13 DHN-melanin biosynthesis pathway. Tetrahydroxynaphtalene 
(1,3,6,8 – TNH); Trihydroxynaphtalene (1,3,8 – THN); Dihydrohynaphtalene (1,8 
– DHN). Enzymes are displayed in blue and the steps where they are involved 
are indicated by head arrows (Figure adapted from (BUTLER et al. 2009)). 
 

 

Previous genetic and biochemical evidences, such as identification of 

tyrosinase activity under conditions favoring sexual growth, suggested that N. 

crassa produces melanin in the cell walls of perithecia and ascospores through 

DOPA-melanin pathway (LERCH 1983; FREE 2013). However, analysis of the N. 

crassa genome revealed the presence of putative proteins with similarity to the 

DHN-melanin biosynthesis enzymes described in A. fumigatus. This observation 

suggested that N. crassa is also able to produce DHN-melanin (GALAGAN et al. 

2003; ENGH et al. 2007). Despite the computational predictions, no further 

studies have been done in this matter.  

In this study, I identified different components responsible for DHN-

melanin metabolism. All of them were detected exclusively from fertilized tissue 

and were classified under the category of secondary metabolism derived from L-
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phenylalanine and L-tyrosine by MIPS FunCat. These proteins are type I 

polyketide synthase PER-1 (NCU03584), tetrahydroxynaphthalene reductase-1 

TNR-1 (NCU09390), tetrahydroxynaphthalene reductase-2 TNR-2 (NCU06905), 

scytalone dehydratase (NCU07823), pigment biosynthesis protein AYG1 

(NCU01903), and conidial pigment biosynthesis protein related to AYG1 

(NCU05821).  

 

MAPK Pathways are Involved in Sexual Differentiation 

Mitogen-activated protein kinases (MAPK) pathways are critical 

downstream components of signal transduction pathways in eukaryotic 

organisms. They consist of three serine/threonine protein kinases (MAP3K, 

MAP2K, and MAPK) that act sequentially, culminating in phosphorylation of 

target proteins that regulate different cellular processes (CHEN and THORNER 

2007). In filamentous fungi, MAPK pathways play an important role in growth, 

development, and pathogenesis. Nine MAPK proteins organized in three MAPK 

pathways have been identified in N. crassa. These pathways are i) the 

pheromone response (PR) pathway, ii) the cell wall integrity pathway, and iii) the 

osmoregulatory (OS) pathway (BORKOVICH et al. 2004).  

In this study, I detected components of the PR and OS pathways during 

sexual development. Osmotic sensitive-2 OS-2 (NCU07024), a component of 

the OS pathway, was identified in fertilized tissue. The mitogen-activated protein 

kinase MAK-2 (NCU02393), a component of the PR pathway, was detected in 



 

162 

 

unfertilized tissue.  

Several downstream targeted proteins of the MAK-2 protein kinase called 

Mak-2 Kinase-Regulated proteins (MRK) were also identified in this study. 

Pyridoxin 4-dehydrogenase MKR-3 (NCU02930), MKR-5 (NCU07449), and 

cupin domain-containing protein MKR-6 (NCU02919) were detected in both 

sexual stages and classified as common proteins. MKR-5 is an aerial hyphae 

development-related protein that plays an important role in cell-type 

differentiation in N. crassa (LI et al. 2005). mrk-3 and mrk-6 genes are found in a 

gene cluster on chromosome I in N. crassa along with a gene encoding a 

conserved hypothetical protein (NCU02921), also identified in this study in both 

sexual tissues. The other two members of the gene cluster are mrk-2 

(NCU02923) and a putative polyketide synthase pks-6 (NCU02918). The 

orthologous cluster in Sordaria macrospora represents a putative polyketide 

biosynthesis pathway that is strongly up-regulated during fruiting body formation 

(NOWROUSIAN 2009). The same could be true in N. crassa. 

 

DISCUSSION 

I have generated the first proteomics data set for N. crassa under 

conditions that induced sexual development and performed a comparative 

proteomics analysis between two different phases of sexual differentiation: 

before and after fertilization.  
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Biases against short (<100 amino acids), long (> 1000 amino acids) and 

low-abundance proteins were detected. One possibility to explain this result is a 

limitation in mass spectrometry: short proteins yield lower numbers of peptides, 

reducing the probability for being detected by mass spectrometry analysis. On 

the other hand, this observed bias against large peptides may be an accurate 

reflection of the proteome. According to the biosynthetic cost minimization 

hypothesis (WARRINGER and BLOMBERG 2006), small proteins (between 100 and 

600 amino acids) are more likely to be expressed than large proteins, thereby 

reducing the burden of protein synthesis on the cell. In addition, short mRNAs 

are also more efficiently transcribed and translated; they are also more stable 

than long transcripts (LACKNER et al. 2012). Therefore, small proteins tend to be 

more abundant and are more likely to be detected. Despite the biases detected, 

this study achieved a comprehensive representation of the sexual growth 

process in terms of protein population: the majority of annotated GO categories 

were represented by the proteome of N. crassa sexual development when 

compared with the total annotated predicted proteins.  

Functional annotation analysis revealed that proteins synthesis and 

energy metabolism, are important processes that are required during the course 

of sexual development. However, each stage of sexual growth evidently has a 

distinctive enrichment pattern of functional categories. While categories such as 

systemic interaction with environment and cell growth and morphogenesis were 

over-represented in the unfertilized tissue, categories like carbohydrate 
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metabolism and biosynthesis of secondary metabolites were predominant 

among fertilized-specific proteins. These results were consistently observed with 

the three approaches I used to analyze the data (Blast2GO, MIPS Functional 

Catalogue and KEGG pathways). 

 

Cellulase Activity During Fruiting Body Maturation  

The proteins that constitute the core component of the cellulase system 

were found exclusively in the fertilized tissue. This data suggests that cellulases 

play an important role in fruiting body formation in N. crassa. In nature, N. crassa 

produces perithecia embedded within colonized plant tissue (PERKINS 2002). It is 

therefore not surprising to find that production of cell-wall-degrading enzymes 

may be associated with perithecia development. The cellulase system has been 

extensively studied in the secretome of vegetative cells; however, to my 

knowledge, no previous studies have reported cellulase activity in fungal sexual 

structures. Finding the proteins that compose the core secretome of N. crassa 

expressed during maturation of fertilized sexual structures, opens new 

possibilities for exploring fungal degradation of plant biomass and ultimately 

production of biofuels. It will be of interest to determine biomass degradation 

efficiency by the secretome produced during sexual development.  
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Does DHN-melanin have a Function During N. crassa Sexual 

Development? 

Melanin is an important component of the cell wall of fungal sexual 

structures and is produced by two independent pathways: DHN and DOPA. 

DOPA-melanin has been frequently associated with sexual development in 

Neurospora. However, I found that all of the proteins required for DHN-melanin 

biosynthesis were present exclusively in fertilized tissue during perithecia 

maturation. My findings are in agreement with the hypothesis that N. crassa is 

able to produce DHN-melanin and, as it was demonstrated in S. macrospora, 

melanin biosynthesis is linked to fruiting body development (ENGH et al. 2007). 

Tyrosinase––the key enzyme for DOPA-melanin synthesis–– was not 

detected in this study, neither before nor after fertilization. Different possibilities 

could explain this result. First, tyrosinase may not be produced during sexual 

development. However, previous observations demonstrated that in the absence 

of the gene that encodes this enzyme, the formation of perithecia is 

compromised. Tyrosinase may also be a low-abundance protein; hence, not 

detected by mass spectrometry analysis. Although tyrosinase was not detected 

in our data, I cannot discard the possibility that DOPA-melanin is also produced 

during sexual development, but at different time points from the ones evaluated 

in this study. However, this is the first report showing physical evidence that all 

the proteins/enzymes required for the synthesis of DHN-melanin were detected 

exclusively in fertilized tissue, suggesting that DHN-melanin may be synthesized 
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during sexual development in N. crassa. Therefore, it would be of interest to 

study the molecular genetics of melanin biosynthesis in N. crassa to determine 

whether DHN and DOPA-melanin play similar roles during fruiting body 

maturation, or if they are formed at different stages of sexual development. 

 

MAPK Pathways are Involved in Sexual Differentiation 

I detected components of the pheromone response (PR) and the 

osmoregulatory (OS) MAPK pathways during the course of sexual development. 

Osmotic sensitive-2 OS-2 (NCU07024) is a component of the OS pathway and 

was identified in fertilized tissue. OS-2 is homologous to HOG1 in S. cerevisiae, 

which is a protein kinase involved in a signal transduction pathway that is 

activated by changes in the osmolarity of the environment (O'ROURKE and 

HERSKOWITZ 2004). In N. crassa, it has been demonstrated that the os-2 gene 

product is necessary in osmoregulation, conidial integrity, fungicide sensitivity, 

protoperithecia development and female fertility (ZHANG et al. 2002; JONES et al. 

2007).  

The mitogen-activated protein kinase MAK-2 (NCU02393), a component 

of PR pathway, was detected in unfertilized tissue. MAK-2 is homologous to 

FUS3/KSS1 in Saccharomyces cerevisiae. FUS3, together with KSS1, are the 

final kinases in the signal transduction cascade regulating activation/repression 

of the mating and filamentation pathways, induced by pheromones and 

nitrogen/carbon limitation (TEDFORD et al. 1997). In N. crassa, mak-2 mutant 
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strains showed abnormal filamentous growth and development of aerial hyphae; 

in addition, protoperithecia formation was compromised due to female sterility, 

which arrested sexual development in an early stage. Another observation was 

de-repression of conidial morphogenesis during sexual development (LI et al. 

2005). Previous genetic evidence and current proteomic data suggest an 

important role for the mak-2 gene product in protoperithecia formation. 

Interestingly, several Mak-2 Kinase-Regulated proteins (MRK), whose 

genes are organized in a cluster, were detected. This gene cluster represents a 

putative polyketide biosynthesis pathway  that is strongly up-regulated during 

fruiting body formation in the closest filamentous fungus S. macrospora 

(NOWROUSIAN 2009). Our data shows the first evidence of proteins from the 

cluster being accumulated not only in unfertilized tissue, but also in N. crassa 

tissue 4 days after fertilization. Even though not all gene products from the 

cluster were detected in the two stages analyzed, our results are consistent with 

previously reported transcription data (LI et al. 2005; NOWROUSIAN 2009). This 

result indicates that secondary metabolites, including polyketides, may play an 

important role in protoperithecia formation and sexual development in N. crassa. 

Previously, it was shown that in the absence of the mak-2 gene product, the 

expression of genes from this cluster is reduced (LI et al. 2005). Combining 

transcription and proteomic results, the data suggest that genes from the cluster 

are regulated by the MAPK pathway MAK-2. Finding this cluster represented in 

the proteome of sexual development in N. crassa, and the regulatory protein 
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kinase MAK-2, suggests a connection between MAPK pathways, polyketide 

biosynthesis, secondary metabolites and sexual differentiation in filamentous 

fungi. 

 

Other Proteins Required for Sexual Development 

Although various genes required for sexual development in N. crassa 

have been described in the past two decades (NELSON and METZENBERG 1992; 

NELSON et al. 1997b; KIM and NELSON 2005), most of this information comes 

from gene expression data obtained under specific conditions and not protein 

measurement data. Therefore, this work represents the first comparative 

proteomic data generated from sexual development tissues. A goal of this study 

was to consolidate the genetic and the proteomic information relevant to the 

gene products that play an important role during sexual differentiation. To do 

this, I compared our proteomic data with transcription data published in the past. 

In this study, I identified several proteins that were expressed in one or both 

stages of sexual development. The genes for some of these proteins were 

previously reported as required for normal sexual growth. However, for a 

number of proteins, I present the first evidence of their detection in tissues 

where they were not previously reported. This finding has important implications 

in the understanding of the progression of sexual development. I discuss the 

most relevant examples below. 
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The protein ascus development-1 ASD-1 (NCU05598) is a 

rhamnogalacturonase B (RGase B) enzyme essential for normal sexual 

development and ascospore delineation (NELSON et al. 1997b). Evidence of 

ASD-1 protein accumulation at 5 and 7 days after fertilization was shown by 

Nelson et al. In addition, neither protein nor transcript from the asd-1 gene was 

detected under vegetative growth (NELSON et al. 1997b). A previous study 

concluded that the asd-1 gene product plays an essential role in the late states 

of sexual development, especially in ascospore production (NELSON et al. 

1997b). In contrast, I detected ASD-1 protein not only in fertilized tissue, but also 

in unfertilized tissue. Therefore, this is the first report that reveals the expression 

of the ASD-1 protein in sexual growth prior to fertilization, bringing to light the 

importance of ASD-1 in early sexual development before fertilization,  

Abundant perithecial protein APP (NCU04533) was described as highly 

expressed and specific for perithecia––constituting 35% of total perithecia 

protein––but was not considered essential for sexual growth in Sordaria 

macrospora and N. crassa (NOWROUSIAN et al. 2007). Previously, it was reported 

that N. crassa app transcripts were present prior to fertilization, but the protein 

accumulated only after fertilization (NOWROUSIAN et al. 2007). My data conflicts 

with this conclusion. APP is not a perithecia-specific protein as was reported 

previously. In this study, APP was identified prior to and after perithecia 

formation, suggesting that APP is not only present after fertilization but also in 

early stages of protoperithecia formation. The discrepancy between these 
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results could be explained by the differences in time points analyzed by the two 

studies. I analyzed 6 day old unfertilized tissue; however, 10-, 13-, 14-, and 16- 

day- old unfertilized cells were studied by Nowrousian et al. (NOWROUSIAN et al. 

2007). Combining previous data and the data of this study, it is possible to 

imagine a scenario in which APP protein is conditionally degraded in unfertilized 

tissue. If fertilization does not occur, at some point after 6 days of growth the 

protein is destroyed; however, if fertilization occurs, this protein accumulates 

during perithecia development. Although not essential for sexual development, 

APP is an interesting protein to study because it is specific and abundant under 

conditions for sexual growth, indicating a possible role in a process that only 

occurs during sexual cycle (e.g., meiosis).  

Catalase 1 CAT-1 (NCU08791) was detected in both tissues, and is one 

of the two major fungal-specific Neurospora catalases required for oxidative 

stress response. CAT-1 is predicted to be involved in the production of 

secondary metabolites. In filamentous fungi experimental evidence has shown 

that secondary metabolism is triggered by oxidative stress (ROZE et al. 2011). 

CAT-1 activity has been extensively studied in asexual cycle differentiation and 

found predominantly in conidial germination and early mycelia growth (PERAZA 

and HANSBERG 2002). The first connection between CAT-1 and sexual 

differentiation was proposed in 2007 by Yamashita et al., where it was shown 

that OS-2 MAP kinase, in combination with an unknown regulatory system, were 

required for the regulation of CAT-1 protein accumulation in conidial 



 

171 

 

development. The authors suggested that this combined regulation of CAT-1 

could be also involved in sexual differentiationl (YAMASHITA et al. 2007). To the 

best of my knowledge, there are no reports of cat-1 transcripts or CAT-1 protein 

accumulation during sexual development in N. crassa. However, I found CAT-1 

in both sexual stages. It would be of interest to study the role of CAT-1 in cell 

differentiation during sexual growth in N. crassa to determine if there is any 

connection with production of secondary metabolites.  

ATP citrate lyase (ACL) is involved in the formation of cytosolic acetyl-

CoA, an essential metabolite required in protein acetylation and intermediary 

carbon and energy metabolism, including biosynthetic pathways such as fatty 

acid and sterol formation. ACL is the link between the metabolism of 

carbohydrates and the production of fatty acids. In animals, ACL isozymes are 

encoded by one gene, but in Pezizomycotina fungi two different subunits are 

encoded by two separate genes, and they seem to be clustered in the genome 

(NOWROUSIAN et al. 2000). As was found in S. macrospora, Gibberella pulicaris, 

and A. nidulans, acl1 and acl2 are clustered genes that are divergently 

transcribed in N. crassa, with the key difference being a very short dubious 

predicted gene in the middle. In the present study, ACL1 and ACL2 proteins 

(NCU06785 and NCU06783 – E.C.2.3.3.8) were found in both unfertilized and 

fertilized tissues of sexual growth. 

The first molecular analysis of ACL1 in fungi was done in S. macrospora 

(NOWROUSIAN et al. 1999), in which acl1 mutants exhibited defects in fruiting 
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body maturation. A time course analysis of protein accumulation revealed that 

ACL1 was specifically induced at the beginning of the sexual cycle. Therefore, it 

was hypothesized that the crucial role of ACL1 in S. macrospora was to produce 

certain amounts of acetyl-CoA and its derivatives during the early stages as a 

prerequisite for later perithecia maturation (NOWROUSIAN et al. 1999). In A. 

nidulans, a complete loss of sexual development was found in acl deletion 

strains (HYNES and MURRAY 2010).  

Conversion of cytoplasmic acetyl-CoA to malonyl-CoA, by the enzyme 

acetyl-CoA carboxylase (ACC), is an important step in the biosynthesis of fatty 

acids and various secondary metabolites. In this study, acetyl-CoA carboxylase 

(NCU08535) was also detected in both stages of sexual development. Changes 

in the composition of fatty acid during sexual development have long been 

reported in N. crassa, showing higher concentrations of oleate in developing asci 

and ascospores than in perithecial wall tissues (GOODRICH-TANRIKULU et al. 

1998). As oleate is a metabolic derivative of acetyl-CoA, this could explain the 

relevance of enzymes like ACL and ACC during sexual growth and ascospore 

formation in N. crassa. However, adding oleate to the media did not induce 

fruiting body formation in acl mutants in A. nidulans, suggesting the possibility 

that ACL has an additional role during sexual development (HYNES and MURRAY 

2010). 

Acetyl-CoA is also the substrate for acetylation of proteins including 

histones. A recent study demonstrated how glucose availability determined 



 

173 

 

global histone acetylation through an ACL-dependent pathway in mammalian 

cells differentiation, and how this histone ACL-dependent acetylation selectively 

affected the expression of genes involved in glucose metabolism and 

macromolecular synthesis (WELLEN et al. 2009). 

In this study, I report the first evidence of the presence of ACLs enzymes 

in two stages of sexual development in N. crassa. acl1 or acl2 transcripts were 

not reported in the transcriptional profile analysis during fruiting body formation, 

suggesting that the genes were not expressed continuously throughout sexual 

development, as only genes expressed in all time points (between 0 and 140 h 

post-fertilization) were reported (WANG et al. 2012). It will be of interest to 

determine the function of ACL1 and ACL2 during sexual development in a model 

organism such as N. crassa. Determining whether the function of ACLs during 

sexual development is related to fatty acid biosynthesis and/or with histone 

acetylation and gene regulation will have an impact not only in fungal biology, 

and also in connecting metabolic pathways to cellular differentiation and 

development of higher organisms. Establishing ACLs cellular localization will 

help to reveal the molecular function, cytosol localization for fatty acid 

biosynthesis or nuclear localization for histone acetylation. In addition, 

determining if a regulatory mechanism is involved in the divergent transcription 

of these clustered genes will contribute in understanding the molecular genetics 

behind sexual development.  
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Are Suppressors of Meiotic Silence Represented in the Proteome? 

In N. crassa, mRNAs transcribed from an unpaired DNA region, and from 

regions with high sequence similarity to the unpaired DNA, are destroyed by a 

meiotic silencing mechanism (ARAMAYO and SELKER 2013). Several suppressors 

of meiotic silencing have been identified by genetic screens (Chapter I) and two 

new components were found in a biochemical screen (Chapter II). The general 

goal in my research was to gain insights into the molecular regulation of this 

mechanism (Chapter II). For that reason, I wanted to know if relevant information 

about suppressors of meiotic silencing could be extracted from the proteomic 

data reported in this study.  

To understand the molecular function of suppressor of meiotic silencing 

proteins, it is useful to define protein expression and accumulation of these 

proteins at different points of development. Therefore, I wondered whether 

suppressor proteins were represented in the proteome of sexual development. 

In this study, Argonaute-like protein SMS-2 (NCU09434) was detected in both 

unfertilized and fertilized tissues; however, it was the only suppressor observed. 

One explanation for this result is that suppressors are likely low-abundance 

proteins: thus making their identification difficult in proteomic studies. Another 

possibility––although not mutually exclusive––is that components of meiotic 

silencing, at least some of them, are produced transiently in early meiosis. 

Therefore, by the time I harvested the fertilized tissue most of the suppressors 

may be already degraded. To test this possibility, it would be necessary to 
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analyze proteins from tissues harvested at different time points of development, 

especially tissue harvested immediately after fertilization when the two nuclei 

fused and unpaired DNA is detected. 

This study represents the first attempt to introduce proteomics in the 

study of sexual development. The standardized protocol presented here could 

be applied for further studies, such as the analysis of suppressors throughout 

different time points of development. 

 

Conclusion 

This study presents a comparative proteomics analysis and provides 

evidence of differential metabolic features between two stages of sexual 

development: before fertilization and 4 days after fertilization. A comprehensive 

proteomics data set, composed of 841 proteins, and a functional catalogue, 

which includes GO terms, metabolic pathways maps and enzyme codes was 

developed. I found that sexual development is enriched in secondary 

metabolites biosynthesis, especially after fertilization. All the proteins/enzymes 

responsible for the synthesis of DHN-melanin, an important secondary 

metabolite, were detected in fertilized tissue. To date, DOPA-melanin was the 

only form of melanin reported for N. crassa. However, this study provides the 

first evidence that supports the hypothesis that DHN-melanin is also produced 

by N. crassa. Furthermore, the data suggests that DHN-melanin is synthesized 

only after fertilization during fruiting body maturation.  
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In addition, this work provides the first evidence of protein accumulation 

during sexual growth for several genes, which participation in sexual 

development was previously suggested. Therefore, my data complement 

previous reports and extend the knowledge about sexual proteins.  

The analysis of the proteome of sexual development in N. crassa 

contributes to the understanding of the molecular processes occurring during 

sexual growth not only in Neurospora, but also in other filamentous fungi.  

 

MATERIALS AND METHODS 

Strains and Growth Conditions 

Standard Neurospora culturing techniques (DAVIS 1970) were used 

throughout the study, except for the preparation of sexual tissue for protein 

extraction (described below). Vegetative mycelium was cultivated in Vogel’s 

Medium N with 2% sucrose, and sexual development was induced in 

Westergaard’s Medium with 1.5% sucrose. The formulas for both Vogel’s and 

the Westergaard’s Media have been previously described by Davis and de 

Serres (1970) (DAVIS 1970). The laboratory N. crassa fluffy mutant strain 

RANC49 (mating type A) and the wild-type strain FGSC2490 (mating type a), 

obtained from the Fungal Genetics Stock Center, were used as female and male 

strains, respectively.  
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Tissue Preparation  

Protein extraction from the sexual stages of Neurospora can be 

challenging, due to the physical characteristics of the tissue. The small size of 

the sexual structure (protoperithecium and perithecium) and the thickness of its 

wall make it very difficult to disrupt the tissue and extract all meiotic cells. As a 

result, a large amount of biological material is required to obtain a useful 

concentration of proteins. To overcome these challenges, I developed an 

innovative strategy that allowed us to growth a considerable amount of sexual 

tissue using limited resources and laboratory space (Chapter II; Figure 2.16).  

Instead of regular petri dishes, Pyrex glass pie plates (9-1/2-inch) were 

used to grow N. crassa under mating conditions. Two pie plates were coupled 

together in a way that one plate served as the lid for the other plate. Therefore, a 

reduced spaced for incubation was achieved. Uniform distribution of light was 

assured to both the bottom and the top plates, due to the large area of the plate 

and the transparency of the glass. 200 ml of Westergaard’s Media was poured 

per plate and twenty plates were prepared per extraction. Westergaard’s solid 

media was covered with stripes of pre-washed cellophane (7’’ X 1.5”). For the 

female strain inoculum, three plugs from RANC49 strain grown on supplemented 

solid Vogel’s media were distributed to each plate. Plates were incubated at 

25°C with constant light for 6 days to induce female structure development. To 

collect the tissue from unfertilized plates, tissue was scraped from the 

cellophane of 10 plates using a sterile spatula and proteins extracted. The other 
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ten plates were fertilized with FGCS2490 strain by spreading male conidia 

suspended in Vogel’s Media. These were incubated at 25°C for an additional 4 

days before protein extraction (to obtain fertilized tissue).  

 

Cellophane Preparation 

Cellophane was cut into stripes (7 X 1.5’’), placed into 1 liter of deionized 

water and boiled in the microwave for 10 minutes. This step was repeated three 

times after first replacing the water with fresh water and boiling again. The 

washed cellophane was transferred to a beaker with deionized water and 

autoclaved for 20 min. Before inoculation, cellophane stripes were laid on top of 

Westergaard’s solid media plates. The cellophane facilitated the harvesting of 

the tissue, because sexual tissue could then be peeled from the surface of the 

cellophane. 

 

Protein Extraction  

Unfertilized and fertilized sexual tissues were peeled from the cellophane, 

frozen in liquid nitrogen and then ground using a mortar and pestle. Each tissue 

collection was placed into pre-cooled Mill machine-plastic containers and ground 

to powder in a Mill machine (SPEX 6850 Freezer/Mill) using the following 

procedure: 10 minutes pre-cooling, 2 minutes milling, 1 minute pre-cooling and 2 

minutes milling. All of the following steps were performed at 4°C. The frozen 

powder was weighed and transferred to 1.5 volumes of extraction buffer that 
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contained 50 mM HEPES pH 7.4, 137 mM NaCl, 10% Glycerol, 0.1% NP-40, 1X 

PIC, 1 mM PMSF. The powder was immediately re-suspended by stirring in a 

cold room for 10 minutes. The tissue was filtered using pre-treated and pre-

cooled cheesecloth/Miracloth. The lysate was centrifuged in a JA20 rotor 

(Beckman) at 15,000 g for 15 minutes. The supernatant was then transferred to 

a clean pre-cooled conical tube and total protein concentration was calculated 

by Coomassie (Bradford) protein assay (Thermo Scientific). A total of 1 mg 

protein was transferred to a 1.5 ml eppendorf tube and the proteins were 

precipitated by adding sodium deoxycholate (DOC) to a final concentration of 

0.2%, mixed and incubated on ice for 30 minutes. Then 15% of trichloroacetic 

acid (TCA) was added to the mixture and incubated for 1 hour on ice. The 

sample was centrifuged 10 minutes at 13,000 g and the pellet was washed with 

pre-cooled acetone. After 5 min of incubation at room temperature, the sample 

was spun down and the pellet was air-dried prior to downstream mass 

spectrometry analysis. For the proteomic analyses, two biological replicates of 

protein samples from two different experiments were obtained for each condition 

analyzed. 
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Liquid Chromatography Mass Spectrometry 

Two analytic replicates were analyzed. Each protein sample was reduced, 

alkylated and enzymatically digested using trypsin. Peptides were then 

fractionated using an in-house isoelectric point based electrophoretic device (LIM 

et al. 2007). Usially, 500ug of the protein digested was loaded into the MSWIFT 

device and peptides were separated according to their isoelectric point into 6 

fractions using buffering membranes with the following pH values:  2.9, 4.3, 5.2, 

6.6, 7.5, 9.5 and 11, as previously described (COLOGNA et al. 2010). An aliquot 

from each fraction (estimated to be 1-3ug) was then further separated by 

reversed phase liquid chromatography separation coupled off-line with MALDI-

MS/MS as previously described (ROSAS-ACOSTA et al. 2005). The column eluent 

was mixed with the MALDI matrix (7 mg mL-1 α-cyano-4-hydroxycinnamic acid, 

60% (v/v) acetonitrile, 10 mM ammonium dihydrogen phosphate, 10% 

isopropanol) via a mixing tee and the resulting mixture was spotted onto a 

MALDI target via a robotic spotting device (Probot, ThermoScientific).  MALDI 

mass spectra were acquired using a 4800 Proteomics Analyzer (Applied 

Biosystems, Framingham, MA).  External calibration was performed using the 

standard peptides bradykinin fragment 2-9 and adrenocorticotropic hormone 

fragment 18-39.  Collision-induced dissociation (CID) spectra were acquired 

using air as the collision gas (medium pressure setting) and at 2 kV of collision 

energy. Tandem mass spectrometry (MS/MS) data were searched against the 

Neurospora crassa database (downloaded 04/30/2013, www.broadinstitute.org) 
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using the ProteinPilot Software v. 3.0 and the ParagronTM Algorithm (Applied 

Biosystems, Framingham, MA).  

Proteins comprising one or more peptides with high confidence score 

(>95%) and a low false discovery rate (FDR <5%) were considered positively 

identified. Distinct proteins were classified in three protein sub-groups depending 

on tissue-specificity: common proteins (CP), unfertilized-specific proteins (USP), 

and fertilized-specific proteins (FSP). 

 

Gene Ontology (GO) Annotation via Blast2GO 

Gene Ontology (GO) annotation was performed using InterProScan 

program along with the Blast2GO algorithm (V 2.7.0) 

(http://www.blast2go.com/b2ghome) (CONESA and GOTZ 2008; GOTZ et al. 2008). 

For annotation, the default configuration settings were used and the proteins 

were searched against the Swiss-Prot protein database (June 2013). Generic 

GO terms were then retrieved using the GO-slim option. 

 

Functional Annotation and Statistical Analysis 

The MIPS Functional Catalogue (FunCat) annotation scheme 

(http://mips.helmholtz-muenchen.de/funcatDB/) was applied to the complete list 

of protein identifications and the three protein sub-groups (CP, USP and FSP) to 

organize proteins according to their cellular and molecular functions (RUEPP et 

al. 2004). Enrichment or depletion of functional categories across protein sub-
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groups compared with the genome was evaluated using a Z-score analysis 

based on the differences between the observed and expected proportions, given 

that the sample sizes and the protein frequency for each category is known. The 

P-value was determined by calculating the standard normal distribution of Z-

score (RIVALS et al. 2007). 

 

KEGG Pathways Analysis 

The FASTA protein sequences of identified proteins were searched 

against KEGG GENES database (KANEHISA et al. 2008; OKUDA et al. 2008) 

using BLASTP program via KEGG Automatic Annotation Server (KAAS) 

(http://www.genome.jp/tools/kaas/). The corresponding KEGG pathways and 

enzyme codes (EC) information for each protein sub-group were extracted. 
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CHAPTER IV 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

SUMMARY 

In the Research Aims section of Chapter I, four specific objectives were 

outlined for my work. These objectives became the focus of Chapter II and III. In 

Chapter II, I present the results for the first biochemical work developed as a 

discovery tool for the identification of unknown protein interactions during sexual 

development in N. crassa. I standardized a biochemical strategy that allowed me 

to establish protein-binding partners for the suppressor of meiotic silencing 

SMS-5. These interacting partners, PAF400 and Pianissimo, represent new 

molecular components involved in the meiotic silencing mechanism. These 

results led me to propose a molecular role for SMS-5 and its interacting proteins 

in the silencing of unpaired DNA. Interactions between these three components, 

SMS-5, PAF400, and Pianissimo establish a connection between chromatin 

remodeling, DNA repair, signaling transduction pathways and meiotic silencing.  

SMS-5 may be a protein methyltransferase that regulates protein 

interaction and function of its targets during meiotic silencing. Based on the 

molecular function described for PAF400 homologous proteins, I proposed that 

PAF400 acts as a scaffold protein (GRANT et al. 1998; MCMAHON et al. 1998; 

ALLARD et al. 1999; BOSOTTI et al. 2000; MUTIU et al. 2007; KNUTSON and HAHN 

2011) that mediates the recruitments of different components to the unpaired 
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DNA region after been detected via trans-sensing. PAF400 may be involved in 

chromatin remodeling of the unpaired region (GRANT et al. 1998; DOYON and 

COTE 2004; MURR et al. 2007). Chromatin relaxation ensures accessibility of the 

transcriptional machinery responsible for the synthesis of the aRNA molecules. 

On the other hand, Pianissimo may be involved in activating a signal 

transduction pathway (CYBULSKI and HALL 2009; OH and JACINTO 2011) that 

could be the key molecular process that connects nuclear events and activation 

of the perinuclear stage of silencing. The data presented here also suggest a 

mechanism that connects the nuclear and the perinuclear stages required for 

silencing of unpaired DNA during meiosis. Altogether this study has provided 

new insights into the molecular events associated with the initial nuclear stage of 

meiotic silencing. 

In Chapter III, I describe the experiments and data analyses used to 

develop a comprehensive proteomics data set and a functional catalogue for N. 

crassa sexual development. I used a global proteomics approach and 

comparative protein functional analysis to investigate the potential molecular 

differences between two stages of sexual development in filamentous fungi. This 

study provides evidence of differential metabolic features between two stages of 

sexual development, before and after fertilization. It also provides direct 

evidence of differential sexual expression of proteins associated with secondary 

metabolites biosynthesis and cellulase activity, indicating that both processes 

are required in fruiting body maturation. A functional catalogue of sexual 
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development proteins in N. crassa will serve as a reference tool for further 

studies related to sexual development not only in N. crassa, but also in other 

filamentous ascomycetes. 

 

CONCLUSIONS  

Improving Protein Yield from Sexual Tissue 

 In order to use biochemical and proteomics approaches into the study of 

sexual differentiation and meiosis-related events in N. crassa, it was necessary 

to ensure that a significant concentration of total proteins can be obtained from 

the sexual tissue. Obtaining a high protein yield that could be used for further 

biochemical and proteomics analyses was a critical initial step in my research. 

Accordingly, I needed to improve the culturing technique for growing sexual 

tissue and the disruption technique for protein extraction. For that purpose, I 

developed a cost/space-efficiency culturing strategy for growing considerable 

amount of sexual tissue that involved the use of glass pie plates (9-1/2- inch) 

instead of the traditional petri dishes. I also combined the classical mortar and 

pestle trituration of the tissue with mechanical disruption using a Mill machine for 

breaking the sexual structures. As a result, protein yield was increased to an 

optimal level for further biochemical protein work. Using this strategy, I obtained 

enough biological material from sexual tissues to study protein-protein 

interactions (Chapter II). The increased protein yield also allowed me to 

determine the proteome of sexual development by analyzing protein populations 
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from two stages of sexual growth (Chapter III). These new standardized 

procedures for growing sexual tissue, tissue disruption, and protein extraction 

represent a significant technical improvement for further proteomic and 

biochemical studies in filamentous fungi during sexual differentiation. 

 

Introducing Biochemical Approaches to the Study of Meiotic Silencing 

There was a need for introducing biochemical analyses to the study of 

meiotic silencing in N. crassa. Despite the numerous gene products determined 

to be involved in MSUD, very little is known about the molecular mechanisms 

underlying this intricate process. In addition, the precise function executed by 

most of the suppressor of meiotic silencing proteins is unknown. This is 

especially true for the nuclear suppressors and for the nuclear events that 

precede and lead to silencing. Therefore, I was interested in using biochemical 

approaches that allow me to define protein interactions and functions of 

suppressors. My ultimate goal was to gain insights into the molecular process of 

meiotic silencing.  

A preliminary step in elucidating protein function is to determine 

interacting partners that could also be the biochemical targets. I sought to 

determine the function of the suppressor SMS-5, a SET domain-containing 

protein. To that end, I used affinity purification and pull-down assays. The 

combination of both assays allowed me to identify protein-binding partners for 
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SMS-5, to reveal new molecular components involved in the silencing process of 

unpaired DNA and to propose a biochemical function for SMS-5.  

SMS-5 is a SET–domain containing protein, suggesting that SMS-5 is 

likely a protein methyltransferase (MTase). A preliminary test found no evidence 

to support that SMS-5 has a histone MTase (HMTase) activity. This result raised 

the possibility that SMS-5 functions as a non-histone protein MTase. In order to 

test that possibility it was critical to know binding partners for SMS-5, which 

could also be SMS-5’s biochemical targets.  

I found two non-histone proteins that physically interact with SMS-5; 

these proteins are PAF400 and Pianissimo. This result suggests that SMS-5 

could act as a non-histone protein MTase. Protein methylation is an important 

post-translational modification involved in several biological process, including 

signaling, RNA processing and transport, transcription, and DNA repair (PAHLICH 

et al. 2006; PAIK et al. 2007). Protein methylation, especially at arginine 

residues, is known to promote or inhibit protein interactions (LEE et al. 2005a). 

Therefore, I hypothesize that SMS-5 is required for methylation of PAF400 and 

Pianissimo and this post-translational modification is a critical step in the nuclear 

events of meiotic silencing.  

Now that targets for SMS-5 have been determined, it would be possible to 

test SMS-5 biochemical function and establish whether SMS-5 has MTase 

activity when interacting with PAF400 and/or Pianissimo. To that end, 

methyltransferase activity of purified SMS-5 should be tested in the presence of 



 

188 

 

purified PAF400 and Pianissimo. In this research, I confirmed that both proteins 

have predicted methylation sites. Therefore, the assay must include proteins 

carrying mutations on those sites. 

At the end of Chapter II, I present a model summarizing the participation 

of PAF400 and Pianissimo in meiotic silencing. Following is a detail description 

of how each of these proteins is involved in silencing, specifically in meiotic 

trans-sensing, and the connection between nuclear and perinuclear events. I 

also propose experimental approaches in order to test the model. 

 

A Chromatin Remodeling Pathway May Participate in Unpaired DNA 

Recognition  

One of the protein-binding partners for SMS-5, PAF400 protein, is 

member of the Tra1/TRRAP family of proteins. PAF400 is a large polypeptide 

associated with histone acetyltransferase (HAT) complexes, such as SAGA and 

NuA4 (KNUTSON and HAHN 2011). These complexes are required for chromatin 

remodeling by histone acetylation. Once chromatin acquires a relaxed 

conformation, the SAGA complex is involved in transcriptional activation (GRANT 

et al. 1998), and the NuA4 complex is associated with DNA damage repair 

(MURR et al. 2006). In both cases the scaffolding action of Tra1/TRRAP is 

essential for the recruitment of the different components to the chromatin (MURR 

et al. 2007). 
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Although I was not able to test directly the involvement of PAF400 in 

meiotic silencing because it is an essential protein, the physical interaction of 

PAF400 with SMS-5 provides indirect evidence that PAF400 participates in this 

silencing phenomenon. Because of PAF400 is a nuclear protein and its 

homologous proteins participate in chromatin remodeling and DNA-involved 

molecular processes, I hypothesize that PAF400 is an important component for 

meiotic trans-sensing by participating in the unpaired DNA detection and/or 

transcription of aberrant RNA (aRNA) molecules from the unpaired DNA region. 

 

Model for the Involvement of PAF400 in the Detection of Unpaired DNA Regions 

and the Transcription of aRNAs 

In Neurospora, unpaired DNA regions are detected early in meiosis, 

which triggers meiotic silencing activation. It has been proposed that detection of 

unpaired regions occurs through a meiotic trans-sensing mechanism (ARAMAYO 

and METZENBERG 1996), after homologous chromosomes are paired. However, 

the molecular mechanism behind meiotic trans-sensing is still unknown.  

Pratt made the first attempt to determine the regulation of meiotic trans-

sensing by testing the connection between trans-sensing and homologous 

recombination (PRATT 2008). In that study, the efficiency of meiotic silencing was 

measured in the absence of SPO11, which is responsible for DNA double-strand 

breaks (DSBs) formation and initiation of recombination. The results showed that 

SPO-11-dependent DNA DSBs were dispensable for meiotic silencing. 
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Therefore, it was concluded that recombination/synapsis and silencing were not 

related in Neurospora, (PRATT 2008). Neverthelees, it was recently reported that 

there is a SPO11-independent mechanism for initiation of recombination in 

Neurospora, suggesting that SPO11-independent DSBs may be also present 

during meiosis. (BOWRING et al. 2013). Accordingly, “spontaneous” DSBs and 

SPO11-independent DNA repair foci were observed in mammalian meiocytes 

(CAROFIGLIO et al. 2013). Together these findings raise a key question: Are 

SPO11-independent DNA DSBs required for unpaired DNA recognition and 

therefore activation of meiotic silencing? 

An interesting connection between DNA DSBs repair and PAF400 

homologous proteins has been observed. Homologs of PAF400, Tra1 and 

TRRAP are involved in the repair of DNA DSBs. Histone H4 acetylation by 

TRRAP-containing complex NuA4 is critical for non-homologous end-joining 

(NHEJ) repair of DSBs (BIRD et al. 2002). It has been shown that TRRAP 

modulates loading of MRN repair complex to the chromatin surrounding sites of 

DNA DSBs (MURR et al. 2006; ROBERT et al. 2006). All together, these 

observations lead me to propose that PAF400 is an essential component that 

participates in the recognition of unpaired DNA regions through detection of 

unrepaired DSBs  

I propose the following model for the recognition of unpaired DNA region 

in early meiosis in N. crassa. After fertilization, the two nuclei of opposite mating 

type fuse forming a transient diploid cell that starts meiosis division. During the 
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leptotene stage of early meiosis, homologous chromosomes come into 

proximity, pair and sense. The topoisomerase SPO11 initiates the formation of 

DNA DSBs that activates homologous recombination. In addition to the SPO11-

dependent DSBs, it is possible that SPO11-independent DNA damage is also 

present at this stage. It has been proposed that these spontaneous DNA DSBs 

are persistent breaks formed during DNA-replication in the S-phase (CAROFIGLIO 

et al. 2013). Another possibility is that they are formed by an unknown enzyme 

also early in meiosis. Both SPO11-dependent and -independent DSBs are 

processed and repaired via homologous recombination. However, due to lack of 

homology, DSBs localized in the unpaired DNA region remain unrepaired. Once 

a threshold of unrepaired DSBs is reached, activation of meiotic silencing 

initiates and PAF400-containing complex (NuA4-like complex) is recruited to the 

unpaired DNA region. It is known that the length of the unpaired region is 

proportional to the efficiency of silencing (Chapter I). Therefore, the larger the 

unpaired DNA region, the more extended the accumulation of unrepaired DSBs, 

and the more efficient the silencing. The histone acetylase activity of NuA4 

complex mediates chromatin remodeling at the proximities of the DSBs by 

histone H4 acetylation. This relaxed form of chromatin facilitates the interaction 

of the unpaired DNA with other proteins, including the components of the MRN 

repair complex, which are responsible for DSBs repair by the NHEJ mechanism 

(Figure 4.1). 

  



 

192 

 

 

 

Figure 4.1 Proposed model for PAF400 involvement in the unpaired DNA 
recognition in N. crassa early meiosis. Interactions between one pair of 
homologous chromosomes (red and blue) are schematically represented. Sister 
chromatids, which are products of pre-meiotic DNA replication, are shown as 
double red or blue lines. SPO11-independent DNA DSBs (black star) may be 
persistent breaks formed during DNA replication. Unpaired DNA region (red 
bubble) is formed as consequence of gene insertion in the red chromosome or 
deletion in the blue chromosome. (a) After karyogamy homologous 
chromosomes pair and sense. (b) SPO11-dependent DNA DSBs are formed 
(blue stars) and recombination starts. (c) DSBs are repaired via homologous 
recombination in the paired DNA regions. However, DSBs remain unrepaired 
and accumulate in the unpaired DNA region. Accumulation of DSBs may be the 
signal that activates meiotic silencing nuclear phase. (d) Reaching a threshold of 
unrepaired DSBs stimulates the recruitment of NuA4-like complex to the 
unpaired DNA region. NuA4-like complex, formed by PAF400 and a histone 
acetyltransferase (HAT), binds to the chromatin surrounding sites of DSBs and 
initiates chromatin remodeling. (e) Chromatin relaxation and the presence of 
PAF400 facilitate the recruitment of other proteins to the unpaired DNA region, 
such as the components of the MRN repair complex. SMS-5 may be involved in 
regulating protein interactions by adding methyl group(s) to PAF400. (f) MRN 
complex is responsible for DNA damage repair through non-homologous end-
joining (NHEJ) process.  
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SMS-5 methyltransferase activity may be required for regulating PAF400 

protein interactions. PAF400 is a very large polypeptide that acts as a scaffold 

protein at the proximity of unrepaired DSBs. Switching between interactions with 

NuA4 components to interactions with MRN components may need special post-

translational modifications like methylation (Figure 4.1). 

PAF400 homologs are also involved in transcriptional activation when 

bound to the SAGA complex (MUTIU et al. 2007). SAGA, another HAT complex, 

is recruited to promoter regions where it is required for relaxing chromatin 

structure by acetylation of histone H3. Therefore, I propose that chromatin 

relaxation and the presence of PAF400 homologous protein facilitate the 

recruitment of the transcriptional machinery (KOUTELOU et al. 2010).  

I hypothesize that PAF400 is also involved in the transcription of the 

aRNA molecule, which is then translocated to the perinuclear compartment and 

mediates the actual silencing of mRNA transcripts. I propose that the scaffolding 

activity of PAF400 may modulate the recruitment of components necessary for 

aRNA synthesis. Because the unpaired DNA would serve as the template for the 

synthesis of aRNA, it is possible that the transcription process starts after DNA 

is repaired (Figure 4.2). Methylation of PAF400 by SMS-5 could be also required 

for regulating protein interactions with the transcriptional machinery. 
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Figure 4.2 Proposed model for PAF400 involvement in the biosynthesis of 
aberrant RNAs. Interactions between one pair of homologous chromosomes 
(red and blue) are schematically represented. Sister chromatids, which are 
products of pre-meiotic DNA replication, are shown as double red or blue lines. 
Unpaired DNA region (red bubble). (a) Once DNA DSBs are repair by MRN 
complex, the complex dissociates from PAF400 facilitating the recruitment of 
new molecular components. At this point, unpaired DNA is ready to serve as 
template for transcription of aRNAs. (b) Proteins required for transcription of 
aRNAs are recruited by PAF400 to the unpaired DNA. aRNA is synthesized and 
then exported to the perinuclear region where it is incorporated into the silencing 
machinery. 
 

 

Interestingly, recent observations have revealed that the nuclear 

DNA/RNA-dependent RNA polymerase QDE-1 has an effect on the meiotic 

silencing response of homeology regions (Millimaki and Aramayo, unpublished 

data). In Neurospora vegetative cells, QDE-1 is required for the generation of 

aRNAs and dsRNA, which are essential for silencing transgenes via quelling 

(LEE et al. 2010b). It has been demonstrated that QDE-1 needs to interact with 

replication protein A (RPA) and DNA helicase QDE-3 to produce dsRNAs 

(NOLAN et al. 2008). RPA and QDE-3 proteins participate in DNA damage and 

stress responses (COGONI and MACINO 1999b). Excitingly, in my work QDE-1 
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and QDE-3 were pulled-down once by GST-SMS-5 fusion protein (Appendix A; 

Table A.1). Together, these data suggest that QDE-1-QDE-3 may be involved in 

the nuclear stage of meiotic silencing. However, several studies must be 

conducted to gain new insights into its molecular function. 

PAF400 may be involved in detection of unpaired DNA and transcription 

of aRNAs by mediating the recruitment of different complexes. Finding an 

interaction between the suppressor SMS-5 and the scaffolding protein PAF400 

is an important step towards understanding the molecular mechanism of meiotic 

silencing. This protein interaction represents the connection between chromatin 

remodeling, DNA damage repair, and meiotic silencing mechanism. However, to 

test this proposed model, additional studies are required and several questions 

need to be answered. Is PAF400 methylated by SMS-5? Is this post-

translational modification required for meiotic silencing? Is PAF400 an essential 

component of the NuA4-like and SAGA-like complexes in N. crassa? Is NuA4-

like complex required for DNA DSBs repaired at the unpaired DNA? Is SAGA-

like complex required for activation of transcription of aRNAs?  

In order to answer those questions, the first step is to determine whether 

PAF400 is methylated by SMS-5. To do this, an in vitro protein MTase assay 

needs to be conducted to both purified proteins. In this study, an analysis that 

predicts methylation sites determined that PAF400 has 8 arginine residues that 

are likely to be methylated. Therefore, PAF400 mutant proteins carrying single-
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amino-acid substitution mutations in each of those residues need to be purified 

and included in the MTase assay. 

The next step would be to test whether PAF400 methylation by SMS-5 is 

required for meiotic silencing. PAF400 is an essential protein, indicating that its 

biological function is required for other cellular process in addition to meiotic 

silencing. For that reason, it would be necessary to determine mutations that 

impair methylation by SMS-5 without compromising cellular viability. Finding 

these mutations would allow us to test directly the involvement of PAF400 in 

meiotic silencing. To conduct this experiment, N. crassa strains carrying 

mutations in previously found methylation sites need to be constructed. PAF400 

mutant strains would be tested for cellular viability, and viable mutant strains 

would be used for analyzing meiotic silencing efficiency.  

It is possible to get negative results from MTase assay, indicating that 

SMS-5 does not methylate PAF400. A negative result would suggest that SMS-5 

has a different function, such as mediating protein interactions between PAF400 

and other components. If this were the case, it would be essential to identify 

PAF400 protein regions that are required for binding SMS-5 and vice versa. That 

could be accomplished by generating a series of internal deletions spanning the 

entire length of PAF400 and SMS-5 testing them for impaired protein binding. 

After finding mutations that disrupt PAF400-SMS-5 interaction, meiotic silencing 

efficiency can be measured. A caveat is that meiotic silencing can be tested only 

if mutant strains are viable. 
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Once the nature of PAF400 and SMS-5 interaction is established, it would 

be useful to determine other protein-binding partners for PAF400, particularly the 

catalytic subunits of the HAT complexes. In the models presented in Figures 4.1 

and 4.2, I propose that PAF400 binds a HAT protein responsible for histone 

acetylation and chromatin remodeling. I also propose that PAF400 could be 

associated with components of MRN complex which will be responsible for DNA 

damage repaired (ROBERT et al. 2006). An alternative possibility is that PAF400 

interacts with proteins required for transcription, as it has been reported for 

SAGA complex in other organisms (RODRIGUEZ-NAVARRO 2009; KOUTELOU et al. 

2010; HELMLINGER et al. 2011).  

To test all these possibilities, it is necessary to determine the protein 

complexes in which PAF400 is a critical component. To do this, in vivo 

immunoprecipitation (IP) and immunoblotting assays in conjunction to mass 

spectrometry analysis must be performed. However, the PAF400 interaction with 

different proteins may occur sequentially during meiosis. For that reason, IP 

needs to be performed at different time points in the course of meiosis. By 

determining other protein-binding partners for PAF400, it would be possible to 

establish if NuA4-like and/or SAGA-like complexes are related to meiotic 

silencing.  

Once the catalytic subunit that interacts with PAF400 is established, it 

would be necessary to determine whether the catalytic activity of this protein is 

required for meiotic silencing. Therefore, point mutations that disrupt the 
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catalytic site need to be constructed, and then meiotic silencing would be 

analyzed in the presence of these mutants. 

My model proposes that PAF400 is recruited to the unpaired DNA region 

after a threshold of DNA DSBs is reached. Therefore, a direct interaction 

between the unpaired DNA and PAF400 is expected. Using chromatin 

immunoprecipitation (ChIP) assays, it would be possible to test this hypothesis.  

 

A Signaling Transduction Pathway May Connect the Nuclear and the 

Perinuclear Phases of Meiotic Silencing 

I identified a second protein-binding partner for SMS-5, Pianissimo. 

Pianissimo is a homolog of Aveo3/RICTOR proteins. Pianissimo homologous 

proteins are essential components of the TORC2 complex, which is involved in 

several signaling transduction pathways in numerous organisms (CYBULSKI and 

HALL 2009). Pianissimo homologs have also been found associated to other 

proteins, supporting the notion that it could be mediated other functions outside 

of TORC2 (Oh 2011). However, its function still remains elusive.  

Although I was not been able to test directly the involvement of 

Pianissimo in meiotic silencing, its physical interaction with SMS-5 provides 

indirect evidence for its participation. Finding this interaction between SMS-5 

and Pianissimo suggests that signaling transduction pathways could be involved 

in the regulation of meiotic silencing. Interestingly, Pianissimo homologs have 

been detected in both the cytosol and in the nucleus. Computational analysis 
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predicts that Pianissimo could be also localized in both cellular compartments. 

This observation suggests that Pianissimo protein and its homologs may be 

shuttling proteins continuously back and forth between the nucleus and the 

cytoplasm. I hypothesize that Pianissimo protein is involved in the activation of 

the meiotic silencing machinery in the perinucleus by activating a signal 

transduction cascade once unpaired DNA is detected and aRNAs synthesized in 

the nucleus. 

It would be of interest to explore whether Pianissimo participates in 

meiotic silencing as a component of the TORC2 complex or whether Pianissimo 

and PAF400 are components of a different and new multi-protein complex 

together with SMS-5.  

 

Model for the Involvement of Pianissimo in Meiotic Silencing 

Pianissimo protein possesses an HR1 domain––Rho binding domain––at 

the N-terminus, and a REM domain––Ras exchange motif––at the C-terminus. 

The presence of these two domains indicates that Pianissimo is an effector 

protein that is regulated by small G proteins (molecular switches) (HALL 2012). 

On the other hand, Pianissimo homologs bind directly with protein kinase TOR, 

and together, they are the core components of TORC2 complex. This complex is 

responsible for phosphorylation of several substrates, including AGC protein 

kinases, and participates in signal transduction cascades (CYBULSKI and HALL 

2009). TOR protein kinase is a member of the phosphatidylinositol-3-kinase-
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related kinases (PIKK), which function as serine/threonine protein kinases. 

Interestingly, PAF400–the other protein-binding partner for SMS-5––is also a 

PIKK protein (Chapter II). Because of the high structural similarities observed 

among PIKK members (Figure 2.9), it is possible that Pianissimo interacts with 

PAF400. Therefore, I hypothesize that Pianissimo binds to PAF400 during the 

nuclear events of meiotic silencing. Together all these observations, lead me to 

hypothesize that Pianissimo is responsible for coupling the nuclear signal 

generated after recognition of unpaired DNA to a signaling cascade that triggers 

meiotic silencing in the perinuclear region.  

The model I propose for the function of Pianissimo in meiotic silencing is 

as follows: PAF400 and Pianissimo proteins interact in the proximity of the 

unpaired DNA while aRNA is still synthesized. Methylation of PAF400 and/or 

Pianissimo by SMS-5 modulates this protein interaction. Interaction between 

PAF400 and Pianissimo represents the stimulus that activates the signaling 

cascade; then the signaling cascade in conjunction with the aRNA trigger 

meiotic silencing in the perinuclear region. A small G protein may mediate 

activation of the effector protein Pianissimo by binding to GTP and release of 

GDP. Pianissimo-GTP-binding form recruits and interacts with a protein kinase 

(TOR-like protein). This protein kinase is responsible for the phosphorylation of 

downstream effector proteins, and the generation of the phosphorylation 

signaling cascade that goes from the nucleus to the perinucleus. Finally, the 

signal is received in the perinuclear region and the silencing machinery is 
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activated, ready to couple the aRNA that was exported from the nucleus (Figure 

4.3).  

The interaction between SMS-5, Pianissimo and PAF400 represents the 

connection between meiotic silencing and signaling transduction pathways. 

Finding Pianissimo as a possible component of meiotic silencing creates new 

possibilities to explain the molecular connection that must exist between meiotic 

trans-sensing in the nucleus and activation of silencing in the perinucleus. It 

would be interesting to explore whether a signaling cascade mediated by 

kinases is responsible for activation of the meiotic silencing complex. In order to 

do this, additional studies are necessary. 

The model presented in Figure 4.3 gives an attractive explanation of how 

a nuclear event triggers a perinuclear action. However, several gaps in the 

model need to be filled. The direct binding between SMS-5 and Pianissimo 

suggests that Pianissimo is a possible target protein for the biochemical action 

of SMS-5, which is predicted to be methylation. Pianissimo has three predicted 

methylation sites. It would be important to test whether those sites are 

methylation targets for SMS-5. Therefore, a protein MTase in vitro assay is 

recommended.  

  



 

202 

 

 

 

Figure 4.3 Proposed model for Pianissimo function in meiotic silencing as an 
activator of a signaling cascade. Interactions between one pair of homologous 
chromosomes (red and blue) are schematically represented. Sister chromatids, 
which are products of pre-meiotic DNA replication, are shown as double red or 
blue lines. Unpaired DNA region (red bubble). (a) Unpaired DNA is detected and 
by the scaffolding action of PAF400, chromatin is relaxed, DSBs are repair, and 
aRNA is synthesized (Figure 4.1 and 4.2). (b) Interaction between PAF400 and 
Pianissimo is observed while PAF400 is still associated with the unpaired DNA. 
Methylation (CH3) of PAF400 and/or Pianissimo by SMS-5 may modulate this 
protein interaction. Interaction between PAF400 and Pianissimo represents the 
stimulus that activates the signal cascade. (c) Ras protein may mediate 
activation of the effector protein Pianissimo by binding to GTP and release of 
GDP. (d) Pianissimo-RasGTP-binding form binds to a protein kinase (PK) (TOR-
like protein). (e) This protein kinase is responsible for the phosphorylation (P) of 
downstream effector proteins, and the generation of the phosphorylation 
signaling cascade (Black vertical arrow). Finally, the signal and the aRNA are 
received by the meiotic silencing (MS) components in the perinuclear region, 
and silencing is activated. 
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Once the Pianissimo region required for SMS-5 interaction is established, 

additional experiments could be executed. For example, it would be possible to 

analyze meiotic silencing efficiency when the interaction between SMS-5 and 

Pianissimo is compromised. Because Pianissimo is an essential protein, it is not 

possible to perform experiments that involve Pianissimo deletion mutant in vivo. 

It would be ideal to find a Pianissimo separation of function mutant in which all 

biological functions of the protein remain intact, except for the interaction with 

SMS-5. If the mutant with this characteristic is identified, it would be possible to 

find whether Pianissimo is a direct component of meiotic silencing.  

Pianissimo homologs interact with a protein kinase that belongs to the 

PIKK family in several organisms. Therefore, it is reasonable to hypothesize that 

Pianissimo interacts with PAF400, another PIKK protein. It would be important to 

find whether Pianissimo interacts directly with PAF400. To do this, in vitro 

protein synthesis and immunoprecipitation assays could be performed.  

Assuming that Pianissimo and PAF400 directly interact, it would be also 

necessary to establish whether that interaction is regulated by SMS-5. For that 

purpose, an in vitro MTassay in combination with co-IP experiments could be 

designed. Alternatively, an in vivo experiment could be done by using cell 

extracts from wild-type and Sms-5 mutant for immunoprecipitation analysis. If 

SMS-5 is required for the interaction of Pianissimo and PAF400, it is expected 

that both co-immunoprecipitated from the wild-type cellular extract, but not from 

SMS-5-depleted cell extract. 
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Determining other protein-binding partners for Pianissimo will also be 

informative. For example, Pianissimo homologs interact with the catalytic subunit 

of TORC2 complex, the protein kinase TOR. It is worth mentioning that N. 

crassa TOR kinase was also recovered from my pull-down assays; however, it 

was also present in the control GST column. This could be an example of a false 

negative result. Establishing whether Pianissimo binds to a protein kinase would 

have significant implications for meiotic silencing regulation. Once the interacting 

partners of Pianissimo are determined, additional experiments to test the 

biochemical actions of those proteins could be performed.  

Testing whether Pianissimo is an effector protein regulated by a small G 

protein would help to more firmly establish the link to signal transduction 

pathway. Computational evidence suggests that this is the case. HR1 domain 

and REM domain have been predicted to be part of Pianissimo; both domains 

are associated with regulation by small G proteins. To test this possibility, a 

GTPase activation assay could be implemented. 

 

Proteome of Sexual Development and Meiotic Silencing 

The proteome of sexual development was constructed by analyzing the 

protein representation of two critical points of sexual growth: maternal tissue 

before fertilization and four days after fertilization. One of the purposes of 

constructing a proteome database is to determine the protein population present 

under a specific condition or at a particular time point in development. Functional 
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analysis of the proteins can provide new insights into the cellular and molecular 

processes that occur under those specific conditions.  

From the proteome of sexual development, I expected to extract more 

information related to protein accumulation of suppressors of meiotic silencing. 

However, the Argonaute-like protein SMS-2 was the only suppressor identified. 

This result reflects the transient nature of the proteins involved in meiotic 

silencing. That is, suppressors are synthesized in a small period of time, which 

may accumulate only very early in meiosis. The lack representation of 

suppressors of meiotic silencing in the proteome could be also due to low-

abundance. Therefore, technical limitations are responsible for this result.  

In order to improve proteome and peptide coverage, it would be 

necessary to address different experimental aspects. First, more developmental 

time points need to be included in the analysis. For example, biological samples 

just after fertilization and after karyogamy are needed because it is early after 

karyogamy that unpaired DNA regions are detected and meiotic silencing is 

activated. Therefore, it is expected that the silencing machinery would be active 

at those points. In addition, high proteome and peptide coverage would be 

achieved by combining different strategies. That is, combination of sample 

fractionation, high resolution mass spectrometry analysis and combined 

databases search for protein identification. 
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APPENDIX A 

  

Table A.1: Mass spectrometry results from three independent pull-down experiments (Chapter II) 

Broad
a
 ID 

# 
Protein Description Frequency

b 

Experiment 1 Experiment 2 Experiment 3 

C.I. %
c
 C.I. %

c
 C.I. %

c
 

In 
solution

d 
In 

gel
e 

In 
solution

d 
In 

gel
e 

In 
solution

d 
In 

gel
e 

NCU02088  Suppressor of meiotic silecing-5 3 100 99.8 100 99.2 100 100 

NCU01379  histone acetylase complex subunit 
Paf400 

3 100  99.9 22 99.6  

NCU07854  cytosolic regulator Pianissimo 3  97.5 99.9  99.5  

NCU01680  plasma membrane ATPase-1 2 100    100  

NCU08936  clock-controlled gene-15 2 100    100  

NCU01323  cohesin complex subunit 2 100    99.8  

NCU10021  high affinity glucose transporter-1 2   100  100  

NCU05488  RNA-binding protein Vip1 2   99.9 18.3 100  

NCU07554  chromosome segregation protein 
SudA 

2 99.9  99.9    

NCU04865  polyketide synthase-3 2 99.9 0  70.4   

NCU01634  histone H4-1 2  99.9   99.9 0 

NCU08600  hypothetical protein 2   99.9  99.3  

NCU10346  hypothetical protein 2   99.9  98.5  

NCU06701  cephalosporin C regulator 1 2    57.1 99.8  

NCU03072  hypothetical protein 2    0 99.1  

NCU05803  translational activator 1 100      

NCU06977  hypothetical protein 1 100      
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Table A.1: Continued. 

Broad
a
 ID 

# 
Protein Description Frequency

b 

Experiment 1 Experiment 2 Experiment 3 

C.I. %
c
 C.I. %

c
 C.I. %

c
 

In 
solution

d 
In 

gel
e 

In 
solution

d 
In 

gel
e 

In 
solution

d 
In 

gel
e 

NCU09477  ADP, ATP carrier protein 1 100      

NCU03234  ubiquitin-protein ligase E3 component 1 100      

NCU08114  cellodextrin transport-2 1 100      

NCU10066  coatomer alpha subunit 1 100      

NCU09263  anchored cell wall protein-4 1 100      

NCU06283  conserved hypothetical protein  1 100      

NCU01878  vesicle-mediated transporter 1 100      

NCU04102  hypothetical protein 1 100      

NCU05989  hypothetical protein 1 99.9      

NCU08957  hypothetical protein 1 99.9      

NCU04051  protein GCN20 - ABC transporter 1 99.9      

NCU03116  Ras GTPase activating protein 1 99.9      

NCU06518  NADH-cytochrome b5 reductase 2 1 99.9      

NCU04021  conserved hypothetical protein - ABC 
transporter 

1 99.9      

NCU02539  cell division control protein 54 1 99.9      

NCU09481  hypothetical protein 1 99.9      

NCU08889  hypothetical protein 1 99.9      

NCU08598  quelling-defective-3 1 99.9      

NCU08919  chromatin remodelling factor 2-1 1 99.9      

NCU06935  hypothetical protein 1 99.9      

NCU07894  oligopeptide transporter 2 1 99.9      

NCU17239  probable apsB protein  1 99.9      

NCU02314  hypothetical protein 1 99.9      

NCU01823  two-component sensor protein histidine 
protein kinase 

1 99.9      
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Table A.1: Continued. 

Broad
a
 ID 

# 
Protein Description Frequency

b 

Experiment 1 Experiment 2 Experiment 3 

C.I. %
c
 C.I. %

c
 C.I. %

c
 

In 
solution

d 
In 

gel
e 

In 
solution

d 
In 

gel
e 

In 
solution

d 
In 

gel
e 

NCU08262  hypothetical protein 1 99.9      

NCU02437  histone H2A 1  99.9     

NCU05693  interferon-induced GTP-binding protein Mx2 1  99.9     

NCU10142  hypothetical protein 1  99.6     

NCU02953  hypothetical protein 1  96.1     

NCU07648  hypothetical protein 1  96     

NCU02793  hypothetical protein 1   99.9    

NCU01288  hypothetical protein 1   99.9    

NCU16491  fungal specific transcription factor domain-
containing protein 

1   99.9    

NCU05191  hypothetical protein 1   99.9    

NCU07129  amino-acid permease inda1 1   99.9    

NCU02075  heat shock protein 70-2 1   99.9    

NCU05028  kinesin 1   99.9    

NCU07378  serine/threonine protein kinase-12 1   99.9    

NCU07690  methylenetetrahydrofolate reductase 1 1   99.9    

NCU03220  hypothetical protein 1   99.9    

NCU07027  glycogen phosphorylase 1   99.9    

NCU03477  hypothetical protein 1   99.9    

NCU04117  ATP-dependent permease MDL2 1   99.9    

NCU08452  hypothetical protein 1   99.9    

NCU03534  hypothetical protein 1   99.9    

NCU01895  response regulator-1 1   99.9    

NCU04143  serine/threonine protein kinase-26 1   99.9    

NCU01053  hypothetical protein 1   99.9    
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Table A.1: Continued. 

Broad
a
 ID 

# 
Protein Description Frequency

b 

Experiment 1 Experiment 2 Experiment 3 

C.I. %
c
 C.I. %

c
 C.I. %

c
 

In 
solution

d 
In 

gel
e 

In 
solution

d 
In 

gel
e 

In 
solution

d 
In 

gel
e 

NCU07369  hypothetical protein 1   99.9    

NCU02994  hypothetical protein 1   99.9    

NCU11309  integral membrane protein 1    99.8   

NCU00940  hypothetical protein 1    97.5   

NCU07984  chromosome segregation protein 1    96.2   

NCU09049  hypothetical protein 1     100  

NCU01552  ribosomal protein S28 1     99.9  

NCU02514  ATPase-1 1     99.9  

NCU09883  hypothetical protein 1     99.9  

NCU00019  Fork head domain 1 1     99.9  

NCU16593  hypothetical protein 1     99.9  

NCU03530  anchored cell wall protein-6 1     99.8  

NCU04137  vacuolar protein sorting-associated 
protein Vps5 

1     99.8  

NCU04757  hypothetical protein 1     99.7  

NCU06468  midasin 1     99.6  

NCU03277  peroxin 10 1     99.6  

NCU01615  hypothetical protein 1     99.5  

NCU09642  high affinity sulfate transporter 1 1     99.5  

NCU01839  carboxylesterase 1     99.5  

NCU03592  P-type ATPase 1     99.5  

NCU06054  squalene synthetase 1     99.4  

NCU00582  cryptochrome 1     99.4  

NCU03857  tricarboxylic acid-5 1     99.2  

NCU03787  hypothetical protein 1     99  

NCU01869  hypothetical protein 1     98.9  
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Table A.1: Continued. 

Broad
a
 ID 

# 
Protein Description Frequency

b 

Experiment 1 Experiment 2 Experiment 3 

C.I. %
c
 C.I. %

c
 C.I. %

c
 

In 
solution

d 
In 

gel
e 

In 
solution

d 
In 

gel
e 

In 
solution

d 
In 

gel
e 

NCU04105  hypothetical protein 1     98.9  

NCU09814  hypothetical protein 1     98.9  

NCU09596  phytanoyl-CoA dioxygenase 1     98.8  

NCU16656  hypothetical protein 1     98.7  

NCU06103  mitochondrial translation initiation factor 1     98.5  

NCU03523  serine/threonine protein kinase-22 1     98.4  

NCU08468  actin-interacting protein 1     98.3  

NCU09434  Suppressor of meiotic silecing-2 
(Argonaute protein)

f 
1  83.7     

NCU06190  Suppressor of meiotic silencing-9 
(Helicase)

f 
1    33.6   

aBroad = Broad Institute (http://www.broadinstitute.org/). 
bFrequency, total number of times the protein was detected. 
cC.I. %, Total Ion Score and/or Protein Score Confidence Interval. “0” under this column means that the protein was detected 
but the C.I. % was zero or lower. 
dIn solution, eluted proteins were precipitated and concentrated. The whole protein mix was enzymatically digested followed 
by MS identification.  
eIn gel, eluted proteins were separated by SDS-PAGE. Protein bands were cut from the gel, enzymatically digest followed by 
MS identification. 
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Table A.2: Gene Ontology (GO) Terms Assigned to the Affinity Purified Proteins Using Blast2GO (Chapter II) 

Sequence ID 
# 

Protein Description GO molecular function 

NCU02088  suppressor of meiotic silecing-5 protein binding;  

NCU01379  histone acetylase complex subunit Paf400 transferase activity; protein binding; kinase activity;  

NCU07854  cytosolic regulator Pianissimo binding;  

NCU01680  plasma membrane ATPase-1 hydrolase activity; transporter activity; nucleotide binding; protein binding; 
binding;  

NCU08936  clock-controlled gene-15  

NCU01323  cohesin complex subunit protein binding; chromatin binding; nucleotide binding;  

NCU10021  high affinity glucose transporter-1 transporter activity;  

NCU05488  RNA-binding protein Vip1 nucleic acid binding; nucleotide binding;  

NCU07554  chromosome segregation protein SudA protein binding; structural molecule activity; nucleotide binding;  

NCU04865  polyketide synthase-3 transferase activity; binding; catalytic activity; protein binding;  

NCU01634  histone H4-1 DNA binding; protein binding;  

NCU08600  hypothetical protein  

NCU10346  hypothetical protein chromatin binding; DNA binding;  

NCU06701  cephalosporin C regulator 1 transcription regulator activity; DNA binding;  

NCU03072  hypothetical protein  
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Table A.2: Continued. 

Sequence ID 
# 

Protein Description GO biological process 

NCU02088  suppressor of meiotic silecing-5  

NCU01379  histone acetylase complex subunit Paf400 multicellular organismal development; DNA metabolic process; metabolic 
process; regulation of biological process; response to stress; biosynthetic 
process; cell differentiation; organelle organization; cellular protein modification 
process;  

NCU07854  cytosolic regulator Pianissimo multicellular organismal development; regulation of biological process; 
cytoskeleton organization; metabolic process; signal transduction;  

NCU01680  plasma membrane ATPase-1 nucleobase-containing compound metabolic process; biosynthetic process; ion 
transport; catabolic process; generation of precursor metabolites and energy;  

NCU08936  clock-controlled gene-15  

NCU01323  cohesin complex subunit regulation of biological process; cell cycle; signal transduction; response to 
stress; nucleobase-containing compound metabolic process; organelle 
organization; response to abiotic stimulus; DNA metabolic process; biosynthetic 
process; transport;  

NCU10021  high affinity glucose transporter-1 transport;  

NCU05488  RNA-binding protein Vip1  

NCU07554  chromosome segregation protein SudA cytoskeleton organization; cell cycle; signal transduction; biological_process; 
organelle organization; biosynthetic process; regulation of biological process; 
DNA metabolic process;  

NCU04865  polyketide synthase-3 biosynthetic process; metabolic process;  

NCU01634  histone H4-1 multicellular organismal development; cell differentiation; regulation of biological 
process; organelle organization; signal transduction;  

NCU08600  hypothetical protein  
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Table A.2: Continued. 

Sequence ID 
# 

Protein Description GO biological process 

NCU10346  hypothetical protein  

NCU06701  cephalosporin C regulator 1 regulation of biological process;  

NCU03072  hypothetical protein  

Sequence ID 
# 

Protein Description GO cellular component 

NCU02088  suppressor of meiotic silecing-5  

NCU01379  histone acetylase complex subunit Paf400 nucleoplasm; protein complex;  

NCU07854  cytosolic regulator Pianissimo intracellular;  

NCU01680  plasma membrane ATPase-1 cell; plasma membrane;  

NCU08936  clock-controlled gene-15 cell;  

NCU01323  cohesin complex subunit cytoplasm; chromosome; protein complex; nuclear chromosome; cell;  

NCU10021  high affinity glucose transporter-1 cell;  

NCU05488  RNA-binding protein Vip1  

NCU07554  chromosome segregation protein SudA chromosome; proteinaceous extracellular matrix; cytoplasm; nucleus; 
cytoskeleton; protein complex;  

NCU04865  polyketide synthase-3  

NCU01634  histone H4-1 chromosome; nucleoplasm;  

NCU08600  hypothetical protein  

NCU10346  hypothetical protein chromosome;  

NCU06701  cephalosporin C regulator 1  

NCU03072  hypothetical protein  
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Table A.3: Fungal strains used in the analysis of the involvement of NCU05488 in meiotic silencing (Chapter II) 

Namea Genotypeb Origin 

FGS2489 A FGSCc 

FGS2490 a FGSCc 

FGSC21956 NCU05488; a FGSCc 

KBCNR05A his-31-234-723, RspRIP93; flP A Aramayo Lab Collection 

RANCR49A flP A Aramayo Lab Collection 

RPNCR73A RspRIP93; inl89601 a Aramayo Lab Collection 

RPNCR74A his-31-234-723, RspRIP93; inl89601 A Aramayo Lab Collection 

VSNCR60A NCU05488; a Aramayo Lab Collection 

VSNCR63A NCU05488D; a Aramayo Lab Collection 

VSNCR67A RspRIP93  ; NCU05488∆ a Aramayo Lab Collection 

VSNCR68A his-31-234-723, RspRIP93; NCU05488∆ A Aramayo Lab Collection 
 

a
KBNC, RANC, RPNC and VSNC indicate strains constructed for Kevin D. Baker, Rodolfo Aramayo, Robert J. Pratt, and Victoria 

Suescún, respectively. 
b
Detailed description of all loci can be found at "The Neurospora e-Compemdium" (www.fgsc.net) 

c
FGSC, indicates strains obtained from the Fungal Genetics Stock Center 

  



 

237 

 

Table A.4: Plasmids used in the identification of protein-binding partners for SMS-5 project (Chapter II) 

Name Description Origin 

pGEX-6P-1 Expression vector for construction of GST-tagged proteins GE Healthcare 

pET-28a(+) Expression vector for construction of T7-tagged proteins Novagen 

pCITE-4a(+) Expression vector for construction of radiolabeled proteins Novagen 

pDL362 pGEX-6P-1_SMS-5. Expression GST-SMS-5 D. Lee, Aramayo Lab 

pAVS011 pCITE-4a(+)_SMS-5. Expression of radiolabeled SMS-5 V. Suescún; Aramayo Lab 

pAVS012 pET28a(+)_SMS-5. Expression of T7-tagged SMS-5 V. Suescún; Aramayo Lab 

pAVS017 pET28a(+)_NCU05488. Expression of T7-tagged NCU05488 V. Suescún; Aramayo Lab 

pAVS019 pCITE-4a(+)_NCU05488. Expression of radiolabeled NCU05488 V. Suescún; Aramayo Lab 

pAVS020 pET28a(+)_Ku70. Expression of T7-tagged Ku70 V. Suescún; Aramayo Lab 

pAVS021 pET28a(+)_Ku80. Expression of T7-tagged Ku80 V. Suescún; Aramayo Lab 

pAVS022 pCITE-4a(+)_Ku70. Expression of radiolabeled Ku70 V. Suescún; Aramayo Lab 

pAVS023 pCITE-4a(+)_Ku80. Expression of radiolabeled Ku80 V. Suescún; Aramayo Lab 

pAVS051 pET28a-Pianissimo (N-ter). Expression of T7-tagged Pianissimo (N-ter) V. Suescún; Aramayo Lab 

pAVS054 pET28a-Pianissimo (C-ter). Expression of T7-tagged Pianissimo (C-ter) V. Suescún; Aramayo Lab 

pAVS055 pCITE-Pianissimo (C-ter). Expression of radiolabeled Pianissimo (C-ter) V. Suescún; Aramayo Lab 

pAVS056 pET28a-PAF400 (C-ter) V. Suescún; Aramayo Lab 

pAVS058 pCITE-PAF400 (C-ter). Expression of radiolabeled PAF400 (C-ter) V. Suescún; Aramayo Lab 
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Table A.5: Oligonucleotides used in the identification of protein-binding partners for SMS-5 project (Chapter II) 

Namea Descriptionb Sequence 

OVS095 T7-PROMOTER PRIMER (pET28a) TAATACGACTCACTATAGGG 

OVS096 T7-TERMINATOR PRIMER (pET28a) GCTAGTTATTGCTCAGCGG 

OVS097 pCITE primer (pCITE) GGGGACGTGGTTTTCCTTTG 

OVS098 T3 PROMOTER PRIMER (pCITE) ATTAACCCTCACTAAAGGG 

OVS0103 NCU05488 - F (EcoRI) CTGCGGAATTCATGTCTACAGTCTAC 

OVS0104 NCU05488 - R (NotI)  ATTGCGGCCGCTTACTGGGGAATCTT 

OVS0120 pCITE F  TGCTTTACATGTGTTTAGTCG 

OVS0121 pCITE R  CTCACTAAAGGGAACAAAAG 

OVS0122 NCU05488-F  AACGAACAACAGCAAACA 

OVS0123 NCU05488-R TCATGAAATCAGCCAGAC 

OVS0124 NCU07854-F N-ter (BamHI) AGATGGATCCATGGCTGGGCCATCCACCAT 

OVS0125 NCU07854-R N-ter (NotI) ATGCGGCCGCGAGAAGTTTGTTATCCGA 

OVS126 NCU07854-F C-ter (BamHI) AGATGGATCCACGCAAAAGTACGTCAGAGT 

OVS127 NCU07854-R C-ter (NotI) ATGCGGCCGCCTACCTAAACGGCCCTCTGA 

OVS137 pET28 upstream primer CCATCGCCGCTTCCACTT 

OVS142 NCU07854-F C-ter (BamHI)  AGGTGGATCCTCGGAGGTCAAGAGCACAAG 

OVS143 NCU07854-R C-ter (NotI) ATGCGGCCGCCCGCCACGCTACCTAAA 

OVS144 NCU01379-R C-term (NotI) ATGCGGCCGCCAGATACGGCATCCACAA 

OVS145 NCU01379-F N-term (SacI)  GCCAGAGCTCATGGCGAACCTAATTGACGATG 

OVS146 NCU01379-R N-term (NotI) ATCGGCGGCCGCGATCAGCTCAATAGACCT 
a
Oligonucleotides were named following Aramayo Lab nomenclature based on the person that design the primers.  

OVS = Oligonucleotide_Victoria_Suescún 
b
Description of the region/gene where the oligonucleotide annealed. 
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APPENDIX B 

  

Table B.1: Proteins identified from two stages of N. crassa sexual development 

via mass spectrometry analysis and discussed in Chapter III are included in a 

separate file. 
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Table B.2: GO terms bias analysis of identified proteins (Chapter III) 

Biologicla Process 

GO_ID GO_TERM 
Proteome Genome Log10 

(frequency
c
) #PGOT

a
 #PBP

b
 (%) #PGOT #PBP (%) 

GO:0008037 cell recognition 0 717 0.0% 7 5321 0.1% #NUM! 

GO:0048519 negative regulation of biological process 0 717 0.0% 5 5321 0.1% #NUM! 

GO:0048583 regulation of response to stimulus 0 717 0.0% 5 5321 0.1% #NUM! 

GO:0023051 regulation of signaling 0 717 0.0% 5 5321 0.1% #NUM! 

GO:0006091 generation of precursor metabolites and 
energy 

103 717 14.4% 219 5321 4.1% 0.54 

GO:0044249 cellular biosynthetic process 130 717 18.1% 303 5321 5.7% 0.50 

GO:1901576 organic substance biosynthetic process 130 717 18.1% 303 5321 5.7% 0.50 

GO:0034645 cellular macromolecule biosynthetic 
process 

130 717 18.1% 303 5321 5.7% 0.50 

GO:0009059 macromolecule biosynthetic process 130 717 18.1% 303 5321 5.7% 0.50 

GO:0006412 translation 130 717 18.1% 303 5321 5.7% 0.50 

GO:0010467 gene expression 132 717 18.4% 344 5321 6.5% 0.45 

GO:0007028 cytoplasm organization 4 717 0.6% 13 5321 0.2% 0.36 

GO:0040007 growth 106 717 14.8% 372 5321 7.0% 0.33 

GO:0044767 single-organism developmental process 119 717 16.6% 461 5321 8.7% 0.28 

GO:0009790 embryo development 119 717 16.6% 461 5321 8.7% 0.28 

GO:0019748 secondary metabolic process 33 717 4.6% 128 5321 2.4% 0.28 

GO:0007267 cell-cell signaling 24 717 3.3% 98 5321 1.8% 0.26 

GO:0016049 cell growth 17 717 2.4% 70 5321 1.3% 0.26 

GO:0000003 reproduction 132 717 18.4% 560 5321 10.5% 0.24 

GO:0007010 cytoskeleton organization 49 717 6.8% 208 5321 3.9% 0.24 

GO:0009607 response to biotic stimulus 30 717 4.2% 130 5321 2.4% 0.23 

GO:0048856 anatomical structure development 152 717 21.2% 664 5321 12.5% 0.23 

GO:0009058 biosynthetic process 319 717 44.5% 1408 5321 26.5% 0.23 

GO:0009056 catabolic process 197 717 27.5% 877 5321 16.5% 0.22 

GO:0019538 protein metabolic process 252 717 35.1% 1159 5321 21.8% 0.21 
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Table B.2: Continued. 

Biological Process 

GO_ID GO_TERM 
Proteome Genome Log10 

(frequency
c
) #PGOT

a
 #PBP

b
 (%) #PGOT #PBP (%) 

GO:0005975 carbohydrate metabolic process 107 717 14.9% 493 5321 9.3% 0.21 

GO:0044267 cellular protein metabolic process 176 717 24.5% 857 5321 16.1% 0.18 

GO:0044765 single-organism transport 51 717 7.1% 253 5321 4.8% 0.17 

GO:0006811 ion transport 51 717 7.1% 253 5321 4.8% 0.17 

GO:0009605 response to external stimulus 28 717 3.9% 141 5321 2.6% 0.17 

GO:0007610 behavior 24 717 3.3% 122 5321 2.3% 0.16 

GO:0008219 cell death 49 717 6.8% 254 5321 4.8% 0.16 

GO:0009653 anatomical structure morphogenesis 84 717 11.7% 436 5321 8.2% 0.16 

GO:0016265 death 49 717 6.8% 255 5321 4.8% 0.15 

GO:0043170 macromolecule metabolic process 266 717 37.1% 1400 5321 26.3% 0.15 

GO:0032502 developmental process 224 717 31.2% 1193 5321 22.4% 0.14 

GO:0009628 response to abiotic stimulus 53 717 7.4% 283 5321 5.3% 0.14 

GO:0032501 multicellular organismal process 214 717 29.8% 1153 5321 21.7% 0.14 

GO:0007275 multicellular organismal development 214 717 29.8% 1153 5321 21.7% 0.14 

GO:0044707 single-multicellular organism process 214 717 29.8% 1153 5321 21.7% 0.14 

GO:0044237 cellular metabolic process 333 717 46.4% 1833 5321 34.4% 0.13 

GO:0007049 cell cycle 80 717 11.2% 443 5321 8.3% 0.13 

GO:0065008 regulation of biological quality 18 717 2.5% 100 5321 1.9% 0.13 

GO:0019725 cellular homeostasis 18 717 2.5% 100 5321 1.9% 0.13 

GO:0042592 homeostatic process 18 717 2.5% 100 5321 1.9% 0.13 

GO:0007005 mitochondrion organization 11 717 1.5% 62 5321 1.2% 0.12 

GO:0006950 response to stress 125 717 17.4% 710 5321 13.3% 0.12 

GO:0044260 cellular macromolecule metabolic 
process 

191 717 26.6% 1096 5321 20.6% 0.11 

GO:0071704 organic substance metabolic process 448 717 62.5% 2673 5321 50.2% 0.09 

GO:0044238 primary metabolic process 462 717 64.4% 2759 5321 51.9% 0.09 

GO:0009987 cellular process 442 717 61.6% 2652 5321 49.8% 0.09 

GO:0044764 multi-organism cellular process 4 717 0.6% 24 5321 0.5% 0.09 
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Table B.2: Continued. 

Biological Process 

GO_ID GO_TERM 
Proteome Genome Log10 

(frequency
c
) #PGOT

a
 #PBP

b
 (%) #PGOT #PBP (%) 

GO:0016032 viral process 4 717 0.6% 24 5321 0.5% 0.09 

GO:0033036 macromolecule localization 49 717 6.8% 297 5321 5.6% 0.09 

GO:0008104 protein localization 49 717 6.8% 297 5321 5.6% 0.09 

GO:0045184 establishment of protein localization 49 717 6.8% 297 5321 5.6% 0.09 

GO:0071702 organic substance transport 49 717 6.8% 297 5321 5.6% 0.09 

GO:0015031 protein transport 49 717 6.8% 297 5321 5.6% 0.09 

GO:0008152 metabolic process 625 717 87.2% 3791 5321 71.2% 0.09 

GO:0044699 single-organism process 333 717 46.4% 2044 5321 38.4% 0.08 

GO:0044710 single-organism metabolic process 91 717 12.7% 562 5321 10.6% 0.08 

GO:0009719 response to endogenous stimulus 33 717 4.6% 204 5321 3.8% 0.08 

GO:0050896 response to stimulus 196 717 27.3% 1251 5321 23.5% 0.07 

GO:0048869 cellular developmental process 62 717 8.6% 408 5321 7.7% 0.05 

GO:0030154 cell differentiation 62 717 8.6% 408 5321 7.7% 0.05 

GO:0044763 single-organism cellular process 225 717 31.4% 1487 5321 27.9% 0.05 

GO:0006996 organelle organization 94 717 13.1% 625 5321 11.7% 0.05 

GO:0050789 regulation of biological process 250 717 34.9% 1701 5321 32.0% 0.04 

GO:0065007 biological regulation 251 717 35.0% 1733 5321 32.6% 0.03 

GO:0071840 cellular component organization or 
biogenesis 

156 717 21.8% 1082 5321 20.3% 0.03 

GO:0016043 cellular component organization 156 717 21.8% 1082 5321 20.3% 0.03 

GO:0008283 cell proliferation 29 717 4.0% 202 5321 3.8% 0.03 

GO:0051179 localization 177 717 24.7% 1239 5321 23.3% 0.03 

GO:0051234 establishment of localization 177 717 24.7% 1239 5321 23.3% 0.03 

GO:0006810 transport 177 717 24.7% 1239 5321 23.3% 0.03 

GO:0006629 lipid metabolic process 66 717 9.2% 466 5321 8.8% 0.02 

GO:0006807 nitrogen compound metabolic process 149 717 20.8% 1062 5321 20.0% 0.02 

GO:0006725 cellular aromatic compound metabolic 
process 

149 717 20.8% 1062 5321 20.0% 0.02 
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Table B.2: Continued. 

Biological Process 

GO_ID GO_TERM 
Proteome Genome Log10 

(frequency
c
) #PGOT

a
 #PBP

b
 (%) #PGOT #PBP (%) 

GO:0034641 cellular nitrogen compound metabolic 
process 

149 717 20.8% 1062 5321 20.0% 0.02 

GO:0046483 heterocycle metabolic process 149 717 20.8% 1062 5321 20.0% 0.02 

GO:0006139 nucleobase-containing compound 
metabolic process 

149 717 20.8% 1062 5321 20.0% 0.02 

GO:1901360 organic cyclic compound metabolic 
process 

149 717 20.8% 1062 5321 20.0% 0.02 

GO:0023052 signaling 86 717 12.0% 621 5321 11.7% 0.01 

GO:0044700 single organism signaling 86 717 12.0% 621 5321 11.7% 0.01 

GO:0007154 cell communication 93 717 13.0% 675 5321 12.7% 0.01 

GO:0051716 cellular response to stimulus 71 717 9.9% 553 5321 10.4% -0.02 

GO:0050794 regulation of cellular process 71 717 9.9% 553 5321 10.4% -0.02 

GO:0007165 signal transduction 71 717 9.9% 553 5321 10.4% -0.02 

GO:0051704 multi-organism process 6 717 0.8% 60 5321 1.1% -0.13 

GO:0044419 interspecies interaction between 
organisms 

6 717 0.8% 60 5321 1.1% -0.13 

GO:0019222 regulation of metabolic process 5 717 0.7% 50 5321 0.9% -0.13 

GO:0044403 symbiosis, encompassing mutualism 
through parasitism 

6 717 0.8% 60 5321 1.1% -0.13 

GO:0060255 regulation of macromolecule metabolic 
process 

5 717 0.7% 50 5321 0.9% -0.13 

GO:0010468 regulation of gene expression 5 717 0.7% 50 5321 0.9% -0.13 

GO:0043412 macromolecule modification 55 717 7.7% 580 5321 10.9% -0.15 

GO:0036211 protein modification process 55 717 7.7% 580 5321 10.9% -0.15 

GO:0006464 cellular protein modification process 55 717 7.7% 580 5321 10.9% -0.15 

GO:0090304 nucleic acid metabolic process 28 717 3.9% 323 5321 6.1% -0.19 

GO:0006259 DNA metabolic process 28 717 3.9% 323 5321 6.1% -0.19 
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Table B.2: Continued. 

Molecular Function 

GOID GOTERM 

Proteome Genome 
Log 

(frequency
c
) #PGOT

a
 #PMF

b
 (%) #PGOT #PMF (%) 

GO:0031386 protein tag 0 727 0.0% 3 5681 0.1% #NUM! 

GO:0019825 oxygen binding 0 727 0.0% 4 5681 0.1% #NUM! 

GO:0016817 hydrolase activity, acting on acid 
anhydrides 

0 727 0.0% 29 5681 0.5% #NUM! 

GO:0045735 nutrient reservoir activity 1 727 0.1% 1 5681 0.0% 0.89 

GO:0005198 structural molecule activity 96 727 13.2% 179 5681 3.2% 0.62 

GO:0016209 antioxidant activity 12 727 1.7% 25 5681 0.4% 0.57 

GO:0008135 translation factor activity, nucleic acid 
binding 

23 727 3.2% 53 5681 0.9% 0.53 

GO:0045182 translation regulator activity 3 727 0.4% 8 5681 0.1% 0.47 

GO:0003779 actin binding 11 727 1.5% 40 5681 0.7% 0.33 

GO:0030246 carbohydrate binding 24 727 3.3% 89 5681 1.6% 0.32 

GO:0003723 RNA binding 94 727 12.9% 356 5681 6.3% 0.31 

GO:0008233 peptidase activity 50 727 6.9% 199 5681 3.5% 0.29 

GO:0009055 electron carrier activity 22 727 3.0% 100 5681 1.8% 0.24 

GO:0005509 calcium ion binding 13 727 1.8% 60 5681 1.1% 0.23 

GO:0043167 ion binding 13 727 1.8% 61 5681 1.1% 0.22 

GO:0043169 cation binding 13 727 1.8% 61 5681 1.1% 0.22 

GO:0046872 metal ion binding 13 727 1.8% 61 5681 1.1% 0.22 

GO:0008092 cytoskeletal protein binding 22 727 3.0% 109 5681 1.9% 0.20 

GO:0005102 receptor binding 14 727 1.9% 72 5681 1.3% 0.18 

GO:0036094 small molecule binding 171 727 23.5% 1082 5681 19.0% 0.09 
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Table B.2: Continued. 

Molecular Function 

GOID GOTERM 
Proteome Genome Log 

(frequency
c
) #PGOT

a
 #PMF

b
 (%) #PGOT #PMF (%) 

GO:1901265 nucleoside phosphate binding 171 727 23.5% 1082 5681 19.0% 0.09 

GO:0000166 nucleotide binding 171 727 23.5% 1082 5681 19.0% 0.09 

GO:0008289 lipid binding 15 727 2.1% 98 5681 1.7% 0.08 

GO:0005515 protein binding 369 727 50.8% 2456 5681 43.2% 0.07 

GO:0003824 catalytic activity 496 727 68.2% 3343 5681 58.8% 0.06 

GO:1901363 heterocyclic compound binding 268 727 36.9% 1866 5681 32.8% 0.05 

GO:0097159 organic cyclic compound binding 268 727 36.9% 1866 5681 32.8% 0.05 

GO:0016787 hydrolase activity 176 727 24.2% 1275 5681 22.4% 0.03 

GO:0005488 binding 562 727 77.3% 4237 5681 74.6% 0.02 

GO:0060089 molecular transducer activity 9 727 1.2% 73 5681 1.3% -0.02 

GO:0004871 signal transducer activity 9 727 1.2% 73 5681 1.3% -0.02 

GO:0003676 nucleic acid binding 130 727 17.9% 1074 5681 18.9% -0.02 

GO:0005215 transporter activity 51 727 7.0% 433 5681 7.6% -0.04 

GO:0022892 substrate-specific transporter activity 3 727 0.4% 26 5681 0.5% -0.04 

GO:0022857 transmembrane transporter activity 3 727 0.4% 26 5681 0.5% -0.04 

GO:0022803 passive transmembrane transporter 
activity 

3 727 0.4% 26 5681 0.5% -0.04 

GO:0022891 substrate-specific transmembrane 
transporter activity 

3 727 0.4% 26 5681 0.5% -0.04 

GO:0015267 channel activity 3 727 0.4% 26 5681 0.5% -0.04 

GO:0015075 ion transmembrane transporter activity 3 727 0.4% 26 5681 0.5% -0.04 

GO:0022838 substrate-specific channel activity 3 727 0.4% 26 5681 0.5% -0.04 
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Table B.2: Continued. 

Molecular Function 

GOID GOTERM Proteome Genome Log 
(frequency

c
) #PGOT

a
 #PMF

b
 (%) #PGOT #PMF (%) 

GO:0005216 ion channel activity 3 727 0.4% 26 5681 0.5% -0.04 

GO:0030234 enzyme regulator activity 20 727 2.8% 175 5681 3.1% -0.05 

GO:0016740 transferase activity 102 727 14.0% 921 5681 16.2% -0.06 

GO:0042578 phosphoric ester hydrolase activity 5 727 0.7% 51 5681 0.9% -0.12 

GO:0016791 phosphatase activity 5 727 0.7% 51 5681 0.9% -0.12 

GO:0016772 transferase activity, transferring 
phosphorus-containing groups 

28 727 3.9% 316 5681 5.6% -0.16 

GO:0016301 kinase activity 28 727 3.9% 316 5681 5.6% -0.16 

GO:0004872 receptor activity 4 727 0.6% 46 5681 0.8% -0.17 

GO:0016788 hydrolase activity, acting on ester bonds 12 727 1.7% 141 5681 2.5% -0.18 

GO:0004518 nuclease activity 7 727 1.0% 91 5681 1.6% -0.22 

GO:0016773 phosphotransferase activity, alcohol 
group as acceptor 

16 727 2.2% 219 5681 3.9% -0.24 

GO:0004672 protein kinase activity 16 727 2.2% 219 5681 3.9% -0.24 

GO:0003682 chromatin binding 4 727 0.6% 73 5681 1.3% -0.37 

GO:0003677 DNA binding 28 727 3.9% 561 5681 9.9% -0.41 

GO:0001071 nucleic acid binding transcription factor 
activity 

5 727 0.7% 132 5681 2.3% -0.53 

GO:0003700 sequence-specific DNA binding 
transcription factor activity 

5 727 0.7% 132 5681 2.3% -0.53 

a
#PGOT: #Proteins_in_specific GO_Term 

b
#PBP: #Proteins_with_Biological Process_GO_Terms or  

b
#PMF: #Proteins_with_Molecular Function_GO_Terms 

c
frequency= Proteome%/Genome% 

 


