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We propose a scheme for teleporting an arbitrary superposition of entangled Dicke states of any number of
atomssqubitsd between two distant cavities. Our method relies on adiabatic passage using multi-atom dark
states in each cavity, and a conditional detection of photons leaking out of both cavities. The ideal success
probability of the protocol decreases polynomially in the number of atoms. The fidelity is unity for a single
Dicke state, and can be optimized for the superposition by unitary postprocessing. Issues of experimental
feasibility and applications to quantum informatics are discussed.
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I. INTRODUCTION

Quantum teleportation, first introduced by Bennettet al.
in 1993 f1g, has been of interest to the physics community
for many years. It holds promise for many useful applica-
tions in quantum communication and quantum computing. It
consists of three steps. The first step is to prepare an en-
tangled pair of particles that is shared between sendersAliced
and receiversBobd. The second step is a joint measurement
by Alice of the unknown system and one particle of the
entangled pair in a Bell basis. In the last step, a classical
communication from Alice to Bob allows him to reconstruct
the unknown state at his end following appropriate unitary
transformations. This protocol has been verified experimen-
tally for discretef2g, as well as continuousf3g, systems.

In this paper, we consider a departure from the usual tele-
portation scenario in two ways. First, following an interest-
ing recent suggestionf4g, the entanglement resource neces-
sary for teleportation is not introduced as shared particles
between Alice and Bob, but rather comes about from a de-
tection made by Alice of the joint state of both parties fol-
lowing independent preparation stages. Second, and central
to the present paper, the state that is to be teleported is itself
an arbitrary entangled state of many particles, constituting
the most general transfer of quantum information between
the two parties.

Usually atomic states are considered ideal for the storage
of quantum information and are used as the stationary qubits.
Earlier proposals for teleporting atomic statesf5g used the
atoms themselves as the carriers of quantum informationsthe
“flying qubits”d, and recently massive particle teleportation
based on the Bennettet al. protocol was demonstrated by
two groups using ions in a trapf6g. However, we note that
photons have an intrinsic advantage in that they are better
suited for communication over long distances. Cavity quan-
tum electrodynamics methods offer an ideal coupling be-
tween atoms and photons in a controlled settingf7g. Based
on such methods, we can achieve quantum teleportation of
entangled states in multiple cavitiesf8g, as well as arbitrary
superpositions of Fock states in a single cavityf9g.

In the present proposal, we take a different approach to
scalable quantum teleportation. Some past studies have used
the joint detection of photon decays to establish entangle-

ment among distant atomsf10,11g. In an application of this
idea, Boseet al. f4g show how to teleport an atomic state
from one cavity to another by conditional detection of a pho-
ton from both cavities. The main advantage of their scheme
is the use of photon decays themselves to establish entangle-
ment between the cavities, rather than the cumbersome task
of coherently coupling a photon out of one cavity and feed-
ing it into another cavityf12,13g.

We consider the use of multi-atom dark states for quan-
tum state transfer and teleportation, where the desired inter-
cavity entanglement is brought about by a sequence of con-
ditional detections of photons leaking out of both cavities.
The main advantage of the proposed scheme is the ability to
transfer multiqubit entangled states, namely, superpositions
of atomic Dicke statesf14g, which can be engineered in a
cavity by conditional detection methods, and have wide
ranging applications in quantum information sciencessee
f15gd.

Our scheme is shown in Fig. 1. Alice and Bob have an
equal number ofsidenticald atoms trapped inside their cavi-
ties, and the atoms are well separated so that any interaction
between them can be neglected. The cavities are designed to
be one sided so that the direction of cavity leakage is known,
and photons leaking out of the cavities pass through a beam
splitter sBSd and are detected by two 100 percent efficient
detectorsD+ andD−, which we treat using the quantum jump
formalism f7,16g.

In Sec. II, we discuss the two-atom case first, as it allows
us to highlight the key physics that goes into making each

FIG. 1. Setup for teleporting an arbitrary superposition of
atomic Dicke states. Inset shows the level configuration of each
atom.
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stage possible. We highlight the different control parameters
that are unique to this protocol, and also briefly describe
methods for unitary postprocessing of the teleported state to
optimize the fidelity. In Sec. III, we show that the protocol
can be generalized to an arbitrary number of atoms, and dis-
cuss the scaling of the success probability with the number
of atoms. In Sec. IV, we discuss issues related to fidelity
optimization and experimental feasibility of the protocol, and
extensions to other quantum information applications.

II. TWO-ATOM TELEPORTATION

The atomic state in cavityA that Alice wants to teleport is
assumed to be assymmetricd Dicke-state superposition of the
form

uclA
in = C0

I ucclA + C1
I ubclA + ucblA

Î2
+ C2

I ubblA, s1d

where ual, ubl, and ucl are the states of eachL-type three-
level atomssee Fig. 1 insetd. Statesuccl and ubbl represent
both atoms in the same state, andsubcl+ ucbld /Î2 is a state
with one atom in stateubl and one in stateucl. The coeffi-
cients C0

I , C1
I , and C2

I are arbitrary and satisfyuC0
I u2+ uC1

I u2
+ uC2

I u2=1.
Our protocol is based on a mapping of the two-atom state

in Eq. s1d to an equivalent Fock-state superposition of the
cavity field consisting of 0, 1, or 2 photons. This is done
using multi-atom dressed state adiabatic passage in the cav-
ity in the presence of a classical drive field, which has the
ability to generate atom-field entanglement. However, we
have to be careful because while the adiabatic passage is
taking place, the photons can leak out and can be detected.
Conditional detection of photons is necessary for our scheme
because it leads to “quantum jumps” that enable the Dicke-
state transfer. Thus, before proceeding, we examine the
quantum jump formalism and how it applies in the multi-
atom dark state picture.

In each cavity, the atoms are assumed to be simulta-
neously coupled to a time-dependent classical field, with
Rabi frequencyVstd, and a quantized cavity field mode with
coupling strengthg. The interaction is governed by the
Hamiltonianf7g, as

H = "Vstdsua1lkb1u + ub1lka1ud + "gsua1lkc1uâ + uc1lka1uâ†d

+ s1 → 2d, s2d

where 1 and 2 enumerate the atoms, andâ† andâ are photon
creation and destruction operators, respectively. Now, condi-
tional on theabsenceof a click in the detectors, the effective
Hamiltonian governing the time evolution of the joint state is
given by f17,18g

Heff = H − ikâ†â. s3d

Here,k is the decay rate of the field modeâ, taken to be the
same for both cavities. Note thatHeff is non-Hermitian due to
the presence of the decay term. However, we can still define
an effective “interaction picture,” where the atom-field evo-
lution is described by the Hamiltonian

HI = expskâ†âtdH exps− kâ†âtd, s4d

and the corresponding state vector

uCIl = expskâ†âtduCl. s5d

In this way, by switching between pictures, we can treat the
atom-field coupling separately from the decay of the field
from the cavity. By numerically solving Schrödinger’s equa-
tion, we have verified thatHeff and HI describe identical
evolutions of the state in the respective pictures.

Finally, when detection events do occur, the quantum
jump formalism associates these with the action of photon
annihilation operators. For the two detectorsD± in our
schemesFig. 1d, we have the linear transformations due to
the beam splitter:

D̂+ = stâA + râBd, s6d

D̂− = srâA − tâBd, s7d

where âA sâBd is the destruction operator for the field in
cavity A sBd, and r and t are thesreald reflection and trans-
mission coefficients for the beam splitter, such thatur u2+ utu2
=1.

A key to our approach is the use of multi-atom dark states
in each cavityssee, for example, Ref.f19gd. It is convenient
to classify the states according to the total number of excita-
tions present. For zero excitation, we have both atoms in
stateucl and field in vacuum:

uC0
darkl = ucclu0l. s8d

For one excitation, the manifold of states coupled by the
Hamiltonian H si.e., having nonzero matrix elementsd are
ucclu1l, ubclu0l, ucblu0l, uaclu0l, and ucalu0l. From these, we
can construct two states that are dark with respect to the
couplingsV andg for each atomsi.e., zero-eigenvalue states
of Hd:

uC1
darkl j ~ ubjlu0l − sV/gducjlu1l, s9d

for j =1 or 2. The effects of cavity decay may be included in
the interaction picturesdefined byHId by replacingg with
ge−kt. For two excitations, the manifold of coupled states
consists ofucclu2l, ubclu1l, ucblu1l, ubblu0l, ubalu0l, uablu0l,
and uaalu0l, which supports a two-atom dark state:

uC2
darkl ~ ubblu0l − fÎ2sV/gdgsubcl + ucbldu1l/Î2

+ fsV/gd2/Î2gucclu2l. s10d

In the preparation stage, Alice follows the above dark states,
and by tuningVstd to go fromV!g to V@g, achieves the
following adiabatic transformations:

ucclAu0lA → ucclAu0lA, s11d

ubclAu0lA → ucclAu1lA, s12d

ucblAu0lA → ucclAu1lA, s13d
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ubblAu0lA → ucclAu2lA, s14d

where in the last line, we have used the approximation that
sV /gd2@2sV /gd sinceV@g. In this way, she transfers her
given atomic state in Eq.s1d to the corresponding field state
in time tp, resulting in the atom-field state

uClA = sC0u0lA + C1u1lA + C2u2lAducclA/ÎN1, s15d

where, including the effects of cavity decay, we have

C0 = C0
I , s16d

C1 = e−ktpÎ2C1
I , s17d

C2 = e−2ktpC2
I , s18d

andN1= uC0u2+ uC1u2+ uC2u2 is for normalization.
At the same time, Bob places two atoms in his cavityB in

the stateubl, and by tuningVstd, evolves his system from
ubblBu0lB to the two-atom dark stateuC2

darkl at time t= tp:

uClB = SD0ubblBu0lB + D1
ubclB + ucblB

Î2
u1lB

+ D2ucclBu2lBD/ÎN2, s19d

where D0=1, D1=−Î2sV /gd, D2=sV /gd2/Î2, and N2

= uD0u2+ uD1u2+ uD2u2. Note that cavity decay does not affect
the relative amplitudes of the dark state, as this is always
defined with respect to the original HamiltonianH. However,
and this is the key trick, Bob can chooseVstpd /g to be of the
form ae−ktp to complement the decay in Alice’s cavity:

D0 = 1, s20d

D1 = − aÎ2e−ktp, s21d

D2 = sa2/Î2de−2ktp. s22d

To summarize, following independent preparations, the joint
state of Alice’s and Bob’s systems is

uClAB
in = uClA ^ uClB. s23d

In the detection stage, Alice waits for twosand only twod
clicks on her detectors from photons arriving from both cavi-
ties. The first click occurs at timet= t1 after preparation, and
the second click occurs at timet= t2 after preparation. The
simultaneous detection process leaves the joint state of Alice
and Bob inssee Appendixd

uClAB
out ~ D̂±e−kâ†âst2−t1dD̂±e−kâ†ât1uClA ^ uClB

~ uclB
outucclAu0lAu0lB + e−kt2f¯g, s24d

where the cumulative time decaye−kt2 damps out the non-
zero, final photon number contributionssdenoted by the
dotsd, and we are left in the long-time regime with the fol-
lowing decoherence-free atomic state in Bob’s cavity:

uclB
out = Sh0C0

I ucclB + h1C1
I ubclB + ucblB

Î2
+ h2C2

I ubblBD/ÎN3,

s25d

whereN3= uh0C0
I u2+ uh1C1

I u2+ uh2C2
I u2, and the coefficientshm

are given in Table I for the three detection scenarios. To
complete the teleportation protocol, Alice needs to inform
Bob sby classical meansd which detectors clicked, and Bob
performs unitary operations to his final statessee belowd to
make his final teleported stateuclB

out look as close as possible
to the initial stateuclA

in.
The raw fidelity of the protocol,F= ukcin ucoutlu2, depends

on both the state to be teleportedsthe coefficientsCm
I d and

the detection scenario that is realized. If only one of the
Dicke states is present initiallysCm

I =1 for somemd, then the
fidelity is automatically unity when the protocol succeeds
si.e., when two and only two clicks are recordedd. For the
entire superposition, the fidelity depends on thepostprocess-
ing of the teleported state. That is, knowing the coefficients
hm in Table I allows us to choose an appropriate unitary
transform swhich depends on the detection scenariod to
maximize the fidelity after the protocol has ended. We em-
phasize that thisdoes notdepend on the initial choice ofa
andr, as any detection scenario can be optimized postdetec-
tion by subsequent unitary evolution of the teleported state
uclB

out. The free parametersa andr are chosen only to ensure
that all the prefactorshm are nonzero.

Thus, the probability of success of the teleportation pro-
tocol depends solely on the fact that we get two, and only
two, clicks on both detectors. Note that the possibilities in-
cludefcf. Eqs.s15d, s19d, ands23dg zero, one, or two photons
from each cavity, leading to 0–4 clicks in both detectors. We
analyze the success probability in more detail below.

III. Na-ATOM TELEPORTATION

To appreciate the scaling of the protocol, we discuss the
generalization of our scheme to an arbitrary number of atoms
Na in each cavity. The interaction Hamiltonian in Eq.s2d
generalizes to

H = o
i=1

Na

f"Vstdsuailkbiu + ubilkaiud + "gsuailkciuâ + ucilkaiuâ†dg.

s26d

We use the notationub^mc^Na−ml to denote a normalized,
symmetric Dicke state wherem atoms are in the levelb and

TABLE I. Prefactors for the different detection scenarios in the
final teleported stateuclB

out for two atoms.r and t are the reflection
and transmission coefficients for the beam splitter, anda
=sV / sge−ktpdd is the dark state parameter that Bob chooses initially.

h0 h1 h2

D+D+ sa2/Î2dr2 −s2Î2adrt t2

D−D− sa2/Î2dt2 s2Î2adrt r 2

D+D− −a2rt 2ast2−r2d Î2rt
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Na−m atoms are in the levelc f20g. From combinatorics,
there arePsNa,md=Na! / fsNa−md!m!g terms constituting the
entangled stateub^mc^Na−ml. The initial state to be teleported
is assumed to be of the form

uclA
in = o

m=0

Na

Cm
I ub^mc^Na−mlA. s27d

Using adiabatic evolution in the presence of cavity decay,
and utilizing dark states composed of an arbitrary number of
atoms in the cavityfsee Eq.s29d belowg, Alice maps the
unknownNa-atom state given above to the equivalent photon
state in timetp:

uClA =
1

ÎN1
So

p=0

Na

CpuplADuc^NalA, s28d

whereCp=e−pktpÎPsNa,pdCp
I . Meanwhile, Bob prepares his

cavity in theNa-atom dark state

uClB =
1

ÎN2
o
p=0

Na

Dpub^Na−pc^plBuplB, s29d

where Dp=e−pktps−adpÎPsNa,pd /p!, and we have used the
same indexp to denote complementary atomic and photonic
excitations in the dark state.

In the detection stage, Alice waits forNa clicks in the two
detectors. Assumingn clicks occur inD+ andNa−n clicks in
D−, the teleported state becomes

ucsndlB
out =

1

ÎN3
o
m=0

Na

hm
sndCm

I ub^mc^Na−mlB, s30d

where for detection scenarion, the prefactor forCm
I is given

by

hm
snd = o

i=0

minsm,nd

s− 1dn−iaNa−mÎm!PsNa,mdPsn,id

3PsNa − n,m− idrn+m−2itNa−n−m+2i .

Successful teleportation of the superposition state occurs
when there are exactlyNa photodetection eventssfor Na at-
omsd. Assuming no clicks occur during the preparation stage
sktp!1d, this occurs with probability Psuc

=somuCmDNa−mu2d /N1N2, or

PsucsNad =
om=0

Na fPsNa,mdg2aNa−m/sNa − md!

2Naom=0

Na PsNa,mdaNa−m/sNa − md!
. s31d

A plot of this quantity is shown in Fig. 2, which shows that
the fall off with Na is an inverse power law. This indicates
that in principle, the success probability has a polynomial
scaling with the number of atoms.

IV. DISCUSSION

First, some remarks about fidelity. We note that optimiz-
ing the fidelity after the protocol has ended defines a problem

that, to our knowledge, has not been addressed before in the
teleportation literature; namely, one where the weighting
prefactorshm

snd are known, but the coefficientsCm
I of the ini-

tial state are unknown. That is, therelative weights of the
Dicke state superposition need to be equalized regardless of
their absolute amplitudes, a problem which can be posed
only in a state-averaged sense. We are currently addressing
this issue. To give an example, consider the two-atom case in
our scheme where the final state is given by Eq.s25d. By
appropriate choice ofa andr, we can arrange the pre-factors
to be such thath0,h1,h2 for all detection scenarios. To
equalize these weights, we might try a two-qubit rotation of
statesubbl and uccl, which leaves the symmetric statesubcl
+ ucbld /Î2 unchanged. The optimal rotation angle is deter-
mined by averaging the fidelity over all input coefficients
Cm

I . For this example, we find that the state-averaged fidelity
for the two-atom case can be increased to at least 0.96 for all
detection scenarios. Successive unitary operations, which
will introduce more control parameters, will further optimize
this figure. A similar approach can be taken for larger num-
ber of atomsNa, where with more atoms, we have a larger
permutation of unitary operations at our disposal. Thus, the
Na scaling is not expected to constrain the optimization.

From the experimental standpoint, the fidelity will be de-
graded whenever the relative amplitudes/phases of the differ-
ent Dicke states are unknown; for example, due to fluctua-
tions in laser intensity, or asymmetry in the cavity coupling
to different atoms.

We believe that the technology for implementing the pro-
posed scheme is within reach of the current state-of-the-art
for a small but significant number of atoms. For example,
laser cooling and trapping of individual atoms in a high-Q
cavity has recently become possiblef21g, and optical dipole
traps have been demonstrated for a deterministic number of
atoms f22g. Furthermore, three-level adiabatic passage and
linear optics methods are well established experimentally.
The principal constraint on asymptotic scalability will be the
efficiency of the detectors, which in practice will cause the
success probability to decrease exponentially. Another con-
straint is the need for a photon number resolving detector, as
we require the postselection of the experiment based onNa
photodetection events. These issues are generic to quantum
information schemes based on linear optics, and are currently
active areas of research.

We anticipate that the main elements of the proposed
scheme will be useful in a variety of quantum information

FIG. 2. The success probability of gettingNa photodetection
events as a function of the number of atomsssolid lined, fitted by
the functional formC/Na

0.45 sdashed lined for some constantC. Unit
detection efficiency is assumed.
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applications beyond teleportation. A key feature of the
scheme is the multi-atom adiabatic passage that enables
mapping of atomic Dicke-state entanglement to the photonic
degrees of freedom. This method should prove useful for
large-scale transfer of entangled quantum information be-
tween matter systems, a key requirement for distributed
quantum computing. Furthermore, it also suggests the possi-
bility of entanglement transfer between unequal number of
atoms in both cavities, leading to applications such as dense
coding and entanglement purification which can be fruitfully
addressed with a mixed-state generalization of our scheme.
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APPENDIX: SYSTEM STATES IN DIFFERENT TIME
STEPS

We give below the details of the calculation for the two-
atom case below. After preparation, Alice waits until she
hears twosand only twod clicks at t= t1 and t= t2, following
which the state in cavityA is teleported to cavityB success-
fully. For simplicity, the normalization factors are suppressed
in Eqs.sA1d–sA7d below.

From Eqs.s15d and s19d, at the end of the preparation
stagesdefined ast=0d, we have

uClAB
in = uClA ^ uClB = fC0D0ubblBu0lAu0lB + C1D0ubblBu1lAu0lB + C2D0ubblBu2lAu0lB + C0D1

ubclB + ucblB

Î2
u0lAu1lB

+ C1D1
ubclB + ucblB

Î2
u1lAu1lB + C2D1

ubclB + ucblB

Î2
u2lAu1lB + C0D2ucclBu0lAu2lB + C1D2ucclBu1lAu2lB

+ C2D2ucclBu2lAu2lBgucclA. sA1d

When t= t1, beforeAlice registers the first click, the joint state of Alice’s and Bob’s systems has evolved conditional on no
detector click, according to the evolution operator exps−kâ†ât1d for photons in each cavity:

uCst1dl = fC0D0ubblBu0lAu0lB + C1D0e
−kt1ubblBu1lAu0lB + C2D0e

−2kt1ubblBu2lAu0lB + C0D1e
−kt1

ubclB + ucblB

Î2
u0lAu1lB

+ C1D1e
−2kt1

ubclB + ucblB

Î2
u1lAu1lB + C2D1e

−3kt1
ubclB + ucblB

Î2
u2lAu1lB + C0D2e

−2kt1ucclBu0lAu2lB

+ C1D2e
−3kt1ucclBu1lAu2lB + C2D2e

−4kt1ucclBu2lAu2lBgucclA. sA2d

The first click then occurs and the time evolution of the system state is interrupted by a quantum jump at one of the two
detectorsD+ or D−. For theD+ detector, we find

D̂+uCst1dl = staA + raBduCst1dl = fC1D0te
−kt1ubblBu0lAu0lB + Î2C2D0te

−2kt1ubblBu1lAu0lB + C0D1re
−kt1

ubclB + ucblB

Î2
u0lAu0lB

+ C1D1te
−2kt1

ubclB + ucblB

Î2
u0lAu1lB + C1D1re

−2kt1
ubclB + ucblB

Î2
u1lAu0lB + Î2C2D1te

−3kt1
ubclB + ucblB

Î2
u1lAu1lB

+ C2D1re
−3kt1

ubclB + ucblB

Î2
u2lAu0lB + Î2C0D2re

−2kt1ucclBu0lAu1lB + C1D2te
−3kt1ucclBu0lAu2lB

+ Î2C1D2re
−3kt1ucclBu1lAu1lB + Î2C2D2te

−4kt1ucclBu1lAu2lB + Î2C2D2re
−4kt1ucclBu2lAu1lBgucclA,

;uC+st1dl, sA3d

while for D− we have an analogous result witht→ r and r →−t. During the periodt2− t1, no clicks occur again by definition
and the above state evolves according to expf−kâ†âst2− t1dg:
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uC+st2dl = e−kt1fC1D0tubblBu0lAu0lB + Î2C2D0te
−kt2ubblBu1lAu0lB + C0D1r

ubclB + ucblB

Î2
u0lAu0lB

+ C1D1te
−kt2

ubclB + ucblB

Î2
u0lAu1lB + C1D1re

−kt2
ubclB + ucblB

Î2
u1lAu0lB + Î2C2D1te

−2kt2
ubclB + ucblB

Î2
u1lAu1lB

+ C2D1re
−2kt2

ubclB + ucblB

Î2
u2lAu0lB + Î2C0D2re

−kt2ucclBu0lAu1lB + C1D2te
−2kt2ucclBu0lAu2lB

+ Î2C1D2re
−2kt2ucclBu1lAu1lB + Î2C2D2te

−3kt2ucclBu1lAu2lB + Î2C2D2re
−3kt2ucclBu2lAu1lBgucclA, sA4d

with an analogous result foruC−st2dl with t→ r and r →−t.
Now the second click occurs att= t2. For the detection sce-
nario D+D+, we find that the final state is

D̂+uC+st2dl = staA + raBduC+st2dl = Î2e−kt1−kt2FSC0D2r
2ucclB

+ Î2C1D1tr
ubclB + ucblB

Î2
+ C2D0t

2ubblBD
3u0lAu0lB + e−kt2sC1D2s2tr ucclBu0lAu1lB

+ r2ucclBu1lAu0lBd + C2D1st2ucclBu0lAu1lB

+ 2tr ucclBu1lAu0lBdd

+ e−2kt2C2D2st2ucclBu0lAu2lB

+ 2Î2rt ucclBu1lAu1lB + r2ucclBu2lAu0lBdG . sA5d

For the detection scenarioD−D+ or D+D−, we find

D̂−uC+st2dl = sraA − taBduC+st2dl

= Î2e−kt1−kt2XS− Î2C0D2rt ucclB + s− t2

+ r2dC1D1
ubclB + ucblB

Î2
+ C2D0

Î2tr ubblBD
3u0lAu0lB + e−kt2hC1D2fs− t2 + r2ducclBu0lAu1lB

− rt ucclBu1lAu0lBg + C2D1frt ucclBu0lAu1lB + s− t2

+ r2ducclBu1lAu0lBgj

+ e−2kt2C2D2st2ucclBu0lAu2lB

+ 2Î2rt ucclBu1lAu1lB + r2ucclBu2lAu0lBdC . sA6d

Finally for the detection scenarioD−D−, we find

D̂−uC−st2dl = sraA − taBduC−st2dl

= Î2e−kt1−kt2HSC0D2t
2ucclB

− Î2C1D1tr
ubclB + ucblB

Î2
+ C2D0r

2ubblBD
3u0lAu0lB + e−kt2fC1D2s− 2rt ucclBu0lAu1lB

+ t2ucclBu1lAu0lBd + C2D1sr2ucclBu0lAu1lB

− 2tr ucclBu1lAu0lBdg

+ e−2kt2C2D2sr2ucclBu0lAu2lB

− 2Î2rt ucclBu1lAu1lB + t2ucclBu2lAu0lBdJ .

sA7d

In all cases, we can write the final atom-field statesupon two
detection eventsd as in Eqs.s24d ands25d, where the prefac-
tors hm given in Table I may be read out from theu0lAu0lB
component of Eqs.sA1d–sA7d, making the substitutions for
Cp andDp in Eqs.s16d–s18d and s20d–s22d.
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