
Università di Pisa

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Corso di Laurea Magistrale in Computer Engineering

Tesi di Laurea Magistrale

Enabling relay-based communication in LoRa
networks for the Internet of Things: design,
implementation and experimental evaluation

Candidato:

Alessio Sanfratello
Matricola 456615

Relatori:

Prof. Enzo Mingozzi
Prof. Francesco Marcelloni

Anno Accademico 2015/2016

Ai miei genitori, che mi hanno

sempre voluto bene

A Margherita, che ha vissuto questa

tesi in prima persona

A Giacomo, Carlo e il prof. Mingozzi,

che sono sempre stati pronti ad

aiutarmi quando ne ho avuto bisogno

Alla C3S, che se sono arrivato fin qui

è anche grazie a loro

Al MMAB e alle giornate passate più

a cazzeggiare che a studiare

Alla mia famiglia, ai miei amici e a

tutti quelli che mi vogliono bene

Abstract

LPWANs have recently arisen as game changer in the field of the Internet

of Things thanks to the wide coverage area, low cost of adoption and main-

tenance, and very low power consumption. Among the many incompatible

technologies present on the market, LoRa seems to be the most promising

one, combining good performance to an open specification of its MAC layer,

called LoRaWAN. Because of these reasons LoRa immediately attracted the

attention of both the scientific community and the industrial world, making

it one of the most widely used LPWAN technology in the world.

The aim of this work is to perform a deep and complete evaluation of

the LoRa technology, exploring all the possibilities offered by the numerous

parameters on which is possible to operate. To achieve a complete control of

the network a brand new platform independent server infrastructure was de-

veloped from scratch, and it was designed to be at the same time lightweight

and flexible for the experimental needs.

The first phase of experiments was conducted by exploring all possible,

but reasonable, combination of data rate, transmission power and forward

error correction levels. The analysis of the results leaded to the design of

an extension of the LoRaWAN protocol to enable relay based communica-

tion. Finally, a new set of experiments was performed in order to prove the

performance improvement compared to the standard LoRaWAN solution.

2

Contents

1 Introduction 11

1.1 Structure of the thesis . 12

2 Technology overview 14

2.1 Current technologies . 15

2.1.1 IEEE 802.15.4 . 15

2.1.2 Wi-Fi . 15

2.1.3 Cellular networks . 16

2.2 Low-Power WANs . 16

2.2.1 SIGFOX . 17

2.2.2 Ingenu . 17

2.2.3 LoRa . 18

3 LoRaWAN 19

3.1 Specification . 20

3.1.1 LoRaWAN classes . 20

3.1.2 Class A receive windows 21

3.1.3 Message Format . 22

3.1.4 MAC Commands . 25

3.1.5 End-device activation 26

3.1.6 Class B and Class C features 28

3.2 GWMP: Gateway Message Protocol 30

3.2.1 Message format . 30

3.2.2 GWMP types . 31

3.2.3 GWMP Json protocol 31

3

3.3 LoRa Servers . 34

3.3.1 Network Server . 34

3.3.2 Application Server . 36

3.3.3 Network Controller . 36

3.4 Related work . 36

3.4.1 Free space measurament 37

3.4.2 2.4 GHz experiments for safety applications 37

3.4.3 Wireless image sensor with shared activity time 38

4 Design and implementation of a LoRa server 39

4.1 Architecture . 40

4.2 Network Server . 40

4.2.1 Implementation . 41

4.3 Application Server . 45

4.3.1 Implementation . 45

5 Performance evaluation 49

5.1 Design of the experiments . 49

5.1.1 Analysis of the parameters 50

5.1.2 Experiments setup . 52

5.2 Rural experiments . 52

5.2.1 Selection of parameters 52

5.2.2 Results . 53

5.3 Urban experiments . 58

5.3.1 Selection of parameters 58

5.3.2 Results . 59

6 LoRaWAN relay mode 65

6.1 Motivations . 65

6.2 Design . 66

6.2.1 Protocol overview . 66

6.2.2 Relay eligible node management 68

6.2.3 End-device binding . 70

6.2.4 Data transmission . 75

4

6.2.5 MAC Commands and parameters 76

6.3 Implementation . 78

6.3.1 Assumptions . 79

6.3.2 End-device . 80

6.3.3 Relay . 84

6.3.4 Network Server . 88

7 Performance evaluation of the relay mode 90

7.1 Design of test set . 90

7.2 Results . 92

8 Conclusions 95

8.1 Future development . 96

A Confidence intervals 97

A.1 Rural experiments . 98

A.2 Urban experiments . 103

A.3 Rural experiments with relay 109

5

List of Figures

3.1 Architecture . 20

3.2 LoRaWAN receive windows 22

3.3 LoRa radio physical layer (CRC only uplink messages) 23

3.4 LoRa physical payload structured as a LoRaWAN message . . 23

3.5 LoRaWAN MAC header . 23

3.6 LoRaWAN MAC payload . 24

3.7 LoRaWAN frame header . 24

3.8 LoRaWAN frame control . 25

3.9 Class B time diagram . 29

3.10 Class C time diagram . 29

3.11 GWMP packet format . 31

3.12 Architecture of the LoRa servers 35

4.1 Architecture of the network server 40

5.1 The Lorank gateway and the Waspmote end-device 52

5.2 Map of rural experiments . 53

5.3 Results of rural experiments at SF 7 55

5.4 Results of rural experiments at SF 8 55

5.5 Results of rural experiments at SF 9 56

5.6 Results of rural experiments at SF 10 56

5.7 Results of rural experiments at SF 11 57

5.8 Results of rural experiments at SF 12 57

5.9 Map of urban experiments . 58

5.10 Results of urban experiments at SF 7 60

5.11 Results of urban experiments at SF 8 61

6

5.12 Results of urban experiments at SF 9 61

5.13 Results of urban experiments at SF 10 62

5.14 Results of urban experiments at SF 11 62

5.15 Results of urban experiments at SF 12 63

5.16 Results of urban experiments with payload of 10 bytes 63

5.17 Results of urban experiments with payload of 50 bytes 64

6.1 Reference architecture of relay mode 66

6.2 Timing diagram of the protocol 67

6.3 RelaySetupReq MAC command 68

6.4 RelaySetupReq MAC command 69

6.5 RelayStatusAns MAC command 69

6.6 DeviceControl field in the RelayStatusAns MAC command . . 70

6.7 Device entry contained in RelayStatusAns MAC command . . 70

6.8 Status fiend within each device entry 70

6.9 Sequence diagram of the end-device binding 71

6.10 Beacon format . 72

6.11 RelayBindReq MAC command 73

6.12 DataRate field into RelayBindReq MAC command 73

6.13 RelayBindAns MAC command 73

6.14 Sequence diagram of the end-device unbinding 74

6.15 Sequence diagram of the data transmission 75

7.1 Map of rural experiments with relay 92

7.2 Results of two-hop experiments at SF 7 93

7.3 Results of two-hop experiments at SF 10 94

7

List of Tables

3.1 LoRaWAN message types . 24

3.2 MAC commands from 0x02 to 0x05 26

3.3 MAC commands from 0x06 to 0xFF 27

3.4 GWMP types . 32

5.1 Data Rates available on Waspmote Pro 50

5.2 Maximum payload lengths . 51

5.3 Rural test configurations . 54

5.4 Urban test configurations . 59

6.1 Transmission parameters of the beacon 72

6.2 MAC commends . 77

6.3 Parameters . 77

6.4 Parameters of the relay mode 80

7.1 Test configurations . 91

A.1 95% confidence intervals at 500 meters 98

A.2 95% confidence intervals at 1000 meters 99

A.3 95% confidence intervals at 1500 meters 100

A.4 95% confidence intervals at 2000 meters 101

A.5 95% confidence intervals at 2500 meters 102

A.6 95% confidence interval at SF 7 103

A.7 95% confidence interval at SF 8 104

A.8 95% confidence interval at SF 9 105

A.9 95% confidence interval at SF 10 106

8

A.10 95% confidence interval at SF 11 107

A.11 95% confidence interval at SF 12 108

A.12 95% confidence interval with relay at SF 7 109

A.13 95% confidence interval with relay at SF 10 109

9

Listings

3.1 Example of an RXPK object 32

3.2 Example of an STAT object 33

3.3 Example of an TXPK object 34

4.1 Main function of NetworkServerMoteHandler.java 42

4.2 Handle message in NetworkServerMoteHandler.java 43

4.3 Main function of ApplicationServerHandler.java 46

4.4 decryptPayload() in ApplicationServerHandler.java 47

6.1 Implementation of the end-device 81

6.2 Wait for beacon on the end-device 83

6.3 Implementation of the relay 85

6.4 Broadcasting beacon to nearby end-devices 86

6.5 Forwarding end-device message to gateway 87

6.6 Discard fist hop packets . 88

10

Chapter 1

Introduction

In the field of the Internet of Things the interest against new and more

efficient communication methods has recently increased so that now all ma-

jor players in the industry are involved in the development process of new

communication protocols.

Among them, the Low-Power Wide Area Networks (LPWANs) seem to

be the most promising family of technologies thanks the encouraging perfor-

mances advertised by its developers. They typically combine very long range

of coverage with an high energy efficiency, making them the enablers for an

all new class of smart applications. In the past few years several companies

have tried to develop its own protocol, with quite different results. SIGFOX,

for instance, developed the homonym modulation technique, but other than

sell their own technology to other manufacturers, they decided to propose

themselves also as a network operator, selling both the technology and the

network access to all potential customers.

On the contrary, Semtech decided to follow a radical different path with

LoRa, their own modulation technique. As matter of fact, the company

decided to keep the monopoly only on the production of the transceivers,

making LoRa available for developers since the beginning. Moreover they

decided to open up the specification of LoRaWAN, the MAC layer wich runs

on top of LoRa.

Due to the fact that LoRa was introduced only few years ago, there are

11

no exhaustive performance evaluation in different environmental conditions,

since the only available experimental results are related to well defined use

cases.

The goal of this thesis is to compensate for the lack of data by designing

and performing a set of experiments with the aim to discover the optimal

parameters which, in different scenarios, minimize both the packet error rate

and the energy consumption.

From the analysis of results of the aforementioned experiments it turned

out that the use of a relay based approach in some conditions would lead

to big performance improvement in terms of number of correctly received

packets, without sacrificing the energy efficiency. Consequently an extension

to the LoRaWAN protocol has been designed enabling the possibility for an

end-device to act as relay depending on the needs. To prove the performance

enhancements expected from the analysis phase, a new set of experiments

was conducted.

Another justification to the development of a relay-based solution can

be found in ”Understanding the limits of LoRaWAN”[2]: the authors tried

to highlight the weaknesses of this technology and proposed either to trans-

form LoRaWAN into a Time Division Access (TDMA) network and to design

multi-hop solution in order to reduce both the number of collisions and the

needed transmission power. This two proposals were both successfully im-

plemented in this thesis.

1.1 Structure of the thesis

Chapter 2 makes an overview on the current technologies available for the

internet of things, focusing on the new and promising Low-Power Wide Area

Networks (LPWANs) and in particular on LoRa.

In chapter 3 the focus is shifted to LoRaWAN, the open MAC layer

which works on top of LoRa, summarizing the main features and presenting

the strengths of the protocol. Moreover, the server infrastructure, needed to

manage a LoRaWAN network, is analyzed along with the message protocol

used to make all components communicate.

12

Chapter 4 describes both the architecture and the implementation of the

new server infrastructure which has been designed from scratch to be suitable

for experimental purposes

Chapter 5 includes all the experiments performed in order to evaluate the

LoRaWAN technology, highlighting the design choices and presenting all the

results.

Chapter 6 presents the new protocol which is designed to enable relay

based communications in LoRaWAN networks, along with the implementa-

tion on the server and on the motes.

In Chapter 7 the performance improvement achieved is reported through

the results of another set of experiments conducted with the new relay pro-

tocol.

Finally, chapter 8 presents the conclusions and some hints for future de-

velopment of this work.

13

Chapter 2

Technology overview

The Internet of Things is a new communication paradigm which has re-

cently arisen in the context of computer networks. It consists of extending

Internet connectivity to physical devices, vehicles, buildings and other items,

enabling them to collect and exchange data. There are many features that

distinguish IoT from previous network architectures:

• Machine-to-Machine paradigm: unlike the traditional internet ap-

plications, such as emails or web, in the IoT the devices can commu-

nicate without requiring human interaction. For instance some sensor

can collect data and send them to a controller, which is responsible for

managing some actuators. In this case all communications are triggered

by the devices without human interaction;

• Wireless communications: the new applications enabled by the

IoT often require large range of coverage, especially considering Smart

Cities. Thus, combined with an increasing density of the smart de-

vices, leads to the need to have only wireless communications in the

IoT scenario;

• Low power consumption: in the IoT scenario devices are often bat-

tery powered, so one of the goals for protocols designed specifically for

the IoT is to minimize power consumption;

14

• Place and Play: To achieve an ubiquitous coverage, the IoT devices

must run out-of-the-box, without requiring any configuration;

• Low cost: all hardware used for the IoT must be simple such that can

be massive produced at low cost.

Therefore, in order for the Internet of Things to quickly spread out, it is

necessary to find a communication technology that is designed from the be-

ginning to meet this requirements. To this aim in the following pages the

main communication technologies are described and quickly analyzed.

2.1 Current technologies

Before exploring the features of LoRa and the other LPWANs, a small sur-

vey on the current available technologies which enable IoT applications is

presented, highlighting qualities and drawbacks of each one.

2.1.1 IEEE 802.15.4

The family of IEEE 802.15.4 based technologies includes many standards,

such as ZeeBee and 6LoWPAN, and at the moment is used by the vast

majority of the connected things [4]. In general IEEE 802.15.4 solutions are

very low cost and have low energy consumption, however the short range of

coverage raises the need of complex multi-hop architectures, which can be

difficult to develop and deploy.

2.1.2 Wi-Fi

Wi-Fi, which is the commercial name for the IEEE 802.11 family of commu-

nication standard, is one of the most widespread wireless technologies in the

world, being on the market since 1997. Even if Wi-Fi represents the state of

the art of Wireless LANs, for which it has been designed since the beginning,

it not the ideal solution for the IoT because of the high power consumption

and the small range of coverage. As a matter of fact, Wi-Fi is used for IoT

15

only when the aforementioned limits are not relevant, for instance in some

smart home and smart building applications.

To overcome these issues the Wi-Fi alliance has developed a new revision

of the standard, the IEEE 802.11ah, which solves part of the problems and

enables the communication in sub-GHZ bands, with theoretical performances

suitable for the IoT needs.

2.1.3 Cellular networks

Cellular networks, with its long range of communication and its almost ubiq-

uitous coverage, is the technology which is probably the closest one to the

IoT needs. As a matter of fact it is currently used in contexts in which any

other competitors are able to reach its performances.

However the use of licensed frequencies involves operating costs are not

negligible. Moreover, the high data rates that are offered to the connected

end-devices leads to significant power consumption, which may become a

great issue for battery power devices.

To address these issues a new revision of the current state of the art

cellular technology, LTE-M, is expected to be released in the near future.

2.2 Low-Power WANs

Low-Power WAN (LPWAN) technologies are designed for machine-to-machine

(M2M) networking environments. With decreased power requirements, longer

range and lower cost than a mobile network, LPWANs are thought to enable

a much wider range of M2M and Internet of Things applications, which have

been constrained by budgets and power issues.

LPWAN data transfer rates are very low, as well as the power consump-

tion of connected devices. LPWAN enables connectivity for networks of

devices that require less bandwidth than what the standard home equip-

ment provides. Furthermore, LPWANs can operate at a lower cost, with

greater power efficiency. The networks can also support more devices over

a larger coverage area than consumer mobile technologies and have better

16

bi-directionality.

The need for a technology such as LPWAN is increasing in industrial IoT,

civic and commercial applications. In these environments, the huge numbers

of connected devices can only be supported if communications are efficient

and power costs low.

In the past few years several LPWAN technologies were developed, and

in the following paragraphs the most promising ones are presented.

2.2.1 SIGFOX

SIGFOX, the first LPWAN technology proposed in the IoT market, was

founded in 2009 and has been growing very fast since then. The SIGFOX

physical layer employs an Ultra Narrow Band (UNB) wireless modulation,

while the network layer protocols are the “secret sauce” of the SIGFOX net-

work and, as such, there exists basically no publicly available documentation.

Indeed, the SIGFOX business model is that of an operator for IoT services,

which hence does not need to open the specifications of its inner modules.

The first releases of the technology only supported uni-directional up-

link communication, i.e., from the device towards the aggregator; however

bi-directional communication is now supported. SIGFOX claims that each

gateway can handle up to a million connected objects, with a coverage area

of 30–50 km in rural areas and 3–10 km in urban areas. [4]

2.2.2 Ingenu

An emerging star in the landscape of LPWANs is Ingenu, a trademark of On-

Ramp Wireless, a company headquartered in San Diego (USA). The company

developed and owns the rights of the patented technology called Random

Phase Multiple Access (RPMA), which is deployed in different networks.

Conversely to the other LPWAN solutions, this technology works in the 2.4

GHz band but, thanks to a robust physical layer design, can still operate over

long-range wireless links and under the most challenging RF environments.[4]

17

2.2.3 LoRa

LoRa is a proprietary spread spectrum modulation technique, which was

initially developed by Semtech, and now is under the control of the LoRa

Alliance. Unlike the other LPWAN technologies, LoRa is based on the chirp

spread spectrum modulation, which makes it resistant against multipath fad-

ing and Doppler effect, and improves the receiver’s sensitivity.

Very long range of communication can be achieved with LoRa thanks to

the sub-GHz radio bands and very low data rates. The chip rate is equal to

the programmed bandwidth (chip-per-second-per-Hertz) and can take values

of 125, 250 or 500 kHz. Moreover, the spreading factor (SF) for a LoRa

link may be varied depending on the communication distance and desired

on-air time. Since the spreading codes for different SFs are orthogonal, the

simultaneous transmission in the same frequency channel using different SFs

is possible. [5]

To drastically reduce the interference problems, LoRa includes different

level of forward error correction codes, which can be varied depending on the

environmental conditions.

18

Chapter 3

LoRaWAN

This chapter describes the LoRaWAN network protocol which is optimized

for battery-powered end-devices.

LoRaWAN networks typically are laid out in a star-of-stars topology in

which gateways relay messages between end-devices and a central network

server at the backend. Gateways are connected to the network server via

standard IP connections while end-devices use single-hop LoRa or FSK com-

munication to one or many gateways. All communication is generally bi-

directional, although uplink communication from an end-device to the net-

work server is expected to be the predominant traffic.

Communication between end-devices and gateways is spread out on dif-

ferent frequency channels and data rates. The selection of the data rate is a

trade-off between communication range and message duration, communica-

tions with different data rates do not interfere with each other. LoRa data

rates range from 0.3 kbps to 50 kbps. To maximize both battery life of the

end-devices and overall network capacity, the LoRa network infrastructure

can manage the data rate and RF output for each end-device individually by

means of an adaptive data rate (ADR) scheme. [8]

19

Figure 3.1: Architecture

3.1 Specification

3.1.1 LoRaWAN classes

LoRaWAN defines three classes of operation, of which only Class A must be

mandatorily implemented on all LoRaWAN compatible devices. Thanks to

this policy we have a basic set of features which are present on all LoRaWAN

end-devices, keeping both the architectural complexity and the production

cost as low as possible.

In addition to the basic class, two more complex modes of operation

has been defined with the aim to decouple downstream transmissions from

the upstream ones. Given that these two advanced modes may be more

expensive to design, produce and maintain, only end-devices who strongly

requires these features are required to implement it.

Class A: bi-directional end-devices

In Class A communications each end-device’s uplink transmission is followed

by two short downlink receive windows. Each end-device schedules the trans-

20

mission slots depending on its own needs, as in a ALOHA-type of protocol.

The main advantage of this communication scheme is the very low power

consumption, while the biggest drawback is that this class of operation is

suitable only for applications which allow to receive data only after the end-

device has sent an uplink transmission. In fact downlink communications

from the server at any other time will have to wait until the next scheduled

uplink.

Class B: bi-directional end-devices with scheduled receive slots

In order to overcome the problem of non-deterministic latency on downlink

communications, Class B increases the number of receive windows opened

by the end-devices. These extra receive windows are synchronized with the

server by means of a time-stamped beacon, which is broadcast by the gate-

way.

Class C: bi-directional end-devices with maximal receive slots

To offer the lowest possible latency to the server for downlink communica-

tion, Class C end-devices have a continuously open receive windows, which

is closed only when transmitting data. This better performances are offered

at the cost of an higher power consumption than Class A and B.

3.1.2 Class A receive windows

Following each uplink transmission the end-device opens two short receive

windows. The receive window starts exactly after a predefined interval of

time from the transmission of the last uplink bit. [8]

The first receive window (RX1) is opened after RECEIVE DELAY1 mil-

liseconds, which by default is set to 1 second. It uses the same frequency as

the previous uplink transmission, and in general also the same data rate (in

some regions may be a function of the uplink data rate).

The second receive window (RX2) is opened after RECEIVE DELAY2

milliseconds, which is defined as RECEIVE DELAY1 + 1 second. The fre-

quency and the data rate are fixed for all transmissions, which means that

21

Transmit RX1 RX2

Transmit T
ime On Air

RECEIVE_DELAY1

RECEIVE_DELAY2

Figure 3.2: LoRaWAN receive windows

they do not depend on the previous uplink communication, and they are

configurable through a MAC command (table 3.2).

Each receive window is kept open at least for the time required to de-

tect preamble of a LoRa downlink transmission, which is in the order of

microseconds. If a frame is correctly received during the first receive win-

dow, the end-device does not open the second one. An end-device shall not

transmit an other uplink message before a downlink message is received or

the RX2 window is expired.

3.1.3 Message Format

LoRaWAN provides a full stack network protocol, having features of data-

link, network and transport layer, and natively supporting encryption, au-

thentication and reliable communication trough packet retransmission.

Radio physical layer

Each LoRa packet carries a physical payload (PHYPayload) which contains

LoRaWAN messages. When a LoRa packet contains a LoRaWAN message

the CRC field, calculated on PHYPayload, is present only in up-link trans-

missions, since it is disabled for down-link transmissions.

22

Preamble Physical Head PHDR_CRC PHY Payload CRC*

Figure 3.3: LoRa radio physical layer (CRC only uplink messages)

Physical payload

The physical payload contains three main fields:

• MAC Header: specifies the Message Type and the version of Lo-

RaWAN;

• MAC Payload: contains the LoRaWAN Frame;

• MIC: the Message Integrity Code, it is calculated as specified in RFC

4493 and it authenticates each message to the LoRa Network Server.

MIC = aes128cmac(NetSessionKey,B0|msg)[0...3]

Size (bytes) 1 7…N 4

PHY Payload MAC Header MAC Payload MIC

Figure 3.4: LoRa physical payload structured as a LoRaWAN message

MAC Header

The MAC header specifies the Message Type and the version of Lo-

RaWAN. In table 3.1 all possible LoRaWAN message types are reported.

Bit# 7…5 4…2 1…0

Fields Message Type RFU Major Version

Figure 3.5: LoRaWAN MAC header

23

Table 3.1: LoRaWAN message types

Msg Type Description

000 Join Request
001 Join Accept
010 Unconfirmed Data Up
011 Unconfirmed Data Down
100 Confirmed Data Up
101 Confirmed Data Down
110 RFU
111 Proprietary

MAC Payload

The MAC payload contains mandatory Frame Header fields and optionally

Frame Port and Frame Payload. Frame

Size (bytes) 7 … 22 0 … 1 0 … M

MAC Payload Frame Header Frame Port Frame Payload

Figure 3.6: LoRaWAN MAC payload

Frame Header

The Frame Header contains the 32 bit Device Address, the Frame Con-

trol field, the Frame Counter and the Frame Options field, which is used

to piggyback MAC commands on user data traffic.

Size (bytes) 4 1 2 0 … 15

Frame Header Device Addr Frame Control Frame Counter Frame Options

Figure 3.7: LoRaWAN frame header

In the Frame Control there are several important flags: the ADR flag

signals that data rate is controlled by network; the ADRACKReq is set by

24

the device to check if the gateway is still able to receive its traffic; the ACK

flag is set to acknowledge the previous received packet.

Bit # 7 6 5 4 3…0

Fields ADR ADRACKReq ACK RFU FOptsLen

Figure 3.8: LoRaWAN frame control

Frame Port and Frame Payload

By default LoRaWAN encrypts every Frame Payload by means of the Ap-

plication Session Key. If the Frame Payload carries a MAC command,

then the Frame Port is set to 0 and it is encrypted with Network Session

Key. If encryption is done above the LoRaWAN layer is possible to disable

this features through a MAC command, but it is allowed only if the frame

payload does not carry a MAC command itself.

3.1.4 MAC Commands

The MAC commands are a set of messages exchanged exclusively between

the MAC layer of the end-devices and the network server. This messages

may contain information useful for network administration purposes, such as

checking the status of a device or changing some communication parameters,

and they are never visible to the application server running in the cloud or

the application running on the end-device.

MAC commands can be sent as Frame Payload, setting Frame Port to 0

and performing the encryption by means of the NetworkSessionKey. MAC

commands can be also piggybacked in the FOpts field, and in this case they

must not exceed 15 octets and they are sent always in clear.

A MAC command consists of a command identifier (CID) of 1 octet

followed by a possibly empty command-specific sequence of octets. CIDs in

the interval between 0x00 and 0x7F are reserved, while CIDs starting from

0x80 to 0xFF are available for proprietary network extensions.

25

Table 3.2: MAC commands from 0x02 to 0x05

CID Command
TX by

Description
ED GW

0x02 LinkCheckReq x
Used by an end-device to
validate its connectivity to
a network.

0x02 LinkCheckAns x

Answer to LinkCheckReq
command. Contains the
received signal power
estimation indicating to the
end-device the quality of
reception (link margin).

0x03 LinkADRReq x

Requests the end-device to
change data rate, transmit
power, repetition rate or
channel.

0x03 LinkADRAns x
Acknowledges the
LinkRateReq.

0x04 DutyCycleReq x
Sets the maximum
aggregated transmit duty-
cycle of a device

0x04 DutyCycleAns x
Acknowledges a
DutyCycleReq command

0x05 RXParamSetupReq x
Sets the reception slots
parameters

0x05 RXParamSetupAns x
Acknowledges a
RXSetupReq command

Tables 3.2 and 3.3 contain the list of MAC commands defined in the

LoRaWAN 1.0 specification.

3.1.5 End-device activation

In order to participate in a LoRa network an end-device must obtain three

information:

DevAddress LoRa 32 bit address;

NetSessionKey 128 bit AES key, used for authentication;

26

Table 3.3: MAC commands from 0x06 to 0xFF

CID Command
Transmitted by

Description
ED GW

0x06 DevStatusReq x
Requests the status of the
end-device

0x06 DevStatusAns x

Returns the status of the
end-device, namely its
battery level and its
demodulation margin

0x07 NewChannelReq x
Creates or modifies the
definition of a radio
channel

0x07 NewChannelAns x
Acknowledges a
NewChannelReq
command

0x08 RXTimingSetupReq x
Sets the timing of the of
the reception slots

0x08 RXTimingSetupAns x
Acknowledge
RXTimingSetupReq
command

0x80
to

0xFF
Proprietary x x

Reserved for proprietary
network command
extensions

27

AppSessionKey 128 bit AES key, used for encryption.

To this aim two possible join procedures exists: the Over-The-Air Ac-

tivation (OTA), in which each end-device must perform a join procedure

involving the exchange of some messages with the server infrastructure, and

the Activation by Personalization, in which the end-devices already know

the address and the keys, so they can bypass the join procedure.

While the activation-by-personalization may be trivially implemented by

just load on all end-devices the address and the session keys, the OTA join

requires both a protocol to get the information form the server, and an

algorithm to generate the session keys.

The join procedure consists of two messages:

1. Join Request, sent by the end-device to the server and containing

AppEUI, DevEUI and DevNonce;

2. Join Accept, sent by the server to the end-device and containing

DevAddress, NetID and AppNonce, all encrypted with a shared

long-term AppKey.

If this procedure successfully completes, both the end-device and the server

can run the key generation algorithm to compute the session key as described

in [8].

3.1.6 Class B and Class C features

Class B end-devices open receive windows, called ping slots, at predictable

time intervals, enabling server-initiated down-link messages, called ping. To

implement this feature all gateways must synchronously broadcast a beacon.

If an end-device moves and detects a different beacon it must send an up-link

message to update the routing path.

All end-devices join the network as Class A, and the decision to switch

to Class B must come from the end-device application layer. If so, the Lo-

RaWAN layer searches for a beacon, and if it is found it selects the data rate

and the periodicity of the ping slot.

28

Figure 3.9: Class B time diagram

Figure 3.10: Class C time diagram

The end-device must periodically transmit an uplink message to update

the routing path in the network server. If no beacon is received for a period,

it switches back to class A.

Class C is implemented by opening RX2 as often as possible in order to

be continuously listening to the channel. This leads to an inefficient protocol,

with very high power consumption which is not suitable for battery powered

end-devices. Class C end-devices cannot implement Class B option.

Multicast

In Class B and Class C mode devices may receive also multicast downlink

frames. The multicast address, the NetSessionKey and the AppSes-

sionKey must come from the application layer and multicast frames are

not allowed to carry MAC commands. Since ACK are not allowed while

operating in multicast mode, the type of the LoRaWAN message must be

“Unconfirmed Data Down”.

29

3.2 GWMP: Gateway Message Protocol

As already stated, each gateway communicates with the network server by

means of a standard IP connection. Depending both on the network server

and on the packet forwarder installed on the gateway, there can be used

different application protocol.

The LoRaWAN specification does not require a specific gateway-to-server

protocol, since the server needs to receive the complete LoRa physical pay-

load, encapsulated in the most suitable protocol, depending on specific use

case.

However Semtech, the company which has initially developed the LoRa

modulation and the LoRaWAN protocol, released also its own gateway-to-

server protocol, which is called Gateway Message Protocol (GWMP).

GWMP relies on UDP, making it a connection-less protocol, and use the

JSON format to carry the received frame with the associated statistics.

3.2.1 Message format

Each GWMP message, as its shown in figure 3.11, includes three mandatory

fields and two optional ones:

• Protocol Version: the version of Gateway Message Protocol used;

• Token: number randomly chosen by the sender to uniquely identify

the message;

• Type: it specifies the purpose of the message. Up to version 2 there

are six different types defined;

• Gateway EUI: it contains the gateway identifier, based on the EUI-64

specification. It is not present in messages with types PUSH ACK or

TX ACK;

• Payload: it contains a JSON formatted string;

30

Size (bytes) 1 2 1 0/8 0 … N

Content Protocol Ver. Token Type GW EUI JSON obj

Figure 3.11: GWMP packet format

3.2.2 GWMP types

• PUSH DATA: used by the gateway to transmit the network server

both the received LoRaWAN frames and other periodic statistics. Its

total size shall not exceed 2408 octets;

• PUSH ACK: it is transmitted immediately by the network server on

a receipt of a PUSH DATA message to acknowledge it. It does not

contain the gateway EUI and the payload, and the token is the same

of the PUSH DATA;

• PULL DATA: sent periodically by the gateway, it acts as a ”keep

alive” message informing the network server of the address and UDP

port to which send any PULL RESP;

• PULL ACK: it is transmitted immediately by the network server on

a receipt of a PULL DATA message to acknowledge it. It does not

contain any payload and the token is the same of the PULL DATA;

• PULL RESP: carries in the JSON object the LoRaWAN frame to

transmit to the end-devices and its size shall not exceed 1000 octets;

• TX ACK: present only in GWMP version 2, it is used by gateway to

acknowledge a PULL RESP message.

Table 3.4 summarizes all GWMP types;

3.2.3 GWMP Json protocol

The Json object is used to carry the LoRaWAN messages and other informa-

tion. To enhance compatibility only ASCII characters are allowed and there

31

Table 3.4: GWMP types

Type Code
Transmitted by

Gateway Network Server

PUSH DATA 0x00 x
PUSH ACK 0x01 x
PULL DATA 0x02 x
PULL ACK 0x03 x
PULL RESP 0x04 x

TX ACK 0x05 x

must be no white spaces outside the quoted text. Moreover, the top-level

JSON object contains other objects as long as they respect the restriction

explained above.

Upstream transmissions

In upstream transmissions the Json object may contain an array of RXPK

objects, one for each LoRa message carried, and one STAT object, which

carries some statistics on the gateway.

As already stated, each RXPK object contains a captured LoRa frame,

which is encoded in the Base64 format, along with time of receipt and the

information of the LoRa channel on which it was detected (data rate, coding

rate, frequency, etc.). In listing 3.1 is shown an example of a possible RXPK

object.

Listing 3.1: Example of an RXPK object

1 "rxpk":

2 [{

3 "time":"2013-03-31T16:21:17.528002Z",

4 "tmst":3512348611,

5 "chan":2,

6 "rfch":0,

7 "freq":866.349812,

8 "stat":1,

9 "modu":"LORA",

10 "datr":"SF7BW125",

11 "codr":"4/6",

32

12 "rssi":-35,

13 "lsnr":5.1,

14 "size":32,

15 "data":"-DS4CGaDCdG+48eJNM3Vai-zDpsR71Pn9CPA9uCON84"

16 }]

The STAT object is used to inform the network server of the status of the

gateway. In particular it contains the geographical coordinates of the gateway

and the statistics on received and forwarded message. An example of STAT

object is reported in listing 3.2.

Listing 3.2: Example of an STAT object

1 "stat":

2 {

3 "time":"2014-01-12 08:59:28 GMT",

4 "lati":46.24000,

5 "long":3.25230,

6 "alti":145,

7 "rxnb":2,

8 "rxok":2,

9 "rxfw":2,

10 "ackr":100.0,

11 "dwnb":2,

12 "txnb":2

13 }

Downstream transmissions

The TXPK object is included in downstream messages to carry the downlink

LoRa message along the needed information about the parameters, such as

data rate, coding rate and frequency, to use for the transmission. It is im-

portant to remark that gateway, in general, do not have any notion about

the LoRaWAN layer and its receive windows, so they rely on the time stamp

included in the TXPK object to correctly synchronize themselves with the

end-devices receive windows. Listing 3.3 reports a possible instance of a

TXPK object.

33

Listing 3.3: Example of an TXPK object

1 "txpk":

2 {

3 "imme":true,

4 "freq":864.123456,

5 "rfch":0,

6 "powe":14,

7 "modu":"LORA",

8 "datr":"SF11BW125",

9 "codr":"4/6",

10 "ipol":false,

11 "size":32,

12 "data":"H3P3N2i9qc4yt7rK7ldqoeCVJGBybzPY5h1Dd7P7p8v"

13 }

3.3 LoRa Servers

In the LoRa architecture all the network management is done in the cloud

by means of a set of servers. It consists of a Network Server, which is

responsible for all network management, one or more Application Server,

which are in charge of handling the end-device join and guarantee the secrecy

of the communication. The Application Server may offer an interface to third

party software, which in LoRa terminology is called Customer Server.

Particularly important is the role played by the Network Controller, which

is in charge of managing the data rate and RF output for each end-device

for which the adaptive data rate (ADR) scheme is enabled.

3.3.1 Network Server

The network server authenticates the received frame and forwards user data

to an application server. The received frame is transported from the Gate-

way to the network server using JSON/GWMP/UDP/IP (defined in sec-

tion 3.2). The frame is forwarded to an application server typically using

JSON/TCP/IP.

The network server adds a cryptographic hash to all LoRa frames trans-

mitted to the LoRa end-devices. The hash algorithm is defined by the Lo-

34

Figure 3.12: Architecture of the LoRa servers

35

RaWAN specification. [8]

A single network server may be connected to many application servers

and network controllers. The remote server or controller used for a given

mote is determined by the application to which the mote is assigned.

3.3.2 Application Server

The LoRa application server is responsible for admitting Over-The-Air end-

devices to the network and for encrypting user data sent to, and decrypting

user data received from, the end-device. A single application server may be

connected to many networks and customer servers. The remote server or

controller used for a given mote is determined by the application to which

the mote is assigned. The LoRa application server decrypts the received user

data and forwards it to a customer server. It also encrypts downstream user

data before forwarding it to the network server. The encryption algorithm is

defined by the LoRaWAN specification. [8]

3.3.3 Network Controller

The network controller receives the transmission parameters used by the mote

and characteristics of the signal received by the gateway for each frame. It

may perform operations using that data, for instance it may compute some

statistics on it in order to find the optimal parameters that maximize the

network capacity. A single network controller may be connected to many

network servers. The remote server or controller used for a given mote is

determined by the application to which the mote is assigned.

3.4 Related work

The very good performances promised by LoRa, combined with the open

specification of the MAC layer, attracted the attention of the scientific com-

munity on this technology.

However the project started only few years ago, so there are not many

36

detailed benchmarks on LoRa. In the following sections some works are

reported.

3.4.1 Free space measurament

One of the first performance evaluation was performed in 2014 at the Offen-

burg University of Applied Sciences, Germany, by the Laboratory Embedded

Systems and Communication Electronics. In their experiments they tried to

find the maximum distance at which it is possible to transmit in the 868

MHz band with LoRa in free space and line-of-sight conditions.

Using the data rate SF10BW250 and coding rate 4/6 they were able to

achieve 100% of correctly received packets up to 7482 meters, when carrying

10 bytes of physical payload. Then they repeated the same experiment with

50 bytes of physical payload, achieving 94.1% of correctly received packets

at 6667 meters, and 80.33% of correctly received packets at 7482 meters.[3]

3.4.2 2.4 GHz experiments for safety applications

Other experiments were performed at the Offenburg University of Applied

Sciences in 2015, focusing on the possible use of LoRa for safety applications.

In all the four proposed scenarios only the 2.4 GHz band was tested.

In the first scenario they tried to find how many reinforced walls a LoRa

packet could pass through, getting a promising result of 3 walls with 33% of

correctly received packets.

In the second scenario they proved that they need only one LoRa receiver

to cover a floor, in comparison with Bluetooth LE which needs four receivers

to cover the same area.

In the third scenario they achieved the 81.58% of correctly received pack-

ets at 9.75 Km of distance in a true line-of-sight condition.

In the last scenario they tested the reliability of LoRa in salty water,

obtaining 94.5% of correctly received packets at 2 meters of distance in free

space, plus 10 cm of salty water.[9]

37

3.4.3 Wireless image sensor with shared activity time

The main advantage of transmitting on ISM bands is that they are toll-free,

while its disadvantage consists in the strict regulation on it.

In particular, to overcome the duty cycle limit imposed on the 868 MHz

band a french research team at the University of Pau, France, proposed

to consider all the individual activity time in a shared/global manner, so

that devices that need to go beyond the activity time limitation can borrow

activity time from other devices.

This innovative proposal enables multimedia applications, such as image

sensor for surveillance purposes, on the low bit rate LoRa network. To ef-

fectively share the activity time among the different devices they proposed

through which the base station keeps track of the available Global Activity

Time and broadcasts it to all devices in its network.[6]

38

Chapter 4

Design and implementation of a

LoRa server

Since LoRaWAN was launched on the market a number of LoRa server has

been released too. Most of them are presented as web services which provide

the basic features of LoRaWAN for free, and in some case offering also some

premium services. None of them, however, offers a complete control on the

network, which is an essential requirement in order to completely explore the

possibilities of this technology.

For these reasons it was decided to develop from scratch new LoRa server

infrastructure, focusing in particular on designing a reliable tool which gives

access to all information that can be extract from the behavior of the net-

work. Moreover, having a complete custom software makes possible to make

changes depending on the needs.

The goal of this work was to obtain a simple, yet flexible, software that can

be adapted to different experimental condition without the of re-engineering

a complex architecture. In other words, the solution which is presented in

this chapter is not designed to be a competitor of the existing commercial

network server.

39

Figure 4.1: Architecture of the network server

4.1 Architecture

As is shown in figure 4.1, the network server and the application server

were designed to be two separate components, communicating through sock-

ets. This choice follows the guidelines provided by Semtech, which are pre-

sented in section 3.3. Moreover, decoupling the two components makes pos-

sible to run them in different machines.

The communication with the gateway is done using the GWMP protocol

presented in chapter 3, which makes this server immediately compatible with

the majority of gateway present on the market.

4.2 Network Server

The network server consists of four separate components (figure 4.1) which

communicates among them by means of a set of shared data structure.

Receiver

The receiver component is responsible for receiving data from gateways trough

to an UDP socket. If it receives a PULL DATA message, it stores address and

40

port of the gateway in a dedicated data structure. In case of PUSH DATA,

instead, it delivers the message to a pool of Mote Handler.

Mote Handler

The Mote Handler is charge of handling the message on a separate thread

performing the following operations:

• it authenticates the frame by checking the MIC, and in case of failure

it discards the message and terminates the execution;

• it checks if the application server associated to the mote is connected

to the network server and it forwards the user data to it;

• it checks if there is a pending message to be sent to the mote; if the

mote requested an acknowledgement by means of a Confirmed Data

Up message and there are no pending data, it sends back an empty

message setting the ACK flag;

• it updates the statistics of the correctly received message from the mote.

Listener

It waits for Application Servers that want to connect and creates an Appli-

cation Handler for each one.

Application Handler

The Application Handler is responsible for receiving user data from the ap-

plication server to which it is connected, and it pushes every received message

to the pending queue of the corresponding mote.

4.2.1 Implementation

To obtain a platform independent product it was decided to implement it

using the Java programming language, and in particular the Java 8 SDK.

Since stability and reliability was a primary requirement the Network Server

41

is implemented in a multi-thread fashion, so that every message is handled

in a different thread. This choice brings greater robustness especially in

unexpected situations because a wrong management of the message does not

involve the malfunction of the entire server.

This multi-thread design is implemented by meas of the Java Execu-

torService, in which a fixed pool of threads is created at start up and reused

at run time.

In listing 4.1 the main function of each Mote Handler is shown. All data

is stored in thread-safe data structures.

The Listener components implements the GWMP protocol to exchange

data with gateways, while the MoteHandler parses uplink data and builds

downlink messages on the basis of the LoRaWAN 1.0 specification.[8]

Listing 4.1: Main function of NetworkServerMoteHandler.java

1 public void run() {

2 if (message.getInt("stat") != 1) {

3 activity.warning("CRC not valid, skip packet");

4 return;

5 }

6

7 Packet packet = new Packet(message.getString("data"));

8

9 switch (packet.type) {

10 case Packet.JOIN_REQUEST:

11 handleJoin(packet);

12 break;

13 case Packet.CONFIRMED_DATA_UP:

14 case Packet.UNCONFIRMED_DATA_UP:

15 handleMessage(packet);

16 break;

17 default:

18 activity.warning("Message type not recognized");

19 }

20 }

The most important function of the Mote Handler is the handleMessage(),

reported in 4.2, which is in charge of handling the received packets, authenti-

cating them and forwarding them to the Application Server. Since in class A

LoRaWAN end-devices the receive windows are opened shortly after the up-

42

stream transmission, the first of which with the same parameters, the Mote

Handler component must be responsible also for the correct transmission of

the downstream messages. This operation is done in the handleMessage()

by polling a frame from the queue of pending messages, and sending it to

the gateway by means of the GWMP protocol.

Listing 4.2: Handle message in NetworkServerMoteHandler.java

1 private void handleMessage(Packet packet) {

2 long timestamp = message.getLong("tmst");

3 Frame fm = new Frame(packet);

4 Mote mote = motes.get(fm.getDevAddress());

5

6 if (mote == null) {

7 activity.warning(fm.getDevAddress() + ": Mote not found");

8 return;

9 }

10

11 // Authentication => check mic

12 if (!packet.checkIntegrity(mote,fm.counter)) {

13 activity.warning(fm.getDevAddress() + ": MIC not valid");

14 return;

15 }

16

17 // Forward message to Application Server

18 AppServer appServer = appServers.get(mote.getAppEUI());

19

20 if (appServer == null) {

21 activity.warning("App server NOT found");

22 } else {

23 String appserverMessage = buildAppserverMessage(gateway,

message,packet.type,fm);

24 try(Socket toAS = new Socket(appServer.address, appServer.

port)) {

25 PrintWriter out = new PrintWriter(new OutputStreamWriter(

toAS.getOutputStream(), StandardCharsets.US_ASCII));

26 out.println(appserverMessage);

27 out.flush();

28 } catch (IOException e) {

29 e.printStackTrace();

30 }

31 }

32

43

33 mote.updateStatistics(fm.counter); // Update mote statistics

34 activity.info(mote.printStatistics());

35

36 /*** SEND DOWNSTREAM MESSAGE ***/

37 // Wait message to send

38 String answer;

39 try {

40 answer = mote.messages.poll(TIMEOUT, TimeUnit.MILLISECONDS);

41 } catch (InterruptedException e) {

42 e.printStackTrace();

43 return;

44 }

45

46 if (answer == null) {

47 activity.info("Timeout, no message in queue to send to " +

mote.getDevAddress());

48 return;

49 }

50

51 Packet ansPacket = buildDownstreamMessage(answer, mote, (packet.

type == Packet.CONFIRMED_DATA_UP));

52

53 // If there there is one message in queue, send it

54 GatewayMessage response = /* build response */

55 try {

56 socket.send(response.getPacket(gatewayAddr));

57 activity.info("Sent message to mote: " + mote.getDevAddress

());

58 } catch (IOException e) {

59 e.printStackTrace();

60 }

61 }

44

4.3 Application Server

The Application Server includes three main components, as described by

the component diagram in figure 4.1.

Sender

The Sender component is in charge of encrypt user data by means of the

Application Session Key and it sends it to the Network Server. This compo-

nent, and in general the overall application server, has no information on the

timing constraint of the mote, so it sends the downstream message as soon

they are produced. The correct scheduling of the messages into the correct

receive window is done by the network server.

Listener

The Listener component is responsible for waiting for the network server

to connect and start the handler. It is designed to not interact with the

received messages, but instead once the incoming connection is accepted and

the socket is created the Listener starts the execution of the independent

Handler component.

Handler

The Handler is started by the Listener whenever the network server tries to

connect, so it receives the upstream messages and decrypts it. It is the only

component which receive data from the network server, so it is more error-

prone than the other components due to potentially malformed incoming

messages. For this reason the execution of each Handler must be independent

from the other Handlers.

4.3.1 Implementation

As for the network server, also the application server was implemented in

Java for exactly the same motivations. The multi-thread architecture is

45

achieved by means of the Java ExecutorService, through which the handlers

are executed, using a fixed pool of threads created at the start up.

In order to register with the network server, the first message sent by the

Sender component to network server includes also the Application EUI of

the application server and the listening address and port.

For the purposes of the experiments was developed a special Applica-

tion Server Handler, able to keep track of the ongoing tests. It is possible

to appreciate this extra feature in listing 4.3 at line 27 where the method

updateStatistics() is invoked.

Listing 4.3: Main function of ApplicationServerHandler.java

1 public void run() {

2 while (true) {

3 try {

4 String message = socket.readLine();

5 if(message == null) {

6 return;

7 }

8

9 JSONObject m = new JSONObject(message);

10 JSONObject appJson = m.getJSONObject("app");

11 String moteEui = appJson.getString("moteeui");

12 Mote mote = application.motes.get(moteEui);

13

14 if (mote == null) {

15 application.log.warning("Mote not found");

16 continue;

17 }

18

19 JSONObject data = appJson.getJSONObject("userdata");

20 int port = data.getInt("port");

21 int seqno = data.getInt("seqno");

22 byte[] ack = ByteBuffer.allocate(2).putShort((short) (

seqno & 0xFFFF)).array();

23 application.messages.add(new DownstreamMessage(mote,

token++, 4, new String(Hex.encode(ack))));

24 byte[] payload = decryptPayload(data.getString("payload")

, mote, seqno);

25 application.log.info(String.format("Received message from

%s, port %d, counter %d",mote.getDevEUI(),port,seqno

));

46

26 messages.info(new String(Hex.encode(payload)));

27 updateStitistics(mote, payload); // Analyze

28 } catch (SocketException e) {

29 if (e.getMessage().equals("Connection reset")){

30 e.printStackTrace();

31 return;

32 }

33

34 } catch (IOException e) {

35 e.printStackTrace();

36 }

37 }

38 }

The decryption of the upstream data is done by the Handler component

invoking the method decryptPayload(). This method, which is reported in

listing 4.4, implements the decryption of the payload exactly as described in

the LoRaWAN specification. [8]

Listing 4.4: decryptPayload() in ApplicationServerHandler.java

1 private byte[] decryptPayload(String payload, Mote mote, int

counter) {

2 if (payload == null || payload.length() == 0) {

3 return new byte[0];

4 }

5

6 byte[] data = Base64.getDecoder().decode(payload.getBytes());

7 int dataSize = data.length;

8 int targetSize = (dataSize % 16 == 0) ? dataSize : ((dataSize

/16) + 1) * 16;

9

10 ByteBuffer bb = ByteBuffer.allocate(targetSize).order(ByteOrder.

LITTLE_ENDIAN);

11 for (int i=1; i<=targetSize/16; i++) {

12 bb.put((byte) 1);

13 bb.putInt(0);

14 bb.put(UPSTREAM_DIRECTION);

15 bb.put(mote.devAddress);

16 bb.putInt(counter);

17 bb.put((byte) 0);

18 bb.put((byte) i);

19 }

47

20 byte[] A = bb.array();

21 byte[] decrypted = new byte[dataSize];

22

23 try {

24 // Create key and cipher

25 Key aesKey = new SecretKeySpec(mote.appSessionKey, "AES");

26 Cipher cipher = Cipher.getInstance("AES/ECB/NoPadding");

27

28 // Create S

29 cipher.init(Cipher.ENCRYPT_MODE, aesKey);

30 byte[] S = cipher.doFinal(A);

31

32 // Encryption

33 for (int i=0; i<dataSize; i++) {

34 decrypted[i] = (byte) (data[i] ^ S[i]);

35 }

36 } catch (Exception e) {

37 e.printStackTrace();

38 }

39 return decrypted;

40 }

48

Chapter 5

Performance evaluation

5.1 Design of the experiments

To perform a complete evaluation of the LoRaWAN technology a preliminary

analysis was done in order to discover all the configurable parameters. As

result of this operation the following settings were taken into account:

• Environment: rural and urban;

• Data Rate: the combination of spreading factor and bandwidth de-

fines the rate at which data is transmitted;

• Coding Rate: the level of forward error correction;

• Distance: the relative distance between end-device and gateway;

• Packet length;

• Transmission power;

Two relevant evaluation metrics have been identified: the Packet Error

Rate and Power Consumption. Due to the limitations of the available

hardware, only the Packet Error Rate has been tested.

49

Table 5.1: Data Rates available on Waspmote Pro

Data Rate Code
Spreading

Factor
Bandwith

(kHz)
Speed
(bit/s)

SF7BW125 5 7 125 5470
SF8BW125 4 8 125 3125
SF9BW125 3 9 125 1760
SF10BW125 2 10 125 980
SF11BW125 1 11 125 440
SF12BW125 0 12 125 250

5.1.1 Analysis of the parameters

Environment

Since the specification of LoRaWAN reports very different behaviors depend-

ing on the environment in which experiments are performed, it has been

decided to consider two different scenarios:

• Rural environment: both gateway and end-devices are placed out-

side buildings, and all measurements are done in not line of sight con-

dition in an area with a low density of buildings and high presence of

trees;

• Urban environment: while the gateway is placed outside, the end-

devices are placed inside buildings in the center of Pisa.

Data Rate

The rate at which data is transmitted is defined by the combination of spread-

ing factor and bandwidth; the spreading factor is defined as:

Spreading Factor =
Chip Rate

Symbol Rate
(5.1)

where the chip rate is physical available bandwidth, and the symbol rate

represents the actual data rate. So, from this equation it is possible to

deduce that:

50

Table 5.2: Maximum payload lengths

Spreading
Factor

Max MACPayload
(bytes)

Max FrmPayload
(bytes)

7 230 222
8 230 222
9 123 115
10 59 51
11 59 51
12 59 51

• increasing the spreading factor the resulting bit rate decreases;

• increasing the bandwidth the resulting bit rate increases;

Table 5.1 shows the available data rate in our setup.

Coding Rate

The Coding Rate is a parameter of the LoRa physical layer which defines

the level of Forward Error Correction included into the physical frame.

In the LoRa terminology it is represented as a fraction: for instance coding

rate 4/5 means that the every 4 bits of actual data, 1 extra bit is added, with

a total of 5 bits transmitted on the channel. The possible values of coding

rate in LoRa are: 4/5, 4/6, 4/7, 4/8.

Packet length

Due to the special features of the LoRa modulation, the maximum payload

length changes depending on the spreading factor, as reported in table 5.2

Transmission power

Considering the 863-870 MHz bandwidth, the available motes for the exper-

iments were able to transmit at: 14 dBm, 11 dBm, 8 dBM, 5 dBm and 2

dBm.

51

Figure 5.1: The Lorank gateway and the Waspmote end-device

5.1.2 Experiments setup

All experiments were performed using the following setup:

• Network Server Custom LoRa network server, written in Java, de-

scribed in chapter 4.

• Gateway Ideetron Lorank 8 LoRa gateway.

• End-devices Libelium Waspmote Pro 1.2, programmed with Wasp-

mote APIs 023. [7]

5.2 Rural experiments

The first set of experiments was performed in a rural environment with non

line of sight condition. The gateway was placed on the terrace of the de-

partment of information engineering at the University of Pisa, located in Via

Caruso 16, Pisa, Italy.

The end-devices were placed in different spots along a road inside the

natural park of San Rossore, Pisa (Italy).

5.2.1 Selection of parameters

Given these particular environments the parameters were chosen as follows:

• Data Rate: all data rates were tested (from SF7BW125 to SF12BW125);

52

Experiments

Rural experiments

Gateway

500 m

1000 m

1500 m

2000 m

2500 m

3000 m

Figure 5.2: Map of rural experiments

• Coding Rate: since in some preliminary tests it was discovered that

the influence of the coding rate on the packet error rate in this envi-

ronment was negligible, it was decided to test only 4/5;

• Distance: each end-device was placed starting from 500 meters away

from the gateway up to 2500 meters, in steps of 500 meters;

• Payload length: 10 bytes and 50 bytes, to cover different real use

cases;

• Transmission power: It was decided to test both the highest trans-

mission power available and the lowest for which it is known from pre-

liminary experiments to be strong enough to receive data.

So at 14 dBm and 8 dBm were tested at 1500, 2000 and 2500 meters.

At 1000 meters 14 dBm and 5 dBm were tested, and at 500 meters

away from the gateway 8 dBM and 2 dBm were tested.

Table 5.3 summarizes the chosen parameters.

5.2.2 Results

Analyzing the results of this first set of experiments some peculiar behaviors

has been discovered, in particular:

53

Table 5.3: Rural test configurations

Parameter Values Unit

Spreading factor 7, 8, 9, 10, 11, 12
Coding Rate 4/5
Transmission power 14, 8, 5 (1 Km), 2 (0.5 Km) dBm
Payload length 10, 50 bytes
Distance from gateway 0.5, 1.0, 1.5, 2.0, 2.5 Km

• up to 1500 meters away from the gateway (figure 5.3) it is possible

to transmit with the fastest data rate, which is SF7BW125, without

having significant losses;

• the length of the payload affects significantly the packet error rate only

at 2500 meters and only with the slowest data rates, i.e. SF11 and

SF12 (figures 5.7 and 5.8);

• At 500 meters, using data rate SF12, it was obtained an higher packet

error rate than the faster, and less robust, data rates. In particular the

performances of SF12 are significantly worse than SF11, with the same

transmission power, and the results with 8 dBm were slightly worse

than same data rate with 2 dBm. This strange results are caused by

the electric field intensity and the received power over flat terrain.

54

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

C
or

re
ct

ly
 re

ce
iv

ed
 p

ac
ke

ts

Distance (m)

14dBm 10byte

8dBm 10byte

5dBm 10byte

2dBm 10byte

14dBm 50byte

8dBm 50byte

5dBm 50byte

2dBm 50byte

Figure 5.3: Results of rural experiments at SF 7

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

C
or

re
ct

ly
 re

ce
iv

ed
 p

ac
ke

ts

Distance (m)

14dBm 10byte

8dBm 10byte

5dBm 10byte

2dBm 10byte

14dBm 50byte

8dBm 50byte

5dBm 50byte

2dBm 50byte

Figure 5.4: Results of rural experiments at SF 8

55

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

C
or

re
ct

ly
 re

ce
iv

ed
 p

ac
ke

ts

Distance (m)

14dBm 10byte

8dBm 10byte

5dBm 10byte

2dBm 10byte

14dBm 50byte

8dBm 50byte

5dBm 50byte

2dBm 50byte

Figure 5.5: Results of rural experiments at SF 9

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

C
or

re
ct

ly
 re

ce
iv

ed
 p

ac
ke

ts

Distance (m)

14dBm 10byte

8dBm 10byte

5dBm 10byte

2dBm 10byte

14dBm 50byte

8dBm 50byte

5dBm 50byte

2dBm 50byte

Figure 5.6: Results of rural experiments at SF 10

56

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

C
or

re
ct

ly
 re

ce
iv

ed
 p

ac
ke

ts

Distance (m)

14dBm 10byte

8dBm 10byte

5dBm 10byte

2dBm 10byte

14dBm 50byte

8dBm 50byte

5dBm 50byte

2dBm 50byte

Figure 5.7: Results of rural experiments at SF 11

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

C
or

re
ct

ly
 re

ce
iv

ed
 p

ac
ke

ts

Distance (m)

14dBm 10byte

8dBm 10byte

5dBm 10byte

2dBm 10byte

14dBm 50byte

8dBm 50byte

5dBm 50byte

2dBm 50byte

Figure 5.8: Results of rural experiments at SF 12

57

urban Experiments

Rural experiments

Gateway

330 m

Figure 5.9: Map of urban experiments

5.3 Urban experiments

The urban experiments were performed in the city center of Pisa. The gate-

way was placed in front of a window at the fifth floor of department of

information engineering, section computer engineering, at the University of

Pisa, located in Largo Lucio Lazzarino 1, Pisa, Italy.

The end-device was placed inside, at the first floor of a building located

in Via Risorgimento, Pisa. The area between the two devices is a typical

urban area with three-floor buildings in the middle.

5.3.1 Selection of parameters

For this set of experiments, rather than distances with fixed steps, it was

decided to choose some fixed location and try to test all possibles configu-

rations. Since the range of coverage is substantially smaller than in rural

test, it was decided also to evaluate the impact of an higher forward error

correction, determined by the coding rate, on the reliability of the link.

The parameters were chosen as follows:

58

Table 5.4: Urban test configurations

Parameter Values Unit

Spreading factor 7, 8, 9, 10, 11, 12
Coding Rate 4/5, 4/8
Transmission power 14, 8, 5, 2 dBm
Payload length 10, 50 bytes
Distance from gateway 0.33 Km

• Data Rate: all data rates were tested (from SF7BW125 to SF12BW125);

• Coding Rate: the lowest level of FEC, 4/5, and the highest one, 4/8,

were tested;

• Distance: each end-device was placed in a fixed location inside a build-

ing; in this section are presented only the results obtained at 330 meters

away from the gateway;

• Payload length: 10 bytes and 50 bytes, to cover different real use

cases;

• Transmission power: 14, 8, 5, 2 dBm in order to complete explore

the impact of the reduction of transmission power on the packet error

rate.

Table 5.4 summarizes the chosen parameters.

5.3.2 Results

From the results of this experiments it is possible to notice that, as expected,

transmission with an higher level of forward error correction are more

reliable than the other ones, but in general the variation of the coding rate

does not substantially improve performance, especially with shorter packets;

However, in border cell condition the impact of the coding rate is con-

siderably high. It is possible to appreciate this behavior in particularly for

spreading factor 9 (figure 5.12): considering experiments with payload of 50

bytes, it is possible to notice that in extreme conditions, i.e. the best and

59

 0

 20

 40

 60

 80

 100

 2 5 8 14

C
or

re
ct

ly
 re

ce
iv

ed
 p

ac
ke

ts

Transmission power (dBm)

10byte 4/5

10byte 4/8

50byte 4/5

50byte 4/8

Figure 5.10: Results of urban experiments at SF 7

worst transmission power, there is no difference of behavior between two dif-

ferent coding rates. Instead, for 5 and 8 dBm, the higher coding rate makes

really the difference, making the channel a lot more reliable than with lower

coding rate.

Regarding the other parameters, both payload length and transmis-

sion power behaved as expected from theory.

60

 0

 20

 40

 60

 80

 100

 2 5 8 14

C
or

re
ct

ly
 re

ce
iv

ed
 p

ac
ke

ts

Transmission power (dBm)

10byte 4/5

10byte 4/8

50byte 4/5

50byte 4/8

Figure 5.11: Results of urban experiments at SF 8

 0

 20

 40

 60

 80

 100

 2 5 8 14

C
or

re
ct

ly
 re

ce
iv

ed
 p

ac
ke

ts

Transmission power (dBm)

10byte 4/5

10byte 4/8

50byte 4/5

50byte 4/8

Figure 5.12: Results of urban experiments at SF 9

61

 0

 20

 40

 60

 80

 100

 2 5 8 14

C
or

re
ct

ly
 re

ce
iv

ed
 p

ac
ke

ts

Transmission power (dBm)

10byte 4/5

10byte 4/8

50byte 4/5

50byte 4/8

Figure 5.13: Results of urban experiments at SF 10

 0

 20

 40

 60

 80

 100

 2 5 8 14

C
or

re
ct

ly
 re

ce
iv

ed
 p

ac
ke

ts

Transmission power (dBm)

10byte 4/5

10byte 4/8

50byte 4/5

50byte 4/8

Figure 5.14: Results of urban experiments at SF 11

62

 0

 20

 40

 60

 80

 100

 2 5 8 14

C
or

re
ct

ly
 re

ce
iv

ed
 p

ac
ke

ts

Transmission power (dBm)

10byte 4/5

10byte 4/8

50byte 4/5

50byte 4/8

Figure 5.15: Results of urban experiments at SF 12

 0

 20

 40

 60

 80

 100

 7 8 9 10 11 12

C
or

re
ct

ly
 re

ce
iv

ed
 p

ac
ke

ts

Spreading Factor

14dBm 4/5

8dBm 4/5

5dBm 4/5

2dBm 4/5

14dBm 4/8

8dBm 4/8

5dBm 4/8

2dBm 4/8

Figure 5.16: Results of urban experiments with payload of 10 bytes

63

 0

 20

 40

 60

 80

 100

 7 8 9 10 11 12

C
or

re
ct

ly
 re

ce
iv

ed
 p

ac
ke

ts

Spreading Factor

14dBm 4/5

8dBm 4/5

5dBm 4/5

2dBm 4/5

14dBm 4/8

8dBm 4/8

5dBm 4/8

2dBm 4/8

Figure 5.17: Results of urban experiments with payload of 50 bytes

64

Chapter 6

LoRaWAN relay mode

LoRaWAN networks typically are laid out in a star-of-star topology, in which

end-devices communicate directly with one or more gateways, but there are

many cases in which it could be useful to have a special node able to act as

relay between end-devices and the gateway.

In this chapter an extension to the LoRaWAN protocol is defined, which

allows the end-devices to discover and bind to any nearby relay eligible node.

6.1 Motivations

As described in chapter 3, the LoRaWAN protocol is designed to be deployed

in a star-of-star layout, in which all the end-devices need only one LoRa

communication to reach the IP network.

This architecture, of course, significantly simplifies the protocol, elimi-

nating the need of routing mechanisms, but, on the other hand, it requires

the installation of new gateways to expand the coverage area of the network.

The standard LoRa gateways, in general, require an IP connection to

operate as described in the specification, and in some contexts (e.g. rural

areas with no cellular coverage) it may be an impossible requirement to

satisfy.

On the contrary, the solution proposed in this thesis allows to extend

the coverage area without the need of gateways, and, at the same time, to

65

Figure 6.1: Reference architecture of relay mode

increase the performances of the end-devices at the same range of coverage.

6.2 Design

6.2.1 Protocol overview

The main obstacle to design a relay solution in a LoRaWAN network is that

the end-devices which will act as relays often have only one LoRa interface,

and also the transceivers installed on these devices are not capable to open

receive windows at the same time on all possible frequencies, data rates and

coding rates.

With the aim to design a protocol that can be implemented on this type

of end-devices it was decided to add a TDMA technique to the standard

specification. The key idea is that each Relay Eligible Node must period-

ically send a beacon to advertise itself to nearby end-devices. The interval

of time between two beacons sent by the same relay node is called Beacon

Period. Each beacon period is divided into two different phases:

• Bind Phase, in which end-devices try to bind themselves with the

relay node;

• Transmission Phase, in which end-devices send upstream data to

relay and receive downstream data.

66

Bind Phase Transmission Phase

B Bind slot Data Slot Data Slot Data Slot Data Slot BindAns Data Slot B

T_BIND T_SLOT

BIND_ANS_DELAY

BEACON_PERIOD

Figure 6.2: Timing diagram of the protocol

The transmission phase is further divided into several slots, numbered start-

ing from zero, in order to let the relay node wake up only when needed, i.e.

only in proximity of slots bound to end-devices. In each slot only one end-

device is allowed to exchange data, and each end-device can transmit only in

one slot per beacon period. The slot within the beacon period is assigned to

the end-device by the network server in the bind phase. One slot is reserved

to bind answers, and it is never assigned to devices.

The beacons and all bind messages are sent using well known parameters

(data rate, coding rate, frequency), which are defined in this specification.

The other communications are performed using parameters which must be

exchanged in bind phase.

The aim of this protocol is to extend LoRaWAN without radically chang-

ing its philosophy, so every decision is taken by the network server, which

sets up both the relays and the end-devices through MAC commands.

Requirements Although the very centralized nature of LoRaWAN is main-

tained with the new relay mode, this is not transparent to existing devices,

which need to be adapted in order to support the new protocol. In particular:

• The end-devices must explicitly switch to relay mode;

• The relay node must explicitly switch to relay mode, advertising its

presence to neighbors and exchanging all needed parameters with the

network server;

• The network server must be update to support the new mode;

67

• End-devices and relay must belong to the same network, such that they

are managed by the same network server;

On the other hand, existing LoRa gateways already support the new relay

mode because they do not interact with the LoRaWAN layer. Furthermore,

existing standard LoRaWAN end-devices are not affected by the behavior of

the updated devices.

Specification This specification includes the format of all newly defined

massages and the description of the timing constraints. It can be logically

divided into three parts:

• Relay eligible node management: defines all the messages ex-

changed between the relay and the network server;

• End-device binding: defines all the messages exchanged in order to

effectively bind (and unbind) end-devices to the relay;

• Data transmission: defines the protocol to adopt when an end-device

wants to transmit upstream data and receive downstream data, if any.

6.2.2 Relay eligible node management

Relay setup

Before starting to advertise itself, each relay eligible node must send a Re-

laySetupReq MAC command to network server, containing the minimum

requirements for the parameters of the relay session.

Size (bytes) 2 1 1

Content MinBeaconPeriod MinTslot MaxSlots

Figure 6.3: RelaySetupReq MAC command

In particular MinBeaconPeriod contains the minimum length of the Bea-

conPeriod expressed in seconds; MinTslot contains the minimum length of

68

the slot expressed in seconds; MaxSlots contains the maximum number of

slots per BeaconPeriod which the device is able to handle.

The relay node cannot advertise itself until it receives the parameters

from network server through RelaySetupAns MAC command.

Size (bytes) 1 0/2 0/1 0/1

Content SetupAns BeaconPeriod TSlot MaxSlots

Figure 6.4: RelaySetupReq MAC command

In particular if SetupAns equals 0x00 the device is accepted, and this

field is followed by the mandatory parameters to adopt. The BeaconPeriod

and the slot length TSlot are expressed in seconds. MaxSlots is the number

of available slots.

If SetupAns is not equal to 0x00 the device was not accept by the network

server as a relay, and it is not followed by any other fields.

Relay status

The relay may request to the network server the list of end-devices bound to

it. In response it will receive the changes on the list of served end-devices

from last request. The RelayStatusReq does not have any payload, the

RelayStatusAns has the format of figure 6.5 and each DeviceEntry is

encoded as figure 6.7

Size (bytes) 1 5/14 5/14 5/14

Content DeviceControl Dev entry Dev entry Dev entry

Figure 6.5: RelayStatusAns MAC command

The DeviceControl field (figure 6.6) carries the ClearList flag and the

number of devices (DeviceNum) contained into the following list. When

the ClearList flag is set, the end-device must empty its current list before

updating it with the new information contained in this MAC command.

The RelayStatusAns can carry as many device entry as they fit in the

packet, with an upper bound of 63. Each device entry contains the address

69

Size (bits) 1 1 6

Content ClearList RFU DeviceNum

Figure 6.6: DeviceControl field in the RelayStatusAns MAC command

Size (bytes) 4 1 0/3 0/3 0/3

Content DevAddr Status Freq 1 Freq 2 Freq 3

Figure 6.7: Device entry contained in RelayStatusAns MAC command

(DevAddr) and the Status of the device, which has the format described in

figure 6.8.

Size (bits) 1 3 4

Content Add/Remove RFU DataRate

Figure 6.8: Status fiend within each device entry

If the Add/Remove flag is set, then the relay must deallocate the slot for

the end-device. Else if the Add/Remove flag is not set, then the DataRate

field carries the data rate at which the end-device will transmit its messages,

and the Status field is followed by 9 octets carrying the three frequencies on

which the end-device will transmit.

Relay stop

The network server can stop a relay node using the RelayStopReq MAC

command. When the relay node receives the RelayStopReq command it

must stop every relay activity immediately, hence the network server does

not expect any answer. This command does not have any payload.

6.2.3 End-device binding

In order to bind to a relay node, the end-device starts listening to the radio

channel, waiting for a beacon. If the end-device receives a beacon from a

70

Figure 6.9: Sequence diagram of the end-device binding

71

Table 6.1: Transmission parameters of the beacon

Parameter Value

Data Rate SF9 BW125
Coding Rate 4/5
Frequency 869.525 MHz
Period BEACON PERIOD

relay node it can decide either to bind to it by sending a RelayBindReq

command, or to discard the beacon and start waiting for a new one.

Broadcasting Beacons

In order to advertise its presence to its neighbors, the relay node periodically

sends a beacon containing all the information needed by end-devices to set

up a session with it. The beacon must be sent with the parameters reported

in table 6.1.

Size (bytes) 4 4 3 2 1

Content Timestamp RelayAddr NetID BindAnsDelay Control

Figure 6.10: Beacon format

Relay must include in the beacon its address (RelayAddr) and the ID of

the network (NetID) to which it belongs to, in order to let the end-device

select only relays belonging to its own network. The NetID has the format

described in the LoRaWAN specifications. The Timestamp field contains

the internal timestamp of the relay node, using milliseconds unit of measure.

The Control field contains RFU flags.

RelayBindReq

The bind request must be sent only in the bind slot, and exactly RX DELAY

seconds after the end of the beacon transmission. The bind request must be

performed using MAC command RelayBindReq, which has the format shown

in figure 6.11.

72

Size (bytes) 4 1 3 3 3

Content RelayAddress Data Rate Chan 1 Chan 2 Chan 3

Figure 6.11: RelayBindReq MAC command

These parameters are used by the relay to open the receive window at

the beginning of the transmission slot. Each Chan field contains the center

frequency of the channel, expressed in Hertz and divided by 100. For instance,

if the center frequency of the channel is 868300000 Hz, the corresponding

Chan field into the RelayBindReq will contain the number 8683000.

The DataRate field is encoded as shown in figure 6.12.

Size (bits) 4 4

Content RFU DataRate

Figure 6.12: DataRate field into RelayBindReq MAC command

RelayBindAns

Network server must answer to a RelayBindReq with a RelayBindAns MAC

command, which has the format shown in figure 6.13.

Size (bytes) 4 1 2 1 2

Content RelayAddr SlotIndex BeaconPeriod TSlot MaxSlots

Figure 6.13: RelayBindAns MAC command

The recipient of a RelayBindAns MAC command is the end-device who

has sent the RelayBindReq. The network server must include in the Relay-

BindAns MAC command the following information:

RelayAddr the address of the relay;

SlotIndex index of the time slot assigned to the device;

BeaconPeriod time-interval between two beacons, expressed in seconds;

73

TSlot time slot length, expressed in seconds;

MaxSlots number of slots within one beacon period.

The end-device will receive the RelayBindAns MAC command into the Bin-

dAns slot, which is advertised within the beacon through the field Bin-

dAnsDelay. If the RelayBindAns MAC command is not received in the

first available BindAns slot, the original RelayBindReq must be considered

lost and the end-device must perform a new bind request.

RelayUnbindReq

Figure 6.14: Sequence diagram of the end-device unbinding

The end-device may explicitly unbind from its relay by sending a Re-

layUnbindReq MAC command to the network server, which reacts de-

allocating the time slot reserved to the end-device starting from the next

beacon period. The RelayUnbindReq contains only the command identifier

without parameters.

The network server may also autonomously detect the unbinding of the

end-device, considering the device unbound after MAX EMPTY SLOTS

74

Figure 6.15: Sequence diagram of the data transmission

slots without receiving data from the end-device. So, in order to keep the

session alive, the end-device must send an upstream message at least every

MAX EMPTY SLOTS / 2 slots.

The end-device may use the the LinkCheckReq MAC command to de-

tect the unbinding. If after MAX LINK CHECK REQUESTS the end-

device does not receive any LinkCheckAns, it considers itself unbound.

6.2.4 Data transmission

Each client is allowed to send upstream messages only within its own slot,

using the previously agreed channel parameters.

Communication between end-device and relay

Channel selection During bind phase the client node must include into

the RelayBindReq command three channel definitions to use in transmis-

sion phase. Both the client and the relay must cycle on list of channels in

75

the order they are defined in the RelayBindReq, so at the first available

slot after binding both devices must use the first channel defined, then they

must loop on the list of channels.

Message type Each end-device operating in relay mode must tag its mes-

sages in order to let the network server distinguish between directly sent mes-

sages and relayed ones. This can be done introducing new message type called

Mesh Unconfirmed Data Up (type 110). All upstream messages sent by

an end-device will have Mesh Unconfirmed Data Up as type, and they will

not be acknowledged by the network server. When a network server receive

a Mesh Unconfirmed Data Up message, it should discard all the statistics

collected by the gateway (e.g. RSSI) because the device who has transmit-

ted the message to the gateway, i.e. relay, is not the device indicated in the

DevAddress field, i.e. the end-device.

Communication between relay and gateway

The communication between the relay node and the gateway follows the

LoRaWAN 1.0 specification, except for the fact that all upstream message

have the newly defined Mesh Unconfirmed Data Up as message type. Given

that relay forwards exactly the LoRaWAN message it has received, it may

receive an answer form the network server which will have ClientAddr as

DestAddr. The relay node must store the message until next transmission

form the end-device, than it must forward it.

6.2.5 MAC Commands and parameters

As already stated, all the set up information between end-devices, relay and

network server are exchanged by means of MAC commands. The new MAC

commands defined in this protocol are summarized in table 6.2.

The value of each parameter is not fixed into the specification, but it can

be determined upon installation according to the use case. In table 6.3 there

are some tested parameters.

76

Table 6.2: MAC commends

CID Command
Transmitted by

Description
ED Relay NS

0x80 RelaySetupReq x
Requests parameters to start
acting as a relay, attaching
the minimum requirements

0x81 RelaySetupAns x
Answer to RelaySetupReq,
with the requested parameters

0x82 RelayStatusReq x
Requests the network server
to send changes on bound
end-devices

0x83 RelayStatusAns x
List of new end-devices or
“clear list” command

0x84 RelayStopReq x Requests the relay to stop

0x85 RelayBindReq x Requests to bind to a relay

0x86 RelayBindAns x Answer to RelayBindReq

0x87 RelayUnbindReq x
Notifies the network server
the unbinding of an end-device

Table 6.3: Parameters

Constant Value

BEACON PERIOD 300 s
RX DELAY 1 s
MAX LINK CHECK REQUESTS 10
MAX EMPTY SLOTS 20
T BIND 30 s
T SLOT 10 s
MAX SLOTS 28

77

6.3 Implementation

The Waspmote Pro is a model of mote produced by Libelium and designed

for the Internet of Things. It consists of a small board which includes an

ATmega 1281 microcontroller, some analog and digital I/O pins, one socket

for the GPS module and two sockets for the radio modules. The latter

can be used to install on the Waspmote Pro transceivers for different radio

technologies like Zigbee, Wi-Fi, Sigfox and LoRaWAN.

Each transceiver implements in hardware the network protocol for which

it was designed, and it gives access to its features through a limited set of

APIs. The philosophy behind these design choices is that the transceiver is

responsible for the correct implementation of the network protocol, especially

for the timing constraints, so each update of the network protocol involves

the redesign of the radio module.

Since there was not the possibility of producing a new transceiver updated

to the specifications described in section 6.2, it was decided to implement a

subset of the protocol in software, introducing minor changes in order to

overcome the inability to operate directly at the physical level.

In particular, the limitations of the platform that do not allow the full

implementation of the protocol in software are the following:

• Single thread programming: the standard Waspmote Pro SDK does

not allow to create multi-thread applications;

• Granularity of power saving mode: the APIs allow to enter power saving

mode with the granularity of seconds, so to have more precision it is

necessary to use busy wait;

• Impossibility to synchronize the internal clock with other motes without

using the GPS module;

• Synchronous APIs with varying lengths of time between send and re-

ceive calls. Since the synchronization between two nodes is done taking

as reference point the instant at which ends the transmission of a mes-

78

sage, every inaccuracy on the duration of the API call must be properly

handled;

• Limited amount of memory: RAM and ROM are limited respectively

to 8 Kb and 128 Kb;

• Limitations of high-level LoRaWAN API: using such API is impossi-

ble to modify fields into the LoRaWAN message other than FPort

and FPayload, so every modification must be emulated carrying some

additional information into the payload.

6.3.1 Assumptions

Given all the limitations previously described, it has been decided to imple-

ment only the transmission phase, considering all the end-devices already

bound to the relay node.

For testing purposes all the information normally exchanged during the

RelaySetup and the RelayBind phases were statically pre-loaded on the de-

vices. Summarizing, once an end-device has booted up, the operations it

must perform are the following:

1. It must wait for a beacon from the relay node in order to synchronize

its reference time with it;

2. It must transmit the data exactly at the beginning of its transmission

slot.

Potential differences of the internal clock must be taken into account by the

relay node opening the receive windows slightly before the beginning of the

slot, and keeping it open for a sufficient1 interval of time.

Regarding the implementation of the relay, since it is assumed that there

is no bind phase, every BEACON PERIOD it must:

1In an hardware implementation with precise timing the minimum length of the receive
window can be reduced to the time needed to identify the preamble of the LoRa physical
frame, but in a software implementation the interval of time must to be larger in order to
overcome the impossibility to operate at the physical layer. Moreover the exact waiting
time must be evaluated experimentally since it depends on the platform used.

79

Table 6.4: Parameters of the relay mode

Constant Value

BEACON PERIOD 35 s
RX DELAY 1 s
T BIND 5 s
T SLOT 15 s
MAX SLOTS 2

1. broadcast the beacon on the predefined channel, without opening the

receive windows normally used to detect bind requests;

2. for each slot, open the receive window; in case of receipt of data send

to the end-device any cached message, and forward the data to the

gateway as soon as possible.

Table 6.4 reports the parameters used for the implementation.

6.3.2 End-device

Due to the timing constraints of the LoRaWAN APIs, every transmission

between the end-device and the relay must be performed using the LoRa

P2P APIs2 provided by Libelium. [7]

The new Mesh Unconfirmed Data Up message type is implemented

directly into the MAC header, and the whole LoRaWAN packet is built by

the mote, in contrast with standard LoRAWAN communications where the

transceiver is in charge to build the packet.

As result of this architecture the computation of the MIC for each message

should be performed on the mote, which is not possible due to the lack of

stable implementation of the security algorithms needed for this purpose.

For these reasons, and only in test environment, it has been decided to not

attach the MIC field to the packet.

2Also indicated as ”Direct communications between nodes” in the ”Waspmote Lo-
RaWAN networking guide”

80

On the contrary, the encryption of the Frame Payload is technically pos-

sible with the standard Waspmote libraries, but it has been decided to not

perform it since it is not essential for the experimentation purposes.

Implementation on Waspmote Pro

At the start up the end-device has to switch on the radio module and set up

all the needed parameters, which are pre-loaded on the board.

Then, before sending any upstream data, the end-device must synchro-

nize itself with relay by means of the beacon, and, as it is shown in listing

6.1, this operation is done by calling the function waitForBeacon(). The

waitForBeacon() function returns the time stamp at which the beacon is

received (or zero if any error has occurred), which is used as reference time

to compute the beginning of the following slots.

After the synchronization through the beacon, the end-device switch to

the pre-configured parameters for data transmission and pauses until the

beginning of its own slot. Then, it sends the upstream data, and after

RX DELAY - T TOLERANCE milliseconds opens the receive windows with ex-

actly the same configuration as the uplink transmission. The receive window

is opened T TOLERANCE milliseconds before actual beginning in order to over-

come to possible differences with the relay internal clock, and to compensate

it is kept open for RX WINDOW + T TOLERANCE millisecond.

At the end of receive window if something has been received it is shown on

the serial monitor, then the frame counter is incremented and the end-device

pauses for a PERIOD until next transmission slot is available.

Listing 6.1: Implementation of the end-device

1 void loop() {

2 uint32_t start = waitForBeacon();

3 if (start == 0) {

4 return;

5 }

6

7 configureRadio(tx_freq,tx_sf);

8 waiting_time = start + T_BIND - millis() + (slot*T_SLOT);

9 if (waiting_time > 0) {

81

10 delay(waiting_time);

11 } else {

12 return;

13 }

14

15 // Send data

16 while (1) {

17 timestamp = millis();

18 error = upMessage.sendFrame();

19 uint32_t end_tx = millis();

20

21 if (error == 0) {

22 USB.println(F("--> Packet sent"));

23

24 // Receive answer

25 waiting_time = RX_DELAY - (millis() - end_tx) - T_TOLERANCE;

26 if (waiting_time > 0) {

27 delay(waiting_time);

28 } else {

29 return;

30 }

31 error = downMessage.receiveFrame(RX_WINDOW + T_TOLERANCE);

32

33 if (error == 0) {

34 USB.print(F("--> Packet received: "));

35 USB.println(downMessage.getBuffer());

36 } else if (error == 2) {

37 USB.println(F("--> Timeout! No packet received"));

38 } else {

39 USB.println(F("Error receiving packet"));

40 }

41 }

42 else {

43 USB.println(F("Error sending packet"));

44 }

45

46 // Update frame counter

47 upMessage.setFrameHeader(DEVICE_ADDR, ++counter_up);

48 upMessage.setMessage(1, payload);

49

50 waiting_time = PERIOD - (millis() - timestamp);

51 if (waiting_time > 0) {

52 delay(waiting_time);

82

53 } else {

54 return;

55 }

56 }

57 }

As stated before, the synchronization with the relay is done by means of

the waitForBeacon() function, which is reported in listing 6.2. The im-

plementation is pretty straightforward since it just switch to the frequency

and spreading factor on which the beacon is sent and wait for it for at most

PERIOD + T TOLERANCE. If a beacon is detected it return the instant of time

at which the transmission ended (plus the overhead of the API, which is

taken into account through the T TOLERANCE delay), otherwise it returns 0.

Listing 6.2: Wait for beacon on the end-device

1 uint32_t waitForBeacon() {

2 Utils.setLED(LED0, LED_ON);

3 configureRadio(beacon_freq, beacon_sf); // 869.525 MHz, SF 9

4 USB.println(F("--> Waiting for beacon"));

5 error = LoRaWAN.receiveRadio(PERIOD + T_TOLERANCE);

6 uint32_t start = millis();

7

8 if (error == 0) {

9 USB.print(F("beacon: "));

10 USB.println((char*) LoRaWAN._buffer);

11 waiting_time = RX_DELAY - (millis() - start);

12 if (waiting_time > 0) {

13 delay(waiting_time);

14 }

15 } else if (error == 2) {

16 USB.println(F("No beacon found"));

17 return 0;

18 } else {

19 USB.println(F("Error waiting for beacon"));

20 return 0;

21 }

22 Utils.setLED(LED0, LED_OFF);

23 return start;

24 }

83

6.3.3 Relay

Since the implementation of the protocol does not include the Bind Phase,

the behavior of the relay node is slightly different from the specifications.

Bind Slot Exactly at the beginning of the slot the relay node broadcasts

its beacon, using format and parameters described in section 6.2. Since the

Bind Phase is not implemented the receive window after it is not opened.

Transmission Slots Exactly RX TOLERANCE milliseconds before the

beginning of each slot the relay node opens its receive windows with param-

eters (data rate and frequency) defined for the end-device to which the slot

is assigned. If the relay receives data, it performs the following operations:

1. if there is a pending packet to be relayed to the end-device, it sends it

following the specifications detailed in chapter 6, except for the MIC

as explained in 6.3.2;

2. the relay switches to the LoRaWAN APIs;

3. it sets up the LoRaWAN module with the parameters (address, keys,

counters) of the end-device from which it has received data;

4. the relay forwards the received data to the gateway;

5. it automatically opens the two LoRaWAN receive windows, and if it

receives a packet it is stored in a dedicated buffer, waiting to be relayed

after next end-device transmission.

Implementation on Waspmote Pro

Once the relay has booted up it must switch on the LoRaWAN module

and configure it. The information about the beacon broadcasting and the

transmission slot of the end-devices are pre-loaded on the board.

After the initial setup, the relay node performs and infinite loop (reported

in listing 6.3) in which it broadcasts the beacon and then it opens the receive

window at the beginning of the slot of each end-device.

84

The beacon broadcasting is done by means of the sendBeacon() function,

which returns the time stamp corresponding at the end of transmission, plus

the API overhead. As for the end-device, also int this case the time stamp

is uses for the timing of the following transmission slots.

Then, T TOLERANCE milliseconds before the beginning of each slot the

receive window is opened for RX WINDOW + T TOLERANCE milliseconds. As

for the end-device, T TOLERANCE is used in order to overcome to possibly de-

synchronizations. Moreover, since no bind operation is performed, there no

way for the relay to know whether the end-device is active and synchronized

with it or not, so in this static implementation the relay must open the receive

window for all the end-devices in its internal list.

If the relay receives something from and end-device, it sends back the

cached downstream message to it (if present). Then it forwards the end-

device upstream message to the gateway by means of the forwardMessage()

function, which is reported in listing 6.5.

Listing 6.3: Implementation of the relay

1 void loop() {

2 uint32_t beaconTime = millis();

3 uint32_t start = sendBeacon() + T_BIND;

4 uint8_t slot = 0;

5

6 do {

7 Device &client = devices[slot];

8 if (configureRadio(client.frequency, client.sf) == 0) {

9 waiting_time = start - millis() + (slot*T_SLOT) - T_TOLERANCE;

10 if (waiting_time > 0) {

11 delay(waiting_time); // Wait for transmission slot

12 } else {

13 USB.println(F("Time overflow waiting for slot"));

14 slot++;

15 continue;

16 }

17

18 Utils.setLED(LED1, LED_ON);

19 error = LoRaWAN.receiveRadio(RX_WINDOW + T_TOLERANCE);

20 uint32_t rx_time = millis();

21 if (error == 0) {

22 client.upMsg.parse((char*) LoRaWAN._buffer); // save up data

85

23 if (client.messagePending) { // forward down data

24 waiting_time = rx_time + RX_DELAY - millis();

25 if (waiting_time > 0) {

26 delay(waiting_time);

27 error = client.downMsg.sendFrame(client.frequency);

28 if (error != 0) {

29 USB.print(F("Error sending msg to device. error = "));

30 USB.println(error, DEC);

31 }

32 client.messagePending = false;

33 }

34 }

35 forwardMessage(client); // forward up data to gateway

36 } else if (error == 2) {

37 USB.print(F("No packet received in slot = "));

38 USB.println(slot, DEC);

39 } else {

40 USB.println(F("Error waiting for packets"));

41 }

42 Utils.setLED(LED1, LED_OFF);

43 } else {

44 USB.println(F("Error radio configuration"));

45 }

46 slot++;

47 } while (slot < MAX_SLOTS);

48

49 if (configureRadio(frequency, spreading_factor) != 0) {

50 USB.print(F("Set Radio Frequency error = "));

51 USB.println(error, DEC);

52 }

53

54 waiting_time = PERIOD - (millis() - beaconTime);

55 if (waiting_time > 0) {

56 delay(waiting_time); // Wait for next beacon

57 } else {

58 USB.println(F("Time overflow waiting for beacon"));

59 }

60 }

Listing 6.4 shows the sendBeacon() function, which just sends the beacon

and returns the time stamp.

86

Listing 6.4: Broadcasting beacon to nearby end-devices

1 uint32_t sendBeacon() {

2 Utils.setLED(LED0, LED_ON); // Sets the red LED ON

3 createBeacon(beacon_buffer);

4 error = LoRaWAN.sendRadio(beacon_buffer);

5 uint32_t start = millis();

6 if (error == 0) {

7 USB.println(F("--> Beacon sent"));

8 } else {

9 USB.print(F("Error sending beacon. error = "));

10 USB.println(error, DEC);

11 }

12 Utils.setLED(LED0, LED_OFF); // Sets the red LED OFF

13 return start;

14 }

The operation of relaying messages to the gateway is done using the

forwardMessage() function, reported in listing 6.5. Since the communica-

tion between relay and gateway is done by means of the high level LoRaWAN

APIs, this function is responsible for switching on the LoRaWAN layer on

the radio module and send the data. The LoRaWAN layer must be config-

ured with address and keys of the end-device, so that the message can be

correctly authenticated and dencrypted by the server.

In this phse the relay may also receive one downstream message addressed

to the end-device, which is cached and forwarded to it the next time the end-

device will transmit something.

Listing 6.5: Forwarding end-device message to gateway

1 void forwardMessage(Device& device) {

2 USB.print(F("--> Packet from client: "));

3 USB.println(device.upMsg.getBuffer());

4

5 // configure the lorawan layer with end-device params

6 error = configureLorawan(device.address, device.networkKey, device

.sessionKey, device.upMsg.getCounter(), 0);

7

8 error = LoRaWAN.joinABP();

9 if(error != 0) {

10 USB.print(F("Join network error = "));

11 USB.println(error, DEC);

87

12 } else {

13 // send received packet to LoRaWAN gateway

14 error = LoRaWAN.sendUnconfirmed(device.upMsg.getPort(), device.

upMsg.getPayload());

15 if(error == 0) {

16 USB.println(F("--> Forward packet OK"));

17 if (LoRaWAN._dataReceived == true) {

18 USB.print(F("--> Data from NS port: "));

19 USB.print(LoRaWAN._port,DEC);

20 USB.print(F(" data: "));

21 USB.println(LoRaWAN._data);

22 device.downMsg.setMacHeader(LorawanFrame::

UNCONFIRMED_DATA_DOWN);

23 LoRaWAN.getDownCounter();

24 device.downMsg.setFrameHeader(device.address, LoRaWAN.

_downCounter);

25 device.downMsg.setMessage(LoRaWAN._port, LoRaWAN._data);

26 device.messagePending = true;

27 }

28 } else {

29 USB.print(F("Send Unconfirmed packet error = "));

30 USB.println(error, DEC);

31 }

32 }

33 }

6.3.4 Network Server

The set of needed changes to support the aforementioned subset of the relay

mode was minimal, and in practice they were limited to make the network

server discard down-link packets sent by the relay to the end-device .

Since all those packets have Unconfirmed Data Down as message type,

while the other ones sent by the relay to the gateway have Unconfirmed

Data Up, this operation was implemented just by checking the message type

and not handling the former ones in the NetworkServerMoteHandler.java

(listing 6.6).

Listing 6.6: Discard fist hop packets

1 public void run() {

88

2 if (message.getInt("stat") != 1) {

3 activity.warning("CRC not valid, skip packet");

4 return;

5 }

6

7 Packet packet = new Packet(message.getString("data"));

8

9 switch (packet.type) {

10 case Packet.JOIN_REQUEST:

11 handleJoin(packet);

12 break;

13 case Packet.CONFIRMED_DATA_UP:

14 case Packet.UNCONFIRMED_DATA_UP:

15 handleMessage(packet);

16 break;

17 case Packet.UNCONFIRMED_DATA_DOWN:

18 activity.info("Relayed message, skip packet");

19 break;

20 default:

21 activity.warning("Message type not recognized");

22 }

23 }

Since the subset of the protocol implemented on the Waspmote Pro do not

involve the use of any MAC command, the network server is not heavily

affected by the changes introduced by the relay protocol, except for the minor

changes previously described.

In the case in which the protocol is completely implemented, only the

network server should be modified. In fact the relay protocol is designed in

such way that it is transparent to the application server, which is the only

component in the server infrastructure that is in charge of managing MAC

commands coming from end-devices.

In particular, considering the architecture of the network server (figure

4.1), internal component to be modified is the Mote Handler, which must

be extended in order to support the new MAC commands, handling those

ones coming from both the end-devices and the relays, and sending back the

proper responses.

89

Chapter 7

Performance evaluation of the

relay mode

As mentioned in chapter 6, the implementation of the relay protocol on the

Waspmote Pro was affected by the heavy limitations of the platform, how-

ever functional version of a subset of the specification has been successfully

achieved.

In the same way as described in 5.2 a set of experiments has been designed

and conducted, with the aim to evaluate the performance enhancements of

the proposed two-hop solution in comparison to the standard one-hop Lo-

RaWAN architecture.

7.1 Design of test set

The main goal of this series of experiments is to compare the newly de-

signed two-hop solution with the standard LoRaWAN one-hop communica-

tion scheme. The parameters of the experiments were chosen as follows:

• Spreading Factor: SF7 and SF10 were chosen with the aim to test

both the fastest available data rate, and a more conservative data rate

which leads to a smaller packet error rate.

• Transmission power: in order to explore the impact of the reduction

of transmission power on the packet error rate, it has been decided to

90

Table 7.1: Test configurations

Parameter Values Unit

Spreading factor 7, 10
Transmission power 14, 8 dBm
Payload length 10, 50 bytes
Distance from relay 1, 1.5 Km

test the maximum available power, i.e. 14 dBm, and the minimum

one it was known from previous results to receive something at that

distance, i.e. 8 dBm;

• Payload length: as seen in single-hop test, packet length may have a

great impact on packet error rate, so it has been decided to repeat the

experiments with two different payload length (10 and 50 bytes).

• Distance from relay: as described in chapter 6, one of the goals of

implementing a two-hop solution in LoRaWAN networks was to drasti-

cally increase the link reliability in condition of high packet error rate.

To this aim it has been decided to place the relay node at the maxi-

mum possible distance with small packet error rate, which in previous

experiments it was discovered to be 1.5 Km from the gateway.

Given that the maximum distance tested during single-hop experiments

was 2.5 Km, it has been decided to start the experiments placing the

end-device at 1.0 Km from the relay in order to obtain the same total

distance. Than the end-device was placed at 1.5 Km from the relay,

that is 3.0 Km from the gateway.

The gateway was placed on the terrace of the department of information

engineering at the University of Pisa (figure 7.1), located in Via Caruso 16,

Pisa, Italy. The end-devices and the relay were placed in different spots

(figure 7.1) along a road inside the natural park of San Rossore, Pisa (Italy).

Table 7.1 summarizes the parameters chosen for this test.

91

Relay

Rural experiments

Gateway

Relay

2500 m

3000 m

Figure 7.1: Map of rural experiments with relay

7.2 Results

The results of the experiments, in general, were encouraging, since at 2500

meters from the gateway it was achieved a very low packet error rate com-

bined to the reduction of transmission power, which essentially was the pur-

pose of developing the relay-based solution.

The other great results has been effectively enlarging the coverage area

without compromising neither the number of correctly received packets, nor

the data rate. In this section the results of the experiments are shown,

organized by spreading factor.

Spreading Factor 7

SF 7 is, at the same time, the fastest and the less reliable data rate, so

it is expected to be the lower bound on the number of correctly received

packets. As shown in figure 7.2 at 2.5 km all configuration has a percentage

of correctly received packets greater then 80%, which is a giant leap ahead

from the nearly 0% packets received at the same distance with the single hop

scheme. The good performace are confirmed also at 3.0 Km, which was not

tested in single-hop scheme, with almost 60% of correctly received packets in

the worst case. In table A.12 are reported the confidence intervals for each

92

 0

 20

 40

 60

 80

 100

 2500 3000

C
or

re
ct

ly
 re

ce
iv

ed
 p

ac
ke

ts

Distance (m)

14dBm 10byte

14dBm 50byte

8dBm 10byte

8dBm 50byte

Figure 7.2: Results of two-hop experiments at SF 7

configuration.

Spreading Factor 10

SF 10 was expected to be more reliable, and in fact the results in figure 7.3

show even better performances than SF 7. At this data rate is possible to

obtain up to 97% of correctly received packets when considering 8 dBm as

transmission power and 10 bytes as payload length.

Therefore this can be considered a remarkable achievement since the new

two hop solution decreases both the packet error rate and the needed trans-

mission power with basically no extra infrastructure needed. In table A.13

are reported the confidence intervals for each configuration.

93

 0

 20

 40

 60

 80

 100

 2500 3000

C
or

re
ct

ly
 re

ce
iv

ed
 p

ac
ke

ts

Distance (m)

14dBm 10byte

14dBm 50byte

8dBm 10byte

8dBm 50byte

Figure 7.3: Results of two-hop experiments at SF 10

94

Chapter 8

Conclusions

In order to evaluate the performance of LoRaWAN a set of experiments was

designed and conducted, using a custom implementation of the LoRa server

infrastructure. As result of this operation it was discovered that the maxi-

mum possible distance that can be reach in rural area is 2500 meters, getting

71% of correctly received packets using the most conservative (and slow) set-

up (figure 5.8). However the percentage falls at 14% when considering higher

data rate, SF10 in this case, and reach 0% for the fastest data dates. The

urban experiments, instead, showed results aligned to the theory, except for

the influence of the forward error correction which in some cases were lower

than expected.

Both from the results of a theoretical analysis, published in [2], and from

the experimental data shown in chapter 5, it has arisen the need to extend

the LoRaWAN standards to support multi-hop communications using a relay-

based solution.

The performances of the new architecture were evaluated through a set

of experiments. Analyzing the results it turned out that at 2500 meters

from the gateway it is possible to achieve up to 97% of correctly received

packets (10 bytes payload at SF 10, figure 7.3), in comparison to only 14%

of correctly received packets with the standard one-hop topology in the same

configuration (figure 5.6). Moreover the two-hop solutions allowed to place

the end-devices even further than the first set of experiments, reaching 79%

95

of correctly received packets at 3000 meters.

Therefore, it is possible to conclude that the proposed solution can dras-

tically improve the reliability of the communication, preserving the features

of LoRaWAN in terms of energy efficiency. Furthermore, thanks to this ex-

tension it is possible to effectively enlarge the coverage area of a LoRaWAN

network without requiring the installation of new expensive gateways.

8.1 Future development

This work can be the starting point for future extensions, such as:

• Develop an efficient Network Controller that can be integrated with

LoRa server developed in this thesis.

• Conduct some long-term experiments in order to collect more data and

explore other possible scenarios in which it is reasonable to deploy the

LoRaWAN technology.

• Try to achieve a complete implementation of the relay protocol, over-

coming the limits that have forced to develop a subset of the original

specification.

96

Appendix A

Confidence intervals

In this appendix the computed confidence intervals for the experiments are

reported.

97

A.1 Rural experiments

Table A.1: 95% confidence intervals at 500 meters

SF
Power

(dBm)

Payload

(bytes)
TX RX Interval

7 8 10 100 100 1,0000 1,0000

8 8 10 100 100 1,0000 1,0000

9 8 10 100 100 1,0000 1,0000

10 8 10 100 100 1,0000 1,0000

11 8 10 100 97 0,9366 1,0000

12 8 10 100 54 0,4423 0,6377

7 8 50 100 99 0,9705 1,0000

8 8 50 100 100 1,0000 1,0000

9 8 50 100 99 0,9705 1,0000

10 8 50 100 100 1,0000 1,0000

11 8 50 100 98 0,9526 1,0000

12 8 50 100 56 0,4627 0,6573

7 2 10 100 99 0,9705 1,0000

8 2 10 100 100 1,0000 1,0000

9 2 10 100 99 0,9705 1,0000

10 2 10 100 100 1,0000 1,0000

11 2 10 100 99 0,9705 1,0000

12 2 10 100 75 0,6651 0,8349

7 2 50 100 100 1,0000 1,0000

8 2 50 100 99 0,9705 1,0000

9 2 50 100 100 1,0000 1,0000

10 2 50 100 100 1,0000 1,0000

11 2 50 100 98 0,9526 1,0000

12 2 50 100 68 0,5886 0,7714

98

Table A.2: 95% confidence intervals at 1000 meters

SF
Power

(dBm)

Payload

(bytes)
TX RX Interval

7 14 10 100 99 0,9705 1,0000

8 14 10 100 100 1,0000 1,0000

9 14 10 100 98 0,9526 1,0000

10 14 10 100 100 1,0000 1,0000

11 14 10 100 100 1,0000 1,0000

12 14 10 100 97 0,9366 1,0000

7 14 50 100 98 0,9526 1,0000

8 14 50 100 100 1,0000 1,0000

9 14 50 100 97 0,9366 1,0000

10 14 50 100 100 1,0000 1,0000

11 14 50 100 100 1,0000 1,0000

12 14 50 100 95 0,9073 0,9927

7 5 10 100 78 0,6988 0,8612

8 5 10 100 92 0,8668 0,9732

9 5 10 100 96 0,9216 0,9984

10 5 10 100 96 0,9216 0,9984

11 5 10 100 100 1,0000 1,0000

12 5 10 100 99 0,9705 1,0000

7 5 50 100 50 0,4020 0,5980

8 5 50 100 79 0,7102 0,8698

9 5 50 100 87 0,8041 0,9359

10 5 50 100 93 0,8800 0,9800

11 5 50 100 99 0,9705 1,0000

12 5 50 100 98 0,9526 1,0000

99

Table A.3: 95% confidence intervals at 1500 meters

SF
Power

(dBm)

Payload

(bytes)
TX RX Interval

7 14 10 100 100 1,0000 1,0000

8 14 10 100 100 1,0000 1,0000

9 14 10 100 99 0,9705 1,0000

10 14 10 100 100 1,0000 1,0000

11 14 10 100 100 1,0000 1,0000

12 14 10 100 97 0,9366 1,0000

7 14 50 100 97 0,9366 1,0000

8 14 50 100 74 0,6540 0,8260

9 14 50 100 99 0,9705 1,0000

10 14 50 100 100 1,0000 1,0000

11 14 50 100 100 1,0000 1,0000

12 14 50 100 98 0,9526 1,0000

7 8 10 100 91 0,8539 0,9661

8 8 10 100 96 0,9216 0,9984

9 8 10 100 100 1,0000 1,0000

10 8 10 100 98 0,9526 1,0000

11 8 10 100 100 1,0000 1,0000

12 8 10 100 97 0,9366 1,0000

7 8 50 100 86 0,7920 0,9280

8 8 50 100 93 0,8800 0,9800

9 8 50 100 99 0,9705 1,0000

10 8 50 100 100 1,0000 1,0000

11 8 50 100 98 0,9526 1,0000

12 8 50 100 99 0,9705 1,0000

100

Table A.4: 95% confidence intervals at 2000 meters

SF
Power

(dBm)

Payload

(bytes)
TX RX Interval

7 14 10 100 10 0,0412 0,1588

8 14 10 100 28 0,1920 0,3680

9 14 10 100 48 0,3821 0,5779

10 14 10 100 63 0,5354 0,7246

11 14 10 100 72 0,6320 0,8080

12 14 10 100 79 0,7102 0,8698

7 14 50 100 2 0,0000 0,0474

8 14 50 100 19 0,1131 0,2669

9 14 50 100 35 0,2565 0,4435

10 14 50 100 56 0,4627 0,6573

11 14 50 100 64 0,5459 0,7341

12 14 50 100 76 0,6763 0,8437

7 8 10 100 0 0,0000 0,0000

8 8 10 100 0 0,0000 0,0000

9 8 10 100 3 0,0000 0,0634

10 8 10 100 17 0,0964 0,2436

11 8 10 100 43 0,3330 0,5270

12 8 10 100 54 0,4423 0,6377

7 8 50 100 0 0,0000 0,0000

8 8 50 100 0 0,0000 0,0000

9 8 50 100 5 0,0073 0,0927

10 8 50 100 8 0,0268 0,1332

11 8 50 100 28 0,1920 0,3680

12 8 50 100 46 0,3623 0,5577

101

Table A.5: 95% confidence intervals at 2500 meters

SF
Power

(dBm)

Payload

(bytes)
TX RX Interval

7 14 10 100 0 0,0000 0,0000

8 14 10 100 7 0,0200 0,1200

9 14 10 100 25 0,1651 0,3349

10 14 10 100 14 0,0720 0,2080

11 14 10 100 64 0,5459 0,7341

12 14 10 100 71 0,6211 0,7989

7 14 50 100 0 0,0000 0,0000

8 14 50 100 0 0,0000 0,0000

9 14 50 100 2 0,0000 0,0474

10 14 50 100 7 0,0200 0,1200

11 14 50 100 6 0,0135 0,1065

12 14 50 100 27 0,1830 0,3570

7 8 10 100 0 0,0000 0,0000

8 8 10 100 0 0,0000 0,0000

9 8 10 100 0 0,0000 0,0000

10 8 10 100 0 0,0000 0,0000

11 8 10 100 2 0,0000 0,0474

12 8 10 100 10 0,0412 0,1588

7 8 50 100 0 0,0000 0,0000

8 8 50 100 0 0,0000 0,0000

9 8 50 100 0 0,0000 0,0000

10 8 50 100 0 0,0000 0,0000

11 8 50 100 0 0,0000 0,0000

12 8 50 100 1 0,0000 0,0295

102

A.2 Urban experiments

Table A.6: 95% confidence interval at SF 7

Power

(dBm)

Payload

(bytes)
CR TX RX Interval

2 10 4/5 100 0 0,0000 0,0000

2 10 4/8 100 0 0,0000 0,0000

2 50 4/5 100 0 0,0000 0,0000

2 50 4/8 100 0 0,0000 0,0000

5 10 4/5 100 12 0,0563 0,1837

5 10 4/8 100 25 0,1651 0,3349

5 50 4/5 100 0 0,0000 0,0000

5 50 4/8 100 0 0,0000 0,0000

8 10 4/5 100 86 0,7920 0,9280

8 10 4/8 100 93 0,8800 0,9800

8 50 4/5 100 0 0,0000 0,0000

8 50 4/8 100 0 0,0000 0,0000

14 10 4/5 100 98 0,9526 1,0000

14 10 4/8 100 99 0,9705 1,0000

14 50 4/5 100 87 0,8041 0,9359

14 50 4/8 100 95 0,9073 0,9927

103

Table A.7: 95% confidence interval at SF 8

Power

(dBm)

Payload

(bytes)
CR TX RX Interval

2 10 4/5 100 3 0,0000 0,0634

2 10 4/8 100 22 0,1388 0,3012

2 50 4/5 100 0 0,0000 0,0000

2 50 4/8 100 0 0,0000 0,0000

5 10 4/5 100 77 0,6875 0,8525

5 10 4/8 100 87 0,8041 0,9359

5 50 4/5 100 0 0,0000 0,0000

5 50 4/8 100 0 0,0000 0,0000

8 10 4/5 100 95 0,9073 0,9927

8 10 4/8 100 99 0,9705 1,0000

8 50 4/5 100 5 0,0073 0,0927

8 50 4/8 100 3 0,0000 0,0634

14 10 4/5 100 96 0,9216 0,9984

14 10 4/8 100 100 1,0000 1,0000

14 50 4/5 100 96 0,9216 0,9984

14 50 4/8 100 97 0,9366 1,0000

104

Table A.8: 95% confidence interval at SF 9

Power

(dBm)

Payload

(bytes)
CR TX RX Interval

2 10 4/5 100 82 0,7447 0,8953

2 10 4/8 100 95 0,9073 0,9927

2 50 4/5 100 0 0,0000 0,0000

2 50 4/8 100 0 0,0000 0,0000

5 10 4/5 100 93 0,8800 0,9800

5 10 4/8 100 97 0,9366 1,0000

5 50 4/5 100 4 0,0016 0,0784

5 50 4/8 100 43 0,3330 0,5270

8 10 4/5 100 96 0,9216 0,9984

8 10 4/8 100 99 0,9705 1,0000

8 50 4/5 100 78 0,6988 0,8612

8 50 4/8 100 92 0,8668 0,9732

14 10 4/5 100 99 0,9705 1,0000

14 10 4/8 100 99 0,9705 1,0000

14 50 4/5 100 96 0,9216 0,9984

14 50 4/8 100 99 0,9705 1,0000

105

Table A.9: 95% confidence interval at SF 10

Power

(dBm)

Payload

(bytes)
CR TX RX Interval

2 10 4/5 100 94 0,8935 0,9865

2 10 4/8 100 97 0,9366 1,0000

2 50 4/5 100 1 0,0000 0,0295

2 50 4/8 100 37 0,2754 0,4646

5 10 4/5 100 100 1,0000 1,0000

5 10 4/8 100 99 0,9705 1,0000

5 50 4/5 100 60 0,5040 0,6960

5 50 4/8 100 88 0,8163 0,9437

8 10 4/5 100 99 0,9705 1,0000

8 10 4/8 100 99 0,9705 1,0000

8 50 4/5 100 98 0,9526 1,0000

8 50 4/8 100 99 0,9705 1,0000

14 10 4/5 100 100 1,0000 1,0000

14 10 4/8 100 100 1,0000 1,0000

14 50 4/5 100 98 0,9526 1,0000

14 50 4/8 100 100 1,0000 1,0000

106

Table A.10: 95% confidence interval at SF 11

Power

(dBm)

Payload

(bytes)
CR TX RX Interval

2 10 4/5 100 95 0,9073 0,9927

2 10 4/8 100 99 0,9705 1,0000

2 50 4/5 100 51 0,4120 0,6080

2 50 4/8 100 57 0,4730 0,6670

5 10 4/5 100 97 0,9366 1,0000

5 10 4/8 100 100 1,0000 1,0000

5 50 4/5 100 85 0,7800 0,9200

5 50 4/8 100 96 0,9216 0,9984

8 10 4/5 100 100 1,0000 1,0000

8 10 4/8 100 100 1,0000 1,0000

8 50 4/5 100 99 0,9705 1,0000

8 50 4/8 100 99 0,9705 1,0000

14 10 4/5 100 100 1,0000 1,0000

14 10 4/8 100 100 1,0000 1,0000

14 50 4/5 100 98 0,9526 1,0000

14 50 4/8 100 100 1,0000 1,0000

107

Table A.11: 95% confidence interval at SF 12

Power

(dBm)

Payload

(bytes)
CR TX RX Interval

2 10 4/5 100 99 0,9705 1,0000

2 10 4/8 100 97 0,9366 1,0000

2 50 4/5 100 75 0,6651 0,8349

2 50 4/8 100 82 0,7447 0,8953

5 10 4/5 100 98 0,9526 1,0000

5 10 4/8 100 99 0,9705 1,0000

5 50 4/5 100 95 0,9073 0,9927

5 50 4/8 100 97 0,9366 1,0000

8 10 4/5 100 97 0,9366 1,0000

8 10 4/8 100 98 0,9526 1,0000

8 50 4/5 100 100 1,0000 1,0000

8 50 4/8 100 99 0,9705 1,0000

14 10 4/5 100 97 0,9366 1,0000

14 10 4/8 100 97 0,9366 1,0000

14 50 4/5 100 93 0,8800 0,9800

14 50 4/8 100 99 0,9705 1,0000

108

A.3 Rural experiments with relay

Table A.12: 95% confidence interval with relay at SF 7

Dist. (Km) Power (dBm) Payload (bytes) TX RX Interval

2.5 14 10 100 70 0,6102 0,7898

2.5 14 50 100 87 0,8041 0,9359

2.5 8 10 100 47 0,3722 0,5678

2.5 8 50 100 84 0,7681 0,9119

3.0 14 10 100 74 0,6540 0,8260

3.0 14 50 100 69 0,5994 0,7806

Table A.13: 95% confidence interval with relay at SF 10

Dist. (Km) Power (dBm) Payload (bytes) TX RX Interval

2.5 14 10 100 90 0,8412 0,9588

2.5 14 50 100 91 0,8539 0,9661

2.5 8 10 100 97 0,9366 1,0000

2.5 8 50 100 81 0,7331 0,8869

3.0 14 10 100 79 0,7102 0,8698

3.0 14 50 100 70 0,6102 0,7898

109

Bibliography

[1] Estimation in the bernoulli model. http://www.math.uah.edu/stat/

interval/Bernoulli.html.

[2] Ferran Adelantado, Xavier Vilajosana, Pere Tuset-Peiró, Borja Mart́ınez,

and Joan Melià. Understanding the limits of lorawan. CoRR,

abs/1607.08011, 2016.

[3] M. Aref and A. Sikora. Free space range measurements with semtech lora

technology. In Wireless Systems within the Conferences on Intelligent

Data Acquisition and Advanced Computing Systems: Technology and Ap-

plications (IDAACS-SWS), 2014 2nd International Symposium on, pages

19–23, Sept 2014.

[4] Marco Centenaro, Lorenzo Vangelista, Andrea Zanella, and Michele

Zorzi. Long-range communications in unlicensed bands: the rising stars

in the iot and smart city scenarios. Oct 2015.

[5] J. Petajajarvi, K. Mikhaylov, A. Roivainen, T. Hanninen, and M. Pet-

tissalo. On the coverage of lpwans: range evaluation and channel atten-

uation model for lora technology. In ITS Telecommunications (ITST),

2015 14th International Conference on, pages 55–59, Dec 2015.

[6] C. Pham. Deploying a pool of long-range wireless image sensor with

shared activity time. In Wireless and Mobile Computing, Networking and

Communications (WiMob), 2015 IEEE 11th International Conference on,

pages 667–674, Oct 2015.

110

[7] Libelium Comunicaciones Distribuidas S.L. Waspmote lorawan network-

ing guide. http://www.libelium.com/downloads/documentation/

waspmote-lorawan-networking-guide.pdf, May 2016.

[8] N. Sornin, M. Luis, T. Eirich, T. Kramp, and O. Hersent. Lorawan

specification. Technical report, LoRa Alliance, 2015.

[9] T. Wendt, F. Volk, and E. Mackensen. A benchmark survey of long range

(loratm) spread-spectrum-communication at 2.45 ghz for safety applica-

tions. In Wireless and Microwave Technology Conference (WAMICON),

2015 IEEE 16th Annual, pages 1–4, April 2015.

111

