
Application of

Belief Propagation Algorithms

on Factor Graphs:

from Sudoku solving

to LDPC decoding

Francesco Porcu

September 22, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/79619165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

List of Figures iii

List of Tables v

List of Acronyms vii

List of Symobols and Operators ix

Introduction 1

Outline . 3

Introduzione 5

Outline . 7

1 Belief Propagation on Factor Graphs 9

1.1 Introduction to Belief Propagation and Factor Graphs 9

1.2 Factor Graphs . 9

1.3 Message Passing . 12

2 Solving Sudoku using Belief Propagation Algorithms on Factor Graphs 17

2.0.1 Historical notes . 17

2.0.2 Related Works . 18

2.1 Sudoku with Factor Graphs . 18

2.1.1 Belief Propagation Formulation . 22

2.2 Solving Sudoku using Moon Algorithm . 25

2.2.1 Constraint to Variable Message . 25

2.2.2 Variable to Constraint Message . 28

2.3 Solving Sudoku using a different Algorithm 28

2.3.1 Program Analysis . 29

2.3.2 Constraint Function: Methodologies For Solutions 30

ii CONTENTS

2.3.3 Variable Function . 37

2.3.4 Message-Passing Schedules . 37

2.4 Conclusion and Results for Sudoku Sokving 42

2.4.1 Stopping set in Belief propagation . 42

2.4.2 Equivalence of the Algorithms . 43

2.4.3 Complexity of the Algorithms . 45

2.4.4 Conclusions . 48

3 Solving Low-Density Parity-Check Codes with Belief Propagation Algo-

rithms on Binary Erasure Channel 51

3.1 Introduction to LDPC codes . 51

3.2 Low Density Parity-check Code (LDPC) . 52

3.2.1 Transmission Through a Gaussian Channel 54

3.2.2 Hard-decision Decoder . 55

3.2.3 Hard-decision Encoder . 56

3.3 LDPC Codes Over Binary Erasure Channels 57

3.4 Conclusion and Results for LDPC Codes . 60

4 Conclusions and perspectives 69

Bibliography 71

Analytic Index 73

List of Figures

1.1 Different Examples of Factor Graphs. 11

1.2 Local substitutions that transform a rooted cycle-free factor graph to an ex-

pression tree for a marginal function at (a) a variable node and (b) a factor

node. 12

1.3 A factor-graph fragment, showing the update rules of the sum-product algorithm. 13

2.1 Figures relative to a sudoku 4*4. 19

2.2 Sudoku Puzzle 9*9 . 20

2.3 Sudoku-Hex Puzzle 16*16 . 20

2.4 Tanner graph associated with Sudoku puzzle 9*9 21

2.5 Moon Algorithm for a Sudoku puzzle 9*9 . 27

2.6 Naked Single method for a Sudoku puzzle 9*9 31

2.7 Hidden Single method for a Sudoku puzzle 9*9 32

2.8 Naked Single method for a Sudoku puzzle 9*9 33

2.9 Different Check Node 1 and 2 . 40

2.10 Different Check Node 1 and 2 . 40

2.11 Stopping Set in Sudoku . 43

2.12 Stopping Set in Sudoku . 44

2.13 Invalid Permutation for A Sudoku 4*4. 44

2.14 Success solving rate of the algorithms depending on the level of sudokus.

Evaluated using 30 sudokus of each level. 48

3.1 Belief propagation example code. 55

3.2 Binary channel. 58

3.3 Parity Equations for a LDPC code over BEC. 59

3.4 Additive white Gaussian noise channel AWGN 60

3.5 Graph of BER. 60

3.6 Graph of WER. 61

iv LIST OF FIGURES

3.7 Range of Erasures. 61

3.8 Success Percentage. 62

3.9 BER and WER Vs. EbNo for a Threshold of 0.4. 62

3.10 BER and WER Vs. EbNo for a Threshold of 0.5. 63

3.11 BER and WER Vs. EbNo for a Threshold of 0.6. 63

3.12 BER and WER Vs. EbNo for a Threshold of 0.7. 64

3.13 BER and WER Vs. EbNo for a Threshold of 0.8. 64

3.14 BER and WER Vs. EbNo for a Threshold of 0.9. 65

3.15 BER and WER Vs. EbNo for a Threshold of 1.0. 65

3.16 BER and WER Vs. EbNo for a Threshold of 1.1. 66

3.17 BER and WER Vs. EbNo for a Threshold of 1.2. 66

3.18 BER and WER Vs. EbNo for a Threshold of 1.3. 67

3.19 BER and WER Vs. EbNo for a Threshold of 1.4. 67

3.20 BER and WER Vs. EbNo for a Threshold of 1.5. 68

List of Tables

2.1 Complexity at the Constraint Node. 24

2.2 Scheduling Average times. 42

2.3 Confront of the Time Duration. 47

2.4 Numbers for Sudoku Difficult. 48

3.1 Check nodes activities for Hard-Decision Decoder for code of Fig. 3.1 57

3.2 Message nodes decision for Hard-Decision Decoder for code of Fig. 3.1 57

List of Acronyms

AI Artificial Intelligence

a.s. almost surely

AS Adaptive Schedule

AWGN additive white Gaussian noise

BCJR Bahl, Cocke, Jelinek and Raviv

BEC Binary-input Erasure Channel

BAWGN Binary additive white Gaussian noise

BSC Binary Symmetric Channel

BER bit error rate

BG Bipartire graph

BP Belief propagation

BPSK Binary phase-shift keyed

CN Constraint Nodes

CS Configuration Space

CSP Constraint Satisfaction Problem

EP Erasure probability

EU European Union

FG Factor Graphs

GC Gaussian channel

GM Graphical Model

HD Hard Decoder

HS Hidden-single Algorithm

HW Hamming weight

i.i.d. independent and identically distributed

LDPC Low-density Parity-check

viii LIST OF ACRONYMS

MF Marginal Function

MLCC Multiple Local Combinatorial Constraint

MP Max-product

MV Message vector

NAS Non Adaptive Schedule

NP Nondeterministic Polynomial

NS Naked-single algorithm

PCM Parity check matrix

PP Probabilistic Propagation

R Real Numbers

RV random variable

SD Soft Decoder

SP Sum-product

TC Turbo Codes

TG Tanner Graphs

US United States

VA Viterbi Algorithm

VN Variable Nodes

WER Word error rate

List of Symobols and Operators

cross product ×
Hadamard (element-wise) product ◦
floor function (rounding downward) ⌊·⌋
absolute value |·|
vector norm ||·||
conjugate transposition (·)H

transposition (·)T

Sum of the argument x
∑

x

Product of the argument x
∏

x

Set of real numbers R

Probability of erasure ε

Energy per Bit Eb

Energy per bit to noise power spectral density

ratio

Eb/N0

Energy per Coded Bit Ec

Probability of erasure ǫ

Permutations of cardinality i ci

Constraint function for the node m Cm

Cells that partecipate in constraint m Nm

Cells that partecipate in constraint m except

for the cell n

Nmn

Probabilistic vector for the Variable n pn

Message from variable node n to constraint

node m

qnm

Decision valuebased upon the message received

by the variable node n

qn

x LIST OF SYMBOLS AND OPERATORS

Cell n of the factor Graph Sn

Message vector from Constraint node m to

variable node n

rmn

Weight for the column c wc

Weight for the row r wr

Parity check for the constraint node m zm

Dimension of the Sudoku Puzzle N ∗N
Variable nodes of a Factor Graph {x1, ..., xN∗N }
R-valued function of the variables xi g(x1, x2, ...xn)

Marginal functions gi(xi)

summary for xi
∑

∼xi

Variable xi is function of the constraint node

A

fA(xi)

Edge of the Factor Grapg e = {x, f}
Message sent from node x to node f µx→f(x)

Message sent from node f to node x µf→x(x)

Set of neighbors of a given node v in a factor

graph

n(v)

Marginal function for x obtained by multiply-

ing together all the messages received by x

∏

h∈n(x)\{f}

Probability vector associated with cell Sn pn = [P (Sn = 1)P (Sn = 2)...P (Sn = 9)]

Probability that constraint Cm is satisfied

when the cell Sn contains x

P (Cm | Sn = x)

Constraint nodes for variable n except m Cm′ , m′ ∈ Mnm

Variables nodes for the constraint node m ex-

cept for n

xn′ , n′ ∈ Nm,n

Rate of the code R =
k

n
Bit 1 sent from Constraint node i ci → 1

Bit 1 received by Constraint node i 1 → ci

Bit sent from a variable node to the constraint

i

fi → 1

Capacity of the binary Erasure Channel 1− ε

LIST OF SYMBOLS AND OPERATORS xi

Introduction

The Belief Propagation (BP) algorithm (Pearl 1988) is a sum-product message passing

algorithm. The problem needs to be modeled by a Bipartite Graph called Factor Graphs

(FG), which is a graph with two types of nodes : Variable Nodes to compute, and Constraint

Nodes that represent the system properties. Then, by passing messages recursively between

each connected nodes, the graph reaches a stationary (or nearly stationary) state where the

variable nodes have the values that solve the system.

The presence of short cycles in the graph creates biases so that not every puzzle is solved

by this method. However, all puzzles are at least partly solved by this method. The Sudoku

application thus demonstrates the potential effectiveness of Belief Propagation algorithms on

a general class of multiple constraint satisfaction problems.

Factor Graphs are a straightforward generalization of the Tanner graphs of Wiberg. Tanner

introduced BG to describe families of codes which are generalizations of the low-density

parity-check (LDPC) codes of Gallager [8].

The origins of Factor Graphs lie in coding theory, but they offer an attractive notation

for a wide variety of signal processing problems. In particular, a large number of practical

algorithms for a wide variety of detection and estimation problems can be derived as summary

propagation algorithms. The algorithms derived in this way often include the best previously

known algorithms as special cases or as obvious approximations.

Belief Propagation algorithms are also the means by which LDPC codes are decoded. In

LDPC decoding, information about received bits that is implied collectively by the set of

parity constraints is combined together in a (nearly) Bayesian way with information from

the received data to provide information about the bits that were originally transmitted.

In applying Belief Propagation methods, the problem is mapped to a graph and messages

representing Bayes probabilities are passed among the nodes of the graph.

Belief Propagation is Bayesian optimal for graphs without cycles, but suffers from biases for

graphs with cycles. The graph associated with Sudoku, like the graphs for LDPC codes, does

2 Introduction

have cycles. Every node in the Sudoku graph lies on two cycles of length four. The biases

introduced by these short cycles cause failure of the Belief Propagation method for more

difficult puzzles due to the existence of stopping-sets where the algorithm shucked before the

puzzle is completely solved.

The application reveals the possibility of applying Belief Propagation techniques to mul-

ticonstraint problems, at least to eliminate many of the possibilities, perhaps leaving the

problem suficiently small that a global search may be possible.

The two main summary propagation algorithms are the sum-product (or Belief Propagation

or probability propagation) algorithm and the max-product (or min-sum) algorithm, both of

which have a long history.

In the context of error correcting codes, the sum-product algorithm was invented by Gallager

as a decoding algorithm for LDPC codes; it is still the standard decoding algorithm for such

codes. The full potential of LDPC codes was not yet realized at that time. Tanner explicitly

introduced graphs to describe LDPC codes, generalized them (by replacing the parity checks

with more general component codes), and introduced the min-sum algorithm.

A surprisingly wide variety of algorithms developed in the artificial intelligence, signal

processing, and digital communications communities may be derived as specific instances

of the sum-product algorithm, operating in an appropriately chosen factor graph.

In the first part of my thesis, we use the Belief Propagation paradigm to solve a problem

with multiple local combinatorial constraints, namely, the popular Sudoku puzzle. The Belief

Propagation method is very general and does not require any human insight or tricks, nor

does it require building solution trees. It is thus potentially applicable to a broad variety of

problems as a general tool. Easy Sudoku puzzles can be solved by simple elimination but

difficult Sudoku puzzles are actually NP-complete.

In the second part, we use the BP paradigm to decode the LDPC codes over a Binary

Erasure Channel (BEC) with the technique of the Hard Decoder . The belief propagation

decoder for erasure channels operates by exchanging messages containing sets of possible

bits. We use this section to show the analogy between SUDOKU puzzles and LDPC. Both

can be represented by a factor graph, where the constraints for LDPC codes are linear, i.e.
∑

ci∗xi = 0, where the coefficients and sum are defined over a finite field, while for SUDOKU

the constraints are non linear, requiring all variables in a constraint to have different values

within a finite alphabet.

In this work we will implement different algorithms to solve the SUDOKU puzzle with Belief

Introduction 3

Propagation; we will analyse the performances of every algorithm and we will present the

advantages and the limitations of every approach. We will try to apply some improvements in

order to have a better performance. Finally we will compare the SUDOKU puzzle algorithm

with the LDPC algorithm, but just from a qualitative point of view, in order to see the

common problems.

Outline

The remainder of this thesis is structured as follows.

In Chapter 1, we introduce the fundamental knowledges of Belief propagation. In particular,

we outline the basic concepts of Belief Propagation, message passing, Factor Graph and Sum-

product algorithm.

In Chapter 2 we introduce the mathematical notions about Sudoku and how we can associate

this game with Belief Propagation and Factor Graph 2.1. It follow the explaination of the

algorithm proposed by T.K.Moon in the Sec. 2.2, the explaination of my version of the

algorithm in Sec. 2.3 and finally the conclusions with all the results and considerations about

the Sudoku Solving algorithm in Sec. 2.4.

In Chapter 3 we talk about Low-Density Parity-Check Codes; first of all we introdece them

from an historical point of view. In the Sec. 3.2 we can see an explaination more accurate

about the algorithm and how it works. To follow, we find in Sec. 3.3 the mode of operation

of the LDPC Codes over the Binary Erasure Channel that is the method debated in this

chapter. Finally in Sec. 3.4 we can read the conclusions and the results for this argument.

To conclude in Chapter 4, we draw some final considerations for this thesis and the different

studied algorithms.

Introduzione

L’algoritmo di Belief Propagation (BP) (Pearl 1988) è un algoritmo di message passing. Il

problema viene modellato per mezzo di un grafo Bipartito chiamato Factor Graph (FG), che

è un grafo con due tipi di nodi: nodi variabile e nodi vincolo; essi rappresentano le proprietà

di sistema. Passando i messaggi ricorsivamente tra i nodi connessi, il grafo raggiunge uno

stato stazionario (o quasi stazionario) dove i nodi variabile contengono i valori che risolvono

il sistema.

La presenza di brevi cicli nel grafo crea distorsioni e non tutti i puzzle vengono risolti

da questo metodo. Tuttavia, tutti i puzzle vengonoo almeno in parte semplificati con questo

metodo. Con l’applicazione dell’algoritmo al Sudoku si vuole dimostrare la potenziale efficacia

degli algoritmi di Belief Propagation in una classe pi generale di problemi di soddisfazione

dei vincoli.

Il Factor Graph è una generalizzazione del Tanner Graph di Wiberg. Tanner ha introdotto

i BG per descrivere famiglie di codici che sono generalizzazioni dei codici Low-density parity-

check (LDPC) di Gallager [8].

Le origini dei Factor Graphs risiedono nella teoria dei codici, ma offrono una notazione

interessante per un un’ampia varietà di problemi di elaborazione dei segnali. In particolare,

un gran numero di algoritmi pratici per una grande varietà di problemi di rilevamento e di

stima possono essere derivati; tra questi per esempio algoritmi di sintesi di propagazione. Gli

algoritmi derivati in questo modo includono spesso i migliori algoritmi precedentemente noti

come casi speciali o come evidenti approssimazioni.

Algoritmi di Belief Propagation sono anche i mezzi attraverso i quali i codici LDPC vengono

decodificati. Durante la decodifica LDPC, le informazioni sui bit ricevuti che sono implicite

nei vincoli di parità sono combinate insieme, in modo Bayesiano (o quasi), alle informazioni

dai dati ricevuti per fornire informazioni sui bit che sono stati originariamente trasmessi.

Nell’applicazione dei metodi di Belief Propagation, il problema è associato a un grafo e i

messaggi che rappresentano le probabilità bayesiane sono passati tra i nodi del grafo.

Belief Propagation è bayesiano ottimale per i grafi senza cicli, ma soffre di errori in quelli

6 Introduzione

con cicli. Il grafo associato al Sudoku, come anche per i codici LDPC, ha vari cicli. Ogni

nodo del grafo Sudoku si trova su due cicli di lunghezza quattro. Le distorsioni introdotte

da queste brevi cicli causano il fallimento dell’algoritmo di Belief Propagation per puzzle più

difficili a causa dell’esistenza di stopping-set dove l’algoritmo si blocca prima che il puzzle sia

completamente risolto.

L’applicazione mostra la possibilità di applicare le tecniche di Belief Propagation a problemi

multiconstraint, almeno per eliminare molte delle possibilità, lasciando il problema in una

situazione più semplificata in cui una ricerca globale pu essere possibile.

I due algoritmi di sintesi di propagazione principali sono il Sum-product (detto anche algo-

ritmo di Belief Propagation o di Probability Propagation) e l’algoritmo max-product (anche

detto min-sum); entrambi i quali hanno una lunga storia.

Nel contesto degli algoritmi di error correcting codes, l’algoritmo di sum-product è stato

inventato da Gallager come algoritmo di decodifica dei codici LDPC; ed ancora è lo standard

di decodifica di tali codici. L’intero potenziale di codici LDPC non era ancora stato scoperto

in quel momento. Tanner esplicitamente introdusse i grafi per descrivere i codici LDPC,

li generalizzò (sostituendo i parity check codes con codici pi generale), introducendo anche

l’algoritmo min-sum.

Una varietà sorprendente di algoritmi che venne sviluppata nell’ambito dell’intelligenza

artificiale, elaborazione del segnale, e comunicazione digitale possono essere derivati come

specifiche istanze dell’algoritmo sum-product, che operano in un Factor Graph opportuna-

mente scelto.

Nella prima parte della mia tesi, mostrerò il paradigma di Belief Propagation di risolvere

un problema con vincoli combinatoriali locali, vale a dire, il popolare puzzle di Sudoku.

Il metodo di Belief Propagation è molto generale e non richiede alcuna conoscenza o trucchi

umani. è quindi potenzialmente applicabile ad un’ampia varietà di problemi, come strumento

generale. I puzzle più semplici possono essere risolti con una semplice eliminazione logica ma

quelli più difficili sono in realtà un problema NP-completo.

Nella seconda parte della mia tesi, usiamo il paradigma di Belief Propagation per decodificare

i codici LDPC su un Binary Erasure Channel (BEC), con la tecnica del Hard Decoder. Il

Belief Propagation decoder per gli erasure channel opera attraverso lo scambio di messaggi

contenenti i set dei possibili bit.

Nella sezione successiva visualizzeremo l’analogia tra i puzzle Sudoku e LDPC. Entrambi

possono essere rappresentati da un Factor Graph dove per i codici LDPC abbiamo vincoli

lineari, vale a dire sumCi ∗ xi = 0, dove i coefficienti e somma sono definiti su un campo

Introduzione 7

finito, mentre per il Sudoku abbiamo dei vincoli non lineari, ossia le variabile appartenenti a

un certo vincolo possono avere valori diversi all’interno di un alfabeto finito.

In questo lavoro si realizzeranno diversi algoritmi per risolvere il puzzle Sudoku con Belief

Propagation; analizzeremo le prestazioni di ogni algoritmo e verranno presentati i vantaggi

ed i limiti di ogni approccio. Cercheremo di applicare alcuni miglioramenti al fine di avere

migliori prestazioni. Infine metteremo a confronto l’algoritmo usato nel Puzzle Sudoku con

l’algoritmo usato sui codici LDPC, ma solo da un punto di vista qualitativo, al fine di vedere

i problemi e i pregi comuni.

Outline

Questa tesi è strutturata come segue.

Nel capitolo 1, vi presentiamo le conoscenze fondamentali dell’algotitmo di Belief Propaga-

tion. In particolare, si delineano i concetti di base della Belief Propagation, il message-passing,

i Factor Graph e l’algoritmo sum-product.

Nel capitolo 2 introduciamo le nozioni matematiche che stanno alla base del Sudoku e come

possiamo associare questo gioco con la Belief Propagation e i Factor Graphs nella sezione 2.1.

Seguono la spiegazione dell’algoritmo proposto da T.K. Moon nella sezione 2.2, e della mia

versione dell’algoritmo in 2.3. Per finire questo capitolo troviamo le conclusioni con tutti i

risultati e le considerazioni circa l’algoritmo di Sudoku Solving in sezione 2.4.

Nel capitolo 3 si parla dei codici LDPC; prima di tutto li introdurremo da un punto di vista

storico. Nella sezione 3.2 avremo una spiegazione più precisa circa il funzionamento di questi

codici. A seguire, troviamo in 3.3 la modalità di funzionamento dei codici LDPC applicati ai

Binary Erasure Channels, che è il metodo discusso in questo capitolo. Infine nel paragarfo

3.4 troveremo conclusioni e risultati di questo argomento.

Nel capitolo finale (4), leggeremo alcune considerazioni finali sul lavoro svolto in questa tesi

e sui diversi algoritmi studiati.

8 Introduzione

Chapter 1

Belief Propagation on Factor

Graphs

1.1 Introduction to Belief Propagation and Factor Graphs

A large variety of algorithms in coding, signal processing, and artificial intelligence may

be viewed as instances of the summary-product algorithm (or belief/probability propagation

algorithm), which operates by message passing in a graphical model.

The two main summary propagation algorithms are the sum-product (or belief propagation

or probability propagation) algorithm and the max-product (or min-sum) algorithm.

In the context of error correcting codes, the sum-product algorithm was invented by Gallager

[8] as a decoding algorithm for low-density parity check (LDPC) codes;

Tanner [15] explicitly introduced graphs to describe LDPC codes, generalized them (by

replacing the parity checks with more general component codes), and introduced the min-

sum algorithm.

The full power of iterative decoding was only realized by the breakthrough invention of

turbo coding by Berrou et al. . [4], which was followed by the rediscovery of LDPC codes [10].

Wiberg et al. [16, 17] observed that the decoding of turbo codes and LDPC codes as well as

the Viterbi and BCJR algorithms [3] are instances of one single algorithm, which operates by

message passing in a generalized Tanner graph. The later introduction of factor graphs [7,9]

may be viewed as a further elaboration of the ideas by Wiberg et al. .

1.2 Factor Graphs

First of all, the belief propagation algorithm apply only to a factor graph. A Factor Graph is

a bipartite graph representing the factorization of a function [18]. Graphs not only describe

the codes, but, more important, they structure the operation of the sumproduct decoding

10 Belief Propagation on Factor Graphs

algorithm (or one of many possible variations), which can be used for iterative decoding.

In probability theory and its applications, factor graphs are used to represent factorization

of a probability distribution function , enabling efficient computations, such as the compu-

tation of marginal distributions through the sum-product algorithm. One of the important

success stories of Factor Graphs and the sum-product algorithm is the decoding of capacity-

approaching error-correcting codes, such as LDPC and turbo codes.

Let x1, x2, ...xn, be a collection of variables, in which, for each {i, xi}, takes on values in

some (usually finite) domain (or alphabet) Ai. Let g(x1, x2, ...xn) be an R−valued function

of these variables, i.e., a function with domain S = A1 ∗ A2 ∗ ... ∗ An and codomain R. The

domain of S is called the configuration space for the given collection of variables, and each

element of S is a particular configuration of the variables, i.e., an assignment of a value to

each variable.

The codomain R of g may in general be any semiring; however we will lose nothing essential

by assuming that is the set of real numbers.

Assuming that summation in R is well defined, then associated with every function are

marginal functions gi(xi). For each a ∈ Ai, the value of gi(a) is obtained by summing the

value of g(x1, x2, ...xn) over all configurations of the variables that have xi = a.

This type of sum is central to this work and we now see a nonstandard notation to handle it:

the not-sum or summary. Instead of indicating the variables being summed over, we indicate

those variables not being summed over. For example, if h is a function of three variables,

x1, x2, x3, then the summary for x2 is denoted by

∑

∼x2

h(x1, x2, x3) :=
∑

x1∈A1

∑

x3∈A3

h(x1, x2, x3) (1.1)

In this notation we have

gi(xi) :=
∑

∼xi

g(x1, ..., xn) (1.2)

i.e., the i -th marginal function associated with g(x1, x2, ...xn) is the summary for xi of g.

We are interested in developing efficient procedures for computing marginal functions that

exploit the way in which the global function factors, using the distributive law to simplify the

summations, and reuses intermediate values (partial sums). As we will see, such procedures

can be expressed very naturally by use of a factor graph.

Suppose that g(x1, x2, ...xn) factors into a product of several local functions, each having

some subset of x1, x2, ...xn as arguments;

i.e., suppose that

1.2 Factor Graphs 11

(a) Factor Graph with

Variable Nodes (green) and

Constraint Nodes (red).

(b) A Factor Graph for the product fA(x1) ∗ fB(x2) ∗

fC(x1, x2, x3) ∗ fD(x3, x4) ∗ fE(x3, x5).

Figure 1.1: Different Examples of Factor Graphs.

g(x1, x2, ...xn) =
∏

j∈J

fj(Xj) (1.3)

where J is a discrete index set, Xj is a subset of x1, ...xn, and fj(Xj) is a function having

the elements of Xj as arguments.

Definition: A factor graph is a bipartite graph that expresses the structure of the factor-

ization 1.3. A factor graph has a variable node for each variable xi, a factor node for each

local function fi, and an edge-connecting variable node xi to factor node fi if and only if

xi is an argument of fi.

A Factor Graph is thus a standard bipartite graphical representation of a mathematical

relation; in this case, the ”is an argument of ” relation between variables and local functions.

We can see an example of Factor Graph in the Figure 1.1 (a).

Example 1 (A Simple Factor Graph): Let g(x1, x2, x3, x4, x5) be a function of five variables,

and suppose that g can be expressed as a product:

g(x1, x2, x3, x4, x5) = fA(x1) ∗ fB(x2) ∗ fC(x1, x2, x3) ∗ fD(x3, x4) ∗ fE(x3, x5) (1.4)

12 Belief Propagation on Factor Graphs

Figure 1.2: Local substitutions that transform a rooted cycle-free factor graph to an expression tree

for a marginal function at (a) a variable node and (b) a factor node.

of five factors, so that ,fA(x1) ∗ fB(x2) ∗ fC(x1, x2, x3) ∗ fD(x3, x4) ∗ fE(x3, x5). The Factor

Graph that corresponds to 1.4 is shown in figure 1.1 (b).

The goal of the decomposition in two different types of nodes, is to divide a function,

representing a complex system, which is difficult to compute, into smaller functions which

only depend on a few variables and which can be more easily computed.

1.3 Message Passing

To better understand the sum-product algorithm we now see a message-passing algorithm:

the single-i sum-product algorithm, since it computes, for a single value of i the marginal

function gi(xi) in a rooted cycle-free factor graph, with xi taken as root vertex.

The computation begins at the leaves of the Factor Graph. Each leaf variable node sends a

trivial identity function message to its parent, and each leaf factor node f sends a description

of f to its parent. Each vertex waits for messages from all of its children before computing

the message to be sent to its parent.

This computation is performed according to the transformation shown in Fig. 1.2; i.e., a

variable node simply sends the product of messages received from its children, while a factor

node with parent forms the product of with the messages received from its children, and then

operates on the result with a
∑

∼x

summary operator. By a product of messages we mean an

appropriate description of the (pointwise) product of the corresponding functions.

If the messages are parametrizations of the functions, then the resulting message is the

parametrization of the product function, not (necessarily) literally the numerical product of

the messages. Similarly, the summary operator is applied to the functions, not necessarily

1.3 Message Passing 13

Figure 1.3: A factor-graph fragment, showing the update rules of the sum-product algorithm.

literally to the messages themselves.

The computation terminates at the root node xi, where the marginal function gi(xi) is

obtained as the product of all messages received at xi.

It is important to note that a message passed on the edge {x, f}, either from variable

x to factor f , or vice versa, is a single-argument function of x, the variable associated

with the given edge. This follows since, at every factor node, summary operations are always

performed for the variable associated with the edge on which the message is passed. Likewise,

at a variable node, all messages are functions of that variable, and so is any product of these

messages.

The message passed on an edge during the operation of the single- sum-product algorithm

can be interpreted as follows. If e = {x, f} is an edge in the tree, where x is a variable node

and f is a factor node, then the message passed on e during the operation of the sum-product

algorithm is simply a summary for x of the product of the local functions descending from

the vertex that originates the message.

In many circumstances, we may be interested in computing gi(xi) for more than one value

of i. Such a computation might be accomplished by applying the single- algorithm separately

for each desired value of i, but this approach is unlikely to be efficient, since many of the

sub-computations performed for different values of will be the same. Computation of gi(xi)

for all i simultaneously can be efficiently accomplished by essentially overlaying on a single

FG all possible instances of the single algorithm. No particular vertex is taken as a root

vertex, so there is no fixed parent/child relationship among neighboring vertices.

As in the single algorithm, message passing is initiated at the leaves. Each vertex remains

idle until messages have arrived on all but one of the edges incident on v. Just as in the

single-i algorithm, once these messages have arrived, v is able to compute a message to be

sent on the one remaining edge to its neighbor (temporarily regarded as the parent), just as

in the single-i algorithm, i.e., according to Fig. 1.2. Let us denote this temporary parent

14 Belief Propagation on Factor Graphs

as vertex w. After sending a message to w, vertex v returns to the idle state, waiting for

a return message to arrive from w. Once this message has arrived, the vertex is able to

compute and send messages to each of its neighbors (other than w), each being regarded, in

turn, as a parent.

The algorithm terminates once two messages have been passed over every edge, one in each

direction. At variable node xi, the product of all incoming messages is the marginal function

gi(xi), just as in the single algorithm. Since this algorithm operates by computing various

sums and products, we refer to it as the sum-product algorithm.

The sum-product algorithm operates according to the following simple rule:

The message sent from a node v on an edge e is the product of the local function at v

(or the unit function if v is a variable node) with all messages received at v on edges other

than e, summarized for the variable associated with e.

Let µx→f(x) denote the message sent from node x to node f in the operation of the

sum-product algorithm, let µf→x(x) denote the message sent from node f to node x. Also,

let n(v) denote the set of neighbors of a given node v in a factor graph.

Then, as illustrated in Fig. 1.3, the message computations performed by the sum-product

algorithm may be expressed as follows:

Variable to Constraint function

µx→f (x) =
∏

h∈n(x)\{f}

µh→x(x) (1.5)

Constraint to Variable function

µf→f (x) =
∑

∼x

(f(X) ∗
∏

y∈n(f)\{x}

µy→f (y)) (1.6)

where X = n(f) is the set of arguments of the function f . In words, the update rule to

evaluate marginal function at a variable node xi is obtained by multiplying together all of

the messages received at xi (as we can see in Eq. 1.5) because there is no local function to

include, and the summary for of a product of functions of is simply that product.

On the other hand, the update rule at a local function node given by Eq. 1.6 in general

involves nontrivial function multiplications, followed by an application of the summary oper-

ator.

1.3 Message Passing 15

In a cycle-free factor graph, an outgoing message at any vertex v may be computed and sent

on an edge e as soon as all of the information needed to compute that message (messages

that arrive at v on edges other than e) is available at v. It follows that message-passing is

initiated at the leaf vertices, since such vertices have all the required information at the very

start.

The algorithm terminates once every variable vertex has received a message from each of

its neighbors. In a finite cycle-free factor graph with E edges, the termination condition is

achieved in no more than 2E steps (i.e., it is never necessary to send more than two message

over an edge, one in each direction). The following theorem is proved in [10].

Theorem 1 In a finite cycle-free factor graph representing a function g(x1, ..., xn), the

function µ(xi) computed by the sum-product algorithm according to Eq. 1.6 is the marginal

function for xi.

Unfortunately, the presence of cycles in the graph results in indefinite propagation of

messages, resulting in an iterative algorithm with no natural termination. Even with cycles

in their factor graphs, turbo codes and LDPC codes achieve a performance with sum-product

decoding that comes to within a fraction of a decibel of the Shannon limit in binary-input ad-

ditive white Gaussian noise (BIAWGN) channels. Careful optimization of the graph structure

associated with ensembles of irregular LDPC codes has led to capacity-achieving performance

on the binary erasure channel , and to performance that is practically indistinguishable from

the Shannon limit on BIAWGN channels.

Chapter 2

Solving Sudoku using Belief

Propagation Algorithms on Factor

Graphs

Sudoku is a popular number puzzle. It is composed by a grid (usually 9x9) with some cells

already filled. Here, we model the puzzle as a probabilistic graphical model and we use the

sum-product message passing [11] to solve the puzzle. In addition, we propose a different

Sudoku solver algorithm and we will show that with this algorithm we have an improvement

of the performances.

This is possible because the new algorithm is more specific for the Sudoku Puzzle, so it is

better on the performances but we can’t use it for other kind of problems. Vice versa the

first algorithm is worse talking about performances but it can be applied in more problems

of the Belief propagation on Factor Graphs.

This chapter contains an introduction to the sudoku and a brief chronology of Sudoku

Puzzle, given in Sect. 2.0.1; the basic concepts of Belief Propagation, Factor Graphs and

Sum-Product Algorithm associated with Sudoku Solving are outlined in Sects. 2.1. Finally,

Sect. 2.2 and 2.3 provides all the research material used during the course of the work and

the final results with their respective conclusions.

2.0.1 Historical notes

Sudoku is a popular puzzle printed daily in newspapers all over the world. The aim of the

most popular form is to fill a 9 ∗ 9 matrix of cells with digits from 1 through 9. Sudoku fans

get puzzles not only from daily newspapers. Bookstores sell books with Sudoku puzzles, web

sites offer Sudoku problems and it’s possible play Sudoku on own mobile.

The first occurrence was in Dell Pencil Puzzles & Word Games in 1979.

18 Solving Sudoku using Belief Propagation Algorithms on Factor Graphs

In Sudoku the cells are arranged in nine rows and nine columns; they have to be filled with

the numbers 1 to 9. Initially some cells are already filled in with numbers. These cells are

called givens. The players aim is to fill in the remaining cells in such a way, that each column,

each row, and each 3 ∗ 3 sub-square contains no figure more than once. That means, each

column, each row, and each 3 ∗ 3 sub-square contains a permutation of the numbers 1 to 9.

A well formed Sudoku has a unique solution.

For short: the numbers must be single, what is roughly the meaning of the Japanese

name Sudoku. (Actually, its not important that Sudoku deals with numbers, in fact, any set

of nine different symbols would do.)

Sudoku is not only a nice way to make the time pass more quickly, it also gives rise to a lot

of interesting mathematical problems. For example: How many arrangements of the numbers

1 to 9 on a 9 ∗ 9 field do exist, that are compatible with the Sudoku constrains? What is the

smallest number of givens for that one can construct well formed Sudoku instances?

Many games similar to Sudoku exist such as Sudoku X, Nonomino Sudoku, Killer Sudoku,

Hyper Sudoku, Greater-Than Sudoku, Kakuro, Futoshiki, and KenKen.

2.0.2 Related Works

Sudoku puzzles provide an interesting playground for mathematics. It is typically treated as

an instance of the graph coloring problem [5], or the quasi-group with holes problem [1]. In a

recent work it was shown that Sudoku is NP-complete [19]. Also, Sudoku can be viewed as

an LDPC decoding problem over an erasure channel [11]. Other industrial applications that

can be modeled by Sudoku are shown in [6, 14].

There have been many reported algorithms for solving Sudoku. The seemingly most efficient

is a search based solver presented by [12]. Although the algorithm can easily solve puzzles

up to size 16x16, it fails on larger puzzles. The main reason for this is an exponential growth

in the search space as the puzzle size increases.

2.1 Sudoku with Factor Graphs

In this section we will describe how Belief propagation algorithms can be utilized to solve a

Sudoku puzzle.

An N ∗N Sudoku puzzle is a grid of cells partitioned into N smaller blocks of N elements.

A solution to the puzzle involves filling in empty cells in the grid in a way that the numbers 1

2.1 Sudoku with Factor Graphs 19

(a) Sudoku 4*4. (b) Constraints in a Su-

doku 4*4.

(c) Factor Graph for a Sudoku 4*4.

Figure 2.1: Figures relative to a sudoku 4*4.

through N appear once on each row, each column, and each
√
N ∗

√
N subgrid (all-different

constraints).

We have N ∗ N cells to fill and we can associate the variable nodes of the Factor Graph

with the N ∗N entries, denoted by {x1, ..., xN∗N}; for the Sudoku 4 ∗ 4 the last variable is

x16. Each variable can obtain a values from 1 to N .

In Figure 2.1 we can see: (a) an example of a 4 ∗ 4 Sudoku puzzle and its solution: the red

numbers are the given numbers and the black are the numbers to be filled; in (b) we have

the 3 different constraints in a Sudoku Puzzle; (c) show the Factor Graph for the Sudoku

4x4 with all the constraints. In the figures 2.2 and 2.3 we can see respectively an exampe of

the classic Sudoku 9 ∗ 9 and the Hexadecimal Sudoku 16 ∗ 16.
The rule that each of the four numbers should appear exactly once in a row, column and

sub-grid can be associate with a constraint node in the factor Graph; finally we have N ∗ 3
total constraints: N for the rows, N for the columns and N for the sub-grid. We will

20 Solving Sudoku using Belief Propagation Algorithms on Factor Graphs

Figure 2.2: Sudoku Puzzle 9*9

denote the constraints as: Cm with m ∈ {1, ..., N ∗ 3}.

Figure 2.3: Sudoku-Hex Puzzle 16*16

Each constraint node is linked to N cell nodes, and the constraint function is that each cell

node has a different value.

In order to start the algorithm, we need some cells already filled; this means that some

variables have a unique value of the alphabet {1, ..., N}. There is a correlation between the

number of given values and the difficulty level of the problem. At the moment, the smallest

number of revealed values in a Sudoku puzzle that has a unique solution is 17. There are no

known 16-given Sudoku examples that have a unique solution. Many examples of 17-given

2.1 Sudoku with Factor Graphs 21

Figure 2.4: Tanner graph associated with Sudoku puzzle 9*9

Sudoku puzzles that has a unique solution were collected by Gordon Royle and can be found

in his website [13].

The graph is initialized with the given number of the sudoku. Each Variable node contains

the probability of taking each value, from 1 to N . If a cell has a given number X, then

the probability of X is 1 and the probability of the other numbers is 0. Otherwise, if a

cell does not have a given number, the probability of each value is 1/N . The variable nodes

send their probabilities to their constraint nodes. Then, each constraint node sends to its

variable nodes the probability for them to take each value, knowing the probabilities sent

by the N − 1 other variable nodes to it. Then, each variable node sends again to each of

his constraint node the probability of each state depending on the messages of its 2 other

constraint nodes. And the computation keeps going until reaching a stationary state where

the value of each cell node is the value that is the most probable taking its 3 constraint nodes

into account.

A constraint function Cm : {1, ..., N} → 0, 1 is defined as:

Cm(s1, ..., sN) =







1 if {s1, ..., sN} are distinct

0 → otherwise
(2.1)

Let C1 through CN denote the constraints associated with the rows of the puzzle, CN+1

through CN∗2 the constraints associated with the columns, and CN∗2+1 through CN∗3 the

constraints associated with the 3 ∗ 3 sub-grid.

In figure 2.4 we can see the graph relative to a Sudoku Puzzle 9 ∗ 9. In the next matrix we

can see the rapresentation of the Tanner Graph in form of matrix.

22 Solving Sudoku using Belief Propagation Algorithms on Factor Graphs

Tanner Graph Matrix =































































































































1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54

55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80 81

1 10 19 28 37 46 55 64 73

2 11 20 29 38 47 56 65 74

3 12 21 30 39 48 57 66 75

4 13 22 31 40 49 58 67 76

5 14 23 32 41 50 59 68 77

6 15 24 33 42 51 60 69 78

7 16 25 34 43 52 61 70 79

8 17 26 35 44 53 62 71 80

9 18 27 36 45 54 63 72 81

1 2 3 10 11 12 19 20 21

4 5 6 13 14 15 22 23 24

7 8 9 16 17 18 25 26 27

28 29 30 37 38 39 46 47 48

31 32 33 40 41 42 49 50 51

34 35 36 43 44 45 52 53 54

55 56 57 64 65 66 73 74 75

58 59 60 67 68 69 76 77 78

61 62 63 70 71 72 79 80 81































































































































;

We denote the set of indices of the cells (that is, the n values) that participate in constraint

Cm by Nm, and the set of indices of the constraints (the m values) that associate with cell

Xn by Mn.

For example:

N10 = {1, 10, 19, 28, 37, 46, 55, 44, 73}; (2.2)

M1 = {1, 10, 19}; (2.3)

N10,19 = NM\n = {1, 10, 28, 37, 46, 55, 44, 73}; (2.4)

These definitions have different means:

• We use the 2.2 to indicate the Variable nodes connected to the 10th Constraint node;

• We use the 2.3 to indicate the Constraint nodes connected to the 1st Variable node

• We use the 2.4 to indicate the Variable nodes connected to the 10th Constraint node,

except for the 19th variable node.

2.1.1 Belief Propagation Formulation

In the Belief Propagation algorithm, the nodes in the Tanner graph send messages to each

other, representing local information about the nodes. For the Sudoku puzzle, a constraint

2.1 Sudoku with Factor Graphs 23

node sends a message about the probability that the constraint is satisfied, which it computes

using information from the cell nodes about the probabilities of the cell contents.

A variable node, on the other hand, sends a message about the probabilities of the various

cell contents, given information about the constraints associated with that cell. For a graph

with cycles, nodes in the graph send information to each other until the messages converge,

or until all constraints are satisfied, or until some maximum number of iterations is reached.

We model the contents of the cells probabilistically. Let:

pn = [P (Sn = 1)P (Sn = 2)...P (Sn = 9)] (2.5)

be the probability vector associated with cell Sn. Cells which are specified initially, place all

their probability mass on the specified value, while unspecified cells have probability uniformly

distributed over possible outcome values. (The possible outcome values are obtained by elim-

inating values from consideration which would violate the three constraints associated with

that cell. This is not strictly necessary; initial probabilities could be uniformly distributed

over all nine possibilities. However, eliminating some contents based on constraints reduces

the number of iterations of the algorithm.)

For example, a variable node relative to a cell initially filled with the number 3 send the

following message

p4 = e3 = [0 0 1 0 0 0 0 0 0] (2.6)

where e3 is a vector of lenght nine with a single 1 at position k = 3 and zeros in other

positions.

A variable node without a specified number, send for example the following message:

p7 =
1

4
[0 0 1 0 1 0 1 1 0] (2.7)

with a zero in position k if we can’t have this number as possible value of the cell, 1

otherwise.

Belief propagation operates by sending probabilistic messages between adjacent nodes in

the graph. The message that constraint node Cm sends to cell Sn is

rmn(x) = P (Cm is satisfied | Sn = x) = P (Cm | Sn = x) (2.8)

that is, the probability that constraint Cm is satisfied when the cell Sn contains x. The

message from Cm to Sn is actually a probability vector:

24 Solving Sudoku using Belief Propagation Algorithms on Factor Graphs

SUDOKU Alphabet Size q Multiplications

(q − 1) ∗ q!
Additions (q!− 1)

MINI 4 72 23

CLASSIC 9 2903040 362879

HEX 16 3.14 ∗ 1014 2.09 ∗ 1013

Table 2.1: Complexity at the Constraint Node.

rmn = [rmn(1), rmn(2), ..., rmn(9)] (2.9)

Each constraint node at each iteration requires the computation of this probability vector;

With a Brute Force computation we have to evaluate: sum of q! products of q factors. In the

table 2.1 we can see the complexity of this computation.

The message that cell node Sn sends to constraint node Cm is

qmn(x) = P (Sn = x| all the constraints except Cm involving Sn are satisfied)

= P (Sn = x|Cm′ , m′ ∈ Mnm)
(2.10)

that is, the probability that Sn = x given that all of the constraints connected to Sn are

satisfied, except the constraint to which the message is being sent. The decision values are

based upon the message that cell node Sn obtains from all of the constraints,

qn(x) = P (Sn = x| all the constraints involving Sn are satisfied)

= P (Sn = x|Cm′ , m′ ∈ Mn)
(2.11)

If there were no cycles in the graph, belief propagation theory asserts that, after a sufficiently

large number of message passing steps, qn(x) would be the Bayesian posterior probability ,

incorporating information both from the prior probabilities and the evidence provided by the

constraints. If there are cycles in the graph, then evidence recirculates around the graph,

leading to potentially biased results. However, experience has shown that the results are

usually still useful. The belief propagation rules are derived under certain assumptions of

statistical independence. Strictly speaking, cycles in the graph lead to violation of these

assumptions. However, the assumptions are approximately true, and lead to tractable, and

useful, results.

2.2 Solving Sudoku using Moon Algorithm 25

2.2 Solving Sudoku using Moon Algorithm

In this section we analyze the work on Belief Propagation of Todd K. Moon and Jacob

H. Gunther [11]. They found another way to express the classical formulation of Belief

Propagation; with a particular approximation they create a different equation that can be

used not only to solve the Sudoku puzzle but even in other fields. We will see that this

formulation is really powerfull but to the other end is too much complex and slow.

2.2.1 Constraint to Variable Message

Moon start from the following equation:

rmn(x) = P (Cm|Sn = x)

=
∑

xn′ ,n′∈Nm,n

P (Cm, {Sn′ = xn′}|Sn = x)

=
∑

xn′ ,n′∈Nm,n

[

P (Cm|Sn = x, {Sn′ , n′ ∈ Nm,n}) ∗ P (Sn′ , n′ ∈ Nm,n|Sn = x)
]

(2.12)

Now, he invoke the assumption that the cells in the set Sn′ , n′ ∈ Nm,n are independent.

This is clearly not true, since cells associated with a constraint must have distinct contents;

if S1 = 1, it cannot be the case the S2 = 1 also. However, following the spirit of the LDPC

decoder we use that assumption. We thus have

rmn(x) =
∑

xn′ ,n∈Nm,n

(

P (Cm|Sn = x, {Sn′ , n′ ∈ Nm,n}) ∗
∏

l∈Nm,n

P (Sl = xl|Sn = x)
)

(2.13)

We also note that P (Cm|Sn = x, {Sn′,n′∈Nm,n
}) is conditioned upon all of the cells connected

to Cm. Constraint is Cm is then either satisfied or not, depending on the values of the

arguments. Thus

P (Cm|Sn = x, {Sn′ , n′ ∈ Nm,n}) =







1 all Sn and {Sn′ , n′ ∈ Nm,n} are distinct

0 otherwise
(2.14)

We thus have

rmn(x) =
∑

{xn′ ,n′∈Nm,n}
{x,xn′} all unique

∏

l∈Nm,n

P (Sl = xl|Sn = x) (2.15)

26 Solving Sudoku using Belief Propagation Algorithms on Factor Graphs

To formulate this as a belief propagation step, Moon invoke the approximation P (Sl =

xl|Sn = x) = qml(xl) the probability that cell Sl sends to constraint Cm. We thus obtain

rmn(x) =
∑

{xn′ ,n′∈Nm,n}
{x,xn′} all unique

∏

l∈Nm,n

qml(xl) (2.16)

Unfortunately, the sum is over a combinatorial set. However, when some of the cells in

Nm are known, it reduces the size of the set. Furthermore, this is only a local combinatorial

complexity, restricted to the cells involved in a constraint, and not over all the empty cells in

the puzzle.

Let’s see an example of this evauation: We considere a Sudoku 4 ∗ 4; If we have to evaluate

the message rm1 = [rm1(1), rm1(2), rm1(3), rm1(4)] for the 1th variable node, we need 4 steps

in order to evaluate all the bits of the vector that we have to send. The formula for the 1st

bit is:

rm1(1) =qm2(2) ∗ qm3(3) ∗ qm4(4) + qm2(2) ∗ qm3(4) ∗ qm4(3)+

qm2(3) ∗ qm3(2) ∗ qm4(4) + qm2(3) ∗ qm3(4) ∗ qm4(2)+

qm2(4) ∗ qm3(3) ∗ qm4(2) + qm2(4) ∗ qm3(2) ∗ qm4(3)

(2.17)

where rm1(1) is given from the sum of all the possible permutation of the products of

messages that a constraint receive from the other variable nodes.

In this formula we have to respect the condition

{xn′ ,n′∈Nm,n}
{x,xn′} all unique

(2.18)

that means that in each product we have to use all different probabilities among them and

different from the probability that we evaluate in that moment. In a Sudoku 4 ∗ 4 we have

16 variables and each variable have 4 possible values; in each step we have to evaluate three

sums from 1 to 4 in order to evaluate the value of a single probability. This means:

43 sums ∗ 4 values ∗ 16 variables = 4096 total product to evaluate

These products contains all the possible combinations, included the Xn′ equal among them;

if we take only the valid products we have: 3! ∗ 4 ∗ 16 = 384 products. In a Sudoku 4 ∗ 4 this

2.2 Solving Sudoku using Moon Algorithm 27

number is very easy to evaluate; we have some problems in a Sudoku 9 ∗ 9 in which the total

products are:

98 sums ∗ 9 values ∗ 81 variables ≈ 31 billions total product to evaluate

And of these ones only 8! ∗ 9 ∗ 81 ≈ 29 millions are valid.

In order to decrease this complexity, we generated some change to the program:

1. I evaluate only the messages Rmn(x) for the unknown variables; the minimum number of

known numbers for a Sudoku 9x9 is 17 then we have for the more complicated Sudoku:

98sums ∗ 9values ∗ 64variables ≈ 24 billions

2. For each cell, I evaluate only the probabilities relative to the numbers that are not

present in the row, column or sub-grid.

E.G:

In the Figure 2.5 we can see that we know that the cells 1 and 6 have the known numbers 5

and 8, so I dont evaluate any value for these two cells; for the unknown cells I evaluate only

the probabilities for the other numbers except for the 5 and the 8. For this simple example

we have a reduction from:

98sums ∗ 9values ∗ 9variables ≈ 3 billions

to:

98sums ∗ 7values ∗ 7variables ≈ 2 billions

In a complete Sudoku the reduction is much more considerable.

Figure 2.5: Moon Algorithm for a Sudoku puzzle 9*9

28 Solving Sudoku using Belief Propagation Algorithms on Factor Graphs

2.2.2 Variable to Constraint Message

We derive qn(x); modifications to obtain qmn(x) are straightforward

qn(x) = P (Sn = x|{Cm,m ∈ Mn})

=
P (Sn = x|{Cm,m ∈ Mn})

P ({Cm,m ∈ Mn})
= αP ({Cm,m ∈ Mn}|Sn = x) ∗ P (Sn = x)

(2.19)

where α is a normalizing constant . We assume independence again, then recognize rmn(x):

qn(x) = P (Sn = x) ∗
∏

m∈Mn

P (Cm|Sn = x)

= P (Sn = x) ∗
∏

m∈Mn

rmn(x)
(2.20)

Similarly,

qmn(x) = P (Sn = x) ∗
∏

m′∈Mn,m

rm′n(x) (2.21)

The equation 2.21 means that each variable node send to one of its constraint nodes the

product of the probabilities received from the other two constraint nodes.

At the same time, every variable node, evaluate a new Probability Vector in order to know if

a new number has been found using all the messages received by the Constraint nodes; the

formula is in the equation 2.22:

qn(x) = P (Sn = x) ∗
∏

m′∈Mn

rm′n(x) (2.22)

In operation, the Belief Propagation algorithm iterates between 2.16 and 2.21. However, for

a cell whose contents are unambiguously known (such as the cells initially filled in) the cell

to constraint message is simply the fixed probability vector.

2.3 Solving Sudoku using a different Algorithm

In this section we will explain the most important part of my work and how i reach my results

and my conclusions.

2.3 Solving Sudoku using a different Algorithm 29

2.3.1 Program Analysis

At the start of the program we have two matrix that represent the Sudoku and a matrix that

represent the Tanner Graph on the strength of the Sudoku size N.

start grid =













3 1 4 2

4 2 1 3

2 4 3 1

1 3 2 4













;

In the start grid we have the complete Sudoku

default grid =













1 0 1 0

0 1 0 0

0 0 0 1

0 0 0 0













;

In the default grid we have the starting disposition of the numbers; if we have 1 the cell is

full at the start otherwise is empty.

Tanner Graph =























































1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16























































;

The Tanner Graph matrix represent the link of the Bipartite Tanner Graph .

The second step is fill up the probabilities matrix; this is a matrix with size {N ∗ N,N}:
for the Sudoku 4 ∗ 4 I have a matrix {16, 4}. If a cell has a known number, the row relative

to this one has only a one in the position of this number.

30 Solving Sudoku using Belief Propagation Algorithms on Factor Graphs

Probability Matrix =











































































0 0 1 0
1

4

1

4

1

4

1

4

0 0 0 1
1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

0 1 0 0
1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1 0 0 0
1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4











































































;

E.G:

The cell S1 at the start has a 3, so the relative row in the matrix is P1 = {0, 0, 1, 0}; The
cell S2 does not have e known number so his row at the start is P2 = {1, 1, 1, 1};
When the constraint nodes evaluate the new probability, they have to send the value in the

link relative at the right variable nodes. In this function we have N ∗ 3 constraint nodes

and each one send a message to his variables nodes, then we have N ∗ N ∗ 3 message to

send through the links. In order to be sure that each variable node receive the right message

in respect to the logical operation of the Tanner Graph, I have created a matrix of size

N ∗N ∗3, N in which each variable node retrieve his messages. The constraint nodes in order

to put the message in the correct link use this formula:

link = variable ∗ 3−
(

3− floor
((i− 1

N

)

+ 1
))

;

where link is the entry in the matrix and i is the number of the constraint.

2.3.2 Constraint Function: Methodologies For Solutions

The following methodologies are applied in the constraints nodes; each of them after receiving

the messages from the variable nodes, evaluate the new probability to send to the unknown

cells using all these methods.

2.3 Solving Sudoku using a different Algorithm 31

Figure 2.6: Naked Single method for a Sudoku puzzle 9*9

Naked Singles

This method requires that you can delete the content in cells. We start by writing in each free

square all numbers allowed and not allowed, after eliminating the numbers already present

in the row, column and sub-grid in the region to which the cell belongs. Then we examine

the table in search of forced choices: in other words we will find a new number in a cell when

this has only one possible candidate.

In order to implement this method the esed formula is:

rmn(x) =∼
∏

n′∈Nm

{if
∑

x qmn′ (x)=1}

qmn′(x) (2.23)

Let’s see an example to better explain the algorithm:

The constraint node receive these messages,

• S1 = {0, 0, 0, 0, 1, 0, 0, 0, 0}

• S2 = S3 = S4 = S5 = S6 = S7 = S9 = {1, 1, 1, 1, 1, 1, 1, 1, 1}

• S8 = {0, 0, 0, 0, 0, 0, 0, 1, 0}

The constraint node will send a message only to the unknown nodes; the new message is

the product of the original message sent by the variable node and the negative value of the

vector for the known cells: S2∗ ∼ S1∗ ∼ S8 = {1, 1, 1, 1, 0, 1, 1, 0, 1}
In this way we remove from the cell the numbers that we already know. We can see an

example of the algorithm in the Fig. 2.6.

32 Solving Sudoku using Belief Propagation Algorithms on Factor Graphs

Hidden Singles

This technique examine the arrangement of one of the numbers already appears twice in

three regions in a row to check whether, in the third region where it is not present, in the

line where it is not present, are prevented all other positions minus one, which then it must

be the right one for that number.

In the Figure 2.7 there is an example for number 6: it is present already in two of the first

three regions in column and then it must be present in the third region (the central one) in

the remainder of the three columns (the first); here a box is already occupied (number 3)

then controlling the orthogonal lines of the last two remaining boxes you find a line already

occupied. The three 6 considered (in yellow), thus preventing the presence of other 6 in the

empty boxes marked in purple. In the central region of the left remains one box ”allowed”

to 6 (highlighted in light green): and since there must be a 6 for each region, it is clear that

the 6 of that region is right there.

Figure 2.7: Hidden Single method for a Sudoku puzzle 9*9

In order to implement this method, the constraint nodes receive from the variable nodes

their actual probabilities and evaluate a new value only by counting if a possible value appears

once in the constraint. The formula implemented in this function is in the equation 2.24:

rmn(x) =











0
∑

n′∈Nm

{if
∑

x qmn′ (x)>1}

qmn′(x) > 0

1 otherwise

(2.24)

Looking at the Fig. 2.8, the constraint node have to evaluate the new probability vector

2.3 Solving Sudoku using a different Algorithm 33

for S2 and after received the probabilities from the other variable nodes that do not have a

known number, they evaluate a new vector with all the possible entries:

V ector = {0, 0, 0, 0, 1, 0, 1, 1, 0} (2.25)

When S2 receive this new vector, it has only to multiply his actual probability to this one

just received. The result can be a vector with all zeros and in this case the cell use the old

probability vector or a vector with only a one corresponding to the right number.

New S2 = {1, 0, 1, 0, 0, 1, 1, 0, 1} ∗ {0, 0, 0, 0, 1, 0, 1, 1, 0} =

= {0, 0, 0, 0, 0, 0, 1, 0, 0} = 7
(2.26)

Figure 2.8: Naked Single method for a Sudoku puzzle 9*9

Pairs and Triplets: Tertium non datur

This technique is based on the assumption that within a group of n cells must exist exactly

n numbers, hence from the corollary to the pragmatic choice is possible to reduce the number

of candidates in the cells of the group.

1. If in a group of cells the same sequence of n candidates is present n times, then the

candidates of this cells may be excluded from other cells.

Let’s see the following scheme of candidates for the cell:

{4, 5} {4, 7, 9} {4, 5} {7, 9} {4, 5, 9, 1}

in the example, only two boxes have the same sequence of two candidates {4, 5}, we can
then exclude those candidates from other fields, thus simplifying the possible solutions:

{4, 5} {7, 9} {4, 5} {7, 9} {9, 1}

34 Solving Sudoku using Belief Propagation Algorithms on Factor Graphs

because 4 and 5 need to be in the two cells; if one of them was in a different box, would

lead to a situation with an empty boxe. Now it’s possible to repeat the algorithm with

two other cells that have the sequence {7, 9}, then:

{4, 5} {7, 9} {4, 5} {7, 9} {1}

and we found a solution. The solution also applies to copresences triple, quadruple and

so on:

{4, 5, 7} {4, 5, 7} {4, 5, 7} {1, 4, 5, 7, 9} {1, 4, 5, 7, 9}

the first three boxes all have the same candidates {4, 5, 7} and these numbers can be

only in these three boxes. Consequently, simplifying, we have:

{4, 5, 7} {4, 5, 7} {4, 5, 7} {1, 9} {1, 9}

2. If in a group the same n candidates are in exactly the same n sequences, then you

can exclude other candidates from these cells.

In the following example 5 and 9 appear only in the first and fourth cell, then

{4, 5, 8, 9} {2, 3, 4, 6, 8} {2, 3, 4, 6, 8} {2, 3, 4, 5, 9}

becomes

{5, 9} {2, 3, 4, 6, 8} {2, 3, 4, 6, 8} {5, 9}

In my program the used formula is:

• For Naked Pairs:

rmn(x) =







































∼ qmn(x) if
∑

x

qmn′(x) = 2 &

∑

x

qmn′(x) ∗ qmn′′(x) =
∑

x

qmn′′(x) > 0

With n′, n′′ ∈ Nmn

0 otherwise

(2.27)

2.3 Solving Sudoku using a different Algorithm 35

• For Naked Triplets:

rmn(x) =



























































∼ qmn(x) if
∑

x

qmn′(x) = 3

&
∑

x

qmn′(x) ∗ qmn′′(x) =
∑

x

qmn′′(x) > 0

&
∑

x

qmn′(x) ∗ qmn′′′(x) =
∑

x

qmn′′′(x) > 0

With n′, n′′, n′′′ ∈ Nmn

0 otherwise

(2.28)

All Cardinality

All the functions previously analyzed can be group in a unique function. In this way the

constraint node does not have to make different evaluations for each situation, but he can

make the same evaluation in each cycle. Clearly the resulting function is more complicated

and it need more time in order to evaluate the result.

This new formula allows the Constraint node to work in a more similar manner to the

classic Belief Propagation Algorithm. This is because the Constraint node performs the

same function at each iteration, instead to do different functions every cycle.

The rudiment that stay at the base of this function is similar to the function Pairs and

Triplets: Tertium non datur ; the only difference is that now we apply this thinking to all the

possible cardinality. If we have a Sudoku with N = 9, when we are evaluating the message

to send to a cell, we can evaluate all the cardinality starting from N − 1 = 8 until 1.

E.G:

If in X cells we have X values we can surely say that the last remaining value is in the

cell which we are sending the message. If X = N − 1, we have the particular case of Hidden

Single Values algorithm.

The formula used to implement this algorithm is:

rmn(x) =
1
∏

N−1

ci(x) (2.29)

where ci(x) are all the possible permutation of cardinality i of the message received by the

other cells.

36 Solving Sudoku using Belief Propagation Algorithms on Factor Graphs

ci(x) =







0 if
∑N−1

j=1 qmn′(x) > 0 & |∑N−1
j=1 qmn| = N − i, with n′ ∈ Nmn

1 otherwise
(2.30)

Then, if we are using a Sudoku N ∗N with N = 9, for the cardinality N − 1 = 8 we will

have only one permutation of the remaining cells; for the cardinality N − 2 = 7 we will have

8 possible permutations (in each one we exclude one of the 8 cells) and so on until we arrive

to the cardinality 1 in which we consider all the cells for themselves.

Let’s see some example of this new check; we have different cases that can be treated in the

same way. For example the following situation are equal:

{1, 2, 3} {1, 2, 3} {1, 2, 3} = {1, 2} {1, 2, 3} {1, 2, 3}

{1, 2, 3} {1, 2, 3} {1, 2, 3} = {1} {1, 2} {1, 2, 3}

If we continue with the algorithm, the last combination can be written as follow:

{1} {1, 2} {1, 2, 3} = {1} {2} {1, 2, 3} = {1} {2} {3}

With the simple elimination of the known numbers. This system can be applied to many

combinations of cardinality. We just have to check, as already told, if the same X numbers

appear in X cells, without any restrictions.

Evaluation of complexity: In each cycle the constraints nodes have to evaluate all the

messages for all the variable nodes belonging to them; so we have

N ∗ 3 constraint node evaluation * N variable node evaluation ≈ N2 constraint evaluation.

Within the function we have to check all the cardinality; the simplier solution is to check

each cardinality per time {N − 1, N − 2, ...1}; instead of do all this passages we can evaluate

two cardinalities at the same time. In this way, when we are evaluating all the permutation

of cardinality N − X, we can evaluate also the cardinality X and we are sure that we are

checking for all the possible permutation of this last cardinality.

With this expedient is possible to decrease considerably the complexity of the function;

especially for the heavier cardinality like 2 or 3 that have many permutation in the Sudoku

9 ∗ 9.

2.3 Solving Sudoku using a different Algorithm 37

The resultant complexity for this check is N5. So at the end of all the constraint node

evaluation we have a complexity of N7 approximatively. Really the complexity is lower1

because the constraint nodes have to evaluate a new message only for the cells that dont have

a known number. Because in a solvable Sudoku we need at least 17 known cells and each cell

appear three times in the constraint nodes we have a considerable complexity reduction and

the complexity continue to decrease gradually when we find new numbers.

2.3.3 Variable Function

This function describe the behavior of the variable nodes. They receive three different message

from each constraint that they have to satisfy.

In a Sudoku 4 ∗ 4 then we have 16 variables ∗ 3 messages = 48 total messages. For this

reason the function has as argument a matrix of dimension ”N ∗N ∗ 3” that represent the

link between variable and constraint nodes.

When the variable nodes receive these values they evaluate the new probabilities with the

formula:

qn(x) =
∏

m∈Mn

rmn(x)

It means that the new value is simply valuate as a product of the three messages received.

If the result of this evaluation is a new number for the sudoku, the variable node is marked as

known and the constraint nodes stop to evaluate its relative messages. Otherwise the variable

node continue to send message to the constraint nodes and vice versa.

2.3.4 Message-Passing Schedules

A message-passing schedule in a factor graph is a specification of messages to be passed

during a precise period. Obviously a wide variety of message-passing schedules are possible.

For example, the so-called schedule flooding calls for a message to pass in each direction

over each edge at each period.

A schedule in which at most one message is passed anywhere in the graph at each period is

called a serial schedule.

We will say that a vertex v has a message pending at an edge e if it has received any

messages on edges other than e after the transmission of the most previous message on e.

1In a Sudoku 9 ∗ 9 we have a final complexity approximately of N7 = 4million iterations; instead of this

results in all the done test we obtain an average iterations value of approximately 1 million with a maximum

value of 1, 8 millions. The complexity is less than half of the expected value.

38 Solving Sudoku using Belief Propagation Algorithms on Factor Graphs

Such a message is pending since the messages more recently received can affect the message

to be sent on e. The receipt of a message at v from an edge e will create pending messages

at all other edges incident on v. Only pending messages need to be transmitted, since only

pending messages can be different from the previous message sent on a given edge.

In a cycle-free factor graph, assuming a schedule in which only pending messages are

transmitted, the sum-product algorithm will eventually halt in a state with no messages

pending.

In a factor graph with cycles, however, it is impossible to reach a state with no messages

pending, since the transmission of a message on any edge of a cycle from a node v will trigger

a chain of pending messages that must return to v, triggering v to send another message on

the same edge, and so on indefinitely.

In practice, all schedules are finite. For a finite schedule, the sum-product algorithm

terminates by computing, for each xi, the product of the most recent messages received

at variable node xi.

If xi has no messages pending, then this computation is equivalent to the product of the

messages sent and received on any single edge incident on xi.

In order to improve the algorithm, instead to use the classic schedule (flooding) which send

all the message from variable nodes to check nodes at the same period, we use a different

schedule.

The schedules that we will see can be divided in two big groups: No Adaptive that follow

an order without changing during the development of the algorithm and Adaptive change the

order during the development in order to better handle the updates of the algorithm.

The first schedule that I tried is the classic one (flooding); all the messages in both directions

from variable nodes to constraint nodes and from constraint nodes to variable nodes are sent

together. The result of the simulations with the flooding schedule shows an average time

necessary to complete the algorithm around at 2’:05”.

In the next Sections we will see the different kind of shchedules that we used in the

simulations.

Non Adaptive Schedules

With the next schedules, during the algorithm, the order does not change.

1. Linear Schedule (top-down): We send the messages starting from the first check node

2.3 Solving Sudoku using a different Algorithm 39

until the last one. In this way we evaluate first all the check node relative to the Sudoku

rows, then to the columns e finally to the sub-grids.

With this schedule we have an average time of: 1’:02”.

2. Linear Schedule (bottom-up): We send the messages starting from the last check node

until the first one. In this way we evaluate first all the check node relative to the Sudoku

sub-grids, then to the columns e finally to the rows.

With this schedule we have an average time of: 1’:06”.

3. Alternate Schedule: We send the messages starting from the first check node relative to

the row constraint , but instead to send the next messages to the second check node,

we send the messages to the first check node relative to the column constraints ; after

that we send the new messages to the first nodes relative to the first check node relative

to the sub-grid constraints . The algorithm start again from the second row constraint

node and son on.

With this schedule we have an average time of: 1’:17”.

Adaptive Schedules

1. Min to Max (number possibilities):

In this scheduling, before to start the algorithm, we have to order the check nodes,

following a specific rule.

As we can see in Fig. 2.9, the Check Node 1 and Check Node 2 receive nine messages

with different possibilities. Every check node make the sum of the possible numbers

and obtain the following results: Check Node 1 = 36 and Check Node 2 = 31.

After that all the N ∗ 3 check nodes evaluate the sum of the possible values of their

cells, we can order them starting, in this schedule, from the lower to the higher. In this

example, with only two check nodes, we start from the check node 2 and we continue

with the check node 1.

When we send the messages to the last check node, we provide to create another order

looking at the new messages after this first cycle of the schedule. So after N∗3 dispatches
we need an other order for the check nodes.

With this schedule we have an average time of: 52”.

2. Max to Min (number possibilities): This scheduling is the opposite of the previous one.

In this schedule, the check nodes are ordered starting from the higher to the lower.

40 Solving Sudoku using Belief Propagation Algorithms on Factor Graphs

Figure 2.9: Different Check Node 1 and 2

Figure 2.10: Different Check Node 1 and 2

Looking again the Fig. 2.9, this time we start from the check node 1 and we continue

with the check node 2.

When we send the messages to the last check node, we provide for create another order

looking at the new messages. So after N ∗ 3 sent messages from Constraint to variable

nodes we have to create an other order.

With this schedule we have an average time of: 1’:09”.

3. Min to Max (known cells): In this scheduling, as in the two previous schedules, before

to start the algorithm we have to order the check nodes, following a specific rule.

E.G:

After the evaluation of the known cells for all the variable nodes, we can order them

starting, in this schedule, from the lower to the higher. In the example of Fig. 2.10,

with only two check nodes, we start from the Check Node 2 and we continue with the

Check Node 1 because they have rispectively 4 and 3 known cells.

When we send the messages to the last check node, we provide to update the order

looking at the new messages after this first cycle.

With this schedule we have an average time of: 1’:13”.

4. Max to Min (known cells): This scheduling is the opposite of the previous one. In this

schedule, the check nodes are ordered starting from the higher to the lower.

2.3 Solving Sudoku using a different Algorithm 41

Like in the others adaptive schedules, we provide to create another order looking at the

new messages after every cycle.

With this schedule we have an average time of: 1’:28”.

5. Maximal Residual (variable nodes metric): In this scheduling we consider the differences

between the messages in the cycle i and the messages in the previous cycle i − 1. In

this version of the maximal residual we evaluate the metric in the variable nodes: we

take the cell with the maximum residual and we send the messages to the three relative

check nodes.

With this schedule we have an average time of: 1’:06”.

6. Maximal residual (check nodes metric): This scheduling is similar to the previous one:

we consider the differences between the messages in the cycle i and the messages in the

previous cycle i− 1, but the only difference is that we evaluate the metric on the check

node instead on the variable node. In every cycle we evaluate the differences between

all the cells belonging to a check node; we take the check node with the maximum

residual and we send first a message to that one.

With this schedule we have an average time of: 1’:04”.

Final Comparison

After various simulations, we can say that all the different schedules are better than the

algorithm without a schedule, because we have always a reduction of the average time which

often corresponds to half of the average time without scheduling.

The best Schedule is the: MinToMax (numbers possibilities). Whit this schedule we reduce

the average time from 2’:05” to only 52”, less than half time.

In Tab. 2.2 we can see the summary of all the average times. There are other possible

adaptive schedules, for example using a semi-random order of the check nodes, but they dont

improve considerably the performances. Sometimes, instead to improve, they make worse

them.

The results of these simulations are obtained running simulations with different Sudoku.

Every scheduler behave differently based on the Sudoku that we are trying to solve. This

behavior can bring us to suppose that, with a high number of different Sudoku inputs, the

average time of all the different scheduler become the same when the number of inputs

increase.

42 Solving Sudoku using Belief Propagation Algorithms on Factor Graphs

TYPE SCHEDULING AVERAGE TIME

without flooding 2′ : 05′′

No-adaptive linear (top-down) 1′ : 02′′

linear (bottom-up) 1′ : 06′′

Alternate 1′ : 16′′

Adaptive linear Min To Max (numbers) 52′′

linear Max To Min (numbers) 1′ : 09′′

linear Min To Max (cells) 1′ : 13′′

linear Max To Min (cells) 1′ : 28′′

max residual variable 1′ : 06′′

max residual check 1′ : 04′′

Table 2.2: Scheduling Average times.

Looking this table, we see that the best Non Adaptive Scheduler is the Linear (top-down);

the best Adaptive Scheduler is the Linear Min to Max (number possibilities). The evaluation

time is respectively 1’:02” for the first scheduler and 52” for the second.

The improvement of the Adaptive Scheduler is not high enough to justify the use of this

algorithm, so its better to use the Non Adaptive Scheduler, because it has a smaller com-

plexity.

2.4 Conclusion and Results for Sudoku Sokving

2.4.1 Stopping set in Belief propagation

A stopping-set in a Sudoku problem is a set of random variables (cell) S such that, even if

all the other cells are given (or correctly found), for each x ∈ S there are at least two digits

that satisfy all the constraints on x. In Fig. 2.11 we can see an example of this situation.

We have a Sudoku problem with three solutions. The initially given numbers are marked by

blue background, white cells form the solution backbone and solutions differ by the values in

red cells.

We can have another possible stopping-set in the Sudoku when, with a simple cross-check

of different constraint (row, column, sub-grid), it’s possible to find new numbers and go on

with the algorithm, but the Belief Propagation can not do that.

For example looking the figure 2.12 we can see taht we can have a 4 only in the cells {8, 4}

2.4 Conclusion and Results for Sudoku Sokving 43

Figure 2.11: Stopping Set in Sudoku

and {9, 4} and for sure we have another 4 in {5, 6}. Then, we are sure that in the cell {3, 5}
there is a 4. The problem is that for a player this is simple because he can cross-check the

knowledge of the row 4, 5 and 6. In the Belief Propagation this is not possible because every

Constraint node work by itself and it does not know the data of the other Constraint nodes.

2.4.2 Equivalence of the Algorithms

During all the simulations we tested the Moon Algorithm and my version of the algorithm

for the Sudoku Solving; the first important thing was to prove that both the algorithm are

identical. To do that I tried all the possible inputs that one Constraint Node can have during

the algorithm and I compared the results of the two algorithms.

To better see how I did, let’s see the example with the Sudoku 4 ∗ 4.

E.G.

Every Constraint node receive messages from 4 Variable nodes and after the evaluation they

send the response. When they receive the messages, they take 3 messages from 3 variable

nodes and they send the new evaluated probability using these messages to the 4th Variable

node.

Every cell has 4 values so the Constraint node receive 4 ∗ 3 = 12 different values; then we

have to evaluate all the valid permutation of this 12 values. The possible permutation are in

total 212 but not all are valid.

44 Solving Sudoku using Belief Propagation Algorithms on Factor Graphs

Figure 2.12: Stopping Set in Sudoku

For example the following configuration is not possible

Figure 2.13: Invalid Permutation for A Sudoku 4*4.

because it’s impossible to have in the same row two equal numbers (in this case the number

”1”).

So, instead to test 212 = 4096 possible permutation, this number is smaller: the real number

is 2794. After the test we saw that the results of the two algorithms are the same not only

for the 2794 valid inputs, but we arrive to 3125 equal results over 4096 inputs.

The rules of the Sudoku 4 ∗ 4 can be extended also for the Sudoku 9 ∗ 9 so we can claim

that the Moon Algorithm and my version of the algorithm are identical.

To be more sure about this result we tried the test also with the sudoku 9 ∗ 9. In this case

the Constraint node receive messages from 8 Variable nodes and send the result to the 9th

2.4 Conclusion and Results for Sudoku Sokving 45

node.

We have 9 ∗ 8 = 72 different inputs and 272 total permutation. Obviously this number

is impossible to evaluate and a lot of these are not valid. So we tested randomly different

intervals of all the combinations and after the test all the results were the same.

2.4.3 Complexity of the Algorithms

After seen that the two algorithms are equal, we will see the complexity of both. I will show

the complexity in terms of number of iterations and Time Duration.

Number of Iterations

• Moon Algorithm:

for (N*3)*N

. for N

. . while (N-1)!

. . . permutation();

. . . for N

.

. . . end;

. . end;

. end;

end;

Where the function permutation() has a complexity equal to O(n). The total com-

plexity of this Constraint Function is N4 ∗ (N − 1)!. In a Sudoku 4 ∗ 4 it means only

1536 in every Constraint node and this is acceptable; we have a problem in the sudoku

9 ∗ 9 where the complexity in every Function node is: 94 ∗ 8! = 2380855680 ≈ 231 and

we understand that this evaluation for 27 nodes in every cycle is really hard and it need

too much time.

After many simulations I reached an average number of iterations per esecution, ap-

proximately equal to 800 millions.

• My algorithm:

for (N*3)*N

. for (N-1)*N + N

46 Solving Sudoku using Belief Propagation Algorithms on Factor Graphs

.

. end;

. for N

. . for N

.

. . end;

. . for (N-2)*N

.

. . end;

. . for (N-2)

. . . for N

.

. . . end;

. . for (N-3)*N

.

. . . end;

. . . for (N-3)

. . . . for N

.

. . . . end;

. . . . for (N-4)*N

.

. . . . end;

. . . . for (N-4)

. for N

.

. end;

. . . . end;

. . . end;

. . end;

. end;

end;

we can summarize the previous code in the following reduced.

for (N*3)*N

. for N

. . for N

. . . for N

. . . . for Nˆ{2}

2.4 Conclusion and Results for Sudoku Sokving 47

Algorithm Scheduling Time Duration

My No 32′′ 64′′ 25′′ 30′′ 46′′ 44′′ 76′′

Yes 19′′ 34′′ 16′′ 17′′ 25′′ 23′′ 41′′

Moon No 68′ : 12′′ 86′ : 11′′ 71′ : 36′′ 72′ : 42′′ 63′ : 37′′ 63′ : 26′′ 98′ : 51′′

Yes

Table 2.3: Confront of the Time Duration.

.

. . . . end;

. . . end;

. . end;

. end;

end;

The total complexity is O(n7). In a Sudoku 4 ∗ 4 we have 16384 iteration per node

every cycle.

This result is worse than the Moon Algorithm, but if we see the Sudoku 9 ∗ 9 we have

only 4782969 ≈ 222 iterations against the 231 for the Moon Algorithm.

After many simulations I reached an average number of iterations per esecution, ap-

proximately equal to 1.2 millions.

Duration

Obviously the number of iterations affect also the duration of all the program. In the

table 2.3 we can see with different Sudoku the times needed by the two algorithms with and

without scheduling.

The first observation is that with or without scheduling the Moon algorithm is not compa-

rable with my version of the algorithm in both cases.

Another observation is that in the table does not appear the time with scheduling for the

Moon Algorithm. This is because, the time is really high; indeed with scheduling all the

algorithms have more iterations than without; for the Moon Algorithm this is very negative

because every cycle has a lot of iterations; so instead to improve, the performances decrease.

Final Results

This algorithm allows to solve sudokus of moderate difficulty in less than 30 rounds. In

the Fig. 2.14 we can see the percentage of Sudoku solved with the two algorithms.

48 Solving Sudoku using Belief Propagation Algorithms on Factor Graphs

Figure 2.14: Success solving rate of the algorithms depending on the level of sudokus. Evaluated

using 30 sudokus of each level.

difficulty Min Numbers Max Numbers

expert 17 20

intermediate 21 24

simple 25 28

easy 29 32

Table 2.4: Numbers for Sudoku Difficult.

These results are obtained using four different kind of sudokus: difficult, intermediat, simple,

easy; Every Sudoku difficult has a different range of starting numbers; this range is explained

in Table 2.4. If there more givens, message passing is equivalent to logical deduction and the

Sudoku Solving lose his sense.

2.4.4 Conclusions

The Belief Propagation method is exact on graphs with no cycles. However, the graph

associated with Sudoku has many short cycles in it. In fact, every cell is in four cycles of

girth four. There are two of the following form: ”cell → row constraint → cell on row →
box constraint → cell” one for each of the two other cells on the row in a box, and ”cell →
column constraint → cell on column → box constraint → cell” one for each of the two

2.4 Conclusion and Results for Sudoku Sokving 49

other cells on the column in a box. These many short cycles will definitely bias the results

of the message passing algorithm. What results is that not every puzzle is solvable by this

Message Passing technique.

When the Sudoku complexity is higher we have a few givens and it follow that in the graph

there are many cycles that prevent us to reach the solution. When the givens number increase

many Variable nodes are known, so they do not partecipate to the algorithm and it follow

that we have many cropped cycles: this is why is simplier to reach a solution.

In solving the puzzle, several iterations of elimination were computed: the possible contents

of each cell were eliminated based on the constraints the cell associated with. This reduced

the number of Belief Propagation iterations, and acts according to how a human would begin

solving the puzzle. Following this simple elimination, the Belief Propagation proceeds. As

computation proceeds, as a probability vector emerges that places all of its mass on a single

cell, a hard decision is declared, establishing the contents of a cell. (Filled cells are important

because they reduce the computationally complexity of the sum in 2.16 and 2.29.)

We can finish saying that Belief Propagation is really powerfull because of its semplicity

and can be used in the multiple constraint satisfaction problems in order to completely find

a solution or just to find a part of it but greatly decrease the complexity of the problem.

Chapter 3

Solving Low-Density Parity-Check

Codes with Belief Propagation

Algorithms on Binary Erasure

Channel

3.1 Introduction to LDPC codes

Low-density parity-check (LDPC) codes is an error correcting code used in the noisy com-

munication channels to reduce the probability of loss of information. With LDPC, this

probability can be reduced to as small as desired, thus the data transmission rate can be as

close to Shannon Limit .

LDPC was developed by Robert Gallager in his doctoral dissertation at MIT in 1960 [8].

Due to the limitation in computational effort in implementing the coder and decoder for

such codes, LDPC was ignored for almost 30 years. During that long period, the only notable

work done on the subject was due to R. Michael Tanner [15] where he generalized LDPC

codes and introduced a graphical representation of the codes later called Tanner Graph.

Since 1993, with the invention of turbo codes, researchers switched their focus to finding low

complexity code which can approach Shannon channel capacity . LDPC was reinvented with

the work of Mackay [10] and Luby [2].

The powerful capabilities of LDPC codes have led to their recent inclusion in several

standards, such as IEEE 802.16, IEEE 802.20, IEEE 802.3 and DBV-RS2.

On the negative side, LDPC codes have a significantly higher encode complexity, being

generically quadratic in the code dimension, although this can be reduced somewhat. Also,

decoding may require many more iterations than turbo decoding , which has implications for

52
Solving Low-Density Parity-Check Codes with Belief Propagation Algorithms on

Binary Erasure Channel

latency.

In the next section, I discuss how to decode an LDPC using belief propagation algorithm

with the hard-decision decoder over a Binary Erasure Channel (BEC).

3.2 Low Density Parity-check Code (LDPC)

LDPC Codes are named that way because they are defined by a sparse parity check matrix .

A parity check matrix is a matrix that define the allowed codewords of a system using the fact

that the product of all allowed codewords and only them by this matrix gives a zero vector.

The matrix is said to be sparse because it contains a lot of zeros, and that is why these

codes are called Low density.

Any linear code has a bipartite graph and a parity-check matrix representation. But not all

linear code has a sparse representation.

A N ∗ M matrix is sparse if the number of ones in any row (the row weight wr, and

the number of ones in any column (the column weight wc), is much less than the dimension

(wr << M,wc << N). The sparse property of LDPC gives rise to its algorithmic advantages.

An LDPC code is said to be regular if wc is constant for every column, wr is constant for

every row and wr = wc ∗
N

M
. An LDPC which is not regular is called irregular .

The sum-product is used for the iterative decoding algorithm; there are two derivations of

this algorithm: hard-decision and soft-decision schemes. In the soft-decision scheme as in

the Sudoku Solving Algorithm every node send a vector message with the probability to have

all the different values. In the hard-decidion scheme every node send only one value (usually

a bit 0 or 1).

Of course there are two kinds of nodes: the variable nodes, which contain the value of the

codeword, and the constraint nodes, which represent the system. All the variable nodes are

initialized with the received value. Then they send their value to the constraint nodes that

are connected to it. The constraint nodes compute the parity using all the inputs except

one, and send to the remaining variable node the value it should have so that the parity is

respected.

The constraint node do this for all its neighbors. Then, the variable nodes update their

value according to the messages of the constraint nodes, and it starts over. As the graph

may not be cycle-free, the algorithm cannot stop after one message exchanged on each edge

3.2 Low Density Parity-check Code (LDPC) 53

in each direction.

The algorithm stops when the messages has reached a fixed point, when they are the same

from an iteration to another. The problem is that when there are cycles, the messages may

oscillate and converge to a wrong value. The result is the values of the variables nodes at the

end of the iterative process.

Since the parity check matrices are generally not in systemic form, in the next explaination

we will have the symbol A to represent parity check matrices, reserving the symbol H for

parity check matrices in systematic form.

A message vector m is a K ∗ 1 vector; a codeword is a Nx1 vector. The generator matrix

G is N ∗K and the parity check matrix A is (N −K) ∗N , such that HG = 0.

We denote the rows of a parity check matrix as:

A =



















AT
1

AT
2

.

.

AT
M



















;

The equation aTi c = 0 is said to be a linear parity-check constraint on the codeword c. We

use the notation zm = aTmc and call zm a parity check or, more simply, a check.

Using Gaussian elimination with column pivoting as necessary (with binary arithmetic)

determine an M ∗M matrix A−1
p so that

H = A−1
p ∗ A = [I A2]. (3.1)

(If such a matrix A , does not exist, then A is rank deficient, r = rank(A) < M . In this

case, form H by truncating the linearly dependent rows from A−1
p ∗ A. The corresponding

code has R =
K

N
>

N −M

N
, so it is a higher rate code than the dimensions of A would

suggest). Having found H, form

G =

[

A2

I

]

;

Then HG = 0, so ApHG = AG = 0, so G is a generator matrix for A. While A may be

sparse, neither the systematic generator G nor H is necessarily sparse.

Finally, if the message is

54
Solving Low-Density Parity-Check Codes with Belief Propagation Algorithms on

Binary Erasure Channel

m =















1

0

1

1















;

then the codeword will be

c = Gm =































1 1 0 1

1 0 1 1

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 1













































1

0

1

1















=































2

3

1

2

0

1

1































=































0

1

1

0

0

1

1































If no bit is flipped during transmission, in other words, y = c. Then the syndrome vector is

z = Hy =









1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1







































0

1

1

0

0

1

1































=









2

4

2









=









0

0

0









If, for example, the 6th bit is flipped, then

z = Hy =









0

1

1









.

Reading z from the bottom up (higher position first), we see the flipped bit is indeed 6 (110).

3.2.1 Transmission Through a Gaussian Channel

The decoder for codewords is transmitted through an additive white Gaussian noise (AWGN)

channel .

3.2 Low Density Parity-check Code (LDPC) 55

Figure 3.1: Belief propagation example code.

When a codeword is transmitted through an AWGN channel, the binary vector c is first

mapped into a transmitted signal vector t. A binary phase-shift keyed (BPSK) signal con-

stellation is employed, so that the signal a =
√
Ec represents the bit 1 and the signal −a

represents the bit 0. The energy per message bit Eb is related to the energy per transmitted

coded bit Ec, by Ec = REb, where R = k/n is the rate of the code.

The transmitted signal vector t has elements tn = (2cn − 1)a. This signal vector passes

through a channel and sometimes some bits are erasered during the transmission.

3.2.2 Hard-decision Decoder

In Figure 3.1 we can see an example of Factor Graph for LDPC Code, its corresponding

paritycheck matrix is:

H =















0 1 0 1 1 0 0 1

0 0 1 0 0 1 1 1

1 1 1 0 0 1 0 0

1 0 0 1 1 0 1 0















;

An error free codeword of H is

c = [1 0 0 1 0 1 0 1]T .

Suppose we receive

y = [1 1 0 1 0 1 0 1]T

So c2 was flipped. The algorithm work as follow:

56
Solving Low-Density Parity-Check Codes with Belief Propagation Algorithms on

Binary Erasure Channel

1. In the first step, all message nodes send a message to their connected check nodes.

In this case, the message is the bit they believe to be correct for them. For example,

message node c2 receives a 1 (y2 = 1), so it sends a message containing 1 to check

nodes f1 and f2. Table 3.1 illustrates this step.

2. In the second step, every check nodes calculate a response to their connected message

nodes using the messages they receive from step 1. The response message in this case

is the value (0 or 1) that the check node believes the message node has based on the

information of other message nodes connected to that check node. This response is

calculated using the parity-check equations which force all message nodes connect to a

particular check node to sum to 0 (mod 2). In Table 3.1, check node f1 receives 1 from

c4, 0 from c5, 1 from c8 thus it believes c2 has 0 (1 + 0 + 1 + 0 = 0), and sends that

information back to c2.

At this point, if all the equations at all check nodes are satisfied, meaning the values

that the check nodes calculate match the values they receive, the algorithm terminates.

If not, we move on to step 3.

3. In this step, the message nodes use the messages they get from the check nodes to

decide if the bit at their position is a 0 or a 1 by majority rule. The message nodes

then send this hard-decision to their connected check nodes. Table 3.2 illustrates this

step. To make it clear, let us look at message node c2. It receives 2 zeros from check

nodes f1 and f2. Together with what it already has y2 = 1, it decides that its real value

is 0. It then sends this information back to check nodes f1 and f2.

4. Repeat step 2 until either exit at step 2 or a certain number of iterations has been

passed.

3.2.3 Hard-decision Encoder

If the generator matrix G of a linear block code is known then encoding can be done using

equation c = Gm. The cost (number of operations) of this method depends on the Hamming

weights (number of ones) of the basis vectors of G. If the vectors are dense, the cost of

encoding using this method is proportional to n2. This cost becomes linear with n if G is

sparse.

3.3 LDPC Codes Over Binary Erasure Channels 57

check nodes activities

f1 receive c2 → 1 c4 → 1 c5 → 0 c8 → 1

send 0 → c2 0 → c4 1 → c5 0 → c8

f2 receive c1 → 1 c2 → 1 c3 → 0 c6 → 1

send 0 → c1 0 → c2 1 → c3 0 → c6

f3 receive c3 → 1 c6 → 1 c7 → 0 c8 → 1

send 0 → c3 1 → c6 0 → c7 1 → c8

f4 receive c1 → 1 c4 → 1 c5 → 0 c7 → 0

send 1 → c1 1 → c4 0 → c5 0 → c7

Table 3.1: Check nodes activities for Hard-Decision Decoder for code of Fig. 3.1

message nodes yi messages from check nodes decision

c1 1 f2 → 0 f4 → 1 1

c2 1 f1 → 0 f2 → 0 0

c3 0 f2 → 1 f3 → 0 0

c4 1 f1 → 0 f4 → 1 1

c5 0 f1 → 1 f4 → 0 0

c6 1 f2 → 0 f3 → 1 1

c7 0 f3 → 0 f4 → 0 0

c8 1 f1 → 1 f3 → 1 1

Table 3.2: Message nodes decision for Hard-Decision Decoder for code of Fig. 3.1

However, LDPC is given by the null space of a sparse parity-check matrix H. It is unlikely

that the generator matrix G will also be sparse. Therefore the straightforward method of

encoding LDPC would require number of operations proportional to n2. This is too slow for

most practical applications.

3.3 LDPC Codes Over Binary Erasure Channels

In this section we will see how to use the LDPC codes in a Noisy Communication Channel

like in Fig. 3.2 (a); there are two different kind of channels: the Binary Symmetric Channel

(BSC) and the Binary Erasure Channel (BEC). In Fig 3.2 (b) we can see the two different

types of channels.

A Binary Channel is so-called because it can transmit only one of two symbols (usually 0

58
Solving Low-Density Parity-Check Codes with Belief Propagation Algorithms on

Binary Erasure Channel

(a) A Noisy Communication System. (b) BEC and BSC.

Figure 3.2: Binary channel.

and 1). (A non-binary channel would be capable of transmitting more than two symbols,

possibly even an infinite number of choices.) The channel is not perfect and sometimes the

bit gets erased ; that is, the bit gets scrambled so the receiver has no idea what the bit was.

The BEC is, in a sense, error-free. Unlike the Binary Symmetric Channel, when the receiver

gets a bit, it is 100% certain that the bit is correct. The only confusion arises when the bit

is erased.

A Binary Erasure Channel with erasure probability p is a channel with binary input, ternary

output, and probability of erasure p (Fig. 3.2 (b)). That is, let X be the transmitted random

variable with alphabet {0, 1}. Let Y be the received variable with alphabet {0, 1, e}, where
e is the erasure symbol . Then, the channel is characterized by the conditional probabilities:

the received bit is correct with probability 1− ε or is incorrect with probability ε. ”1− p” is

the capacity of the BEC.

The work of the Constrain nodes in a Factor Graph relative to a LDPC code on BEC is

really simple. Every constraint node receive v bits from the variable nodes; with this it

evaluate the Parity Equation to see if every variable node ha sthe correct bit. If the result of

the equation is 0 then the algorithm can stop. In fig. 3.3 we can see an example of a factor

Graph with the Constraint nodes and the relative equations that everyone has to satisfy to

complete the algorithm.

If during the transmission a bit is lost the Constraint node take the v − 1 bits of the

other Variable nodes and evaluate the Parity Equation without the last bit. Looking the

Constrainnode1 in Fig. 3.3 we suppose that the bit 3 is lost; we will have the resultant

equation 3.2:

x1 + x2 + x4 + x6 + x8 + x10 =? (3.2)

3.3 LDPC Codes Over Binary Erasure Channels 59

Figure 3.3: Parity Equations for a LDPC code over BEC.

If the result of the equation is 1 then the Constraint node knows that the variable node 3

has to be 1 and vice versa if the result of the equation is 0. This is because the result of the

equation with all the the variables has to be 0.

The performance of the LDPC code over BEC depends on the result of the algorithm: it

fulfils the precise codeword, it founds a legal codeword but not the right one, it does not

converges to a solution (a Stopping Set is found).

The Stopping Set situation can happen when a constraint node has more than one unknown

bits and it’s impossible to solve the Parity Equation.

In order to implement my programm, I use a different kind of channel: the Additive white

Gaussian noise channel (AWGN). In this channel a noise is introducted to the signal. The

bit after the transmission follow a Gaussian distribution and they are distributed like in Fig.

3.4.

In my algorithm we have the paramether threshold α. Instead to use a probability to erase

the bits, we delete all the numbers inside the interval {−α,α} taht correspond to erase the

bit that during the transmission loose too much power. In this way the probability of erasure

increase when α increase and vice versa.

In the Section 3.4 we can see the results of the simulations.

60
Solving Low-Density Parity-Check Codes with Belief Propagation Algorithms on

Binary Erasure Channel

Figure 3.4: Additive white Gaussian noise channel AWGN

(a) BER Vs. Erasered Numbers. (b) BER Vs. Erasered Threshold.

Figure 3.5: Graph of BER.

3.4 Conclusion and Results for LDPC Codes

This section present all the results of the simulations. All the results have been obtained with

a Parity Check Matrix of dimension 124 ∗ 64. The Threshold α start from 0 (no erasures)

until 1.5. The data that we analyse are: Bit Error Rate (BER) and Word Error Rate (WER).

These data are compared with the erasure number and the erasure threshold.

Looking the Figures 3.5 and 3.6 we can immediately see that the BER and the WER is

null until an Erasures Number of 12 that corresponds to a Threshold value α = 0.19. In the

interval {0, 0.19} the algorithm stop always with success and the right codeword is always

found.

After this Threshold the algorithm is not more precise and we start to have some incorrect

results until we arrive to a Threshold of α = 0.9 in which the value of the Bit Error rate

(BER) and Word Error Rate (WER) are the biggest. After that the BER and WER value is

stable around a value of respectively BER = 0.01 and WER = 0.64.

3.4 Conclusion and Results for LDPC Codes 61

(a) WER Vs. Erasered Numbers. (b) WER Vs. Erasered Threshold.

Figure 3.6: Graph of WER.

In the Fig. 3.7 we can better see these intervals and the values.

(a) BER Vs. Erasered Numbers. (b) BER Vs. Erasered Threshold.

Figure 3.7: Range of Erasures.

In the Fig. 3.8 we can see the percentage of success during all the simulations in rapport

with the erasures number (a) and the Threshold (b).

The rest of the figures show how the BER, rapported with the EbNo, changes when the

Threshold change. The figures go from a value of the threshold of α = 0.4 until a value

α = 1.5.

62
Solving Low-Density Parity-Check Codes with Belief Propagation Algorithms on

Binary Erasure Channel

(a) Success Percentage Vs. Erasered Numbers. (b) Success Percentage Vs. Erasered Threshold.

Figure 3.8: Success Percentage.

(a) BER Vs. EbNo. (b) WER Vs. EbNo.

Figure 3.9: BER and WER Vs. EbNo for a Threshold of 0.4.

3.4 Conclusion and Results for LDPC Codes 63

(a) BER Vs. EbNo. (b) WER Vs. EbNo.

Figure 3.10: BER and WER Vs. EbNo for a Threshold of 0.5.

(a) BER Vs. EbNo. (b) WER Vs. EbNo.

Figure 3.11: BER and WER Vs. EbNo for a Threshold of 0.6.

64
Solving Low-Density Parity-Check Codes with Belief Propagation Algorithms on

Binary Erasure Channel

(a) BER Vs. EbNo. (b) WER Vs. EbNo.

Figure 3.12: BER and WER Vs. EbNo for a Threshold of 0.7.

(a) BER Vs. EbNo. (b) WER Vs. EbNo.

Figure 3.13: BER and WER Vs. EbNo for a Threshold of 0.8.

3.4 Conclusion and Results for LDPC Codes 65

(a) BER Vs. EbNo. (b) WER Vs. EbNo.

Figure 3.14: BER and WER Vs. EbNo for a Threshold of 0.9.

(a) BER Vs. EbNo. (b) WER Vs. EbNo.

Figure 3.15: BER and WER Vs. EbNo for a Threshold of 1.0.

66
Solving Low-Density Parity-Check Codes with Belief Propagation Algorithms on

Binary Erasure Channel

(a) BER Vs. EbNo. (b) WER Vs. EbNo.

Figure 3.16: BER and WER Vs. EbNo for a Threshold of 1.1.

(a) BER Vs. EbNo. (b) WER Vs. EbNo.

Figure 3.17: BER and WER Vs. EbNo for a Threshold of 1.2.

3.4 Conclusion and Results for LDPC Codes 67

(a) BER Vs. EbNo. (b) WER Vs. EbNo.

Figure 3.18: BER and WER Vs. EbNo for a Threshold of 1.3.

(a) BER Vs. EbNo. (b) WER Vs. EbNo.

Figure 3.19: BER and WER Vs. EbNo for a Threshold of 1.4.

68
Solving Low-Density Parity-Check Codes with Belief Propagation Algorithms on

Binary Erasure Channel

(a) BER Vs. EbNo. (b) WER Vs. EbNo.

Figure 3.20: BER and WER Vs. EbNo for a Threshold of 1.5.

Chapter 4

Conclusions and perspectives

Factor graphs provide a natural graphical description of the factorization of a global function

into a product of local functions. They can be applied in a wide range of application areas.

Codes defined on graphs and decoded using the sum-product algorithm (or one of many

possible variations) appear to be a solution to the problem of approaching fundamental limits

in communication with practical decoding complexity.

The sum-product algorithm may be applied to arbitrary factor graphs, cycle-free or not.

In the cycle-free finite case, we have shown that the sum-product algorithm may be used to

compute function summaries exactly.

In other applications, e.g., in decoding of LDPC codes, solving Sudoku Puzzle or in general

in graph with cycles, it is not. In the latter case, a successful strategy has been simply to

apply the sum-product algorithm without regard to the cycles.

The MP paradigm is straightforward to apply to some problems with multiple constraints,

with solutions obtained over discrete sets. The computational complexity is localized to each

constraint. Cycles lead to failures in some cases, due to biases in the MP process.

The Belief Propagation Algorithm can be used in several fields. Everything depends on

the faculty to express the problem in term of factor graph. As shown in this thess, Belief

Propagation is not always the most accurate or optimal algorithm to solve a problem.

Nevertheless, it is often used for its reduced complexity.

The failure of the Sum-product algorithm when applied to Sudoku similarly to LDPC over

BEC is due to the existence of stopping-sets where we the algorithm shucked before the puzzle

is completely solved.

This Stopping Sets in both cases are situations that Belief Propagation can not evaluate

because constraint nodes can not communicate between them; but maybe, as we saw in Sec.

2.4.1, with different algorithms are very simple problems to evaluate and solve.

70 Conclusions and perspectives

We can also see that we have some similar situation in Sudoku Sokving and in LDPC

Decoding:

• In the Sudoku Solving we have a percentage of success of the BP algorithm when the

starting numbers are between 29 and 32; in the LDPC Decoding th percentage is the

same when the erasures number is between {0, 0.19}.

• Gradually the percentage of success decrease, respectively, in the Sudoku Solving when

the starting numbers decrease and when the erasures number increase in LDPC Decod-

ing.

• Finally in the last phase the percentage of success is really low, almost zero. We can

see that in Fig. 2.14 in Sec. 2.4.3 for the Sudoku Solving and in Fig. 3.8 in Sec. 3.4

for the LDPC Decoding.

To conclude we can say that LDPC Decoding and Sudoku Solving have a similar behavior.

The success is based on the starting complexity of the problem and the problems for both are

more or less the same. This happens because when the complexity is bigger, there are more

cycles in the graph and we find more stopping-sets; if the complexity decrease, many Variable

Nodes are known, they do not take part anymore in the algoritm and we can say that they

are cropped from the graph. In this way, many cycles are removed and consequently the

Stopping-set disappear and the complexity decrease.

Belief Propagation with all its algorithms is very powerfull for their simplicity of imple-

mentation, but at the same time, they have limits due to the presence of these cycles in the

Factor Graph and Stopping-Sets during the solution.

The best thing, is to use it to simplify the problem and if is not possible to find the solution,

it is possible to support it with other kinds of algorithms more powerfull that can better work

when the complexity of the problem is considerably reduced.

Bibliography

[1] D. Achlioptas, C. Gomes, H. Kautz, and B. Selman, “Generating satisfiable problem

instances,” in In Proceedings of the Seventeenth National Conference on Artificial Intel-

ligence, AAAI-00, Ed., 2000.

[2] N. Alon and M. Luby, “A linear time erasureresilient code with nearly optimal recovery,”

IEEE Trans. Inform. Theory, vol. 47, pp. 623–656, February 2001.

[3] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for

minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. 20, pp. 284–287, March

1974.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error correcting

coding and decoding: Turbo codes,” IEEE Int. Conf. Commun., pp. 1064–1070, May

1993.

[5] J. Bondy and U. Murty, “Graph theory with applications,” 1982.

[6] M. Dincabs and H. Simonis, “Apache - a constraint based, automated stand allone

allocation system,” Advanced Software Technology in Air Transport, pp. 267–282, 1991.

[7] B. J. Frey, F. R. Kschischang, H. A. Loeliger, and N. Wiberg, Eds., Factor graphs and

algorithms, vol. Proc. 35th Allerton Conf. on Communications, Control, and Computing,

September-October 1997.

[8] R. G. Gallager, Low-Density Parity-Check Codes. MA: M.I.T. Press, 1963.

[9] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the sum product

algorithm,” IEEE Trans. Inform. Theory, vol. 47, no. 3, pp. 498–519, February 2001.

[10] D. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans.

Inform. Theory, vol. 45, no. 2, pp. 399–431, March 1999.

72 BIBLIOGRAPHY

[11] T. K. Moon and J. H. Gunther, “Multiple constraint satisfaction by belief propaga-

tion: An example using sudoku,” IEEE Mountain Workshop on Adaptive and Learning

Systems, pp. 122–126, 2006.

[12] P. Norvig. Solving every sudoku puzzle. [Online]. Available: http://norvig.com/sudoku.

html

[13] G. Royle. (2005) Gordon royle. [Online]. Available: http://www.csse.uwa.edu.au/

gordon/sudokupat.php

[14] H. Simonis, “Building industrial applications with constraint programming,” Constraints

in computational logics: theory and applications, pp. 271–309, 2001.

[15] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform.

Theory, vol. 27, pp. 533–547, September 1981.

[16] N. Wiberg, “Codes and decoding on general graphs,” 1996.

[17] N. Wiberg, H. A. Loeliger, and R. K. Otter, “Codes and iterative decoding on general

graphs,” Europ. Trans. Telecommunications, vol. 6, pp. 513–525, 1995.

[18] Wikipedia. (2015) Factor graph. [Online]. Available: https://en.wikipedia.org/wiki/

Factor graph

[19] T. Yato and T. Seta, “Complexity and completeness of finding another solution and its

application to puzzles,” IEICE Trans Fundam Electron Commun Comput Sci E86-A,

vol. 5, pp. 1052–1060, 2003.

Index

A

additive white Gaussian noise channel, 54

B

bayesian

optimal, 1

posterior probability, 24

BCJR, 9

belief propagation, 1, 9, 22

binary

erasure channel, 2, 15, 52

symmetric channel, 57

binary phase-shift keyed, 55

binary-input additive white Gaussian

noise, 15

bipartite graph, 1, 9, 29, 52

bit error rate, 60

brute force, 24

C

cardinality, 35

channel capacity, 58

code rate, 55

codewords, 52

constraint

column, 39

function, 21

linear parity-check, 53

row, 39

sub-grid, 39

D

decision values, 24

E

energy per message, 55

erasure probability, 58

erasure symbol, 58

error correcting code, 51

F

factor graph, 1, 9

G

Gaussian distribution, 59

generator matrix, 53

H

hamming weights, 56

hard

decision, 49

decoder, 2

74 BIBLIOGRAPHY

hidden singles, 32

I

identity function, 12

iterative decoding algorithm, 52

L

LDPC

irregular, 52

regular, 52

local functions, 10

low-density parity-check, 1, 9, 51

M

marginal

distributions, 10

function, 10

max-product, 2, 9

message-passing, 12, 17

min-sum, 9

moon algorithm, 43

N

naked

pairs & triplets, 33

singles, 31

node

cell, 20

check, 38

constraint, 1, 19

variable, 1, 11, 19

noisy communication channel, 51

non-binary channel, 58

normalizing constant, 28

NP-complete, 2

P

parity equation, 58

probability

distribution function, 10

propagation, 2, 6, 9

vector, 23

S

schedule

adaptive, 38

alternate, 39

flooding, 37

linear, 38

message-passing, 37

no-adaptive, 38

serial, 37

shannon

channel capacity, 51

limit, 15, 51

soft-decision, 52

sparse parity-check matrix, 52

stationary state, 21

stopping-set, 2, 42

sudoku, 1

Puzzle, 18

sum-product, 2, 9, 14, 17

decoding, 15

summary-product, 9

syndrome vector, 54

systematic generator, 53

BIBLIOGRAPHY 75

T

tanner graph, 1, 9, 22, 51

threshold, 59

turbo

code, 51

decoding, 51

turbo code, 10

W

word error rate, 60

