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Abstract

In order to harness the informational power of quantum physics, one must be able to over-

come the challenge of decoherence. Decoherence is an ubiquitous effect arising from the

interaction of a quantum system with its environment. Such interactions generally spoil the

quantum coherence of the system, thus degrading its information content.

This thesis deals with the general problem of fighting decoherence in quantum memories.

Quantum memories are systems in which a quantum bit can be stored reliably over long

periods of time; they represent a necessary intermediate step towards the realization of fully

functional quantum computers.

The main focus of the thesis is on the application of quantum recovery operations to this

general problem. A recovery operation is a physical evolution that tries to undo the effect of

a previous noise. Even though decoherence processes are generally irreversible, part of the

information that is removed from the original encoding subspace may still be recoverable

from other regions of the state space of the memory. Thus, by applying a suitable recovery

operation, the fidelity between the encoded state and the recovered one can be improved.

By optimizing over all physical recovery operations, a reliable measure for the performance

of the quantum memory can be defined.

The thesis is structured as follows. After an introduction to the fundamental concepts in

quantum information theory, we define recovery operations and present some results about

them, including an upper bound on the optimal recovery fidelity that can be used to evaluate

the performance of quantum memory models. We then discuss an application of these

concepts, which exploits a suitably engineered form of dissipation to implement a continuous-

time version of quantum error correction. Then, after a discussion on how Hamiltonians can

be used to protect quantum information, we turn to a second application, which is based on

unpaired Majorana modes in condensed matter systems. These exotic quasi-particles have

some remarkable properties that suggest they could be used to store quantum information

in a way that is immune from local perturbations. We discuss the performance of Majorana-

based quantum memories in the open-system scenario, using analytically solvable toy models,

and focus on how the results relate to the concepts of locality and parity, which are generally

assumed to underpin the efficacy of Majorana-based quantum memories.
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Introduction

Quantum-mechanical systems are believed to be more powerful than classical ones at pro-

cessing information. Several problems exist that a hypothetical quantum computer could

solve much faster than any imaginable classical device; some of those problems are of great

practical importance. However, in order to harness the power of quantum information, the

ubiquitous phenomenon of decoherence must be dealt with. Decoherence represents a chal-

lenge not only for the realization of quantum computers, but also for the more basic task of

building a quantum memory, i.e. a quantum system that is able to preserve a set of quantum

states reliably over long times.

This thesis focuses on the problem of protecting quantum memories from decoherence, and

especially on the role that can be played by recovery operations in this framework. We study

the application of recovery operations to two specific classes of quantum memories: quantum

memories based on dissipation, and quantum memories that encode information in unpaired

Majorana modes.

Quantum Information Theory

Quantum Information Theory can be defined as the study of information processing tasks

that can be accomplished using quantum mechanical systems [1]. The idea of using quantum

mechanics to process information dates back to at least the 1970’s [2], and was made popular

by Feynman in 1981 [3]. This interest was originally motivated by the problem of simulating

quantum physics on a computer. Since the vector |ψ〉 describing the quantum state of an

N -particle system is specified by a number of coefficients that scales exponentially with N ,

simulations on classical computers would be generally inefficient: an exponential amount

of classical bits would be needed to track the evolution of all the coefficients. This means

that in order to simulate N quantum subsystems, O(eN ) classical ones are needed. But if

the subsystems that constitute the computer were quantum-mechanical, instead of classical,

then a polynomial number of them would suffice, thus allowing efficient simulations [4].
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The interest in Quantum Information Theory grew considerably when it was realized that

quantum computers would be useful not only for the simulation of quantum physics, but also

for the solution of classical problems. Some quantum algorithms were proven to be faster

than their classical counterparts, including Shor’s algorithm for factoring prime numbers

[5] and Grover’s search algorithm [6]. In the following years Quantum Error Correction

(QEC) was proven to be possible [7, 8]. QEC is a mechanism based on redundancy; in order

to correct the errors that can occur in the elementary constituents of the computer, more

elementary constituents must be added, which in turn causes exposition to a higher number

of possible errors. It has been shown that, if the error rate of the elementary constituents

is lower than a certain threshold, a suitably designed redundant encoding will suppress the

error rate of the whole computer. Otherwise, redundancy introduces more errors than it

can correct, and the error rate for the whole computer diverges. This result is known as the

fault-tolerance threshold theorem [9].

Passive Protection from Decoherence

Those discoveries proved that quantum computation is possible, at least in principle: if we

were able to manipulate quantum states fast and reliably enough, then fault-tolerant QEC

would allow us to overcome the problem of decoherence.

Unfortunately, in most models the accuracy thresholds required for fault-tolerance are very

strict, with estimates usually ranging between 10−3 and 10−6 errors per operation. Present-

day experiments are still far from reaching such high accuracies, and it is still unclear

whether or not future technological advancements will ever bring the achievable accuracies

above the required thresholds: manipulating quantum systems while keeping their quantum

coherence intact is generally very difficult. Even “doing nothing” with quantum information

is hard: real quantum systems are never exactly closed; interactions with the environment

are ubiquitous. Such interactions degrade the quantum coherence of the system, thus making

the mere preservation of quantum states a difficult task. This effect is known as decoherence

and is the foremost adversary of quantum information.

Because of decoherence, the actual realization of a fully functional quantum computer re-

mains an open problem in practice. Moreover, even the preliminary goal of realizing a reliable

quantum memory is challenging. Even though in principle fault-tolerant quantum error cor-

rection provides a solution to this problem, the severe accuracy requirements make it an

impractical approach, at least for the foreseeable future. This problem led to the develop-

ment of several alternative approaches in which information is not protected by the repeated

intervention of an external agent, as in the fault-tolerant QEC paradigm, but rather from

the physics that governs the hardware. This class of approaches will be denoted generically

as passive, as opposed to the “active” nature of fault-tolerant QEC.
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Passive protection schemes are particularly well suited for the realization of quantum memo-

ries: they reproduce the idea of a classical hard drive, in which magnetic interactions protect

the encoded information over long times without the need of error correction. They may

instead be less suited for the realization of quantum computers, since the physical effects

that oppose decoherence may also forbid coherent manipulations.

This thesis focuses on two different approaches for the realization of passive quantum mem-

ories. In the first one, a particular form of dissipation is engineered so as to implement an

automatic, continuous-time version of QEC. The second approach is based on the recent

theoretical discovery of the emergence of unpaired Majorana modes in solid-state systems,

whose non-local nature might be beneficial against local perturbations.

Quantum memories based on dissipation

Until recently, dissipation was only associated to noise and decoherence, and thus considered

harmful for quantum information. However, it has been realized by Verstraete, Wolf and

Cirac [10] that dissipation can also be a useful resource for several information processing

tasks, including computation and state-engineering. Their ideas have then been realized in

systems of trapped ions [11, 12]. Finally, Pastawski et al. provided a general framework for

the use of dissipation as a resource for quantum memories [13].

Continuous-time quantum error correction (CTQEC) is much older that those recent works.

The first proposal, by Paz and Zurek [14], dates back to 1997, soon after the discovery of

QEC. It was originally proposed as a mathematical way of modeling fast repeated QEC

operations. In 2005 Sarovar and Milburn proposed a scheme for CTQEC that used a sim-

ple cooling process to physically implement the required continuous-time dynamics [15].

CTQEC can thus be seen as a dissipation-based strategy for protecting information. The

main disadvantage of CTQEC over more general dissipation-based quantum memories [13] is

that the required dissipators are generally non-local, thus making the whole approach non-

scalable. Nonetheless, CTQEC provides instances of dissipation-based quantum memories

which are interesting by themselves; and provided the underlying QECC is small enough, the

physical implementation of CTQEC is probably less demanding than the implementation of

standard fault-tolerant QEC in discrete time.

In this thesis we consider the general scheme for translating a stabilizer quantum error-

correcting code into a dissipation-based quantum memory, and analyze in detail the two

simplest examples. The known results about the simplest instance (the 3-qubit code) are

re-derived analytically; then, the 5-qubit perfect code is studied numerically in a way that

can be straightforwardly generalized to larger codes by employing enough computational

power.
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Quantum memories based on Majorana modes

Since the first proposal by Kitaev in 2000 [16], the possibility of employing emergent Majo-

rana zero-modes to store quantum information has gained widespread popularity. Loosely

speaking, Majorana modes are “halves” of a regular fermionic Dirac mode; they have never

been observed directly because they are usually paired by a mass term to form Dirac modes.

However, it has been pointed out [17, 18] that vortices of some peculiar 2-dimensional su-

perconductors may host unpaired Majorana modes. The absence of pairing means that two

“halves” of a Dirac mode can be arbitrarily far apart from one another. This non-locality,

along with the fact that these zero-modes are usually protected by a symmetry or by the

topology of the system, has made them very popular candidates as constituents of a quantum

memory – though no conclusive result about the efficacy of such schemes is known yet.

Majorana particles are intrinsically interesting, since they would provide the first instance

of non-Abelian anyons ever observed in nature. This exotic feature, along with the potential

applications in quantum information, has made the pursuit of Majorana physics one of the

most exciting challenges of both theoretical and experimental condensed matter research

[19].

In this thesis we study Majorana-based quantum memories by analyzing toy-models that

are simple enough to allow an exact analytical evaluation of the memory performance. From

those results, some general conclusions can be drawn about the physical factors that underpin

the efficacy of Majorana-based memories.

Outline of the Thesis

This thesis is structured as follows:

1. Chapter 1 provides all the necessary background in Quantum Information theory. It

consists of standard textbook material [1] and can be safely skipped by expert readers.

2. Chapter 2 presents the concept of recovery operation, which is of central importance for

the study of passive quantum memories. Several mathematical tools are introduced,

the most important being an upper bound to the amount of information that can be

extracted from a memory as a function of time. The material in this Chapter is mostly

drawn from [20].

3. Chapter 3 presents the continuous-time implementation of QECCs, in the framework of

dissipation-based quantum memories. The Chapter begins with a general introduction

to the standard theory of QEC [7], which can be skipped by expert readers. Then the

continuous-time version is discussed. The 3-qubit and 5-qubit QECCs are studied in
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detail; the known results about the 3-qubit code are re-derived and given a geometric

interpretation, while the 5-qubit code is studied numerically.

4. Chapter 4 is a brief review of how Hamiltonians can be used to protect quantum infor-

mation: an important distinction between two regimes is presented, and the difference

between them is illustrated through a concrete example.

5. Chapter 5 discusses Majorana-based quantum memories. After a brief introduction to

Majorana modes in condensed matter from both a theoretical and experimental point

of view, the encoding of information in a system with unpaired Majorana modes is

presented in general. Three toy-models are then introduced and studied analytically

using theoretical tools from Chapters 2 and 4. Finally the concepts that are generally

assumed to underpin the efficacy of Majorana memories are reviewed critically in light

of the memory performance of the toy-models.

6. Chapter 6 summarizes the results of this work and discusses some relevant open prob-

lems that may be the focus of future research.

The logical connections between different Chapters are displayed in Figure 1.

Original Content

The material in this thesis is organized in such a way that there is no explicit separation

between concepts drawn from the existing literature and original contributions: original

parts are inserted whenever required by the logical development of the discussion.

The following list provides references to all the original results in each Chapter.

• In Chapter 2:

1. The CP criterion for recovery operations (2.5), and its application to the proof

of the complete positivity of recoveries induced by “Pauli-like” matrices (§2.3.2).

2. The optimal recovery operation for a single qubit exposed to a general noise, and

the corresponding fidelity (§2.4).

• In Chapter 3:

1. The recovery fidelity of the 3-qubit bit-flip code subject to an iterated (discrete-

time) error-correction procedure, and the corresponding storage time (§3.2.2).

2. The calculation of the recovery fidelity for the continuous-time implementation of

the 3-qubit bit-flip code, in §3.4.2 (the results were already known from e.g. [14],

but we present an alternative derivation and discuss the optimality of the result).
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Figure 1: concept map of the thesis.

3. The study of fixed and quasi-fixed points of the dynamics for the 3-qubit CTQEC

(§3.4.3).

4. The numerical computation of the recovery fidelity for the continuous-time im-

plementation of the 5-qubit QECC (§3.5.3).

• In Chapter 4:

1. The choice of terminology introduced in §4.1.2 (while the concepts being labeled

are not original by themselves, to the best of our knowledge no specific terminol-

ogy for them can be found in the literature).

2. The calculations about the memory performance of a minimal Ising chain (§4.2) in

both the “decoherence opposition” and the “decoherence prevention” scenarios.

• In Chapter 5:

1. The discussion of the effective local ground-space dynamics for a system with four

distant Majorana zero-modes (§5.2.3).
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2. The discussion about the fully-mixed encoding (§5.2.4) and the lower bound on

the recovery fidelity (5.53).

3. The discussion of the 8-mode and 12-mode toy models presented in §5.3 and §5.4.

4. The calculation of the memory performance of a quantum memory made of two

Kitaev chains under both parity-preserving and non-parity-preserving noise mod-

els (§5.5).

• In Appendix E:

1. The characterization of parity-preserving noise models in terms of their Kraus or

Lindblad operators.

The most significant contributions are the following.

1. The microscopic derivation of a Markovian master equation for a pair of Kitaev chains

in both fermionic and bosonic environments, and the subsequent evaluation of the

performance of such systems as quantum memories: it is shown that, in the large-gap

limit, information is preserved in a bosonic environment, while it is lost in a fermionic

one (§5.5).

2. An example of the strong dependence of the memory performance on the encoding

subspace in a Majorana-based quantum memory. This dependence is observed in a

12-mode toy model, and suggests that long-range correlations in the initial state of the

Majorana memory (beyond those strictly needed for the encoding) may be harmful for

the encoded information (§5.4).

3. The calculation of the memory performance of the continuous-time (dissipative) im-

plementation of the 5-qubit perfect code (§3.5). The known results were all limited to

the 3-qubit code, and thus could only prove protection against the bit-flip noise, which

is inherently classical. This result proves that information can be protected against

depolarizing noise, which is considered the most aggressive type of quantum noise.



Chapter 1

Review of Basic Concepts in

Quantum Information Theory

In this Chapter we provide an elementary introduction to the framework of Quantum In-

formation Theory. In Section 1.1 we define the qubit and derive the geometry of its state

space, the Bloch sphere. In Section 1.2 we briefly outline the theory of quantum channels.

This provides the mathematical framework for both quantum noise and quantum recovery

operations, which will be discussed in depth in Chapter 2. Particular attention is given to

Markovian quantum dynamics, since most noise models that will be considered in this thesis

are Markovian. Finally, in Section 1.3 two distinguishability measures for quantum states

are presented and some of their useful properties are briefly discussed.

1.1 The Quantum Bit

A classical bit of information is a quantity that can be either 0 or 1. This is a rather abstract

definition; concretely, a bit must be carried by a physical system. In order to carry a bit of

classical information, a system must have (at least) two distinguishable states, that can be

labeled as “0” and “1”.

By generalizing this notion to a quantum mechanical system, one gets a “quantum bit”, or

qubit [1]. A qubit is the information carried by the state of a two-level system, e.g. a spin- 1
2

particle. We can label the spin-up state |↑〉 as |0〉 and the spin-down state |↓〉 as |1〉. These

are known as the computational basis of the qubit Hilbert space H1.
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1.1.1 Pure and mixed states

Suppose we have a classical bit but we do not know its value with certainty – e.g., we flip a

coin without looking at the outcome. This situation can be described as a probabilistic (or

statistical) mixture: the state of the coin is “50% heads and 50% tails”.

The same applies to a qubit: apart from the intrinsic uncertainty associated to quantum

states, in general we have some degree of “classical” ignorance about the state of a quantum

system. Suppose we draw a qubit state from an ensemble E = {(pi; |ψi〉)} (the state is |ψi〉
with probability pi); this statistical mixture is described by the density matrix

ρE =
∑
i

pi |ψi〉 〈ψi| . (1.1)

Density matrices over a Hilbert space H are linear operators with the following properties:

1. Hermiticity (ρ̂ = ρ̂†),

2. positivity (ρ̂ ≥ 0),

3. unit trace (Tr (ρ̂) = 1).

Any ensemble state like ρE in (1.1) clearly obeys these three requirements. It is also easy to

prove the converse – i.e. that any density matrix ρ can be written as ρE for an appropriate

ensemble E. One such ensemble is given by the eigenvalues and eigenvectors of ρ, though

the ensemble representation is not unique.

1.1.2 The Bloch sphere

The space of density matrices over a Hilbert space H will be denoted by S (H). If H has

finite dimension d, then S (H) has dimension d2−1. For a qubit, d = 2 and therefore S (H1)

is a manifold of dimension 3.

In order to gain a geometric picture of this space, it is convenient to represent a general

qubit state in terms of Pauli matrices:

σ0 = 1 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.2)

These form a basis (over C) of 2× 2 matrices, therefore in general

ρ =
1

2

3∑
α=0

rασα. (1.3)
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Now, Hermiticity requires that rα ∈ R ∀α; unit trace requires r0 = 1; and positivity requires∑3
i=1 r

2
i ≤ 1. Therefore

S (H1) =

{
1 + r · σ

2
: |r| ≤ 1

}
. (1.4)

This is known as the Bloch sphere. Its surface (|r| = 1) consists of pure states, i.e. rank-one

projectors. The interior consists of mixed states. The center (r = 0) is the completely mixed

state, the state with minimal information content.

For “qudits” (i.e. d-level systems with d ≥ 3) or multi-qubit systems, the geometry of

S (H) becomes complicated. For instance, a pair of qubits has a 15-dimensional state space.

Comparing this to the 6-dimensional product of two Bloch spheres shows how rich and

complicated quantum correlations can be, even in such a simple case [21].

1.2 Quantum Channels

The state of a closed quantum system evolves according to the Schroedinger equation [22]:

d

dt
ρ̂(t) = −i

[
Ĥ(t), ρ̂(t)

]
(1.5)

The formal solution to this equation is obtained through a time-dependent unitary transfor-

mation:

ρ̂(t) = Û(t)ρ̂(0)Û†(t), Û(t) = T exp

[
−i

ˆ t

0

dτ Ĥ(τ)

]
, (1.6)

where T denotes time-ordering. However, the time evolution of an open quantum system

[23] need not be unitary. Let us focus on a subsystem A of a larger closed system A ⊗ B.

The reduced density matrix ρ̂A(t) ≡ TrB (ρ̂(t)) evolves according to

ρ̂A(t) = TrB

(
Û(t)ρ̂(0)Û†(t)

)
. (1.7)

If the initial state ρ̂(0) is completely uncorrelated, i.e. ρ̂(0) = ρ̂A(0) ⊗ ρ̂B(0), then (1.7)

reads

ρ̂A(t) = TrB

(
Û(t)ρ̂A(0)⊗ ρ̂B(0)Û†(t)

)
≡ Φt(ρ̂A(0)). (1.8)

Φt is generally not a unitary time evolution, i.e. there is no unitary matrix ÛA(t) acting on

subsystem A such that ρ̂A(t) = ÛA(t)ρ̂A(0)Û†A(t).
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1.2.1 CPTP maps

The map Φt from (1.8) is a linear transformation of the space of density matrices on H,

S (H). The space of density matrices is a sub-manifold of the space of all operators on H,

B (H). A generic super-operator (i.e. a linear operator acting on B(H), like Φt), without

further constraints, would map S (H) to a different submanifold of B(H). Thus, in order

to ensure that Φ(S(H)) ⊆ S(H), i.e. that Φ(ρ̂) is a state for every input state ρ̂, some

constraints must be imposed on Φ.

• (TP) Trace Preservation: Tr
(

Φ(Â)
)

= tr(Â) ∀ Â ∈ B(H);

• (P) Positivity : Φ(Â) ≥ 0 ∀ Â ∈ B(H) such that Â ≥ 0.

The necessary condition Φ(S(H)) ⊆ S(H), however, is not sufficient to guarantee that Φt

corresponds to a physical time evolution. A set of necessary and sufficient constraints is

obtained by generalizing (P) to

• (CP) Complete Positivity : (Φ⊗ I) (X̂) ≥ 0 ∀X̂ ∈ B(H ⊗ Haux) such that X̂ ≥ 0,

where Haux is a generic “auxiliary” Hilbert space and I is the identity super-operator

on B(Haux).

The standard example for a super-operator that is (P) but not (CP) is the transposition

(with respect to a specified basis): T (Â) = ÂT is clearly positive, but it can be shown that

T ⊗ I is not.

The most general process that can occur to a quantum state is therefore described mathe-

matically by a completely positive, trace-preserving (CPTP) linear map Φ. Such maps are

also called quantum channels [1].

A practical way of representing the action of a CPTP map Φ is the Kraus representation [24]:

Φ(ρ̂) =
∑
k

M̂kρ̂M̂
†
k , (1.9)

where the
{
M̂k

}
matrices, called Kraus operators, obey the normalization condition

∑
k

M̂†kM̂k = 1̂, (1.10)

which is needed to ensure the (TP) property.
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1.2.2 Markovian dynamics and master equations

The time-evolution of the state of an open quantum system is in general described by a one-

parameter family of CPTP maps {Dt : t ≥ 0}, such that ρ̂(t) = Dt (ρ̂(0)). The structure

of this family can be arbitrarily complicated, based on the type of interaction with the

environment.

There is, however, an interesting class of processes for which {Φt : t ≥ 0} has the nice math-

ematical structure of a semi-group1, i.e. Dt ◦ Ds = Dt+s ∀ t, s ≥ 0. These processes are

called Markovian and correspond to the physical scenario in which the environment corre-

lation times are very small compared to the times that characterize the dynamics of the

system [23]. This means that the environment has no memory of the previous states of the

system; information leaving the system is forever lost.

Under mild continuity assumptions, a one-parameter semi-group can be described in terms

of a generator [25]:

Dt = etL ∀ t ≥ 0. (1.11)

The super-operator L is called the Lindbladian. Imposing the CPTP requirements on Dt
constrains the form of the Lindbladian to the following:

L(ρ̂) = −i[Ĥ, ρ̂] +
∑
k

(
L̂kρ̂L̂

†
k −

1

2

{
L̂†kL̂k, ρ̂

})
, (1.12)

where H is Hermitian and the {L̂k} are generic operators. Ĥ is obviously identified with

the system Hamiltonian, while the {L̂k} are called Lindblad operators and represent the

dissipative part of the dynamics.

Markovian dynamics can therefore be described by a master equation of the general form

d

dt
ρ̂(t) = L(ρ̂(t)), (1.13)

with L of the form given in (1.12).

The Lindblad operators and the Hamiltonian are not uniquely determined: L is invariant

under unitary transformations L̂k 7→
∑
l uklL̂l (with

∑
j u
∗
ijujk = δik) and under the family

of inhomogeneous transformations
L̂k 7→ L̂k + αk1̂ ,

Ĥ 7→ Ĥ +
∑
j

α∗j L̂j − αjL̂
†
j

2i
,

(1.14)

1It is not a group because every non-trivial element lacks an inverse. This is because the times t and s
are required to be positive.
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where the {αj} are generic complex numbers. These “gauge fixing” degrees of freedom

allow us to take the Lindblad operators traceless and mutually orthogonal, without loss of

generality:

Tr
(
L̂i

)
= 0, Tr

(
L̂†i L̂j

)
= γiδij . (1.15)

Up to degeneracies in the {γi} coefficients, this choice uniquely specifies the set of Lindblad

operators and the Hamiltonian.

1.2.3 Adjoint of a quantum channel

In analogy to the adjoint of an operator Â ∈ B (H), one can define the adjoint of a channel

Φ ∈ B (B (H)). While the adjoint of an operator is defined with respect to the Hilbert space

Hermitian product on H, i.e. 〈φ| Âψ〉 =
〈
Â†φ

∣∣∣ψ〉, the adjoint of a channel is defined in

terms of the Hilbert-Schmidt Hermitian product on B (H):

(Â, B̂)HS = Tr
(
Â†B̂

)
. (1.16)

The adjoint of a channel Φ is thus defined as the super-operator Φ∗ such that, for all operators

Â, B̂ ∈ B (H), the following holds [1]:

Tr
(
ÂΦ(B̂)

)
= Tr

(
Φ∗(Â)B̂

)
. (1.17)

Some properties of the adjoint channel that will prove useful are the following.

• If the Kraus operators for Φ are
{
M̂k

}
, then those for Φ∗ are their adjoints

{
M̂†k

}
.

• Φ is TP if and only if Φ∗ is unital (and vice versa).

1.3 Distinguishability Measures for Quantum States

In order to develop a theory of information storage and processing, it is crucial to have a

way of quantifying the distinguishability of two items of information.

In the theory of quantum computation, for instance, one may be interested in implementing

a prescribed unitary operation with high accuracy. In order to quantify this accuracy, the

output of the real gate must be compared with the output of the ideal one. In the theory

of quantum memories, the goal is to store a given quantum state for long times without

degrading it. The performance of a quantum memory therefore has to be evaluated in terms

of how much the output state is similar to the input state.
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In both cases, a measure of distinguishability between quantum states is needed. The two

most common measures are the trace distance [26] and the fidelity [27].

1.3.1 Trace distance

The trace distance between two quantum states ρ̂ and σ̂ is defined as

dtr (ρ̂, σ̂) =
1

2
Tr (|ρ̂− σ̂|) , (1.18)

where |Â| =
√
Â†Â. As the name suggests, it is a distance, i.e. it is positive, it equals 0 if

and only if the two states are the same, and it obeys the triangular inequality. It is induced

by a norm, called the trace norm:

dtr (ρ̂, σ̂) =
1

2
‖ρ̂− σ̂‖tr, ‖Â‖tr = Tr

(
|Â|
)

= max
Ĥ∈Bop

Tr
(
ĤÂ

)
(1.19)

The maximization is done over the manifold Bop of Hermitian matrices with unit operator

norm2: ‖Ĥ‖op = 1. For any pair of quantum states ρ̂ and σ̂, one has

dtr (ρ̂, σ̂) =
1

2
‖ρ̂− σ̂‖tr ≤

‖ρ̂‖tr + ‖σ̂‖tr
2

=
Tr (ρ̂) + Tr (σ̂)

2
= 1, (1.20)

so that dtr (ρ̂, σ̂) ∈ [0, 1]. While dtr (ρ̂, σ̂) = 0 if and only if ρ̂ = σ̂, it can be shown that

dtr (ρ̂, σ̂) = 1 if and only if Tr (ρ̂σ̂) = 0. This condition (absence of overlap, or Hilbert-

Schmidt orthogonality) implies distinguishability3.

For qubit states one has

dtr

(
1 + a · σ

2
,
1 + b · σ

2

)
=

1

4
Tr (|(a− b) · σ|) =

|a− b|
2

. (1.21)

This is simply half of the Euclidean distance between the corresponding points in the Bloch

sphere. Two states have trace distance 1 if and only if they are antipodal, hence distinguish-

able.

A fundamental property of the trace distance is its contractivity under physical evolutions [1]:

dtr (Φ(ρ̂),Φ(σ̂)) ≤ dtr (ρ̂, σ̂) ∀ ρ̂, σ̂ ∈ S (H) , (1.22)

2The operator norm of a matrix is defined as ‖Ĥ‖op = max|ψ〉

∣∣∣ 〈ψ|Ĥ|ψ〉〈ψ|ψ〉

∣∣∣, which coincides with the

maximum singular value of Ĥ.
3If ρ̂ and σ̂ have zero overlap, then they have disjoint supports. Measuring the projector onto the support

of ρ̂ yields either 0 or 1: if the outcome is 1 then the state is certainly ρ̂, otherwise the state is certainly σ̂.
If Tr (ρ̂σ̂) 6= 0, no single measurement can discriminate between the two states.
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for all CPTP maps Φ. So every physical evolution is a contraction of the metric space

(S (H) , dtr), which implies that it has at least one fixed point:

∃ ρ̂∗ ∈ S (H) : Φ(ρ̂∗) = ρ̂∗. (1.23)

1.3.2 Fidelity

The Uhlmann fidelity [27] between two quantum states ρ̂ and σ̂ is

F (ρ̂, σ̂) =

[
Tr

(√√
ρ̂ σ̂
√
ρ̂

)]2

(1.24)

While the trace distance measures how much ρ̂ and σ̂ differ, the fidelity is a measure of how

much they are similar:

F (ρ̂, σ̂) = 1 ⇐⇒ ρ̂ = σ̂, F (ρ̂, σ̂) = 0 ⇐⇒ Tr (ρ̂σ̂) = 0. (1.25)

The latter condition (zero overlap) again implies that ρ̂ and σ̂ are distinguishable.

If one of the two states is pure, e.g. ρ̂ = |ψ〉 〈ψ|, the definition (1.24) simplifies to

F (|ψ〉 〈ψ| , σ̂) = 〈ψ| σ̂ |ψ〉 . (1.26)

For qubit states, if one of the states is pure, one has

F

(
1 + a · σ

2
,
1 + n · σ

2

)
= Tr

(
1 + a · σ

2

1 + n · σ
2

)
=

1 + a · n
2

. (1.27)

F = 1 implies a = n (equal states); F = 0 implies a = −n (antipodal, distinguishable

states).

F is obviously not a distance, but can be turned into one by suitable transformations – e.g.,

dang(ρ̂, σ̂) ≡ arccos(F (ρ̂, σ̂)) is a distance; for a pair of pure states it corresponds to the angle

between the two Hilbert space vectors.

Like the trace distance, the fidelity is monotonic under physical evolutions [1]:

F (Φ(ρ̂),Φ(σ̂)) ≥ F (ρ̂, σ̂) ∀ ρ̂, σ̂ ∈ S (H) , (1.28)

for all CPTP maps Φ. While dtr is monotonically decreasing, F is increasing: both behaviors

point to a loss of distinguishability, and therefore of information content.



Chapter 1. Review of Basic Concepts in Quantum Information Theory 9

Another useful property of the fidelity is the joint concavity [1]:

F

∑
i

piρ̂i,
∑
j

pj σ̂j

 ≥∑
i

piF (ρ̂i, σ̂i). (1.29)

If ρ̂i = |ψi〉 〈ψi| and σ̂i = Φ(ρ̂i) for some quantum channel Φ, then (1.29) becomes

F

∑
i

pi |ψi〉 〈ψi| ,Φ

∑
j

pj |ψj〉 〈ψj |

 ≥∑
i

piF (|ψi〉 〈ψi| ,Φ(|ψi〉 〈ψi|))

=
∑
i

pi 〈ψi|Φ(|ψi〉 〈ψi|) |ψi〉 . (1.30)



Chapter 2

Recovery Operations

This Chapter presents the concept of recovery operation. We begin by giving the definition

and general form of a recovery operation in Section 2.1. In Section 2.2 we discuss a measure

for the performance of a recovery operation, the average recovery fidelity, and prove an

upper bound that is used extensively in the rest of the thesis. We then proceed to define

optimal recovery operations in Section 2.3. A “candidate” recovery operation is presented:

it saturates the fidelity upper bound, but is not guaranteed to be physical. The complete

positivity of a particular class of recovery operations is then proved. A strategy for studying

the performance of quantum memory models based on these two observations is briefly

outlined. Finally, in Section 2.4 the simple example of a single-qubit “memory” is explicitly

analyzed and the exact solution of the optimization problem is discussed in terms of the

general concepts introduced in previous Sections.

2.1 General Concept

2.1.1 Definition

We shall use the term “recovery operation” to denote a CPTP map that tries to undo the

effects of a previous, given noise. This definition is to some extent arbitrary, and may refer

to any CPTP mapping between the appropriate state spaces, depending on the framework.

The typical scenario that will be considered in this thesis is the following: an abstract qubit

is initially encoded into a physical system, the “memory”; the memory evolves under the

effect of perturbations; after some time t, we want to retrieve the original state of the qubit.

This requires the choice of a physical mapping between the state space of the memory and

the Bloch sphere. This mapping is the recovery operation.
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memory memory

qubit qubit

ρin ρout

E

Dt

R

R ◦ Dt ◦ E

Figure 2.1: schematic representation of a quantum memory.

A more mathematically rigorous description is the following.

1. We initially embed the qubit state space S(H1) into a (possibly larger) state space

S(Hsys). The embedding (or encoding) is represented by a CPTP map E : S(H1) →
S(Hsys).

2. A given quantum channel Dt, representing the noise or decoherence, acts on S(Hsys).

3. At a given time t we perform a physical operation R : S(Hsys)→ S(H1) such that the

output of R ◦ Dt ◦ E is as close as possible to the input (in a sense that can be made

rigorous in terms of the distinguishability measures presented in §1.3).

The procedure is represented in Figure 2.1.

2.1.2 Form of a recovery operation

Recalling the general form of a qubit state (1.4), linearity forces R to be of the form

R(ρ̂) =
1

2

(
1f0(ρ̂) +

3∑
α=1

σαfα(ρ̂)

)
∀ρ̂ ∈ S (Hsys) , (2.1)

with f0, f1, f2 and f3 linear, real-valued functions of ρ̂. Now, by the Riesz representation

theorem, any linear function can be represented as a Hilbert-Schmidt scalar product with

a suitable operator: for each 0 ≤ α ≤ 3 there exists an operator Ĥα such that fα(ρ̂) ≡
Tr
(
Ĥαρ̂

)
. Real-valuedness forces the {Ĥα} to be Hermitian, and trace preservation requires

Ĥ0 = 1̂. Thus the general form of a recovery map is

R(ρ̂) =
1

2

(
1Tr (ρ̂) +

3∑
α=1

σαTr
(
Ĥαρ̂

))
. (2.2)
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This is not yet guaranteed to be a CP map. Imposing complete positivity will put additional

constraints on the {Ĥα : α = 1, 2, 3} operators. For example, it is easy to see that ‖Ĥα‖op ≤
1 is a necessary (though insufficient) condition to map the Bloch sphere into itself.

A powerful tool that can be used to check the complete positivity of a quantum channel is

the Choi-Jamioulkowski theorem [28]. It establishes an equivalence between the complete

positivity of a channel and the positivity of a state, which is much easier to investigate. The

Choi-Jamioulkowski state corresponding to a channel Φ acting on B (Hsys) is

ρ̂
(Φ)
CJ = (Φ⊗ I)

 1

N

N∑
i,j=1

|i〉 |i〉 〈j| 〈j|

 =
1

N

N∑
i,j=1

Φ(|i〉 〈j|)⊗ |i〉 〈j| , (2.3)

where {|i〉 : i = 1, . . . , N} is an orthonormal basis of Hsys.

The Choi-Jamioulkowski state corresponding to a recovery operation R, in the general form

(2.2), is thus

ρ̂
(R)
CJ =

1

N

N∑
i,j=1

R(|i〉 〈j|)⊗ |i〉 〈j| = 1

2N

N∑
i,j=1

(
1δij +

3∑
α=1

σα 〈j| Ĥα |i〉

)
⊗ |i〉 〈j|

=
1

2N

N∑
i,j=1

(
1⊗ |i〉 δij 〈j|+

3∑
α=1

σα ⊗ |i〉 Ĥji
α 〈j|

)

=
1

2N

(
1⊗ 1̂ +

3∑
α=1

σα ⊗ ĤT
α

)
. (2.4)

The transposition is taken with respect to the chosen orthonormal basis {|i〉 : i = 1, . . . , N}.
In conclusion from (2.4) we have that R is a CPTP map if and only if the following operator

inequality holds:

1⊗ 1̂ +

3∑
α=1

σα ⊗ ĤT
α ≥ 0. (2.5)

The ordered triples (Ĥ1, Ĥ2, Ĥ3) of Hermitian operators that satisfy condition (2.5) are in

one-to-one correspondence with physical recovery operations. For a system of n qubits, a

recovery operation is specified by three 2n×2n Hermitian matrices, hence by 3(2n)
2

= 3 ·4n

independent parameters. This is a huge number even for a system as small as a pair of

qubits (3·42 = 48 parameters) and increases exponentially, thus forbidding a straightforward

optimization on the space of all physical recoveries.
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2.2 The Average Recovery Fidelity

2.2.1 Definition

In order to decide which recovery operation is the best, a measure of “performance” is

needed. This measure must quantify how well the whole Bloch sphere is preserved. A very

convenient measure for this purpose is the average recovery fidelity :

F
(R)
t =

ˆ
dµφF (|φ〉 〈φ| ,R ◦ Dt ◦ E (|φ〉 〈φ|))

=

ˆ
dµφ 〈φ|R ◦ Dt ◦ E (|φ〉 〈φ|) |φ〉 , (2.6)

where dµφ is the uniform measure on the surface of the Bloch sphere. This is simply

an average of the fidelity (1.26) between the input state |φ〉 〈φ| and the recovered state

R ◦ Dt ◦ E(|φ〉 〈φ|). This measure only consider the surface of the Bloch sphere, neglecting

the mixed states in the interior. This however is not a problem, since by the inequality (1.30)

the recovery fidelity for a mixed state is lower-bounded by a convex combination of pure-

state recovery fidelities. Therefore averaging over pure input states is enough to characterize

the behavior of the whole Bloch sphere S (H1).

The optimal recovery fidelity is

F opt
t = max

R
F

(R)
t . (2.7)

This quantity only depends on the encoding and on the decoherence channel. Any recovery

operation R such that F
(R)
t = F opt

t will be called an optimal recovery operation.

The optimal recovery fidelity (2.7) is a measure of the amount of information still present

in the system after a time t. Notice that the optimal recovery operation may be highly

impractical, or even technically impossible (e.g. involving highly non-local operations on

the system). One can define other measures in order to quantify the amount of information

that can be practically recovered by restricting the optimization in (2.7) to a specific sub-

class of recovery operations that are considered easy to implement, such as Gaussian maps

[29].

Let us derive a more practical formula for (2.6). Let σ̂Lα denote E(σα), the embedded logical

operators (including σ̂L0 = E(1)). By changing the integration variable from |φ〉 to the

corresponding Bloch unit vector, one has

F
(R)
t =

ˆ
dµφ 〈φ|R ◦ Dt ◦ E (|φ〉 〈φ|) |φ〉

=

ˆ
dµnTr

(
1 + n · σ

2
R ◦ Dt

(
σ̂L0 + n · σ̂L

2

))
. (2.8)
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The measure dµn over the solid angle is such that
´
dµn1 = 1,

´
dµnni = 0 and

´
dµnninj =

1
3δij ; therefore

F
(R)
t = Tr

(
1

2
R ◦ Dt

(
σ̂L0
2

))
+

1

3

3∑
α=1

Tr

(
σα
2
R ◦ Dt

(
σ̂Lα
2

))

=
1

4
Tr (R ◦ Dt ◦ E(1)) +

1

12

3∑
α=1

Tr
(
σαR

(
Dt
(
σ̂Lα
)))

. (2.9)

Now, since R, Dt and E are all trace-preserving channels, Tr (R ◦ Dt ◦ E(1)) = Tr (1) = 2;

thus, recalling the general form of R (2.2), we have

F
(R)
t =

1

2
+

1

12

3∑
α=1

3∑
β=1

Tr

(
σα

1

2
Tr
(
Dt
(
σ̂Lα
)
Ĥβ

)
σβ

)

=
1

2
+

1

12

3∑
α=1

Tr
(
Dt
(
σ̂Lα
)
Ĥα

)
. (2.10)

With analogous techniques one can also compute the fidelity between the encoded state at

t = 0, 1
2

(
σ̂L0 + n · σ̂L

)
, and its time-evolved version 1

2

(
Dt
(
σ̂L0
)

+ n · Dt
(
σ̂L
))

:

F
(I)
t =

1

4
Tr
(
σ̂L0 Dt

(
σ̂L0
))

+
1

12

3∑
α=1

Tr
(
Dt
(
σ̂Lα
)
σ̂Lα
)
. (2.11)

This is denoted by F
(I)
t because it corresponds to the trivial recovery operation1 R = I.

Remark. While F
(R)
t is lower-bounded by 1

2 , F
(I)
t can drop to zero. This is because, in the

absence of recovery operations, the state at time t can be supported outside the original

encoding subspace. Any recovery operation R, instead, forces the state back into the Bloch

sphere, thus ensuring at least the “random guess” fidelity of 1
2 (which is attained by the

maximally mixed qubit state 1
21).

2.2.2 Upper bound

Theorem (upper bound on the optimal recovery fidelity). The optimal recovery

fidelity (2.12) obeys the following inequality:

F opt
t ≤ 1

2
+

1

12

3∑
α=1

∥∥Dt (σ̂Lα)∥∥tr
(2.12)

1This is a slight abuse of notation, since the identity channel I does not map S (Hsys) into S (H1).
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Proof. Recalling the definition of the trace norm (1.19), one has that for any two Hermitian

matrices Ĥ, X̂

Tr
(
ĤX̂

)
≤ ‖Ĥ‖op · ‖X̂‖tr. (2.13)

Applying this to (2.10), and since the CP condition (2.5) requires ‖Ĥα‖op ≤ 1 ∀α, one has

F
(R)
t ≤ 1

2
+

1

12

3∑
α=1

‖Ĥα‖op ·
∥∥Dt (σ̂Lα)∥∥tr

≤ 1

2
+

1

12

3∑
α=1

∥∥Dt (σ̂Lα)∥∥tr
. (2.14)

This bound does not depend on R, so a maximization over all physical recoveries yields

F opt
t ≤ 1

2
+

1

12

3∑
α=1

∥∥Dt (σ̂Lα)∥∥tr
. (2.15)

There is another way of writing the upper bound (2.12) that makes its geometric meaning

clearer:

F opt
t ≤ 1

2
+

1

12

3∑
α=1

∥∥∥∥Dt( σ̂L0 + σ̂Lα
2

)
−Dt

(
σ̂L0 − σ̂Lα

2

)∥∥∥∥
tr

=
1

2
+

1

6

3∑
α=1

dtr

(
Dt
(

Ψ̂L
α+

)
;Dt

(
Ψ̂L
α−

))
. (2.16)

Ψα± = 1±σα
2 is the pure ±1 eigenstate of σα, and Ψ̂L

α± = E(Ψα±).

The qualitative interpretation of (2.16) is as follows: a Bloch sphere was embedded into

a larger state space, and then subject to some (contractive) deformation; there are many

transformations that we can apply in order to try and restore it to its original form, but we are

not allowed to stretch its diameters. Once, say, the x̂ diameter is contracted, an amount of

information is inevitably lost. The length of the x̂ diameter is measured by the distance of its

extremal points, the two antipodal x̂ states on the Bloch sphere: dtr

(
Dt
(

Ψ̂L
1+

)
;Dt

(
Ψ̂L

1−

))
.

Each distance is initially equal to 1, so that F opt
0 = 1; then, by the contractivity property of

the trace distance undec CPTP evolutions [26], the bound (2.16) must decrease, or at most

remain constant.

Remark. (2.12) is just an upper bound: it is not guaranteed it can be saturated. This is

because the bound depends only on the lengths of the diameters, but not on the angles

they form with one another. Consider the following qubit channels: Φ1, that contracts

every σα to λσα, and Φ2, that collapses any σα to λσ3 (if λ ∈ [0, 1√
3
], both Φ1 and Φ2 are

CPTP). Then the x̂, ŷ and ẑ diameters of the Bloch sphere are all contracted from 1 to λ

under both channels, and the resulting upper bound is the same: F opt ≤ 1+λ
2 . But it is
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clear that Φ2 corrupts information more than Φ1, by making the three original directions

indistinguishable. Indeed, in §2.4 we shall prove a result which implies that the optimal

fidelities for Φ1 and Φ2 are 1+λ
2 and 1+λ/

√
3

2 respectively: the former saturates the upper

bound, the latter does not.

2.3 Optimal Recovery Operations

2.3.1 Candidate operation

Inequality (2.13) implies that a necessary condition for perfect recoverability of the infor-

mation is

Tr
(
ĤαDt

(
σ̂Lα
))

=
∥∥Dt (σ̂Lα)∥∥tr

∀α. (2.17)

Now, recalling the definition of the trace norm (1.19) in terms of the “absolute value” of a

matrix |X̂| =
√
X̂†X̂, (2.17) can be re-stated as Tr

(
ĤαDt

(
σ̂Lα
))

= Tr
(∣∣Dt (σ̂Lα)∣∣), or

Tr
(
ĤαDt

(
σ̂Lα
)
−
∣∣Dt (σ̂Lα)∣∣) = 0 ∀α. (2.18)

An obvious choice at this point is to assume

Ĥα =
∣∣Dt (σ̂Lα)∣∣Dt (σ̂Lα)−1 ≡ sign

(
Dt
(
σ̂Lα
))

∀α, (2.19)

where we introduced the definition of the “sign” of a matrix in analogy with the one for a real

number: sign(X̂) = |X̂|X̂−1. In a diagonal basis, one indeed has2 sign (diag (λ1, . . . , λd)) =

diag (sign (λ1) , . . . , sign (λd)). Another useful way of thinking about the “sign” of matrix is

the following. Consider a spectral decomposition of the Hermitian matrix X̂,

X̂ =
∑
x∈S

xΠ̂(x), (2.20)

where S is the spectrum of X̂ and Π(x) is the projector onto the x-eigenspace; then let

us split the spectrum into a positive and a negative part: S+ = {x ∈ S : x > 0} and

S− = {x ∈ S : x < 0} (the kernel is irrelevant). The “sign” of X̂ can be defined as

sign
(
X̂
)

=
∑
x∈S+

Π̂(x)−
∑
x∈S−

Π̂(x) = Π̂+ − Π̂−, (2.21)

i.e. as the projector onto the positive part of X̂ minus the projector onto the negative part

of X̂.

2For our purposes, sign (0) can be defined as 0.
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(2.19) then provides a “candidate” optimal recovery operation. The matrices{
Ĥα = sign

(
Dt
(
σ̂Lα
))}

(2.22)

have operator norm equal to 1, but this is not enough to guarantee that they satisfy the CP

criterion (2.5). If they do, then we have a physical recovery operation that saturates the

general upper bound, hence it is optimal. Otherwise, no conclusions can be drawn with this

argument.

2.3.2 Complete positivity of recovery operations based on “Pauli-

like” matrices

Checking the validity of the CP criterion (2.5) is generally difficult. Fortunately there is an

interesting class of recovery operations whose complete positivity can be proven in general.

Theorem (Recoveries based on “Pauli-like” matrices are CP) Consider a recovery

map R : S(Hsys) 7→ B(H1) in the general form (2.2). Suppose that the
{
Ĥα

}
matrices

satisfy

ĤαĤβ = iεαβγĤγ , (2.23)(
Ĥα

)2
= 1̂. (2.24)

Then R is CP.

Proof. From (2.23) we see that the set { 1
2Ĥα : α = 1, 2, 3} obeys the SU(2) Lie algebra:[

1

2
Ĥα,

1

2
Ĥβ

]
= iεαβγ

1

2
Ĥγ . (2.25)

By transposing both sides of (2.25) with respect to an arbitrary basis, we can see that the set

{− 1
2Ĥ

T
α : α = 1, 2, 3} obeys the same algebra; let us therefore give the following definitions:

Ŝα =
1

2
σα ⊗ 1̂, L̂α = −1

2
1⊗ ĤT

α , Ĵα = Ŝα + L̂α. (2.26)

Then condition (2.5) can be rewritten as follows:

1⊗ 1̂ +

3∑
α=1

(−4)ŜαL̂α = 1⊗ 1̂− 4Ŝ · L̂ ≥ 0. (2.27)
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Now we can apply the theory of angular momenta, substituting 2Ŝ · L̂ for Ĵ2 − L̂2 − Ŝ2 and

Ŝ2, L̂2 for 3
41⊗ 1̂; hence the CP condition:

1⊗ 1̂− 2
(
Ĵ2 − Ŝ2 − L̂2

)
= 1⊗ 1̂− 2

(
Ĵ2 − 3

2
1⊗ 1̂

)
= 4(1⊗ 1̂)− 2Ĵ2 ≥ 0. (2.28)

From the standard theory of angular momenta we know that Ĵ2 has eigenvalues J(J + 1),

with J = 0 (on “singlet” states) or J = 1 (on “triplet” states). Either way, 4− 2J(J + 1) is

non-negative, so ρ̂
(R)
CJ is indeed positive and R is a CPTP channel.

Remark. This proof is easily generalized to the case in which Ĥ2
α ≤ 1̂, i.e. the case in which

L̂ involves both “spin-0” and “spin- 1
2” sub-representations. In the “spin-0” representations

one has Ŝ · L̂ = 0, hence the CP condition 1 ⊗ 1̂ ≥ 0 is trivially verified; in the “spin- 1
2”

representations the situation is the one discussed above.

2.3.3 Application of the upper bound to the discussion of quantum

memory models

We will use the upper bound (2.12) extensively throughout this thesis, especially in Chapter

5. Our approach shall be the following. Given a decoherence process, we shall determine

the time-evolved logical matrices matrices
{
Dt
(
σ̂Lα
)}

, then calculate their trace norm and

obtain the upper bound. At this point:

• If the upper bound is low enough to prove a negative result about the memory perfor-

mance, we are done.

• If the behavior of the upper bound is good (e.g. if it remains constantly equal to 1),

we must determine whether or not the bound can be saturated. One way of attaining

the bound is by means of the “candidate” recovery operation discussed in §2.3.1.

– If the matrices (2.19) obey a “Pauli-like” algebra, then by the results of §2.3.2

the candidate recovery is physical, and we have a positive result.

– Otherwise, our method does not provide any conclusive results about the memory

performance.

This approach is summarized in Figure 2.2.
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Time-evolve"
the"logical"matrices:

Evaluate"the"upper"bound"
HighLow

Negative"Result Inconclusive"Result Positive"Result

Compute"the"YcandidateY"
recovery"matrices

Yes

No

Pauli"
algebra?

Figure 2.2: diagram describing how the upper bound (2.12) and the CP criterion §2.3.2
can be used to discuss the performance of quantum memory models.

2.4 Example: Optimal Recovery Operation for a Single

Qubit

We shall conclude this Chapter by explicitly analyzing the simplest framework for recovery

operations – the case in which the encoding system is itself a qubit. The problem can be

stated as follows: given a qubit channel Dt, determine the qubit channel R that maximizes

the average recovery fidelity

F
(R)
t =

ˆ
dµφ 〈φ|R ◦ Dt (|φ〉 〈φ|) |φ〉 . (2.29)

2.4.1 Single-qubit channels

In this simple case the recovery R is specified by 3 · 41 = 12 parameters. It is known [30]

that these parameters can be conveniently organized as a 3× 3 real matrix and a 3× 1 real
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vector that represent geometrically the action of R on the Bloch sphere: if Φ is a generic

qubit channel, then

Φ

(
1 + a · σ

2

)
=

1 + (Ma + b) · σ
2

. (2.30)

The CP condition for Φ can be expressed as a set of inequalities involving b and the vector

λ of singular values of M . Obviously in order to map the Bloch sphere into itself one must

have max {λi} ≤ 1 and |b| ≤ 1. These conditions however are not sufficient. For b = 0

(unital channels), the conditions on λ can be expressed as λ ∈ T , where T ⊂ R3 is the

tetrahedron of vertices V = {(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)}. As |b| expands,

the allowed region for λ shrinks, until at |b| = 1 the only allowed point is λ = (0, 0, 0) (this

extremal case corresponds to amplitude damping channels).

Since in this case both Dt and R are qubit channels, this parametrization applies to both

of them, thus allowing an exact solution to the problem. For higher-dimensional spaces

(dimHsys = d ≥ 2), no such convenient parametrizations are known.

2.4.2 Optimal recovery operation and fidelity

Let Dt be parametrized by M and b, and let us apply a singular value decomposition to M :

M = ATΛB, with A,B ∈ SO(3) and Λ = diag (λ). Then the optimal recovery operation

Ropt is parametrized by

M ′opt = BTRoptA, b′opt = 0, (2.31)

where Ropt is one of the four matrices {diag (v) : v ∈ V}, i.e.

I = diag (1, 1, 1) , Rx(π) = diag (1,−1,−1) ,

Ry(π) = diag (−1, 1,−1) , Rz(π) = diag (−1,−1, 1) ,

to be chosen so as to maximize the quantity Tr (RoptΛ) = v · λ.

The associated recovery fidelity is

F opt =
1

2
+

1

6
Tr (RoptΛ) =

1

2
+

1

6
max
v∈V

v · λ

=
1

2
+

1

6

3∑
i=1

|λi| −
1

3
Θ (−detM) min

i
|λi|. (2.32)

The combination of noise and recovery operation acts as

Ropt ◦ Dt
(

1 + a · σ
2

)
=

1

2

[
1 +

(
BTRoptΛBa +BTRoptAb

)
· σ
]

(2.33)
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The matrix acting on a is symmetric; the one acting on b is orthogonal. The qualitative

interpretation of this result is the following: the noise contracts the Bloch sphere along three

“principal axes”, then rotates it to some other orientation; the best one can do to recover the

original states is to rotate the Bloch sphere back to the original orientation. It is impossible

to reduce the amount of contraction or the length of the translation vector.

Proof. For a general qubit recovery operation, (2.6) becomes

F (R) =

ˆ
dµφ 〈φ|R ◦ Dt (|φ〉 〈φ|) |φ〉 =

ˆ
dµφTr (|φ〉 〈φ|R ◦ Dt (|φ〉 〈φ|))

=

ˆ
dµnTr

((
1 + n · σ

2

)(
1 + (M ′(Mn + b) + b′) · σ

2

))
=

1

2

(
1 +

ˆ
dµnnTM ′Mn

)
; (2.34)

recalling that
´
dµnninj = 1

3δij , one has

F (R) =
1

2
+

1

6
Tr (M ′M) . (2.35)

Applying the singular value decomposition M = ATΛB, (2.35) becomes

F (R) =
1

2
+

1

6
Tr
(
M ′ATΛB

)
=

1

2
+

1

6
Tr
(
BM ′ATΛ

)
=

1

2
+

1

6
Tr
(
M̃ ′Λ

)
, (2.36)

where we defined M̃ ′ = BM ′AT .

Since by (2.36) F (R) does not depend on b′, we can set b′ = 0, so as to maximize the allowed

parameter region for λ′ [30].

Let us apply a singular value decomposition to M̃ ′: M̃ ′ = UTΛ′V , with U, V ∈ SO(3) and

Λ′ = diag
(
λ′
)
. λ′ ∈ T is a vector of allowed singular values for a physical map. It is clear

from (2.36) that the dependence of F
(R)
t on λ′ is of the type F

(R)
t = 1

2 + w · λ′, for some

constant vector w. This means that the function F
(R)
t (λ′) has constant gradient, hence its

maxima must lie on the boundaries of the domain T , and namely in the set of vertices3 V.

But then M̃ ′ = UTdiag
(
λ′?
)
V , with λ′? ∈ V, is itself orthogonal. Therefore (2.36) yields

F opt =
1

2
+

1

6
max

M̃ ′∈SO(3)

{
3∑
i=1

M̃ ′iiλi

}
. (2.37)

In Appendix A we prove that the set of vectors that are diagonal elements of SO(3) matrices,

∆ ≡ {r ∈ R3 : ri = Rii for some R ∈ SO(3)}, is none other than the tetrahedron T . Thus

3If the gradient is orthogonal to a given face of T and pointing outwards, then the whole face is a manifold
of degenerate maximum points; we can choose one of its three vertices. In all other cases the maximum
point will be unique and will belong to V.
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we can conclude that

F opt =
1

2
+

1

6
max
v∈∆

v · λ =
1

2
+

1

6
max
v∈T

v · λ =
1

2
+

1

6
max
v∈V

v · λ, (2.38)

which is the result we stated in (2.32).

Finally, since M̃ ′ is orthogonal and has diagonal elements equal to ±1, it cannot have

off-diagonal elements (otherwise the norm of a column vector would exceed 1); therefore

M̃ ′ = diag
(
λ′?
)
, andM ′opt = BTdiag

(
λ′?
)
A, λ′? ∈ V such that λ′? · λ = max

v∈V
v · λ,

b′opt = 0,
(2.39)

as stated in (2.31).



Chapter 3

Continuous-Time Quantum

Error Correction

In this Chapter the possibility of realizing passive quantum memories via Quantum Error-

Correcting Codes (QECCs) is described. An elementary introduction to Quantum Error

Correction (QEC) is given in Section 3.1. In Section 3.2 we present the simplest non-

trivial example of a QECC, the 3-qubit bit-flip code, and discuss its efficacy at protecting

quantum information as measured by the average recovery fidelity. The cases of a single,

final recovery step and that of a periodically repeated recovery step are both analyzed. In the

high-frequency limit, repeated QEC leads to continuous-time QEC (CTQEC). A historical

introduction to CTQEC is provided in Section 3.3, along with a discussion of its relation to

the general framework of dissipation-based quantum memories. Two examples of CTQEC

are then studied: the 3-qubit code exposed to a bit-flip noise (Section 3.4) and the 5-qubit

perfect code exposed to a depolarizing noise (Section 3.5). In the former case an analytical

solution is derived and interpreted geometrically in terms of dynamical fixed points; in the

latter case, a numerical solution is presented. The two codes display very similar behaviors.

3.1 Introduction to Quantum Error Correction

3.1.1 The general idea

Suppose that we have a classical bit of information and that we want to store it reliably over

long periods of time. The bit must be encoded into a physical system that has at least two

classical states, which can be labeled as “0” and “1” respectively. If this system is exposed

to noise, in a given unit time there is a non-zero probability p for the system to change its

state from “0” to “1”, or vice versa, thus “flipping” the logical value of the encoded bit.
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If p is low enough, this problem is easily solved through redundancy: encoding the logical

bit into 2n − 1 physical bits, and then performing a recovery operation based on majority

voting, the probability of retrieving the wrong logical value becomes O(pn), since at least n

errors must occur to flip a majority of the code bits.

This means that, if the hardware is good enough (i.e. if the error probability p is sufficiently

small), one can make the error probability negligible by a simple redundant encoding. This

procedure, or some more sophisticated variant thereof, is what makes our classical compu-

tation and communication technology so reliable.

The step from classical physics to quantum physics poses some problems to this scheme.

First of all, the no-cloning theorem [31] forbids a redundancy like the one used in the classi-

cal example – i.e., the mapping |ψ〉 7→ |ψ〉⊗n is unphysical. Secondly, quantum-mechanical

measurements cause the collapse of the measured state. This forbids the straightforward

application of majority voting rules, in which each bit must be measured individually. Fi-

nally, quantum noise comes in a continuum of different forms, unlike its classical counterpart

which is basically restricted to bit-flips. The existence of error-correcting procedures that

work against infinitely many types of errors is not obvious a priori.

Luckily all these problems can be overcome [8, 32]. Quantum states cannot be cloned, but

redundant encodings are possible nonetheless: the qubit Hilbert space can be embedded

into larger Hilbert spaces, corresponding e.g. to states of several physical qubits. Secondly,

by measuring suitable combinations of physical qubits, it is possible to obtain information

about the occurrence of errors while leaving the encoded information intact. As for the last

problem, it turns out that correcting a finite, discrete set of quantum errors is enough to

automatically correct all the continuum of possible errors.

A quantum error-correcting code (QECC) can be formally defined as a subspace C of a

Hilbert space, which is usually Hn for some integer n. The dimension of the code-space C

is 2k, k ≤ n being the number of encoded (logical) qubits. Sometimes the QECC is defined

as the mapping from Hk into Hn, rather than as the image C of such mapping. P denotes

the code-space projector. A QEC procedure consists of a QECC plus a recovery operation

R, that maps back S (Hn) onto S (Hk).

3.1.2 The stabilizer formalism

We shall now describe a very important class of QECCs: the stabilizer codes [33]. In order

to do this, some formalism is required.

The Pauli group on n qubits is the set

Gn = {1, i,−1,−i} × {I,X, Y, Z}⊗n (3.1)
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with the usual matrix multiplication. The phase factors are needed in order to ensure that

the set is closed under multiplication, hence a group. Any two elements ofGn either commute

or anti-commute, and every element of Gn squares to either I or −I.

If g1, . . . , gl are elements of Gn, < g1, . . . , gl > denotes the subgroup they generate. This is

by definition the set of all elements of G that can be obtained by multiplying elements of

{g1, . . . , gl} with one another, and it is clearly a subgroup of Gn.

Given a subgroup S ⊆ Gn, the stabilized subspace VS ⊆ Hn is defined as

VS = {|ψ〉 ∈ Hn : g |ψ〉 = + |ψ〉 ∀g ∈ S}. (3.2)

It is easy to see that VS is fully specified by a set of generators of S: g1, . . . , gl stabilize

|ψ〉 if and only if the whole < g1, . . . , gl > does. It is also clear that if −I ∈ S, then VS is

trivial, since −I |ψ〉 = + |ψ〉 implies |ψ〉 = 0. From now on it is understood that, whenever

we consider a subgroup S ⊆ Gn, it does not contain −I.

Remark. This constrains S to be an Abelian subgroup. Indeed, since Pauli group operators

either commute or anti-commute, in order for S to be non-Abelian there must be at least

two anti-commuting elements g1 and g2; then we would have S 3 (g1g2)3(g2g1) = −(g1g2)4;

and since Pauli group operators square to either I or −I, −(g1g2)4 = −(±I)2 = −I.

Now consider a subgroup S ⊆ Gn with the above mentioned properties, and its stabilized

subspace VS . This can be regarded as the code-space for a QECC. The code-space projector

would be

P =

n−k∏
i=1

(
I + gi

2

)
, (3.3)

where {g1, . . . , gn−k} is a set of independent generators for S. It can be shown [33] that the

dimension of VS in this case is 2k: each projector I+gi
2 halves the dimension of the stabilized

space; hence the resulting dimension is 2n ·2−(n−k) = 2k. Thus a QECC that stores k logical

qubits into n physical ones can be specified by n − k independent and commuting n-qubit

Pauli operators. As we will see, this description proves very useful.

3.1.3 Stabilizer codes

The idea of stabilizer codes is to find sets of mutually compatible observables (the stabilizers)

that can be measured simultaneously to detect the occurrence of errors on the code, without

perturbing the encoded information. We shall now see how this task can be accomplished.

Given n−k independent stabilizers {gi}, one can always find k more operators {Z̄1, . . . , Z̄k}
that commute with all the {gi} and with one another [33]. These can be used as logical
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Z operators for the encoded qubits. Then one can also find k operators {X̄1, . . . , X̄k} that

commute with all stabilizers and satisfy

[X̄i, Z̄j ] = 0 ∀ i 6= j, {X̄i, Z̄i} = 0 ∀ i. (3.4)

These work as logical X operators for the encoded qubits. This means that stabilizer codes

are naturally equipped with a set of n-qubit operators whose action on the code-space is

exactly that of the logical algebra.

Now, the {gi} and the {Z̄i} together form a set of n commuting observables on the n-qubit

system. Each one of them squares to the identity, so their eigenvalues are all ±1. By

diagonalizing simultaneously the set
{
Z̄1, . . . Z̄k, g1, . . . , gn−k

}
one obtains a basis

{|z1, . . . zk; s1, . . . sn−k〉 : zi ∈ {0, 1} , si ∈ {0, 1}}

such that {
Z̄i |z1, . . . zk; s1, . . . sn−k〉 = (−1)zi |z1, . . . zk; s1, . . . sn−k〉 ,

gj |z1, . . . zk; s1, . . . sn−k〉 = (−1)sj |z1, . . . zk; s1, . . . sn−k〉 .
(3.5)

This representation is very useful, because it factors the logical algebra and the stabilizer

algebra. Any vector of the basis is in the form
∣∣ψ〉 ⊗ |s〉, where

∣∣ψ〉 is the “logical” part

of the vector, and |s〉 is the “syndrome” part of the vector. The whole Hilbert space Hn
is spanned by several copies of the code-space, each one labeled by a “syndrome string”

s = (s1, . . . , sn−k). The original code-space is labeled by the trivial syndrome (0, . . . , 0).

The important thing to notice is that the syndrome s can be measured without perturbing

the logical vector
∣∣ψ〉, since the stabilizers commute with the logical algebra. This is the

central idea of stabilizer QECCs:

• Finding sets of stabilizers such that the occurrence of any error on up to d qubits1

just moves the information from the original code-space to one of its copies without

damaging it:
∣∣ψ〉⊗ |0〉 1 error−−−−→

∣∣ψ〉⊗ |s〉.
• Obtaining s by measuring the stabilizers (error detection).

• Taking |s〉 back to |0〉 by a suitable unitary transformation (error correction).

We shall use the notation Ps to denote the projector onto the s-syndrome subspace:

Ps =

n−k∏
i=1

I + (−1)sigi
2

. (3.6)

This way P0 coincides with the code-space projector P .

1d is called the distance of the code. The smallest QECCs have d = 1; larger and more complicated codes
can have larger values of d.
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The scheme we outlined above can be summarized by writing the corresponding recovery

operation. Let Us be a unitary that reverts the syndrome vector |s〉 to the default value |0〉,
while leaving the logical vector unchanged: Us

∣∣ψ〉⊗ |s〉 =
∣∣ψ〉⊗ |0〉. Then

R(ρ̂) =
∑

s∈{0,1}n−k
UsPsρ̂PsU

†
s . (3.7)

Since Ps = IL ⊗ |s〉 〈s|, the defining property of the Us matrices implies

UsPs = Us(IL ⊗ |s〉 〈s|)U†sUs = (IL ⊗ |0〉 〈0|)Us = PUs. (3.8)

This identity can be used to simplify (3.7) to the following form:

R(ρ̂) =
∑

s∈{0,1}n−k
PUsρ̂U

†
sP = P

 ∑
s∈{0,1}n−k

Usρ̂U
†
s

P. (3.9)

This form, while less intuitive, is generally more practical. It also shows clearly that the

recovered state belongs to the code-space.

Remark. While in Chapter 2 recovery operations were defined as mappings into S (H1) (the

“abstract” qubit state space), in this context it is more practical to treat recovery operations

as mappings of S (Hn) into itself. The code-space projectors in (3.9) ensure that the two

points of view are straightforwardly related.

3.2 The 3-Qubit Bit-Flip Code

Consider the 3-qubit bit-flip code, defined by the following embedding of H1 into H3:

|0〉 7→ |0L〉 = |000〉 , |1〉 7→ |1L〉 = |111〉 . (3.10)

This is a stabilizer code: a set of stabilizer generators is for instance {Z1Z2, Z2Z3}; the

logical operators are Z̄ = Z1Z2Z3 and X̄ = X1X2X3. Two stabilizers imply four possible

syndromes. To each value of the syndrome corresponds a correcting unitary:

(0, 0) 7→ I, (0, 1) 7→ X3,

(1, 0) 7→ X1, (1, 1) 7→ X2.

The recovery operation (3.9) therefore takes the form

R(ρ̂) = P ρ̂P +

3∑
i=1

PXiρ̂XiP. (3.11)
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The encoded logical operators for this code can be immediately derived from (3.10):

σ̂L0 = P, σ̂L1 = PX̄, σ̂L2 = PȲ , σ̂L3 = PZ̄, (3.12)

where Ȳ = 1
i Z̄X̄ = −Y1Y2Y3. The projector P ensures that the

{
σ̂Lα
}

are supported in the

code space. Finally from the general definition (3.6) one has

P =
I + Z1Z2

2

I + Z2Z3

2
=
I + Z1Z2 + Z2Z3 + Z3Z1

4
. (3.13)

3.2.1 Average fidelity (single recovery)

The noise model we consider is a bit-flip noise of strength κ acting identically and inde-

pendently on each physical qubit. This is represented by a semi-group {φt : t ≥ 0} of qubit

channels defined by

φt

(
1 + a · σ

2

)
=

1 + a1σ1

2
+ e−κt

a2σ2 + a3σ3

2
. (3.14)

We shall now compute the average fidelity (2.9) of the recovery operation (3.11) under the

decoherence channel Dt = φ⊗3
t :

F (R) =
1

2
+

1

12

3∑
i=1

Tr
(
σ̂Li R ◦ Dt

(
σ̂Li
))
. (3.15)

Dt acts on the logical operators as follows:

Dt
(
σ̂L1
)

= e−2κtσ̂L1 +
1− e−2κt

4
X̄,

Dt
(
σ̂L2
)

= e−κtσ̂L2 −
e−κt − e−3κt

4
Ȳ ,

Dt
(
σ̂L3
)

= e−κtσ̂L3 −
e−κt − e−3κt

4
Z̄.

(3.16)

R stabilizes the code-space, so that R(σ̂Li ) = σ̂Li , while

R(I) = 4σ̂L0 , R(X̄) = 4σ̂L1 , R(Ȳ ) = −2σ̂L2 , R(Z̄) = −2σ̂L3 ; (3.17)
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Figure 3.1: average fidelity as a function of time for: a single, unencoded qubit (F
(s.q)
t ,

from (3.20)); a 3-qubit code without recovery operation (F
(I)
t , from (3.21)); a 3-qubit

code with QEC recovery operation at read-out (F
(R)
t , from (3.19)). In each case there is

a bit-flip noise of strength κ acting identically and independently on each qubit.

therefore the encoded operators are eigenmodes of the combination R ◦ Dt:

R ◦ Dt
(
σ̂L1
)

= σ̂L1 ,

R ◦ Dt
(
σ̂L2
)

=

(
3e−κt − e−3κt

2

)
σ̂L2 ,

R ◦ Dt
(
σ̂L3
)

=

(
3e−κt − e−3κt

2

)
σ̂L3 .

(3.18)

Defining λ(t) =
(

3e−κt−e−3κt

2

)
and plugging (3.18) into the average fidelity (3.15), we get

F
(R)
t =

1

2
+

1 + 2λ(t)

6
=

2 + λ(t)

3
= 1− 1

2
(κt)2 +

2

3
(κt)3 +O

(
(κt)4

)
. (3.19)

We can compare the performance of this scheme to the one of a single, unencoded qubit

exposed to the same bit-flip noise2 φt:

F
(s.q.)
t =

2 + e−κt

3
. (3.20)

Moreover, in order to evaluate the importance of the recovery operation, one can consider

the memory performance of the same QECC without the recovery step (i.e., with R = I),

which can be computed using (2.11):

F
(I)
t =

1

6
+

1

4
e−κt +

1

2
e−2κt +

1

12
e−3κt. (3.21)

2 The action of φt on the Bloch sphere is represented by the matrix diag
(
1, e−κt, e−κt

)
. By the results

of §2.4, the optimal recovery operation in this case is the identity, and the associated fidelity is (3.20).
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The results are plotted in Figure 3.1. The first thing to observe is that in the absence of a

recovery operation, the redundant encoding is substantially worse than the trivial one: F
(I)
t

undergoes a faster decay and asymptotically drops to 1
6 , whereas F

(s.q.)
t drops to 2

3 . This

shows how important the final recovery operation is: redundant encodings alone merely

expose the encoded information to a larger number of possible errors. It takes a clever

recovery operation to exploit the potential offered by redundancy.

Another important point that emerges from Figure 3.1 is that, though the 3-qubit encoding

followed by the recovery operation outperforms the unencoded qubit, the difference is no-

ticeable only at very short times, since 1− F (R)
t is second-order in κt whereas 1− F (s.q.)

t is

first-order. Over long times, the advantage provided by encoding and recovery operations

becomes negligible, and both fidelities drop to 2
3 .

3.2.2 Average fidelity (iterated recovery)

As we have seen, QEC is able to protect information very well over short time intervals;

over long times, however, the benefits become negligible. In order to protect the encoded

information over long times, the recovery step should be iterated periodically. This approach

is rather distant from the principles of a “passive” quantum memory, since it requires frequent

actions from an external controller. However, as we shall see later, the whole process can

be made automatic by means of dissipation. Let us therefore discuss the performance of the

3-qubit QECC under a repeated error-correcting procedure.

Suppose we want to store a qubit state for a time t. Let us split the interval [0, t] into ν

equal parts and perform the recovery step at all times tk = k tν ≡ k∆t, k = 1, . . . , ν. The

resulting channel is

D(R)

t;ν steps = (R ◦ Dt/ν)
ν
. (3.22)

Its average fidelity can be found immediately recalling (3.18), which stated that the encoded

logical matrices
{
σ̂Lα
}

are eigenmodes of R ◦ Dt:

D(R)

t;ν steps

(
σ̂Lα
)

=

σ̂Lα if α = 0, 1;

[λ(∆t)]ν σ̂Lα if α = 2, 3.
(3.23)

Plugging D(R)

t;ν steps into the general formula (3.15) in place of R ◦ Dt, one gets

F
(R)
t;ν steps =

1

2
+

1 + 2[λ(∆t)]ν

6

=
2

3
+

1

3

(
3e−κ∆t − e−3κ∆t

2

)ν
. (3.24)
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Here ∆t should be interpreted as an experimental parameter, representing the shortest time

interval over which the experimenter is technically capable of performing the recovery step

R with high accuracy. The integer ν instead plays the role of a time variable.

In order to evaluate the performance of this scheme, let us compute how many steps it takes

for the fidelity to drop below a given threshold F0 (e.g. 99%). Solving for ν the inequality

F
(R)
t;ν steps =

2

3
+

1

3
[λ(∆t)]

ν
> F0, (3.25)

one has

ν < ν∗(∆t) =
| log(3F0 − 2)|
|log λ(∆t)|

. (3.26)

The total storage time is therefore

T = ν∗(∆t) ·∆t = | log(3F0 − 2)| ∆t

|log λ(∆t)|
. (3.27)

In the κ∆t→ 0 limit, since λ(∆t) ≈ 1− 3
2 (κ∆t)2, we have

T ≈ 3(1− F0)
∆t

3
2 (κ∆t)2

=
2(1− F0)

κ2∆t
, (3.28)

where we assumed a high fidelity threshold ((1 − F0) � 1) and expanded the logarithm to

first order. Thus in the limit of continuous error correction the information is frozen. This

is an instance of the quantum Zeno effect [34], in which frequent measurements cause an

effective “freezing” of the dynamics.

From (3.28) we can see that, for 1 − F0 = δ � 1, the storage time is κT ≈ 2δ(κ∆t)−1.

In order to obtain a significant memory performance (κT � 1), the time interval ∆t must

be very small (κ∆t � δ). For instance, if the threshold is set to F0 = 99%, hundreds of

recovery operations must be performed in a unit decoherence time κ−1.

This conclusion points to an interesting direction: continuous-time quantum error correction.

Obviously any detection-and-correction procedure requires a finite ∆t to be implemented

reliably, which poses a fundamental limitation to the storage times that can be achieved by

the method we described in this Section. But if we consider an error-correcting procedure

implemented through a continuous process, such as the ones generally used to describe

dissipation, then there is no such limitation a priori.
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3.3 Continuous-Time QEC and Dissipation-Based Quan-

tum Memories

The idea of continuous-time quantum error correction was first presented in 1997 by Paz and

Zurek [14], soon after the discovery of quantum error correction by Shor [7] and the introduc-

tion of stabilizer codes by Gottesman [33]. It was used as a way of modeling a discrete-time

QEC procedure in the ∆t → 0 limit [35]. The dissipation-like nature of continuous QEC

was regarded only as a technical simplification, without any physical implications.

Some years later the idea was reconsidered from a closed-loop quantum control perspective

by Ahn [36] and then by Sarovar and Milburn [37]. Two types of continuous-time procedures

for QEC were considered: indirect-feedback quantum control (measurements are performed

on the system and the outcomes are used by a classical controller to form conditioning

signals) and direct-feedback quantum control (in which the controller is itself a quantum

system coupled to the controlled system). The indirect-feedback scenario is the one that

generalizes the “standard” picture of discrete-time QEC, where syndrome measurements

are performed and their outcomes are used to choose a correcting unitary. The direct-

feedback scenario instead is a continuous-time version of QEC without measurement [38]:

the syndrome, instead of being measured, is unitarily written on a set of ancillary qubits,

which are then used to perform controlled unitary gates on the code qubits. This way the

QEC process is fully unitary. At the end of each cycle the ancillas have to be replaced or

refreshed to the initial state.

In the paper by Sarovar and Milburn [15] the continuous process was explicitly described

as a form of dissipation. The scheme they propose is a continuous-time version of QEC

without measurement on the 3-qubit bit-flip code. The main problem in the transition

from discrete to continuous time in the framework of QEC without measurement is the re-

initialization of ancillary qubits: in the absence of discrete QEC cycles, there are no specified

times for refreshing the ancillas. The way out is to assume an amplitude-damping noise on

the ancillas, i.e. a cooling process that continuously pumps entropy out of the system at a

rate comparable to the strength of the interaction Hamiltonian that couples code qubits to

ancillary qubits.

Finally, Pastawski et al. applied dissipation to the problem of building scalable quantum

memories [13]. They consider a many-body quantum system (N � 1 qubits) in an envi-

ronment that is engineered so as to produce beneficial effects against other uncontrollable

sources of decoherence. The number N of qubits is considered as the amounts of resources

used; thus a memory is considered effective if its reliability increases with N . A minimum

physical requirement about the “beneficial” dissipation in this framework is locality : all

Lindblad operators must involve up to k qubits each, with k a constant that does not scale

with N , and there must be a way to arrange the N qubits in a d-dimensional lattice struc-

ture such that each Lindblad operator is local with respect to the lattice distance. While
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numerical evidence for the existence of local dissipation-based quantum memory in d = 4

was presented in [13], for d ≤ 3 the question is still not settled.

A common problem of all schemes based on dissipation is that the required “beneficial”

dissipation is generally unnatural, and environment engineering is difficult. Thus one may

be led to consider all protocols based on engineered dissipation as mere curiosities. However,

an arbitrary Markovian evolution can be simulated with high accuracy using reasonable tools

and resources:

• Hamiltonian interactions.

• Single-qubit amplitude-damping channels (cooling processes).

• A polynomial overhead in the number of qubits.

This fact is proved in Appendix C. The peculiar dissipative processes that will be postulated

in the next Sections can therefore be simulated with readily available physical resources.

3.4 CTQEC on the 3-Qubit Bit-Flip Code

As an example of the ideas outlined in §3.3, we shall consider the continuous-time imple-

mentation of the simplest instance of a QECC, which is again the 3-qubit bit-flip code.

Having already studied its discrete-time implementation we will be able to compare the

performances of the two versions.

3.4.1 Continuous-time implementation of the recovery operation

Consider the recovery operation R for the 3-qubit bit-flip code (3.11). Its continuous-time

version should produce the following time evolution:

ρ̂(t) = e−γtρ̂(0) +
(
1− e−γt

)
R(ρ̂(0)). (3.29)

Since Φ
(R)
t ≡ e−γtI + (1 − e−γt)R is a convex combination of CPTP maps for all t ≥ 0,

it is guaranteed to be CPTP itself. Φ
(R)
t drives the initial state ρ̂(0) to its error-corrected

version R(ρ̂(0)) over a time-scale of γ−1.

We will now prove that the time evolution Φ
(R)
t can be derived from a Markovian master

equation (1.13). In order to prove this, we shall put the time derivative of (3.29) in a

Lindblad form:

d

dt
ρ̂(t) = −γe−γtρ̂(0) + γe−γtR(ρ̂(0)) = γe−γt (R(ρ̂(0))− ρ̂(0)) ; (3.30)
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now, from (3.29), we have that e−γt(R(ρ̂(0))−ρ̂(0)) = R(ρ̂(0))−ρ̂(t) andR(ρ̂(0)) = R(ρ̂(t)),

so that (3.30) becomes

d

dt
ρ̂(t) = γ(R(ρ̂(0))− ρ̂(t)) = γ(R(ρ̂(t))− ρ̂(t)), (3.31)

From now on the time dependence of ρ̂ is understood. Expanding R in Kraus form, (3.31)

becomes

d

dt
ρ̂ = γ (R(ρ̂)− ρ̂) = γ

(
P ρ̂P +

3∑
i=1

PXiρ̂XiP − ρ̂

)

= γ

(
3∑

α=0

PXα̂ρ̂Xα̂P −
1

2
{ρ̂, I}

)
, (3.32)

where we introduce the shorthand notationsXh = Xh1
1 Xh2

2 Xh3
3 and (α̂)j = δαj , j ∈ {1, 2, 3}.

Now, since by construction
∑

s Ps = I and Ps = UsPU
†
s , we have

∑3
α=0Xα̂PXα̂ = I.

Plugged into (3.32), this yields

d

dt
ρ̂ = γ

3∑
α=0

(
PXα̂ρ̂Xα̂P −

1

2
{ρ̂, (Xα̂P )(PXα̂)}

)
, (3.33)

which is a master equation in the form (1.13) with Lindblad operators

{√γPXα̂ : α ∈ {0, 1, 2, 3}} . (3.34)

The bit-flip noise, acting identically and independently on each qubit, is represented by the

following Lindblad operators: {√
κ

2
Xi : i ∈ {1, 2, 3}

}
. (3.35)

The resulting evolution is Markovian and induced by the sum of the error-inducing and the

error-correcting Lindbladians: by joining the sets of Lindblad operators (3.34) and (3.35)

we obtain the total set of Lindblad operators,

{
L̂1, . . . L̂7

}
=

{√
κ

2
X1,

√
κ

2
X2,

√
κ

2
X3,
√
γP,
√
γPX1,

√
γPX2,

√
γPX3

}
, (3.36)
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and the resulting master equation is

d

dt
ρ̂ = Lnoise(ρ̂) + Le.c.(ρ̂) =

7∑
k=1

(
L̂kρ̂L̂

†
k −

1

2

{
L̂†kL̂k, ρ̂

})

=
κ

2

3∑
i=1

Xiρ̂Xi + γ

(
P ρ̂P +

3∑
i=1

PXiρ̂XiP

)
−
(

3

2
κ+ γ

)
ρ̂. (3.37)

The formal solution to (3.37) is obtained by exponentiation:

Dt = exp [t (Lnoise + Le.c.)] . (3.38)

3.4.2 Average recovery fidelity

Given the equivalence of each physical qubit in both the initial conditions (code-states are of

the type α |000〉+β |111〉) and the evolution equation (3.37), the evolved state is constrained

to the following form:

ρ̂ 7→ a(t)ρ̂+ b(t)

3∑
i=1

Xiρ̂Xi + c(t)

3∑
i=1

XiX̄ρ̂X̄Xi + d(t)X̄ρ̂X̄, (3.39)

where X̄ ≡ X1X2X3. It is understood that ρ̂ is a code-state: ρ̂ = P ρ̂P . Let us define the

following shorthand notation:

Â = ρ̂, B̂ =

3∑
i=1

Xiρ̂Xi, Ĉ =

3∑
i=1

XiX̄ρ̂X̄Xi, D̂ = X̄ρ̂X̄. (3.40)

Loosely speaking, A is an error-free state; B and C are homogeneous sums of states with

one and two X errors respectively; and D is the A state affected by an X̄ logical error (i.e.

an X error on each qubit).

The total Lindbladian (3.37) acts on operators (3.40) as follows:

L(Â) =
κ

2
B̂ − 3

2
κÂ,

L(B̂) =

(
3

2
κ+ 3γ

)
Â−

(
3

2
κ+ γ

)
B̂ + κĈ,

L(Ĉ) =

(
3

2
κ+ 3γ

)
D̂ −

(
3

2
κ+ γ

)
Ĉ + κB̂,

L(D̂) =
κ

2
Ĉ − 3

2
κD̂.

(3.41)
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This proves that the ansatz (3.39) is correct: the subspace spanned by Â, B̂, Ĉ and D̂ is

invariant. The evolution equations for the coefficients a(t), b(t), c(t) and d(t) are found from

ȧÂ+ ḃB̂ + ċĈ + ḋD̂ = L
(
aÂ+ bB̂ + cĈ + dD̂

)
=

[(
3

2
κ+ 3γ

)
b− 3

2
κa

]
Â+

[
κ

2
a−

(
3

2
κ+ γ

)
b+ κc

]
B̂

+

[
κ

2
d−

(
3

2
κ+ γ

)
c+ κb

]
Ĉ +

[(
3

2
κ+ 3γ

)
c− 3

2
κd

]
D̂, (3.42)

and read as follows: 

ȧ(t) =

(
3

2
κ+ 3γ

)
b(t)− 3

2
κa(t),

ḃ(t) =
κ

2
a(t)−

(
3

2
κ+ γ

)
b(t) + κc(t),

ċ(t) =
κ

2
d(t)−

(
3

2
κ+ γ

)
c(t) + κb(t),

ḋ(t) =

(
3

2
κ+ 3γ

)
c(t)− 3

2
κd(t);

(3.43)

Defining the functions f±(t) ≡ a(t)± d(t) and g±(t) ≡ b(t)± c(t), it is easy to see that the

four equations (3.43) decouple into two equations involving only f+ and g+ and two more

equations involving only f− and g−. Moreover, a + 3b + 3c + d = f+ + 3g+ is a constant

(corresponding to trace preservation). Thus the system (3.43) can be easily solved, and the

solution can be used to compute the exact time evolution of every initially encoded operator

(a(0) = 1, b(0) = c(0) = d(0) = 0). The resulting coefficients as functions of time are plotted

in Figure 3.2 for several values of the ratio γ/κ.

In the absence of error correction (Figure 3.2a) all four coefficients converge to the value
1
8 and the state spreads uniformly over all syndrome subspaces; when the error-correcting

dissipator is turned on (Figures 3.2b and 3.2c) the weight outside the code-space, represented

by b and c, is suppressed. Finally, in the strong-EC limit (Figure 3.2d) b and c are negligibly

small at all times, while a decreases very slowly and d, representing undetectable logical

errors, increases at the same rate. In the end logical errors corrupt the information anyway,

but it is clear that one can (at least in principle) make the storage time arbitrarily long by

increasing γ.

We shall now compute the average fidelity between the initially encoded qubit and its time-

evolved counterpart, without performing any additional recovery operation at read-out. In

order to avoid ambiguity between the continuously implemented recovery operation R and

any final recovery operation F that one may perform at read-out, we shall denote the

corresponding average fidelity by F
(R;F)
t .
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(d) γ = 100κ

Figure 3.2: the coefficients in formula (3.39) as functions of time, for γ
κ

= 0, 1, 10, 100.

If Ψ̂L
n = P Ψ̂L

nP is the encoded logical state corresponding to the unit vector n in the Bloch

sphere, i.e. Ψ̂L
n =

σ̂L0 +n·σ̂L
2 , one has

F
(R;I)
t =

ˆ
dµnTr

(
Ψ̂L

nDt
(

Ψ̂L
n

))
=

ˆ
dµnTr

(
Ψ̂L

n

(
a(t)Ψ̂L

n + b(t)
3∑
i=1

XiΨ̂
L
nXi + c(t)

3∑
i=1

XiX̄Ψ̂L
nX̄Xi + d(t)X̄Ψ̂L

nX̄

))

=

ˆ
dµnTr

(
a(t)Ψ̂L

n + d(t)Ψ̂L
nX̄Ψ̂L

nX̄
)
, (3.44)

since any X matrix between two encoded operators is annihilated by the code-space projec-

tors (PXiP = 0 ∀ i). Now, using the fact that X̄ acts on the encoded qubit as a bit-flip

operator, we get

F
(R;I)
t =

ˆ
dµn

(
a(t) + d(t)Tr

(
Ψ̂L

nΨ̂L
Rx(π)n

))
= a(t) + d(t)

ˆ
dµn

1 + n2
x − n2

y − n2
z

2
= a(t) +

1

3
d(t). (3.45)

A plot of the decay of F
(R;I)
t for several values of γ is shown in Figure 3.3.
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Figure 3.3: decay of the average fidelity F
(R;I)
t (3.45) for several values of the ratio γ

κ
.

If we perform an additional QEC operation R at read-out, the recovered state changes

according to the following rule:

a′(T ) = a(T ) + 3b(T ), b′(T ) = 0,

c′(T ) = 0, d′(T ) = d(T ) + 3c(T ). (3.46)

All the parts of the state are mapped back to the code-space through the shortest path –

the parts with a single X error are corrected, so a′ gets the b contribution; the parts with

two X errors get a third X error, so d′ gets the c contribution. This brings the recovery

fidelity to

F
(R;R)
t = a(t) + 3b(t) + c(t) +

1

3
d(t) = F

(R;I)
t + 3b(t) + c(t), (3.47)

which is greater than F
(R;I)
t and saturates the upper bound (2.12). Plots of the decay of

F
(R;R)
t over time are shown in Figure 3.4.

In the strong-EC limit, the b and c coefficients soon become neglibigle; thus the final read-

out recovery is useful only for very short times, which is not the range we are interested

in. Asymptotically only a and d matter. This is reasonable, since the recovery is being

continuously implemented as part of the dynamics; we would thus expect that one additional

recovery operation should not change the result significantly – and indeed it does not, and

F
(R;I)
t is close to optimal. We shall therefore neglect the final read-out recovery step in the

following.
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Figure 3.4: decay of the average fidelity F
(R;R)
t (3.47) for several values of the ratio γ

κ
.

3.4.3 Fixed points and asymptotic decay rate

A better understanding of the situation can be gained by studying the dependence of the

fixed points and asymptotic decay rate (ADR) [39] of Dt on the parameter γ
κ .

Definition (ADR). The ADR of a Markovian evolution Dt = etL is the lowest (non-zero)

decay rate allowed by Dt. More rigorously, it is the minimum of the set

{|<(λ)| : <(λ) 6= 0 and L(ρ̂λ) = λρ̂λ for some ρ̂λ} .

If the dynamics is unitary (i.e. L is purely Hamiltonian) the ADR is undefined. Otherwise

it is a strictly positive quantity. It measures the time-scale over which the system reaches

its steady state.

Let us consider the master equation (3.37). It is convenient to analyze its Liouville rep-

resentation |ρ̇〉〉 = ML |ρ〉〉. The Liouville representation is a mathematical way to treat

operators as vectors and super-operators as ordinary operators; it is introduced in Appendix

B. Applying formula (B.7) to the Lindbladian (3.37), one has

ML =

3∑
i=1

(κ
2
Xi ⊗Xi + γ(PXi)⊗ (PXi)

)
+ γP ⊗ P −

(
3

2
κ+ γ

)
I ⊗ I

=
(κ

2
I ⊗ I + γP ⊗ P

)(
I ⊗ I +

3∑
i=1

Xi ⊗Xi

)
− (2κ+ γ)I ⊗ I. (3.48)

Thus the fixed points and the ADR of Dt can be found by putting the 64× 64 matrix ML
defined in (3.48) into standard Jordan form. This can be done symbolically on a computer.
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eigenvalue multiplicity

0 2
−γ 6

−(γ + 1) 22
−(γ + 2) 24
−(γ + 3) 6

−
γ + 4 +

√
(γ + 4)2 − 12

2
2

−
γ + 4−

√
(γ + 4)2 − 12

2
2

Table 3.1: eigenvalues of the 3-qubit Lindbladian involving bit-flip noise and continuous
error correction (κ = 1).

The result is that all Jordan blocks are trivial, i.e. ML can be put in diagonal form, and

the 64 eigenvalues are listed in Table 3.1. In the strong QEC limit (γ � κ) one has:

• Two independent fixed points, corresponding to zero eigenvalues (one such fixed point

is required by contractivity, while the other is a genuine property of the dynamics).

• 60 modes that decay over a short time scale ∼ γ−1.

• Two modes that decay over a long time scale ∼ γκ−2, corresponding to the last entry

in Table 3.1,

−
(γ + 4κ)−

√
(γ + 4κ)2 − 12κ2

2
= −γ + 4κ

2

(
1−

√
1− 12κ2

(γ + 4κ)2

)

= −3κ2

γ
+O

(
κ3

γ2

)
. (3.49)

The latter modes are stable in the limit of infinitely strong QEC, or equivalently in the

absence of noise. For large but finite values of γ
κ , they are the slowest decaying modes,

which define the ADR:

∆ =
γ + 4κ−

√
(γ + 4κ)2 − 12κ2

2
∼ 3

κ2

γ
. (3.50)

Stable modes. The two stable modes are easy to find. First of all, the subspace spanned

by I and P is invariant under the action of the Lindbladian (3.37):
L[I] =

3∑
i=1

(κ
2
I + γP

)
+ γP −

(
3

2
κ+ γ

)
I = γ(4P − I),

L[P ] =

3∑
i=1

(κ
2
XiPXi + γPXiPXiP

)
+ γP −

(
3

2
κ+ γ

)
P =

κ

2
(I − 4P ).

(3.51)
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Hence L[aI + bP ] =
(
aγ − bκ2

)
(4P − I) is zero for b = 2γκa. Normalizing the trace of the

linear combination to 2, we have the first fixed point:

σ̂∗0 =
1

2

κI + 2γP

2κ+ γ
. (3.52)

In the strong QEC limit, this approximates the σ̂L0 operator. By the same reasoning it can

be seen that X̄ and PX̄P can be combined to form a fixed point:L[X̄] = γ(4PX̄P − X̄),

L[PX̄P ] =
κ

2
(X̄ − 4PX̄P ),

(3.53)

thus L(aX̄ + bPX̄P ) is zero for b = 2γκa, and the second fixed point is

σ∗1 =
1

2

κX̄ + 2γPX̄P

2κ+ γ
. (3.54)

The normalization is chosen so that ‖σ̂∗1‖tr = 2. In the strong QEC limit, σ̂∗1 approximates

σ̂L1 .

Slowly-decaying modes. The other two modes of interest are those that, though not

fixed, decay very slowly in the γ � κ limit. These two modes are expected to approximate

σ̂L2 and σ̂L3 . It is easy to see that the subspace spanned by Z̄ and PZ̄P is invariant under

the action of the Lindbladian:L[Z̄] = −(3κ+ γ)Z̄ − 2γP Z̄P,

L[PZ̄P ] = −κ
2
Z̄ − κPZ̄P,

(3.55)

so that

L[aZ̄ + bP Z̄P ] = −
(

(3κ+ γ)a+
κ

2
b
)
Z̄ − (2γa+ κb)PZ̄P. (3.56)

The eigenvalue problem restricted to this subspace,(
−(3κ+ γ) −κ2
−2γ −κ

)(
a

b

)
= λ

(
a

b

)
, (3.57)

can be solved to obtain the eigenvalues

λ∗± =
−(γ + 4κ)±

√
γ2 + 8κγ + 4κ2

2
. (3.58)
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The one with the + sign is the ADR. The corresponding slowly-decaying mode is

σ̂∗3 =

(
2κ+ γ +

√
γ2 + 8κγ + 4κ2

)
PZ̄P − Z̄

4κ+ γ +
√
γ2 + 8κγ + 4κ2

. (3.59)

In the strong QEC limit this approximates σ̂L3 . Finally, the same reasoning can be applied

to Ȳ and PȲ P , since the only property of Z̄ that was used in this derivation (its anti-

commutation with X1, X2 and X3) is shared by Ȳ . Therefore

σ̂∗2 =

(
2κ+ γ +

√
γ2 + 8κγ + 4κ2

)
PȲ P − Ȳ

4κ+ γ +
√
γ2 + 8κγ + 4κ2

(3.60)

completes the set of independent “quasi-fixed” operators.

Qualitative behavior of the encoded qubit. S (H3) is a large manifold: it has (real)

dimension 43 − 1 = 63. The Bloch sphere is a 3-manifold, and so is its encoded image. The

encoding therefore takes place in a tiny sub-manifold of the available state space. As we

have seen, 60 out of the 63 dimension of S (H3) decay over a short time-scale ∼ γ−1. Of

the remaining three dimensions, one is exactly stable and two decay over a long time scale

∆−1 ∼ γκ−2. This defines a quasi-stable 3-manifold

Q =

{
σ̂∗0 + r · σ̂∗

2
: r ∈ R3 such that σ̂∗0 + r · σ̂∗ ≥ 0

}
⊂ S (H3) . (3.61)

Q is generally not aligned with the encoded Bloch sphere. It is if and only if γ = ∞ (i.e.

κ = 0). If γ is large but finite, there will be a small “tilt” between the two 3-manifolds.

The first part of the time evolution therefore is a sudden collapse of the encoded Bloch

sphere onto Q, i.e. a sudden suppression of all non-protected modes involved in the orig-

inal encoding. This process causes a small fidelity loss of order κ
γ (the angle between the

two manifolds) in a short time interval ∼ γ−1, so that in the the initial slope of Ft is ap-

proximately independent of γ. This explains the behavior of the fidelity curves in Figure

3.3.

After this transient, when all non-fixed modes have been suppressed, the dynamics is confined

to the sub-manifoldQ. The decoherence process takes the form of an effective bit-flip channel

whose strength is the ADR, ∆ ∝ κ2γ−1.
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s Us

0000 I
0001 X1

0010 Z3

0011 X5

s Us

0100 Z5

0101 Z2

0110 X4

0111 Y5

s Us

1000 X2

1001 Z4

1010 Z1

1011 Y1

s Us

1100 X3

1101 Y2

1110 Y3

1111 Y4

Table 3.2: correction unitaries for the 5-qubit perfect code. s is the 4-bit syndrome
string obtained by measuring the stabilizers, and Us is the prescribed unitary operation

that resets s to (0000).

3.5 CTQEC on the 5-Qubit Perfect Code

3.5.1 The 5-qubit perfect code

The 3-qubit QECC we studied in the previous Section is not a completely satisfactory exam-

ple, since it is only able to correct a “classical” noise like the bit-flip. It would not be able to

protect quantum information against a general combination of bit-flip and phase-flip errors.

In this Section we are thus going to consider the simplest QECC that is capable of correcting

every single-qubit error, which is the 5-qubit perfect code discovered by Laflamme [40].

The 5-qubit perfect code is a stabilizer code defined by the following stabilizer operators:

g1 = X1Z2Z3X4

g2 = X2Z3Z4X5

g3 = X1X3Z4Z5

g4 = Z1X2X4Z5

(3.62)

There are 24 = 16 possible syndromes: one is associated to the absence of any error; the

other 15 correspond to an X, Y or Z error occurring on any one of the 5 qubits. The

prescribed correction operations are shown in Table 3.2.

The logical operators are Z̄ = Z1Z2Z3Z4Z5 and X̄ = X1X2X3X4X5; the codewords can be

found by solving the eigenvector problem gi |ψ〉 = + |ψ〉 ∀ i and Z̄ |ψ〉 = ± |ψ〉.

The code detects all single-qubit and 2-qubit errors. It corrects single-qubit errors, while

in general the correction of 2-qubit errors fails (e.g. the X1Z3 error would be detected

but misinterpreted as a single-qubit X5 error, and corrected accordingly; the resulting gate

would be X1Z3X5 = Z̄g1g2g4, that is an undetectable logical phase-flip).
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3.5.2 Continuous-time implementation of the recovery operation

The recovery operation for the 5-qubit QECC is the obtained from the general form (3.9),

with the Us unitaries given in Table 3.2. Its continuous implementation is given by the

family of channels

Φ
(R)
t = e−γtI + (1− e−γt)R (3.63)

As we have seen for the 3-qubit code (3.33), this semi-group of channels is the solution of a

Markovian master equation with Lindblad operators
{√

γPUs

}
.

The noise model we shall consider is a uniform depolarizing channel with strength κ, acting

identically and independently on each qubit:

Φt = φ⊗5
t , φt

(
1 + a · σ

2

)
=

1 + e−κta · σ
2

. (3.64)

This channel is produced by a Markovian master equation whose Lindblad operators are{√
κ
2σ

(i)
a

}
, with σ

(i)
a representing the Pauli matrix σa acting on the i-th qubit.

The decoherence channel resulting from the combination of depolarizing noise and continuous-

time error correction is formally given by

Dt = exp [t (Lnoise + Le.c.)] . (3.65)

While for the 3-qubit QECC an analytical computation was feasible, the 5-qubit QECC

requires a numerical treatment.

3.5.3 Numerical computation of the recovery fidelity

Since L is a matrix of size 45 = 1024, a straightforward computation of the exponential

(3.65) is hard. Equivalently, the master equation d
dt ρ̂ = L(ρ̂) is a system of 1024 coupled

differential equations, whose numerical solution is difficult.

To overcome these problems we shall use an approximate techinque based on the Trotter

expansion [41]:

eÂ+B̂ = lim
N→∞

(
eA/NeB/N

)N
, (3.66)
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valid for every pair of operators Â, B̂. This formula can be used to approximate the expo-

nential of two non-commuting operators (or super-operators, as in our case): a first approx-

imation is

eÂ+B̂ =
(
eÂ/NeB̂/N

)N
+O

(
1

N

)
. (3.67)

This approximation can be improved by symmetrizing the product in brackets [42]:

eÂ+B̂ =
(
eÂ/2NeB̂/NeÂ/2N

)N
+O

(
1

N2

)
. (3.68)

Let us define the “approximate evolution operators”

Dt(N) =
(
e
t

2N Lnoisee
t
N Le.c.e

t
2N Lnoise

)N
=
(

Φt/2N ◦ Φ
(R)
t/N ◦ Φt/2N

)N
=
[
e−γt/NΦt/N +

(
1− e−γt/N

)
Φt/2N ◦ R ◦ Φt/2N

]N
. (3.69)

Their average fidelity (with a trivial read-out I) is

F̃
(R;I)
t;N ≡ 1

4
Tr
(
σ̂L0 D

(N)
t

(
σ̂L0
))

+
1

12

3∑
α=1

Tr
(
σ̂LαD

(N)
t

(
σ̂Lα
))
. (3.70)

Clearly the approximation becomes exact in the N →∞ limit:

lim
N→∞

F̃
(R;I)
t;N = F

(R;I)
t . (3.71)

For all practical purposes, a good approximation can be obtained by computing F̃
(R;I)
t;N

for a large but finite value of N . In order for the approximation to be good, each partial

channel must be very close to the identity. This means that both κt and γt must be much

smaller than N . Being typically interested in the strong-EC limit, the condition for a good

approximation is N � γt.

The numerical results are presented in Figure 3.5. We considered six evolutions correspond-

ing to values of γκ within the strong-QEC limit (γ & 100κ). For each one we computed F̃
(R;I)
t;N

for ten equally spaced values of t in the range [0; 5·10−3κ−1], and for N ∈ {10, 15, 20, 25, 30}.
We then extrapolated the N →∞ limit by fitting the N−2 scaling. In Figure 3.6 this tech-

nique is shown to provide a reliable result for the channel with the highest γt among those

considered.

The qualitative behavior is the same as the one we found for the 3-qubit code: there is an

initial transient in which the rate of information loss does not depend on the QEC strength

γ; then, after a time interval ∼ γ−1 (which is very short in the strong QEC limit), the time-

scale for the decay becomes very long (∼ γκ−2). The γ = 0 channel (a purely depolarizing

channel with no QEC) was also added to Figure 3.5 to provide a comparison.
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Figure 3.5: decay of the average fidelity F
(R;I)
t for the 5-qubit perfect code subject to

depolarizing noise of strength κ and continuous error correction of strength γ (computed
numerically via second-order Trotter expansion), for several values of the ratio γ

κ
.
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Figure 3.6: scaling of F̃
(R;I)
t;N with the number of steps N in the Trotter approximation,

for the γ = 2000κ, t = 0.005κ−1 channel. In this case γt = 10, which is the highest value
among the points plotted in Figure 3.5. The N →∞ limit can be extrapolated from the
fit. In order to obtain a reliable fit, values of N as small as 30 suffice, even though γt

N
= 1

3

is not very small by itself.
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Figure 3.7: decay of the average fidelity F
(R;I)
t for the 3-qubit code subject to bit-flip

noise of strength κ and continuous error correction of strength γ, for several values of the
ratio γ

κ
. The function F

(R;I)
t is the same as the one shown in Figure 3.3; this plot focuses

on shorter times and higher values of γ, in order to allow a comparison with Figure 3.5.

3.5.4 Conclusion

This analysis shows explicitly that the continuous-time version of a perfect QECC works

against the depolarizing noise, which is generally considered the most destructive kind of

noise. Moreover it is a specifically quantum noise, involving bit-flips, phase-flips and bit-

phase-flips. This proves that the analytical results of Section 3.4 for the 3-qubit QECC are

not due to the classical form of the noise, and that the general approach we outlined can be

generalized to larger codes.

This is not surprising, since the continuous-time implementation of QEC can be seen as the

limit of a discrete-time implementation, which is known to be effective. Nevertheless, the

similarity between the 3-qubit and 5-qubit cases is remarkable (see Figures 3.5 and 3.7). This

similarity suggests that similar results should hold for the continuous-time implementation

of any stabilizer code.



Chapter 4

Hamiltonian Protection of

Quantum Information

In this Chapter we discuss how Hamiltonians can be used to protect quantum information

from decoherence. In Section 4.1, after a general introduction to the topic, a distinction

between two types of Hamiltonian protection of information is presented. The two types of

protection are dubbed “opposition” and “prevention” of decoherence, respectively. Section

4.2 provides a simple example of this distinction: the memory performance of spin chain

chain is discussed in both scenarios, and the Ising Hamiltonian is proven to be effective in

one case and ineffective in the other.

4.1 General Framework

4.1.1 “Self-correcting” quantum memories

The idea of protecting quantum information at the hardware level, by turning stabilizer

codes into Hamiltonians that would penalize errors, was first presented by Kitaev in [43].

The idea was motivated by the analogy with classical magnetic memories, where a redundant

encoding and a suitable interaction between the constituents makes the information resilient

to noise without the need of any EC procedure.

The specific model proposed by Kitaev was later ruled out as a candidate for a “self-

correcting” quantum memory, as it cannot protect information from thermal noise [44],

and several limitations to this general scheme have been pointed out [45, 46]; on the other

hand, positive results were claimed for 4-dimensional systems with local interactions [47]
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and for 2-dimensional and 3-dimensional systems with long-range interactions [48, 49]. The

search for “self-correcting” quantum memories is ongoing [50].

4.1.2 “Opposing” and “preventing” decoherence

When discussing the effectiveness of Hamiltonian protection of quantum information, an

important distinction has to be made:

• Simply adding the Hamiltonian term to the master equation that describes the evo-

lution of the system, leaving all the dissipators unchanged, may protect the encoded

information. In this case we shall say that the Hamiltonian is opposing the given

decoherence.

• Introducing the Hamiltonian from the beginning in the microscopic derivation of the

master equation may damp the dissipators or change their form. If this modification of

the dissipators protects the encoded information, then we will say that the Hamiltonian

is preventing decoherence.

From this point of view, Chapter 3 dealt with strategies for opposing decoherence using

dissipators. There is a general argument showing that dissipators are better suited than

Hamiltonians for this task [13]: a dissipator represents the occurrence of stochastic errors,

hence in general it will add entropy to the system; while another dissipator can in principle

pump this entropy out of the system (e.g. by a cooling process), a Hamiltonian can only

move this entropy around the system. The best a Hamiltonian can do is to concentrate

all the entropy into a specific subsystem, leaving the rest of the system unharmed; but

eventually there will be too much entropy in the system and the memory will fail.

What makes Hamiltonians more interesting is their ability to prevent decoherence. Start-

ing from an extended system that includes the memory and its environment, under some

assumptions about the nature of the interactions, the form of the initial state, and the envi-

ronment correlation times, one can derive a Markovian master equation for the evolution of

the system’s reduced density matrix. If the extended system is governed by a Hamiltonian

Ĥtot = Ĥsys +Ĥenv +Ĥint, the presence of Ĥsys damps all the “quantum jumps” that require

crossing a gap. Therefore a suitably engineered Hamiltonian should be able to reduce the

error probability.

4.2 An Example: Minimal Ising Chain

We will now analyze a simple example in order to illustrate the distinction between deco-

herence “prevention” and “opposition”. The example is based on a minimal Ising chain, i.e.
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three spins coupled to one another by a ferromagnetic (ZZ) interaction, each one exposed

to a bit-flip noise. Intuitively, a high ferromagnetic gap should forbid bit-flips and therefore

protect the encoded information. However, as we will see, this only holds at the “prevention”

level, and not at the “opposition” level. This means that the ferromagnetic interaction is

completely ineffective against a given bit-flip noise; it can only damp the bit-flip operators

if we include it from the beginning of the derivation.

4.2.1 Ineffective opposition to decoherence

We will first consider a three-spin system with a ferromagnetic Hamiltonian

Ĥsys = −JZ1Z2 − JZ2Z3 − JZ3Z1 =

= JI − 4J
I + Z1Z2 + Z2Z3 + Z3Z1

4
= J(I − 4P ) (4.1)

P is the code-space projector for the 3-qubit QECC, introduced in (3.13). On each spin acts

identically and independently a bit-flip noise, represented by the Lindblad operator
√

κ
2X,

so that the overall Lindbladian is

L[ρ̂] = −i[Ĥsys, ρ̂] + Lnoise(ρ̂) = 4iJ [P, ρ̂] +
κ

2

3∑
i=1

(
Xiρ̂Xi − ρ̂

)
. (4.2)

Let us relabel the standard basis {|i〉 ⊗ |j〉 ⊗ |k〉 : i, j, k ∈ {0, 1}} as {|n〉 : n ∈ {1, . . . 8}}, by

identifying the binary triple (i, j, k) with the number n = 4i+ 2j + k + 1. In this basis the

projector P is an 8× 8 matrix whose only non-zero entries are in positions (1, 1) and (8, 8):

P = diag (1, 0, 0, 0, 0, 0, 0, 1) (4.3)

Let us also introduce the following parametrization for 8× 8 Hermitian matrices:

ρ̂ =

 a v† b

v C w

b∗ w† d

 , (4.4)

where a, d ∈ R, b ∈ C, v,w ∈ C6, and C is a 6×6 Hermitian matrix. Encoded logical states,

or code-states, correspond to v = w = C = 0, a, d ∈ [0, 1], a+ d = 1, and |b| ≤ 1.

Lemma The time-evolution induced by (4.2) on a code-state is not influenced by the Hamil-

tonian Ĥsys.
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Proof. Consider the commutator [P, ρ̂] in (4.2). Left and right multiplication by P act on ρ̂

as follows:

P ρ̂ =

 a v† b

0 0 0

b∗ w† d

 , ρ̂P =

 a 0 b

v 0 w

b∗ 0 d

 , (4.5)

so that

[P, ρ̂] =

 0 v† 0

−v 0 −w

0 w† 0

 . (4.6)

The Hamiltonian Ĥsys can have an influence on the time evolution of ρ̂ only if matrix

elements corresponding to v or w are non-vanishing. Assuming the initial condition is a

code-state, such parameters are initially zero. In order to prove that they stay equal to zero

at all times, consider the following subspaces of B (H3):{
∆ = Span {σa1

⊗ σa2
⊗ σa3

: a1, a2, a3 ∈ {0, 3}} ,

∆ = Span {σa1
⊗ σa2

⊗ σa3
: a1, a2, a3 ∈ {1, 2}} .

(4.7)

∆ is the subspace of diagonal matrices, whereas ∆ consists of “anti-diagonal” matrices, i.e.

matrices ρ̂ whose only non-zero entries lie on the transverse diagonal:

∆ 3 ρ̂ =


0 ρ1,8

. .
.

ρ8,1 0

 . (4.8)

Both ∆ and ∆ are invariant under the time-evolution induced by the Lindbladian (4.2): it

is easy to verify that

L[σa1 ⊗ σa2 ⊗ σa3 ] = −κ
2

(
3−

3∑
i=1

(−1)δai,2+δai,3

)
σa1 ⊗ σa2 ⊗ σa3 . (4.9)

This proves that Dt
(
∆⊕∆

)
⊆ ∆ ⊕∆. Since all code-states belong to ∆ ⊕∆, if ρ̂(0) is a

code-state then ρ̂(t) ∈ ∆⊕∆ ∀ t. This concludes the proof, since all matrices of ∆⊕∆ have

v = w = 0.

Since Ĥsys has no effect whatsoever on the time-evolution of encoded logical states, the

coherence time of the memory is independent from J ; hence there is no opposition to deco-

herence.
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Figure 4.1: schematic representation of the minimal Ising chain exposed to a local spin
environment. The large circles labeled by 1, 2, 3 are the system spins; the smaller circles

are environment spins. Lines represent Hamiltonian interactions.

4.2.2 Effective prevention of decoherence

We will now consider the same system, but instead of adding the Ising Hamiltonian term to

a given noise, we shall provide a microscopic derivation of a master equation starting from

a system-environment Hamiltonian interaction.

Definition of the model. The system is made of three spins with the Ising Hamiltonian

(4.1). Each of the three spins is coupled to a distinct environment made of N spins. The

situation is illustrated in Figure 4.1.

Each environment is governed by the same type of Hamiltonian:

Ĥenv,i =

N∑
j=1

ωi,j
2
Zi,j . (4.10)

Zi,j is the Pauli Z operator acting on the jth spin of the ith environment, and the {ωi,j}
are random energy gaps, which we assume to be independently and identically distributed

according to a probability density function f(E).

Finally, each environment is coupled to one of the system spins through the following inter-

action Hamiltonian:

Ĥint,i = g

N∑
j=1

XiXi,j . (4.11)
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Let Ĥenv ≡
∑3
i=1 Ĥenv,i and Ĥint ≡

∑3
i=1 Ĥint,i; then the total Hamiltonian governing

system and environment is

Ĥtot = Ĥsys + Ĥenv + Ĥint. (4.12)

Derivation of a master equation. We assume that the environment is initially in the

fully mixed state, ρ̂env(0) ∝ I (which can be seen as a thermal state with T = ∞). The

system instead starts from a generic state ρ̂sys(0). The reduced density matrix of the system

evolves according to

ρ̂sys(t) =
Trenv (Dt (ρ̂sys(0)⊗ Ienv))

Trenv (Ienv)
. (4.13)

The evolution (4.13) is generally not Markovian because the finite size of the environment

allows some memory effects: information that left the system can return after a finite amount

of time. However, if we consider a very large environment that is very weakly coupled to the

system, within some reasonable physical assumptions the evolution becomes Markovian, and

the corresponding master equation can be derived from Ĥsys, Ĥenv and Ĥint. The derivation

is carried out in Appendix D.

In the notation of the Appendix, one has Âi = gXi. The interaction-picture evolution of

such operators is

Âi(t) = eitĤsysÂie
−itĤsys = e−i4JtgPXi + g(I − P )Xi(I − P ) + ei4JtgXiP, (4.14)

so that the Fourier components are
Âi(−4J) = gPXi,

Âi(0) = g(I − P )Xi(I − P ),

Âi(4J) = gXiP.

(4.15)

The B operators are Bi =
∑N
j=1Xi,j . Their interaction-picture evolution is

B̂i(t) = ei
∑N
k=1

1
2ωi,ktZi,k

N∑
j=1

Xi,je
−i

∑N
k=1

1
2ωi,ktZi,k =

N∑
j=1

eiωi,jtZi,jXi,j ; (4.16)

now, using the formula eiv·σ = cos(v)1 + i sin(v)v
v · σ, (4.16) becomes

B̂i(t) =

N∑
j=1

(cos(ωi,jt)I + i sin(ωi,jt)Zi,j)Xi,j

=

N∑
j=1

(cos(ωi,jt)Xi,j − sin(ωi,jt)Yi,j) . (4.17)
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The environment correlation function defined in (D.11) in our case is

Kij(t) =
Trenv

(
B̂i(t)B̂j(0)

)
Trenv (Ienv)

= δij

N∑
k=1

cos(ωi,kt). (4.18)

The function that determines the Lindblad operators in the master equation (D.18) is

γij(ω) =

ˆ ∞
−∞

dt eiωtKij(t) = δij

N∑
k=1

ˆ ∞
−∞

dt eiωt cos(ωi,kt)

= πδij

N∑
k=1

(
δ(ω − ωi,k) + δ(ω + ωi,k)

)
. (4.19)

This function must be averaged over the ensemble of energy gaps of the environment spins,

{ωi,k}, which we assume to be independently and identically distributed according to a

probability density function f(E):

〈γij(ω)〉 =

ˆ (
N∏
k=1

dωi,kf(ωi,k)

)
γij(ω) = πNδij (f(ω) + f(−ω)) (4.20)

Lindblad operators. Matrix (4.20) is already diagonal in the i, j indices, therefore the

resulting Lindblad operators (D.20) are simply{
L̂i,ω

}
=
{√
〈γii(ω)〉Âi(ω)

}
=
{[
πNg2(f(ω) + f(−ω))

] 1
2 Xi(ω) : i ∈ {1, 2, 3} , ω ∈ {−4J, 0,+4J}

}
(4.21)

Finally, we shall take the weak-coupling limit, i.e. we shall consider a large number of

environment spins interacting very weakly with the system. This limit ensures the Markovian

nature of the resulting process, and provides a physical motivation for the average (4.20).

Mathematically, the weak-coupling limit consists in the limits N →∞ and g → 0, with the

product πg2N ≡ κ2 kept constant. Recalling the form of the
{
Â(ω)

}
operators from (4.15),

we get the explicit form of the Lindblad operators:
L̂i,−4J = κ

√
f(4J) + f(−4J)XiP,

L̂i,0 = κ
√

2f(0)(I − P )Xi(I − P ),

L̂i,4J = κ
√
f(4J) + f(−4J)PXi.

(4.22)
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Renormalization of the Hamiltonian. The “Lamb-shift Hamiltonian” (D.19) is

ĤLS = −
3∑

i,j=1

∑
ω∈{0,±4J}

〈Sij(ω)〉 Âj(ω)
†
Âj(ω)

= −g2
3∑

i,j=1

(
〈Sij(−4J)〉XjPXi + 〈Sij(4J)〉PXjXiP

+ 〈Sij(0)〉 (I − P )Xj(I − P )Xi(I − P )

)
. (4.23)

The S(ω) matrices are defined in (D.16). We have

Sij(0) =
1

2i

ˆ ∞
−∞

dt sign (t)Kij(t) =
1

2i

N∑
k=1

ˆ ∞
−∞

dt sign (t) cos(ωi,kt) = 0 (4.24)

and

Sij(±4J) =
1

2i

ˆ ∞
−∞

dt e±i4Jtsign (t)Kij(t) =
δij
2i

N∑
k=1

ˆ ∞
−∞

dt e±i4Jtsign (t) cos(ωi,kt)

=
δij
2

N∑
k=1

(
P 1

±4J + ωi,k
+ P 1

±4J − ωi,k

)
, (4.25)

where P denotes the Cauchy principal part. Therefore 〈Sij(0)〉 = 0 and

〈Sij(±4J)〉 = δij
N

2

ˆ +∞

−∞
dE f(E)

(
P 1

E ± 4J
− P 1

E ∓ 4J

)
= ±δij

( +∞

−∞
dE

f(E)

E + 4J
−
 +∞

−∞
dE

f(E)

E − 4J

)
≡ ±δijλ(J), (4.26)

where the slashes denote the principal part of the integrals and λ(J) is a shorthand notation

for the expression in brackets (which has dimensions of [energy]−1). With these results it

can be shown that the Lamb-shift Hamiltonian (4.23) becomes

ĤLS = 3g2λ(J)
[
P − (I − P )

]
. (4.27)

This is a renormalization of the energy levels of the original system Hamiltonian (4.1): the

ground energy level is increased by 3g2λ(J), while the excited level decreases by the same

amount; both eigenspaces are left unchanged and no degeneracies are lifted.

Conclusion. The effective dynamics of the 3-qubit system is governed by the Lindbladian

Ltot(ρ̂) = −i
[
(J + 6g2λ(J))P, ρ̂

]
+

3∑
j=1

∑
ω∈{0,±4J}

(
L̂ω,j ρ̂L̂

†
ω,j −

1

2

{
L̂†ω,jL̂ω,j , ρ̂

})
. (4.28)
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It can be seen from (4.22) that

• Lindblad operators {L̂i,0} annihilate the code-space and act only on its orthogonal

complement, with strength κ2f(0);

• Lindblad operators {L̂i,±4J} connect the code-space and its orthogonal complement,

thus causing errors, and have strength κ2f(4J).

The spectrum of energy gaps of bath spins f(E) generally has a cut-off energy Ω, above

which it drops exponentially:

f(E)
∣∣
E�Ω

. e−E/Ω. (4.29)

Thus by taking J � Ω, one can arbitrarily suppress the {L̂i,±4J} operators. From (4.26) it

is clear that the “Lamb shift” energy correction λ(J) vanishes as J →∞. Finally, the {L̂i,0}
Lindblad operators are innocuous on encoded states. Therefore an initially encoded state

is completely frozen in the large-gap limit, and we can conclude that the Ising Hamiltonian

effectively prevents decoherence in this system.



Chapter 5

Quantum Memories Based on

Majorana Zero-Modes

In this Chapter we shall discuss quantum memories based on fermionic systems that host

unpaired Majorana modes using the techniques developed in the previous Chapters. The

first part of the Chapter (Sections 5.1 and 5.2) introduces the key ideas and illustrates

them through simple examples. The second part (Sections 5.3 through 5.6) analyzes several

quantum memory toy-models.

The idea of unpaired Majorana modes in condensed matter theory is introduced in Section

5.1, along with a brief review of the status of experimental searches. Section 5.2 discusses

the encoding of a qubit in a fermionic system with unpaired Majorana modes. In this

framework, particle-number parity arises naturally as a key concept, and we link it to the

memory performance within a simple approximation.

In the second part of the Chapter, several toy-models of Majorana-based quantum memo-

ries are presented and discussed. In Section 5.3 a minimal model allowing local, Markovian,

parity-preserving noise is introduced. It consists of eight Majorana modes. Its memory per-

formance is evaluated under both parity-preserving and non-parity-preserving noise models.

In Section 5.4 four more Majorana modes are added to the system, thus allowing different

encoding choices. Two encodings are tested and the resulting memory performances are

shown to be very different. This difference is explained in terms of locality. Section 5.5

presents a more realistic model, the Kitaev chain, and discusses its performance as a quan-

tum memory under both parity-preserving and non-parity-preserving noise models. Finally,

in Section 5.6 the concepts that are generally believed to ensure the protection of informa-

tion in a Majorana-based quantum memory are critically reviewed, in light of the results

obtained from the toy-models.
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5.1 Majorana “Fermions” in Condensed Matter Sys-

tems

In 1937 Ettore Majorana discovered his famous wave equation describing spin- 1
2 fermions

that are their own antiparticles [51]. As of yet, no elementary particles have been found that

obey the Majorana equation – though the nature of neutrino masses and of dark matter is still

unclear, which potentially leaves room for Majorana mass terms in some extensions of the

Standard Model of particle physics. However, in the last fifteen years Majorana fermions have

been gaining a remarkable popularity in a completely different setting: condensed matter

physics [52]. In this setting, they are not fundamental particles, but rather quasiparticles,

emerging from the collective behavior of electrons in solid-state systems. Remarkably, in

two spatial dimensions Majorana quasiparticles are predicted to exhibit non-Abelian anyonic

statistics: hence the term “Majorana fermions” is misleading, and the more neutral label

“Majorana modes” is preferred.

Loosely speaking, a Majorana quasiparticle is an equal, coherent superposition of an electron

and a hole. Normally, such quasiparticles are not observed because they combine pairwise to

form ordinary electrons or holes; they can be observed individually only if they are somehow

unpaired.

It has been known since the late 1990’s that vortices of chiral 2-dimensional p-wave super-

conductors can host unpaired Majorana modes [17, 18, 53]. This fact became of interest for

quantum information theory after the proposal by Kitaev of a supposedly decoherence-free

qubit based on unpaired Majorana modes [16]. This proposal, along with the inherently

interesting physics that such exotic quasiparticles would exhibit, boosted the experimental

searches for unpaired Majorana modes in condensed matter systems [19].

In this Section we shall provide a short introduction to Majorana modes in condensed matter

physics: in §5.1.1 we introduce the formalism of Majorana modes; then in §5.1.2 we present

the Kitaev chain as a simple, solvable toy-model which displays unpaired Majorana modes;

finally, in §5.1.3 we briefly review the status of experimental searches.

5.1.1 Dirac and Majorana modes

Consider a fermionic systems consisting of N Dirac modes. The creation and annihilation

operators for the N modes are
{
âi, â

†
i : i ∈ {1, . . . N}

}
. These operators obey the canonical

anti-commutation relations:

{âi, âj} = 0, {â†i , âj} = δi,j 1̂. (5.1)
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The state space for the system is the fermionic N -mode Fock space FN , spanned by or-

thonormal basis vectors

|n1, . . . nN 〉 =
(
â†1

)n1

· · ·
(
â†N

)nN
|Ω〉 , (5.2)

where |Ω〉 is the vacuum state and each ni is either 0 or 1. The dimension of FN is thus 2N .

Remark. The order of the creation operators in (5.2) has to be specified in order to avoid

sign ambiguity.

The fermionic system can equivalently be described using Majorana operators:

ĉr,1 = âr + â†r, ĉr,2 =
âr − â†r

i
. (5.3)

The {ĉr,j} operators obey the algebra

{ĉr,j , ĉs,k} = 2δr,sδj,k1̂, (5.4)

which can be straightforwardly proved using the canonical anti-commutation relations (5.1).

Majorana operators have several properties that make them a convenient choice for some

types of calculations:

• They are self-adjoint.

• They square to 1̂, thus their eigenvalues are either +1 or −1.

• They are traceless.

• They can all be treated on the same footing1.

The following is a summary of useful relations between the Dirac and Majorana formalisms:

âr =
ĉr,1 + iĉr,2

2
, â†r =

ĉr,1 − iĉr,2
2

, (5.5)

â†râr = n̂r =
1̂ + iĉr,1ĉr,2

2
, ârâ

†
r = 1̂− n̂r =

1̂− iĉr,1ĉr,2
2

, (5.6)

(−1)n̂r = 1̂− 2n̂r = −iĉr,1ĉr,2. (5.7)

Remark. The Majorana operators {ĉr,j : r ∈ {1, . . . N} , j ∈ {1, 2}} generate the whole al-

gebra B (FN ).

1 The {ĉr,1} and {ĉr,2} operators are completely equivalent; one could relabel ĉr,1 7→ ĉ′2r−1 and ĉr,2 7→
ĉ′2r, and the algebra (5.4) would be invariant under orthogonal transformations of the vector (ĉ′1, . . . ĉ

′
2N ).
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Proof. The monomials µ̂[α] ≡ (ĉ1,1)α1,1 · · · (ĉN,2)αN,2 , parametrized by binary 2N -tuples

α ∈ {0, 1}2N , are orthogonal in the Hilbert-Schmidt Hermitian product:

Tr
(
µ̂[α]

†
µ̂[β]

)
= δα,βdim(FN ). (5.8)

This provides a set of 22N independent operators. Since 22N = dim(FN )
2

= dim(B(FN )),

the operators must also be a complete set, hence a basis.

5.1.2 The Kitaev chain

Until recently, the Majorana formalism presented in §5.1.1 was considered a useful theoretical

tool without any concrete physical meaning. This is because, loosely speaking, a Majorana

operator represents only half of a fermionic degree of freedom – one needs two Majorana

modes to obtain a Dirac mode. These “half fermions” were expected to always combine into

single, local Dirac modes.

However it was shown by Kitaev [16] that in some physical scenarios one can actually

obtain unpaired Majorana modes. The pairing between Majorana modes corresponds to the

occupation energy of the corresponding Dirac mode. Therefore, unpaired Majorana modes

must also be zero-energy modes of the system Hamiltonian. Thus the terms “unpaired

Majorana mode” and “Majorana zero-mode” will be used interchangeably.

We shall review Kitaev’s model for two reasons:

1. It provides a simple example of a condensed matter system hosting Majorana zero-

modes, and

2. We will analyze its performance as a quantum memory in §5.5.

The model. Consider a one-dimensional system consisting of L sites, with open boundary

conditions. Each site hosts a Dirac mode âr, r ∈ {1, . . . L}. The Hamiltonian involves

hopping terms, superconducting pair creation/annihilation terms, and chemical potential

terms:

Ĥ =

L−1∑
r=1

(
−t(â†râr+1 + â†r+1âr) + ∆ârâr+1 + ∆∗â†r+1â

†
r

)
+ µ

L∑
r=1

(
â†râr −

1

2
1̂

)
. (5.9)

Any complex phase in the parameter ∆ can be absorbed by a suitable redefinition of the âr

operators, thus all parameters can be assumed real. The form of (5.9) in terms of Majorana

operators is

Ĥ =

L−1∑
r=1

(
∆− t

2
iĉr,1ĉr+1,2 +

∆ + t

2
iĉr,2ĉr+1,1

)
+ µ

L∑
r=1

i

2
ĉr,1ĉr,2 (5.10)
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â1 â2 â3 â4 â5

b̂1 b̂2 b̂3 b̂4

ĉ1,1 ĉ5,2

Figure 5.1: the two phases of the Kitaev chain (L = 5). Top: trivial phase (5.11).
Bottom: topological phase (5.12) with unpaired edge modes. The ellipses represent the
sites of the chain. The smaller circles represent Majorana modes. Segments joining

Majorana modes represent the pairing into a Dirac mode.

If t = ∆ = 0 and µ > 0, the Hamiltonian (up to additive constants) is

Ĥ1 = µ

L∑
r=1

â†râr, (5.11)

and the vacuum state |Ω〉 is a non-degenerate ground state. On the other hand, if t = ∆ > 0

and µ = 0, one has

Ĥ2 = t

L−1∑
r=1

iĉr,2ĉr+1,1 = t

L−1∑
r=1

b̂†r b̂r, (5.12)

where we introduced the “bond” Dirac modes

b̂r =
ĉr,2 + iĉr+1,1

2
, b̂†r =

ĉr,2 − iĉr+1,1

2
. (5.13)

Majorana zero-modes. Hamiltonians (5.11) and (5.12) are very similar. The difference

between them is that, while Ĥ1 pairs the two Majorana modes of each site, Ĥ2 pairs Majorana

modes from adjacent sites. This difference is illustrated in Figure 5.1. The most remarkable

property of (5.12) is that the two Majorana edge-modes ĉ1,1 and ĉL,2 are unpaired. These

are the zero-energy Majorana modes that are sought by the experimental condensed matter

community. They define a Dirac mode, n̂0 ≡ 1̂+iĉ1,1ĉL,2
2 , which has zero occupation energy

and is de-localized over the two distant edges of the chain.

The presence of n̂0 causes all the spectrum of Ĥ2 to be (at least) two-fold degenerate, since

the occupation number n̂0 has no effect on the energy level; specifically, for the two-fold

degenerate ground states one can choose
∣∣∣ψ(0)
GS

〉
and

∣∣∣ψ(1)
GS

〉
, defined by

b̂r

∣∣∣ψ(i)
GS

〉
= 0 ∀ r, i, n̂0

∣∣∣ψ(0)
GS

〉
= 0, n̂0

∣∣∣ψ(1)
GS

〉
=
∣∣∣ψ(1)
GS

〉
. (5.14)
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Equivalently, the two ground states are distinguished by the value of of the fermionic number-

parity operator :

P̂f =

L∏
r=1

(−iĉr,1ĉr,2). (5.15)

By an appropriate permutation of the Majorana modes, and recalling (5.7), one has P̂f =

(−1)n̂0
∏L−1
r=1 (−1)b̂

†
r b̂r , so that

P̂f

∣∣∣ψ(0)
GS

〉
= +

∣∣∣ψ(0)
GS

〉
, P̂f

∣∣∣ψ(1)
GS

〉
= −

∣∣∣ψ(1)
GS

〉
. (5.16)

It can be shown [16] that the original Hamiltonian (5.9) (with ∆ = t) is in a topological

phase with degenerate ground states for |µ| < 2|t|. These ground states have some features

that make them appealing candidates as logical states for a quantum memory, the most

interesting one being the topological robustness of their degeneracy [54]. A topologically

robust degeneracy is one that cannot be lifted by any local Hamiltonian perturbation in the

thermodynamic limit (L → ∞). At finite size, an exponentially small splitting O(e−L) is

allowed. Therefore in a closed-system scenario (i.e. under Hamiltonian perturbations) the

states are protected from dephasing2.

This property is extremely remarkable, but does not guarantee a priori that Majorana zero-

modes would effectively protect quantum information from external perturbations. Testing

the validity of “topological protection” and “parity protection” in an open quantum system

scenario is the general goal of Sections 5.3 through 5.5.

5.1.3 Experimental searches for Majorana zero-modes

Several strategies for engineering and detecting the elusive Majorana zero-modes have been

proposed [19, 55]. Currently the most promising and experimentally viable proposals involve

nanowires with strong spin-orbit coupling and proximity-induced superconductivity [56, 57,

58, 59].

Proximity with a 2-dimensional or 3-dimensional superconductor is necessary in order to

produce the ∆ terms in the Hamiltonian (5.9), because superconductivity is impossible in

one dimension at finite temperature. Moreover, the Hamiltonian (5.9) contains spinless

fermions; it is quite clear that if two spin components were allowed, then in the topological

phase each edge would host two Majorana modes, which might combine into a single Dirac

mode. Therefore one spin component must be “frozen”. This can normally be accomplished

2 If the two logical states of a qubit have energy levels that differ by a random gap δE, then the unitary
evolution attaches a random phase of e−i δEt to coherence terms like |0〉 〈1|; averaging over the random
values of δE yields a suppression of coherence terms and thus a loss of quantum information. The process
is known as dephasing.
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by means of a magnetic field. However, if we isolated, say, the spin-up component of the

nanowire electrons with a magnetic field, then in order to obtain the required ∆ terms

we would need an exotic p-wave superconductor3. Remarkably, the desired effect can be

obtained also with ordinary, s-wave superconductors, through a combination of spin-orbit

coupling and a transverse magnetic field.

Evidence for Majorana zero-modes in this type of devices has been recently claimed [60, 61].

An anomalous peak in the conductance of the nanowire is observed at zero bias voltage; the

peak is present for a wide range of experimental parameters and fits the predictions based

on the presence of Majorana edge modes [62, 63]. This evidence may not yet be conclusive

[64]; more investigations are needed for an unambiguous detection.

However, while the conclusive detection of Majorana physics in superconducting systems

in the near future appears very likely, the step from detection to coherent manipulation of

Majorana modes is far from trivial, and will probably require a much longer time.

5.2 Encoding a Qubit in a Fermionic System with Ma-

jorana Zero-Modes

In this Section we discuss how a qubit can be encoded in the even-parity sector4 of a fermionic

system with unpaired Majorana modes. §5.2.1 presents some general concepts about parity

in fermionic systems, including the superselection rule on fermionic parity. The details

of the qubit encoding are provided in §5.2.2. Finally, in §5.2.3 and §5.2.4 we discuss the

memory performance of such encoding within some simplifying assumptions: in the former

we project the dynamics onto the ground-space, and consider recovery operations that act

on the zero-modes only; in the latter, we consider the real dynamics of the whole system

and allow arbitrary recovery operations, at the expense of a simplified encoding and an ad

hoc assumption about the decoherence process.

5.2.1 The role of parity

Superselection rule on fermionic parity. Consider a fermionic system and let n̂ be

the associated particle number operator:

n̂ =
∑
i

â†i âi. (5.17)

3 Hamiltonian terms of the form â†↑â↑ would be necessary. Such terms corresponds to a Cooper pair in

a spin triplet state.
4There is nothing special about even parity; we might as well have chosen the odd-parity sector. The

important point is that the parity operator must have a fixed value on the encoded states.
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Let |n〉 denote an eigenstate of n̂ with eigenvalue n ∈ N: n̂ |n〉 = n |n〉. There is a general

theorem, known as fermionic parity superselection rule [65], that forbids coherent superpo-

sitions of eigenstates |n〉 and |n′〉 such that n and n′ have different parity. For instance, the

state 1√
2

(|1〉+ |4〉) is unphysical. This is because a rotation of 2π about any axis produces a

minus sign for each occupied fermionic mode, so that R̂2π |n〉 = (−1)n |n〉; hence the trivial

operation R̂2π would map |1〉+ |4〉 to − |1〉+ |4〉, which is an inequivalent vector.

However, statistical mixtures of states with different parities are allowed: for instance, ρ̂ =
1
2 |1〉 〈1|+

1
2 |4〉 〈4| is invariant under the action of R̂2π, since

R̂2πρ̂R̂
†
2π =

1

2
(−1) |1〉 〈1| (−1) +

1

2
(+1) |4〉 〈4| (+1) = ρ̂. (5.18)

But coherence terms between the even and odd sectors are forbidden: |1〉 〈4| R̂2π−−→ −|1〉 〈4|.
Therefore physical density matrices must be block-diagonal, with blocks corresponding to

the even and odd sectors:

ρ̂ =

(
pρ̂even 0

0 (1− p)ρ̂odd

)
, Tr (ρ̂even) = Tr (ρ̂odd) = 1, p ∈ [0, 1]. (5.19)

R̂2π is none other than the fermionic parity operator, P̂f , introduced in (5.15). The super-

selection rule can be stated as follows: a state ρ̂ is physical if and only if P̂f ρ̂P̂f = +ρ̂, or

equivalently if and only if
[
P̂f , ρ̂

]
= 0.

Since each Majorana operator ĉ anti-commutes with P̂f , every physical state ρ̂ must be a

linear combination of even-degree monomials – i.e., products of an even number of ĉ opera-

tors. We shall adopt a somewhat misleading terminology and label this type of operators as

“bosonic”, even though they have nothing to do with bosons. Conversely, linear combina-

tions of odd-degree monomials will be labeled as “fermionic”. This choice of terms avoids

the ambiguity between even-degree and even-number operators: the former shall be called

“bosonic”, the latter simply “even”.

In conclusion, one has

P̂f ÔP̂f =

+ρ̂ if Ô is bosonic,

−ρ̂ if Ô is fermionic;
(5.20)

and all operators Ô ∈ B (FN ) can be written as a sum of a bosonic and a fermionic part:

Ô =

bosonic︷ ︸︸ ︷
Ô + P̂f ÔP̂f

2
+

fermionic︷ ︸︸ ︷
Ô − P̂f ÔP̂f

2
. (5.21)
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“Average parity” of a mixed state. As shown in (5.19), for every physical state5 ρ̂ we

have ρ̂ = pρ̂even + (1−p)ρ̂odd, p ∈ [0, 1]. This decomposition can also be obtained as follows:

ρ̂ =

(
1̂ + P̂f

2

)
ρ̂+

(
1̂− P̂f

2

)
ρ̂

=

(
1̂ + P̂f

2

)
ρ̂

(
1̂ + P̂f

2

)
+

(
1̂− P̂f

2

)
ρ̂

(
1̂− P̂f

2

)
, (5.22)

where the second equality comes from the fact that [P̂f , ρ̂] = 0 (because ρ̂ is bosonic)

and P̂ 2
f = 1̂. Then, introducing the even-parity and odd-parity projectors Π̂± =

1̂±P̂f
2 , a

comparison between (5.19) and (5.22) yields

pρ̂even = Π̂+ ρ̂ Π̂+, (1− p)ρ̂odd = Π̂− ρ̂ Π̂−. (5.23)

Thus bosonic operators can be further divided into even and odd operators:

P̂f ρ̂ = ρ̂P̂f =

+ρ̂ if ρ̂ is even,

−ρ̂ if ρ̂ is odd.
(5.24)

Applying (5.22), the average parity of a state ρ̂ can be expressed as〈
P̂f

〉
= Tr

(
P̂f ρ̂

)
= Tr (pρ̂even − (1− p)ρ̂odd) = 2p− 1. (5.25)

For the fully mixed state 2−N 1̂ one has pρ̂even = Π+(2−N 1̂)Π+, so that p = Tr
(
2−NΠ+

)
=

1
2 . This is intuitive, since the fully mixed state is an equal mixture of pure states with all

particle numbers. If the code-space is chosen inside the subspace of even operators, then the

initial value of 〈P̂f 〉 is +1. Therefore, a decoherence process mapping the code-space to the

completely mixed state would imply a decay of the average parity from 1 to 0.

This particular example displays a correlation between the decay of average parity and

the loss of information. This correlation between parity preservation and protection of

information is believed to be rather general and goes by the name of parity-protected quan-

tum information [66, 67]: it is assumed that, as long as the parity remains well-defined, a

Majorana-based quantum memory should work; on the other hand, if the noise involves par-

ticle loss or contamination, the memory is expected to fail. We shall return on this concept

in the following Sections.

5We recall that physical states for fermions are positive, unit-trace bosonic operators.
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5.2.2 Encoding a qubit in the even-parity sector

Consider a fermionic system that hosts four unpaired Majorana modes {m̂1, m̂2, m̂3, m̂4}
that are far apart from one another. We can combine them to form two non-local Dirac

modes: 
ĝ0 =

m̂1 + im̂2

2
, ĝ†0 =

m̂1 − im̂2

2
,

d̂0 =
m̂3 + im̂4

2
, d̂†0 =

m̂3 − im̂4

2
.

(5.26)

The other fermionic degrees of freedom that constitute the system are paired into gapped

Dirac eigenmodes {âi}.

Let us encode the logical qubit in the following pair of orthogonal states:{
|0L〉 = |Ω〉 ,

|1L〉 = d̂†0ĝ
†
0 |Ω〉 .

(5.27)

|Ω〉 is the vacuum state of the fermionic system.

Remark. Two Majorana modes are not enough to encode a qubit: |Ω〉 and ĝ†0 |Ω〉 have

different parities, thus coherent superpositions are forbidden by the fermionic parity super-

selection rule. Such states can be used to encode a classical bit, but not a qubit. With four

modes instead there is a non-trivial even-parity sector, which allows the encoding of a full

qubit.

Let ρ̂enc denote the ground-space projector: ρ̂enc =
∏
i âiâ

†
i . The logical Pauli operators

corresponding to the encoding (5.27) are

σ̂L0 = |0L〉 〈0L|+ |1L〉 〈1L| =
1

2
(1̂− m̂1m̂2m̂3m̂4) ρ̂enc;

σ̂L1 = |0L〉 〈1L|+ h.c. =
i

2
(m̂2m̂3 + m̂1m̂4) ρ̂enc;

σ̂L2 = −i |0L〉 〈1L|+ h.c. = − i
2

(m̂1m̂3 − m̂2m̂4) ρ̂enc;

σ̂L3 = |0L〉 〈0L| − |1L〉 〈1L| = −
i

2
(m̂1m̂2 + m̂3m̂4) ρ̂enc.

(5.28)

Remark. Denoting the ground-space by G and the projector onto its even-parity sector by

Π̂+
G = 1

2 (1̂ + P̂Gf )ρ̂enc = 1
2 (1̂− m̂1m̂2m̂3m̂4)ρ̂enc, the encoded Pauli operators (5.28) can be

written as {
σ̂L0 = Π̂+

G, σ̂L1 = Π+
G (im̂2m̂3) Π̂+

G,

σ̂L2 = Π+
G (−im̂1m̂3) Π̂+

G, σ̂L3 = Π+
G (−im̂1m̂2) Π̂+

G.
(5.29)

Notation (5.29) makes our choice of parity sector explicit, and displays the Pauli algebra of

the encoded operators more clearly. Moreover, it relates the encoding (5.28) to the one that
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is most frequently used in the literature [66], which is

σ̂L0 = ρ̂enc, σ̂L1 = im̂2m̂3ρ̂enc, σ̂L2 = −im̂1m̂3ρ̂enc, σ̂L3 = −im̂1m̂2ρ̂enc. (5.30)

The encoding (5.30), though algebraically simpler than (5.29), has undefined parity, and is

therefore less suited to study parity protection.

5.2.3 Effective local dynamics in the ground space

We shall now study the memory performance that can be achieved through the encoding

(5.28) by applying a recovery operation only on the zero-modes {m̂1, . . . m̂4}. This con-

straint is physically motivated, since it is reasonable to assume that the zero-modes (having

already been manipulated for the initial encoding) should be accurately controllable by the

experimenter, whereas a general recovery operation that involves the whole system might

be technically difficult to implement.

Because of this restriction, we do not need to consider the whole decoherence channel Dt.
It suffices to define the effective ground-space channel D̃t by averaging over the non-zero

energy sector S:

D̃t(ρ̂0) = TrS (Dt (ρ̂0)) ∀ ρ̂0 ∈ S (G) . (5.31)

Constraints from locality and parity preservation. If Dt is parity-preserving and

local, then some useful properties hold. Those properties are discussed in Appendices E and

F. Let us recall two of them here:

• The Lieb-Robinson bound (LRB) for pairs of distant fermionic operators,∥∥∥{Dt (ÔA) , ÔB}∥∥∥
op
≤ cV

∥∥∥ÔA∥∥∥
op

∥∥∥ÔB∥∥∥
op
e−

dAB−vt
ξ . (5.32)

• The clustering property for pairs of distant operators:

D∗t
(
ÔAÔB

)
' D∗t

(
ÔA

)
D∗t
(
ÔB

)
. (5.33)

The notation is as follows: ÔA, ÔB are operators located on distant regions A and B of

the system; dAB is the distance between such regions, and V is their size; v, ξ and c are

model-dependent constants. Finally D∗t is the adjoint6 of channel Dt. The LRB (5.32)

represents the fact that local dynamics propagates correlations with a finite group velocity,

that defines an effective light-cone7. The clustering property (5.33) holds as long as the

6The adjoint of a quantum channels was defined in equation (1.17).
7 While in relativistic field theories correlations outside the light cone are strictly forbidden by causality,

in this setting exponentially small tails are allowed.
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space-like slices of the light-cones do not intersect, with an error that is exponentially small

in dAB−vt
ξ . (5.33) is related to the clustering of expectation values of distant observables on

uncorrelated states,〈
ÔAÔB

〉
t

= Tr
(
ÔAÔBDt (ρ̂Aρ̂B)

)
= Tr

(
D∗t
(
ÔAÔB

)
ρ̂Aρ̂B

)
' Tr

(
D∗t
(
ÔA

)
ρ̂AD∗t

(
ÔB

)
ρ̂B

)
=
〈
ÔA

〉
t

〈
ÔB

〉
t
. (5.34)

The effective ground-space channel D̃t inherits the relevant locality properties from Dt. By

applying the LRB (5.32) to two fermionic monomials m̂i and m̂j , i 6= j, we can see that, for

t small enough,{
D̃t(m̂i), m̂j

}
' 0 ∀ j 6= i =⇒ D̃t(m̂i) ' λi(t)m̂i, (5.35)

where 0 ≤ λi(t) ≤ 1 (because of the contractivity of the trace norm, (1.22)), while the

clustering property (5.33) implies

D̃∗t (m̂iF [{m̂j}j 6=i]) ' D̃∗t (m̂i)D̃∗t (F [{m̂j}j 6=i]) (5.36)

for any monomial F [{m̂j}j 6=i] in the three modes {m̂j : j 6= i}.

With these ingredients, and by further requiring unitality of Dt, it is easy to prove that

D̃t(m̂α1
1 m̂α2

2 m̂α3
3 m̂α4

4 ) '
4∏
j=1

(
D̃t(m̂j)

)αj
'

 4∏
j=1

λj(t)
αj

 m̂α1
1 m̂α2

2 m̂α3
3 m̂α4

4 , (5.37)

up to LRB corrections (that vanish in the thermodynamic limit).

Recovery fidelity. Let us assume for simplicity that λi(t) = λ(t) ∀ i. Then the upper

bound on the optimal recovery fidelity (2.12) for D̃t can be easily evaluated. One has for

instance ∥∥∥D̃t (σ̂L1 )∥∥∥
tr

=
1

2

∥∥∥D̃t(im̂2m̂3 + im̂1m̂4)
∥∥∥

tr
' λ2(t)

2
‖im̂2m̂3 + im̂1m̂4‖tr

= λ2(t)
∥∥σ̂L1 ∥∥tr

= 2λ2(t), (5.38)

and the same holds for σ̂L2 and σ̂L3 ; thus the upper bound reads

F opt
t ≤ 1

2
+

1

12

3∑
i=1

∥∥Dt (σ̂Li )∥∥tr
=

1 + λ2(t)

2
. (5.39)
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G S E

Figure 5.2: partition of the system considered in §5.2.3. G represent the zero-energy
sector; S represents the other modes of the fermionic system; E is a generic environment.
Even in the absence of system-environment tunneling processes (dashed arrow), there
can still be tunneling processes between S and G (solid arrow). Such processes generally

change the the average ground-space parity
〈
P̂Gf

〉
.

Since sign
(
λ2(t)σ̂Li

)
= σ̂Li , the candidate optimal recovery operation is the one induced by

the original logical matrices
{
σ̂Lα
}

. Their Pauli algebra ensures that the candidate recovery

map is physical, hence the bound (5.39) is saturated.

Remark. The upper bound (5.39) refers to the effective ground-space dynamics, hence it

bounds the result that can be attained by operating on the zero-modes only. This limitation

has a strong physical and experimental motivation: a recovery operation that involves the

zero-modes only should be technically much simpler to implement than one involving the

whole system. Obviously, though, by operating on the whole system one may be able to

achieve higher fidelities.

Fidelity and parity preservations. Recalling that P̂Gf = −m̂1m̂2m̂3m̂4 is the fermionic

parity operator (5.15) restricted to the ground space, the average ground-space parity of a

state ρ̂(0) that is initially encoded in the even-parity sector evolves as follows:〈
P̂Gf

〉
t

= Tr
(
P̂Gf ρ̂(t)

)
= Tr

(
P̂Gf D̃t (ρ̂(0))

)
' Tr

(
D̃∗t
(
P̂Gf

)
ρ̂(0)

)
'

(
4∏
i=1

λi(t)

)
Tr
(
P̂Gf ρ̂(0)

)
= λ4(t)

〈
P̂Gf

〉
0

= λ4(t). (5.40)

We used the diagonal form (5.37) to prove that D̃t ' D̃∗t , up to LRB corrections. Comparing

(5.39) and (5.40) we can conclude that

F opt
t =

1

2

(
1 +

√〈
P̂Gf

〉
t

)
, (5.41)

up to the usual LRB corrections (which vanish in the thermodynamic limit).
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Equation (5.41) shows a remarkable instance of parity protection of quantum information:

no local perturbations can degrade the encoded information without altering the average

parity of the ground space.

Remark. From the fact that Dt is parity-preserving (meaning that D∗t (P̂f ) = P̂f ∀ t) one

cannot deduce that D̃∗t (P̂Gf ) = P̂Gf . In terms of particle tunneling, preserving P̂f corre-

sponds to forbidding single-particle tunneling events between the system and the environ-

ment; nonetheless, single particles are allowed to tunnel between the ground space G and

the rest of the system S, thus changing P̂Gf and P̂Sf . A schematic picture of the situation

is given in Figure 5.2. If a physical mechanism forbade single-particle tunneling between S

and G in some specific settings, however, the survival of the encoded information would be

automatically ensured by (5.41).

5.2.4 Fully mixed encoding

In some situations the discussion of §5.2.3 may yield unsatisfactory results, i.e. by operating

on the zero-modes only one might be able to recover only a small fraction of the information.

It would therefore be interesting to consider the whole fermionic system, without tracing

over the non-zero energy sector S. However the evaluation of the memory performance in

the general case is too complicated. We shall therefore add some convenient assumptions in

order to gain at least some insight into the problem.

Encoding subspace. While we defined the encoded operators (5.28) via a ground-space

projector ρ̂enc, the simplest choice from an algebraic point of view would be to replace the

projector with the completely mixed state: ρ̂enc ∝ 1̂. Unfortunately this state has undefined

parity, being a statistical mixture of pure states with all allowed particle numbers (both

even and odd). It is therefore convenient to drop the even-parity-sector encoding (5.29) and

choose the algebraically simpler version (5.29), which we recall here:

σ̂L0 = ρ̂enc, σ̂L1 = im̂2m̂3ρ̂enc, σ̂L2 = −im̂1m̂3ρ̂enc, σ̂L3 = −im̂1m̂2ρ̂enc. (5.42)

In order to have
∥∥σ̂Lα∥∥tr

= 2, the normalization in ρ̂enc ∝ 1̂ must be set to ρ̂enc = 2−(N−1)1̂.

Contrary to equation (5.35), with other Majorana modes available the zero-modes are not

necessarily eigenmodes of the decoherence channel. However, the local nature of the dy-

namics implies (through the Lieb-Robinson bound (5.32)) that Dt can only “smear out”

the zero-modes locally, within a pseudo-light-cone; as long as the different light cones do

not overlap, some useful algebraic properties are retained. The situation is illustrated in

Figure 5.3.

We shall now make our first simplifying assumption. The clustering property (5.33) is

proven in Appendix F in the Heisenberg picture, i.e. for the adjoint channel D∗t , but the
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t

dm̂1 m̂2

0

t1 � d/v

t2 ∼ d/v

Figure 5.3: effect of the Lieb-Robinson bound on the time evolution of two distant
Majorana modes m̂1, m̂2. Local dynamics propagates correlation with a finite group
velocity v: the two modes Dt (m̂1) and Dt (m̂2) are approximately confined within pseudo-
light cones. At times such that the space-like slices of the light-cones are well separated

(t1) the clustering property (5.33) holds; at later times (t2) it fails.

same proof straightforwardly applies to the channel Dt, provided its Lindblad operators are

normal8. Assuming that (F.17) holds in our case, the Majorana modes essentially retain

their anti-commutativity at short times:

{Dt (m̂i) ,Dt (m̂j)} = Dt (m̂i)Dt (m̂j) +Dt (m̂j)Dt (m̂i) ' Dt (m̂im̂j) +Dt (m̂jm̂i)

= Dt ({m̂i, m̂j}) = 0 if i 6= j. (5.43)

A consequence of this fact is that

Dt
(
σ̂L1
)
Dt
(
σ̂L2
)
'
(
iDt (m̂2)Dt (m̂3) 2−(N−1)

)(
−iDt (m̂1)Dt (m̂3) 2−(N−1)

)
' −Dt (m̂2)Dt (m̂1) (Dt (m̂3))

2
2−2(N−1) ' Dt (m̂1m̂2) (Dt (m̂3))

2
2−2(N−1)

= iDt
(
σ̂L3
)

(Dt (m̂3))
2

2−(N−1) (5.44)

(the factor of 2−(N−1) comes from the normalization of ρ̂enc ∝ 1̂). Analogous relations hold

for the other pairs of encoded Pauli matrices. Therefore, if

(Dt (m̂i))
2 ' λ2(t)1̂ (5.45)

for some function 0 ≤ λ(t) ≤ 1, the evolved Pauli matrices continue to obey a “Pauli-like”

algebra (up to Lieb-Robinson corrections):

Dt
(
σ̂Lα
)
Dt
(
σ̂Lβ
)
' iεαβγ2−(N−1)λ2(t)Dt

(
σ̂Lγ
)
. (5.46)

8 A normal operator is one that commutes with its adjoint: [L,L†] = 0. This includes Hermitian and
unitary operators as particular cases.
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Multiplying both sides of (5.46) by 22(N−1)λ−4(t), we see that the operators
{

2N−1

λ2(t)Dt
(
σ̂Lα
)}

obey the original Pauli algebra. Moreover, each of them squares to the identity: for instance,(
2N−1

λ2(t)
Dt
(
σ̂L1
))2

' 1

λ4(t)
iDt (m̂2)Dt (m̂3) iDt (m̂2)Dt (m̂3)

' 1

λ4(t)
(Dt (m̂2))

2
(Dt (m̂3))

2
= 1̂. (5.47)

By the results of §2.3.2, those operators define a CP recovery operation. This recovery

operation is optimal, since 2N−1λ−2(t)Dt
(
σ̂Lα
)

= sign
(
Dt
(
σ̂Lα
))

. Therefore the optimal

recovery fidelity saturates the upper bound (2.12):

F opt
mix;t =

1

2
+

1

12

3∑
α=1

∥∥Dt (σ̂Lα)∥∥tr
=

1

2
+

1

12

3∑
α=1

Tr
((

2N−1λ−2(t)Dt
(
σ̂Lα
))
Dt
(
σ̂Lα
))

=
1

2
+

1

12

3∑
α=1

2−(N−1)λ2(t)Tr
(

sign
(
Dt
(
σ̂Lα
))2)

=
1 + λ2(t)

2
. (5.48)

The remarkable point about this result is that it is completely determined by the local

action of the noise on each Majorana zero-mode, parametrized by λ(t). There is no need

for the noise to correlate distant zero-modes; perturbing each one individually is enough to

degrade the encoded information. Also, the similarity between (5.48) and (5.39) should be

noted, though the time-dependent parameter λ(t) has slightly different meanings in the two

settings9.

This result about the maximally mixed encoding (5.48) can be used to prove a lower bound

to the optimal recovery fidelity achievable through a pure encoding. Let Rt be the optimal

recovery operation for the maximally mixed encoding, i.e.

Rt(ρ̂) =
1

2

(
Tr (ρ̂) 1 +

3∑
α=1

Tr
(
ρ̂2N−1λ−2(t)Dt

(
σ̂Lα
))
σα

)
. (5.49)

Then the following inequality holds:

F opt
mix;t = F

(Rt)
mix;t = 2−(N−2)

1∑
n3=0

· · ·
1∑

nN=0

F
(Rt)
n;t ≤ 2−(N−2)

1∑
n3=0

· · ·
1∑

nN=0

F opt
n;t , (5.50)

where {n3, . . . , nN} are the occupation numbers of the N − 2 non-zero-energy Dirac modes

that compose the system along with the four Majorana zero-modes, and Fn;t is the fidelity

obtained through a pure-state encoding with occupation numbers n = (n3, . . . nN ). (5.50)

9In (5.48) λ(t) is defined via Dt (m̂i)
2 = λ2(t)1̂, while in (5.39) the definition is D̃t(m̂i) = λ(t)m̂i. In the

latter case one generally obtains a smaller parameter, and thus recovers less information.
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holds because the encoding operation

Eρ̂enc

(
1 + v · σ

2

)
=
σ̂L0 + v · σ̂L

2
(5.51)

is linear in ρ̂enc (which is implicit in the definitions of σ̂L0 and σ̂L, (5.42)); therefore

F
(Rt)
mix;t =

ˆ
dµvTr

(
1 + v · σ

2
Rt ◦ Dt ◦ Emix

(
1 + v · σ

2

))
= 2−(N−2)

1∑
n3=0

· · ·
1∑

nN=0

ˆ
dµvTr

(
1 + v · σ

2
Rt ◦ Dt ◦ En

(
1 + v · σ

2

))

= 2−(N−2)
1∑

n3=0

· · ·
1∑

nN=0

F
(Rt)
n;t . (5.52)

The meaning of (5.50) is that under these hypotheses (that distant operators “cluster” (F.17)

and that time-evolved Majorana modes square to c-numbers (5.45)) there is at least a pure

encoding that performs at least as well as the maximally mixed one. Thus one has the

following lower bound on the optimal recovery fidelity that can be achieved through pure

encodings:

max
n

F opt
n;t ≥ F

opt
mix;t =

1 + λ2(t)

2
(5.53)

This lower bound may be used together with the upper bound (2.12) to constrain the optimal

recovery fidelity allowed by a given system.

Remark. The result (5.53) depends critically on the ad hoc assumption (5.45), which is a

strong and rather arbitrary requirement. Instances in which (5.45) holds include the case

in which each m̂i is an eigenmode of Dt (which is however satisfactorily treated with the

approach described in §5.2.3), and the case in which Dt (m̂i) is a linear combination of single

Majorana modes10, with no cubic or higher-degree terms. The clustering property (5.43) is

also proved only in the case of normal Lindblad operators, which excludes some potentially

interesting noise models; though as far as we know it may hold more generally.

5.3 Toy Model of a Quantum Memory with Eight Ma-

jorana Modes

We shall now start the analysis of quantum memory toy-models based on Majorana zero-

modes. In this Section we will study a model based on eight modes. The model is introduced

10 In this case (5.45) can be proven by straightforwardly generalizing the identity (αm̂1 + βm̂2)2 =
α2m̂2

1 + β2m̂2
2 + αβ {m̂1, m̂2} = (α2 + β2)1̂.
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Figure 5.4: schematic representation of the encoding in the 8-mode model. The qubit
is encoded into the non-local Dirac modes corresponding to wavy lines. The Dirac modes

corresponding to straight lines are always initialized empty.

in §5.3.1, and its memory performance is evaluated under both non-parity-preservng (§5.3.2)

and parity-preserving (§5.3.3) local noise models.

5.3.1 Definition of the model

Let us consider a system consisting of four Dirac modes located far apart from one another.

No other modes are present. Each Dirac mode can be described as a pair of Majorana modes.

If we assume the system Hamiltonian to be zero, each one of the eight Majorana modes is a

zero-mode, and thus unpaired. Therefore one can (at least in principle) choose a Majorana

mode from each site to perform the non-local qubit encoding (5.28), while initializing the

other four modes in some vacuum state ρ̂enc. The noise is assumed to couple only same-site

Majorana modes. A schematic representation of the encoding is given in Figure 5.4

Though very unrealistic, this model is interesting because some important properties, in-

cluding locality and parity preservation, can be imposed exactly. It is therefore interesting

from a theoretical point of view to investigate the extent to which such features protect the

encoded information, even in an unrealistic setting.

Let â†r, âr denote the creation (annihilation) operators for the four Dirac modes. r ∈
{1, 2, 3, 4} labels the site. The notation for the Majorana modes is the one introduced

in (5.3):

ĉr,1 = âr + â†r, ĉr,2 = i(â†r − âr). (5.54)
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Four of them, say the {ĉr,1}, will be used to encode the qubit; the other four will be initialized

in the state

ρ̂enc =
1̂− iĉ1,2ĉ2,2

2

1̂− iĉ3,2ĉ4,2
2

. (5.55)

The encoded Pauli operators defined in (5.28) for this model take the following form:

σ̂L0 =
1

2
(1̂− ĉ1,1ĉ2,1ĉ3,1ĉ4,1)ρ̂enc,

σ̂L1 =
i

2
(ĉ2,1ĉ3,1 + ĉ1,1ĉ4,1)ρ̂enc,

σ̂L2 =
i

2
(ĉ2,1ĉ4,1 − ĉ1,1ĉ3,1)ρ̂enc,

σ̂L3 = − i
2

(ĉ1,1ĉ2,1 + ĉ3,1ĉ4,1)ρ̂enc.

(5.56)

5.3.2 Memory performance under a non-parity-preserving noise

We shall first consider a noise model that describes tunneling processes of individual fermions

between the system and an environment, thus altering the system parity P̂f . We prove that

the optimal recovery fidelity F opt
t in this case is smaller than 1+e−Γt

2 , where Γ is a parameter

related to the rate of the tunneling events: thus all the encoded information is lost over a

time scale determined by the local details of the noise, and no protection is provided by the

non-local encoding.

Noise model. The tunneling processes can be modeled by Lindblad operators
√
γâr

(draining particles out of the memory at a rate γ), and
√
δâ†r (pumping particles into the

memory at a rate δ). The total Lindbladian is the sum of four single-site Lindbladians:

L(ρ̂) =
∑4
r=1 Lr(ρ̂), with

Lr(ρ̂) =

(
γârρ̂â

†
r + δâ†rρ̂âr −

1

2

{
ρ̂, γâ†râr + δârâ

†
r

})
=
γ + δ

4
(ĉr,1ρ̂ĉr,1 + ĉr,2ρ̂ĉr,2 − 2ρ̂) + i

γ − δ
4

(ĉr,2ρ̂ĉr,1 − ĉr,1ρ̂ĉr,2 − {ρ̂, ĉr,1ĉr,2})

(5.57)

Lindbladians corresponding to different sites commute (Li(Lj(ρ̂)) = Lj(Li(ρ̂)) ∀ i, j), thus

they induce mutually commuting decoherence channels:

Dt = exp

(
t

4∑
r=1

Lr

)
=

4∏
r=1

etLr = D(1)
t ◦ D

(2)
t ◦ D

(3)
t ◦ D

(4)
t , (5.58)

with D(r)
t = etLr . Therefore in order to calculate Dt it suffices to focus on a single site and

then compose the four commuting D(r)
t partial channels.
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νr

0 1 2

bosonic Ar Br Cr
fermionic Cr Br Ar

Table 5.1: partition of all monomials of the algebra into the three subsets Ar, Br, Cr.
νr denotes the number of Majorana operators of the set {ĉr,1, ĉr,2} that appear in the

monomial.

Decoherence channel. In order to compute the action of D(r)
t on all operators, we shall

divide the set of monomials of the system algebra into three subsets:

• Ar, including all monomials Â such that [Â, ĉr,1] = [Â, ĉr,2] = 0.

• Br, including all monomials B̂ such that [B̂, ĉr,1] = {B̂, ĉr,2} = 0 or {B̂, ĉr,1} =

[B̂, ĉr,2] = 0.

• Cr, including all monomials Ĉ such that {Ĉ, ĉr,1} = {Ĉ, ĉr,2} = 0.

A simple rule for determining the “type” of a given monomial is illustrated in Table 5.1.

It is easy to see from the definitions of the three subsets and from the Lindbladian (5.57)

that 
Lr(Â) = (δ − γ)Âiĉr,1ĉr,2 ∀ Â ∈ Ar,

Lr(B̂) = −γ + δ

2
B̂ ∀ B̂ ∈ Br,

Lr(Ĉ) = −(γ + δ)Ĉ ∀ Ĉ ∈ Cr.

(5.59)

Type Br and Cr monomials are eigenmodes of D(r)
t , while type Ar monomials mix with type

Cr ones: 
D(r)
t (Â) = Â

(
1̂ +

δ − γ
γ + δ

(
1− e−(γ+δ)t

)
iĉr,1ĉr,2

)
∀ Â ∈ Ar,

D(r)
t (B̂) = e−(γ+δ)t/2B̂ ∀ B̂ ∈ Br,

D(r)
t (Ĉ) = e−(γ+δ)tĈ ∀ Ĉ ∈ Cr.

(5.60)

Each partial channel D(r)
t either damps the monomial (type Br or Cr) or attaches to it an

operator ρ̂′r(t) ≡ 1̂ + δ−γ
γ+δ

(
1− e−(γ+δ)t

)
iĉr,1ĉr,2 (type Ar).

Remark. If ρ̂ is a monomial in As and, for instance, ρ̂ ∈ Br for some s 6= r, then D(s)
t (ρ̂) =

ρ̂ρ̂′s(t) is a linear combination of two monomials, ρ̂ and ρ̂iĉr,1ĉr,2, that still belong to Br at

all times (because none of the relevant parameters in Table 5.1 are changed by multiplication

with iĉr,1ĉr,2). This means, more generally, that the partitions based on all sites s 6= r are

invariant under D(r)
t . Therefore, in order to compute the time evolution of any monomial

of the algebra, one just has to determine the type of the monomial with respect to the
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four partitions obtained by considering different sites, r = 1, 2, 3, 4, and then attach to the

original monomial the four factors prescribed by (5.60) (in an arbitrary order since they

mutually commute).

Recovery fidelity. In order to evaluate the upper bound on the recovery fidelity (2.12),

the trace norms of the evolved logical operators must be computed. Let us start from σ̂L1 ,

as defined in (5.56):

σ̂L1 =
1

8

[
(iĉ2,1ĉ3,1 + iĉ1,1ĉ4,1)(1̂− iĉ1,2ĉ2,2)(1̂− iĉ3,2ĉ4,2)

]
=

1

8

[
iĉ2,1ĉ3,1 + iĉ1,1ĉ4,1 − ĉ1,2ĉ2,1ĉ2,2ĉ3,1 + ĉ1,1ĉ1,2ĉ2,2ĉ4,1 + ĉ2,1ĉ3,1ĉ3,2ĉ4,2

− ĉ1,1ĉ3,2ĉ4,1ĉ4,2 + iĉ1,2ĉ2,1ĉ2,2ĉ3,1ĉ3,2ĉ4,2 + iĉ1,1ĉ1,2ĉ2,2ĉ3,2ĉ4,1ĉ4,2

]
. (5.61)

The eight monomials in brackets can be classified using the first row of Table 5.1 (since they

are all bosonic). For instance, the first one is of type (A1B2B3A4), hence its time evolution

is obtained by attaching a factor of e−(γ+δ)tρ̂′1(t)ρ̂′4(t). Applying this technique to all eight

monomials in (5.61), and defining Γ = γ + δ for brevity, one gets

Dt
(
σ̂L1
)

=
e−Γt

8

[
iĉ2,1ĉ3,1ρ̂

′
1ρ̂
′
4 + iĉ1,1ĉ4,1ρ̂

′
2ρ̂
′
3 + e−Γt

(
− ĉ1,2ĉ2,1ĉ2,2ĉ3,1ρ̂′4

+ ĉ1,1ĉ1,2ĉ2,2ĉ4,1ρ̂
′
3 + ĉ2,1ĉ3,1ĉ3,2ĉ4,2ρ̂

′
1 − ĉ1,1ĉ3,2ĉ4,1ĉ4,2ρ̂′2

)
+ e−2Γt

(
iĉ1,2ĉ2,1ĉ2,2ĉ3,1ĉ3,2ĉ4,2 + iĉ1,1ĉ1,2ĉ2,2ĉ3,2ĉ4,1ĉ4,2

)]
. (5.62)

The presence of ρ̂′ operators makes it impossible to diagonalize all the monomials that

compose Dt
(
σ̂L1
)

simultaneously. This makes an analytical computation of the trace norm

difficult. Figure 5.5 shows the results of numerical calculations, by which is clear that the

dependence on the δ
γ ratio (at fixed Γ) is unimportant as far as the memory performance is

concerned.

We shall therefore focus on the analytically solvable case γ = δ, in which particles flow in

and out of the system at equal rates. In this case ρ̂′r(t) = 1̂ ∀ r, ∀ t, and (5.62) becomes

Dt
(
σ̂L1
)

=
e−Γt

8
(iĉ2,1ĉ3,1 + iĉ1,1ĉ4,1)

(
1̂− e−Γtiĉ1,2ĉ2,2

) (
1̂− e−Γtiĉ3,2ĉ4,2

)
. (5.63)

By diagonalizing the complete set of commuting observables iĉ1,1ĉ2,1, iĉ3,1ĉ4,1, iĉ1,2ĉ2,2,

iĉ3,2ĉ4,2, one has

∥∥Dt (σ̂L1 )∥∥tr
=
e−Γt

8

∑
a,b,c,d=±1

|a+ b| ·
∣∣1− e−Γtc

∣∣ · ∣∣1− e−Γtd
∣∣

=
e−Γt

2

(∑
c=±1

∣∣1− e−Γtc
∣∣)2

= 2e−Γt. (5.64)
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Figure 5.5: decay of the trace norm of Dt
(
σ̂L1
)
, from (5.62), for several values of the

ratio γ
Γ

. The trace norm is invariant under γ
Γ
7→ 1− γ

Γ
. Thus γ/Γ = 0.5 yields an extremal

curve, corresponding to the worst case.

By a completely analogous procedure the same result for σ̂L2 and σ̂L3 can be proven. There-

fore, in the γ = δ case, the upper bound on the recovery fidelity is

F opt
t ≤ 1 + e−Γt

2
. (5.65)

In light of the numerical data in Figure 5.5, the bound should slightly improve for δ 6= γ (at

fixed γ + δ), though not significantly.

The upper bound (5.65) is enough to prove a negative result about the memory performance.

All the encoded information is lost over a time scale Γ−1, which is completely specified by

the local properties of the noise (namely, the tunneling rates); no protection whatsoever is

provided by the non-local encoding.

5.3.3 Memory performance under a parity-preserving noise

We shall now turn to a parity-preserving noise model, and prove that the memory perfor-

mance in this case is only marginally better than it was in the previous one, with F opt
t

upper-bounded by 2+e−4γt

3 . Namely, we find that a classical bit of information is protected,

but all quantum coherence is lost over a time scale dictated by the local properties of the

noise (represented by the coefficient γ), with no advantages over a local encoding. Therefore

no parity protection is observed in this case.

Noise model. By the results of Appendix E, a parity-preserving Markovian process must

have purely bosonic Lindblad operators. By further requiring locality, few possibilities are
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left: the only local, bosonic monomials on site r are iĉr,1ĉr,2 and 1̂. Thus the most general

Lindblad operator is

L̂r = αr1̂ + βriĉr,1ĉr,2, αr, βr ∈ C. (5.66)

However, using the “gauge fixing” freedom on the choice of Lindblad operators (1.15), it

is possible to assume without loss of generality βr =
√
γr ∈ R, and to remove the part

proportional to 1̂ by introducing the effective Hamiltonian

Ĥ ′r = =(αr)βriĉr,1ĉr,2 ≡ µr
(
2â†râr − 1̂

)
, (5.67)

where we defined the “chemical potential” µr ≡ 2=(αr)βr. The resulting master equation is

d

dt
ρ̂(t) =

4∑
r=1

Lr(ρ̂), (5.68)

Lr(ρ̂) = −iµr
2

[iĉr,1ĉr,2, ρ̂] + γr (ĉr,1ĉr,2ρ̂ĉr,2ĉr,1 − ρ̂) . (5.69)

Decoherence channel. Since [Li,Lj ] = 0, we have

Dt = exp

(
t

4∑
r=1

Lr

)
=

4∏
r=1

etLr ≡ D(1)
t ◦ D

(2)
t ◦ D

(3)
t ◦ D

(4)
t , (5.70)

like we had in the fermionic case (5.58). Thus the dynamics can be completely solved by

studying a single site.

It is easy to see that 1̂ and iĉr,1ĉr,2 are fixed points of D(r)
t . As for the fermionic monomials,

we have

Lr(ĉs,j) = δrs

(µr
2

[ĉr,1ĉr,2, ĉr,j ] + γr (ĉr,1ĉr,2ĉr,j ĉr,2ĉr,1 − ĉr,j)
)

= δrs
(
µr ĉr,1ĉr,2 − 2γr1̂

)
ĉr,j

=

δrs (−µr ĉr,2 − 2γr ĉr,1) if j = 1,

δrs (µr ĉr,1 − 2γr ĉr,2) if j = 2.
(5.71)

Thus the subspace spanned by ĉr,1 and ĉr,2 is invariant under each D(r)
t .

Remark. This proves an exact, infinite-distance Lieb-Robinson bound: bosonic (fermionic)

operators on distant sites exactly commute (anti-commute) at all times.
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Let us now compute the time evolution of general local fermionic operators ξ(0)ĉr,1+η(0)ĉr,2.

From (5.71), one has (
ξ̇(t)

η̇(t)

)
= −

(
2γr −µr
µr 2γr

)(
ξ(t)

η(t)

)
. (5.72)

The solution is found by exponentiation:(
ξ(t)

η(t)

)
= exp

(
−t

(
2γr −µr
µr 2γr

))(
ξ(0)

η(0)

)
=

= e−2γrt

(
cosµrt sinµrt

− sinµrt cosµrt

)(
ξ(0)

η(0)

)
. (5.73)

There is an exponential damping over a time-scale (2γr)
−1 and a rotation within the subspace

at a frequency µr.

Recovery fidelity. In order to evaluate the upper bound on the recovery fidelity (2.12),

one has to compute the time-evolved logical operators
{
Dt
(
σ̂Li
)}

. There are two observations

that can be made in order to make such computation easier:

• From (5.73) it can be seen that the Hamiltonian part and the dissipative part of the

dynamics commute11; thus the Hamiltonian induces a unitary evolution that can be

exactly inverted, with no effect on the optimal recovery fidelity. For this reason one

can set µr = 0 ∀ r without loss of generality.

• The decoherence channel is parity-preserving, hence its Kraus operators are bosonic

by the results of Appendix E; therefore Dt
(
P̂f ρ̂

)
= P̂fDt (ρ̂) ∀ ρ̂. Logic operators

(5.56) consist of eight monomials each, but they can be simplified by conveniently

introducing parity projectors: e.g.,

σ̂L1 =
1

8
(iĉ2,1ĉ3,1 + iĉ1,1ĉ4,1)(1̂− iĉ1,2ĉ2,2)(1̂− iĉ3,2ĉ4,2)

=
1

4
(iĉ2,1ĉ3,1 + iĉ1,1ĉ4,1 − iĉ2,1ĉ3,1iĉ1,2ĉ2,2 − iĉ2,1ĉ3,1iĉ3,2ĉ4,2) Π̂+. (5.74)

Now, since Dt is transparent to the even-parity projector Π̂+ =
1̂+P̂f

2 , one just has to

time-evolve four monomials, instead of eight.

11 Equation (5.73) deals with fermionic monomials, whereas bosonic monomials are stabilized by each part
of the dynamics separately: the action of the Hamiltonian commutes with that of the dissipation on every
monomial, and thus on all the algebra.
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In light of these observations, we have

Dt
(
σ̂L1
)

= Dt
(
iĉ2,1ĉ3,1 + iĉ1,1ĉ4,1 − iĉ2,1ĉ3,1iĉ1,2ĉ2,2 − iĉ2,1ĉ3,1iĉ3,2ĉ4,2

4

)
Π̂+

=
1

4

[
iDt (ĉ2,1)Dt (ĉ3,1) + iDt (ĉ1,1)Dt (ĉ4,1)

− iĉ2,1Dt (ĉ3,1)Dt (iĉ1,2) ĉ2,2 − iDt (ĉ2,1) ĉ3,1iĉ3,2Dt (ĉ4,2)
]
Π̂+. (5.75)

Now, from (5.73) we have Dt (ĉr) = e−2γrtĉr ∀ r; assuming for simplicity that γr = γ ∀ r,
(5.75) yields Dt

(
σ̂L1
)

= e−4γtDt
(
σ̂L1
)
. Then∥∥Dt (σ̂L1 )∥∥tr

=
∥∥e−4γtσ̂L1

∥∥
tr

= 2e−4γt. (5.76)

The same holds for σ̂L2 , since it can be obtained from σ̂L1 by swapping the labels of sites

r = 3 and r = 4 (some signs have to be adjusted, but they do not change substantially the

previous derivation). At this point we do not even need to consider σ̂L3 in order to prove the

claimed result: since
∥∥Dt (σ̂L3 )∥∥tr

≤ 2, the upper bound (2.12) reads

F opt
t ≤ 1

2
+

1

3
e−4γt +

1

12

∥∥Dt (σ̂L3 )∥∥tr
≤ 2

3
+

1

3
e−4γt. (5.77)

This suffices to prove a negative result about the memory performance. Quantum coherence

of the encoded information is completely lost over a time scale of (4γ)−1, which depends

only on the local properties of the noise. It can be shown that
∥∥Dt (σ̂L3 )∥∥tr

= 2 ∀ t, so that

classical information encoded in σ̂L3 is preserved, but this fact is only due to the peculiar

noise model12. The non-locality of encoded information, by itself, does not provide any

protection, even in the case of a parity-preserving noise.

5.4 Toy-Model of a Quantum Memory with Twelve Ma-

jorana Modes

We shall now consider a slightly more complicated model, in which a Majorana mode is

added to each of the four sites in the 8-mode model studied in the previous Section. This

extension allows different choices for the encoding subspaces, so that we can study the effects

of such choices on the memory performance under a parity-preserving noise model.

We introduce the model in §5.4.1. We then present the two encodings and evaluate their

memory performances in §5.4.2 and §5.4.3. Finally we discuss the results in §5.4.4.

12 It would also happen for a local encoding, like σ̂L3 = − i
8

(ĉ1,1ĉ1,2 + ĉ2,1ĉ2,2)(1̂− iĉ3,1ĉ3,2)(1̂− iĉ4,1ĉ4,2).
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decoupling

discard

Figure 5.6: the groups of three Majorana modes used in §5.4 can in principle be obtained
from two neighboring Dirac modes, provided one of the four corresponding Majorana
modes is fully decoupled from the others. The decoupling must hold for the full dynamics,

including the dissipation.

5.4.1 Definition of the model

The system consists of twelve Majorana modes, which are divided to form four groups of

three; the groups are far apart from one another, so that no Hamiltonian or Lindbladian

terms can couple them. In itself this model has no physical meaning, since Majorana modes

come in pairs, not in triplets; however, it can be considered as an effective description of

a physical situation. Consider a system of two ordinary Dirac fermions, and suppose that

their dynamics is such that a Majorana mode is decoupled from the other three. Then one

can effectively discard the decoupled mode, and use the remaining three as building blocks

for the quantum memory model (Figure 5.6).

We shall use the following notation:

• {ĉr,j : r ∈ {1, 2, 3, 4} ; j ∈ {0, 1, 2}} are the Majorana modes. r labels the different

“groups” while j labels the modes within a given group.

•
{
âr = 1

2 (ĉr,0 + iĉr,1)
}

are “site” Dirac modes.

•
{
b̂r = 1

2 (ĉr,1 + iĉr,2)
}

are “bond” Dirac modes.

It is assumed that ĉr,0 and ĉr,1 come from the same physical site, while ĉr,2 comes from a

neighboring site; hence the noise is allowed to couple ĉr,0 and ĉr,1, but does not act on ĉr,2.

The noise model we shall consider is essentially the same one that we considered in §5.3.3:

parity-preserving, local Markovian noise represented by Lindblad operators

L̂r =
√
γiĉr,0ĉr,1. (5.78)

The action of the single-site Lindbladian Lr on a state ρ̂ reads

Lr(ρ̂) = γ (iĉr,0ĉr,1ρ̂iĉr,0ĉr,1 − ρ̂) = γ (ĉr,0ĉr,1ρ̂ĉr,1ĉr,0 − ρ̂) . (5.79)
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The total Lindbladian is L =
∑4
r=1 Lr.

Since the Lindbladians pertaining to different groups commute with one another, it suffices

to focus on a single group.

5.4.2 Encoding in the ground space of a local Hamiltonian

Let us consider the usual encoding (5.28), with ĉr,0 in place of m̂r and the following choice

of encoding projector:

ρ̂enc =

4∏
r=1

b̂r b̂
†
r =

4∏
r=1

1̂− iĉr,1ĉr,2
2

. (5.80)

ρ̂enc corresponds to the ground-space projector of the following local Hamiltonian:

Ĥ =
ε

2

4∑
r=1

iĉr,1ĉr,2 = ε

4∑
r=1

b̂†r b̂r + const. (5.81)

The encoding is represented in Figure 5.7.

We will now prove that:

1. The upper bound (2.12) is trivial, i.e. it reads F opt
t ≤ 1 ∀ t.

2. The candidate recovery operation is CP, hence physical.

Therefore F opt
t = 1 ∀ t, which means that the information is perfectly recoverable at all

times.

Upper bound on the recovery fidelity. The logical operators
{
σ̂Lα
}

in this encoding

are sums of monomials of the form ĉαr,0(iĉr,1ĉr,2)β . The action of (5.79) on such monomials

is

Lr
[
(ĉr,0)α(iĉr,1ĉr,2)β

]
= −2γ(1− δαβ)(ĉr,0)α(iĉr,1ĉr,2)β . (5.82)

The solution of the master equation for this class of monomials is therefore{
Dt
(
1̂
)

= 1̂, Dt (ĉr,0) = e−2γtĉr,0,

Dt (iĉr,1ĉr,2) = e−2γtiĉr,1ĉr,2, Dt (ĉr,0 iĉr,1ĉr,2) = ĉr,0 iĉr,1ĉr,2.
(5.83)
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Figure 5.7: 12-mode model, encoding in the ground space of a local Hamiltonian. The
ellipses represent the action of local, parity-preserving noise. Dirac modes corresponding
to straight lines are always initialized empty. The qubit is encoded into the non-local

Dirac modes corresponding to wavy lines.

As a consequence of (5.83), we have
Dt
(
b̂r b̂
†
r

)
=

1̂− e−2γtiĉr,1ĉr,2
2

,

Dt
(
ĉr,0b̂r b̂

†
r

)
= ĉ1,0

e−2γt1̂− iĉr,1ĉr,2
2

.

(5.84)

By applying (5.84) one can compute the time evolution of every encoded logical operator.

In this case the three logical operators are all equivalent (i.e. related to one another by a

suitable relabeling of the sites), thus in order to evaluate the upper bound (2.12) it suffices

to time-evolve a single one of them, say σ̂L3 .

It can be shown that the trace norm of Dt
(
σ̂L3
)

is
∥∥Dt (σ̂L3 )∥∥tr

= 2 ∀ t. An easy way to

prove this result is by taking the t→∞ limit: in this limit, (5.84) reads

D∞
(
b̂r b̂
†
r

)
=

1̂

2
, D∞

(
ĉ1,0b̂r b̂

†
r

)
= − i

2
ĉ1,0ĉ1,1ĉ1,2. (5.85)

Thus, by applying the exact clustering property (F.17) (which holds because the Lindblad

operators are Hermitian, hence normal), one gets

D∞
(
σ̂L3
)

= − i
2

[
D∞

(
ĉ1,0b̂1b̂

†
1 ĉ2,0b̂2b̂

†
2 b̂3b̂

†
3 b̂4b̂

†
4

)
+D∞

(
b̂1b̂
†
1 b̂2b̂

†
2 ĉ3,0b̂3b̂

†
3 ĉ4,0b̂4b̂

†
4

)]
= − 1

32

(
iĉ1,0ĉ2,0 iĉ1,1ĉ1,2 iĉ2,1ĉ2,2 + iĉ3,0ĉ4,0 iĉ3,1ĉ3,2 iĉ4,1ĉ4,2

)
. (5.86)
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By simultaneously diagonalizing the complete set of commuting observables {iĉ1,0ĉ2,0, iĉ3,0ĉ4,0}
∪ {iĉr,1ĉr,2 : r ∈ {1, . . . 4}}, we get

∥∥D∞(σ̂L3 )
∥∥

tr
=

∑
a,b,c=±1

∑
d,e,f=±1

1

32

∣∣abc+ def
∣∣ = 2. (5.87)

Since
∥∥Dt (σ̂L3 )∥∥tr

is a monotonically decreasing function of time, (5.87) implies that∥∥Dt (σ̂L3 )∥∥tr
= 2 ∀ t, (5.88)

which is what we wanted to prove.

We thus obtain a trivial upper bound: F opt
t ≤ 1. This does not yet imply perfect recover-

ability of the information, because the “candidate” recovery operation might not be physical

(i.e. CP).

Perfect recoverability of the information. It is easy to verify that the expressions for

D∞
(
σ̂L2
)

and D∞
(
σ̂L1
)

are identical to (5.86), up to swapping some pairs of site indices.

Hence the
{
D∞(σ̂Lα)

}
matrices obey the following “Pauli-like” algebra:

D∞(σ̂Lα)D∞(σ̂Lβ ) =
i

16
εαβγD∞(σ̂Lγ ), (5.89)

which means that the matrices {16D∞(σ̂Lα)} obey the original Pauli algebra.

Another fact that is easily seen from (5.86) is that the spectrum of D∞(σ̂Lα) consists of

three distinct eigenvalues,
{

+ 1
16 , 0,−

1
16

}
; 0 is 32-fold degenerate, and corresponds to the

annihilation of the odd-parity sector by the even-parity projector, while each ± 1
16 is 16-fold

degenerate. Since all non-zero eigenvalues have equal absolute value (1/16), we have

sign
(
D∞(σ̂Lα)

)
= 16D∞(σ̂Lα). (5.90)

By the results of §2.3.2, the recovery induced by the
{

16D∞(σ̂Lα)
}

is CP (hence physical) and

saturates the upper bound. Since the bound in this case was proven to be trivial (F opt
t ≤ 1

∀ t), we have F opt
∞ = 1; therefore the information is perfectly recoverable at t = ∞, and

hence at all intermediate times.

5.4.3 Encoding in the ground space of a non-local Hamiltonian

We shall now consider the same system with a different encoding, defined by the projector

ρ̂enc =
∏
j=1,2

1̂− iĉ1,j ĉ2,j
2

1̂− iĉ3,j ĉ4,j
2

. (5.91)
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ĉ4,0

ĉ2,0
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ĉ3,0
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Figure 5.8: 12-mode model, encoding in the ground space of a non-local Hamiltonian.
The ellipses represent the action of local, parity-preserving noise. Dirac modes corre-
sponding to straight lines are always initialized empty. The qubit is encoded into the

non-local Dirac modes corresponding to wavy lines.

This is the ground-space projector of a non-local Hamiltonian that couples site 1 with site

2 and site 3 with site 4 (Figure 5.8). It is therefore of limited physical interest by itself, but

it is nonetheless a mathematically legitimate encoding that can be used to probe the effect

of additional non-local correlations on the memory performance.

The non-local correlations in the encoding (5.91) make σ̂L3 inequivalent to σ̂L1 and σ̂L2 . It

can be shown by the same methods used in the previous Section that∥∥Dt (σ̂L1 )∥∥tr
=
∥∥Dt (σ̂L2 )∥∥tr

= 2e−4γt,
∥∥Dt (σ̂L3 )∥∥tr

= 2. (5.92)

By plugging the results of (5.92) in the general upper bound on the recovery fidelity (2.12)

one gets

F opt
t ≤ 1

2
+

1 + 2e−4γt

6
=

2

3
+

1

3
e−4γt. (5.93)

This is exactly the same result that was derived for the 8-mode model in (5.77). It is indeed

clear that, with the encoding choice (5.91), we are merely juxtaposing the four Majorana

modes {ĉr,2 : r ∈ {1, . . . 4}} to the 8-mode model. Since the new Majorana modes are de-

coupled from the old ones and completely inert, the memory performance cannot change.
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5.4.4 Dependence of the memory performance on the encoding

state

In this Section we have seen that the same quantum memory model can display completely

different behaviors depending on the choice of the encoding subspace:

• The encoding projector ρ̂enc from (5.80), which projects onto the ground-space of a

local Hamiltonian, allows perfect recovery of the encoded information at all times.

• The encoding projector ρ̂enc from (5.91), which projects onto the ground-space of

a non-local Hamiltonian, exposes the encoded qubit to a complete dephasing, thus

degrading all quantum coherence over a time scale that depends only on the local

noise parameter γ.

This result can be interpreted as an effect of long-range correlations. The relation between

entanglement and non-locality [68] has been known since the dawn of quantum theory, with

the EPR paradox [69]; it looks therefore reasonable to assume that the locality requirements

for a Majorana-based quantum memory must address not only the dynamics, but also the

encoding, i.e. the correlations that are initially present in the state of the quantum memory.

Additional long-range correlations, beyond the minimal amount required by the encoding,

seem to expose the encoded information to decoherence.

5.5 The Kitaev Chain as a Quantum Memory

In this Section we consider a system made of two Kitaev chains13 as a quantum memory

and evaluate its performance when it is exposed to a fermionic environment (§5.5.1) and a

bosonic one (§5.5.2). In both cases a Markovian master equation is derived microscopically

in the weak-coupling approximation described in Appendix D.

Notation. The notation for the fermionic modes of the chain shall be the following:

• {âr : r ∈ {1, . . . L}} are the L “site” Dirac modes of the first chain.

• {âr : r ∈ {L+ 1, . . . 2L}} are the L “site” Dirac modes of the second chain.

• To each “site” Dirac mode âr correspond the two Majorana modes ĉr,1, ĉr,2. ĉ1,1 and

ĉL,2 are the zero-energy edge modes of the first chain; ĉL+1,1 and ĉ2L,2 are those of the

second chain.

13The Kitaev chain was introduced in §5.1.2.
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Figure 5.9: schematic representation of the noise model considered in §5.5.1. Two sites
of the Kitaev chain are showed (large ellipses); each environment is made of N Dirac
modes (small ellipses; N = 7 in the figure). Solid lines represent the Kitaev Hamiltonian

couplings; dashed lines represent tunneling interactions with the environment.

•
{
b̂r : r ∈ {1, . . . L− 1, L+ 1, . . . 2L− 1}

}
are the “bond” Dirac modes:

b̂r =
ĉr,2 + iĉr+1,1

2
. (5.94)

The notation for the environment degrees of freedom will be specified separately for each

noise model.

5.5.1 Fermionic environment

We shall first consider the two chains exchanging particles locally with a fermionic environ-

ment, within a Markovian approximation, and prove that the optimal recovery fidelity at

time t is upper-bounded by 1
2

(
1 + e−4g2f(0)t

)
, where g is an effective coupling constant and

f(0) is the spectral density of gapless environment fermions. Provided the environment is

not gapped, the information is entirely lost over a time scale dictated by the local properties

of the environment and of the interactions; no scaling with the chain size is observed.

Noise model. Let us consider a fermionic environment interacting with the chains through

a tunneling Hamiltonian. Each site of each chain interacts with a distinct set of N environ-

ment modes (see Figure 5.9). The notation for environment fermionic modes is the following:

•
{
f̂

(n)
r : r ∈ {1, . . . 2L} , n ∈ {1, . . . N}

}
are the environment Dirac modes that interact

with the site mode âr.

• To each Dirac mode f̂
(n)
r correspond the two Majorana modes γ̂

(n)
r,1 , γ̂

(n)
r,2 .
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The two chains are assumed to be well separated, and thus fully decoupled. Let us start by

considering a single chain: r ∈ {1, . . . , L}. The Hamiltonian governing the extended system

(chain and environment) is the sum of Ĥsys, which is the Kitaev Hamiltonian (5.12); Ĥenv,

acting on the environment; and Ĥint, that describes tunneling processes between system and

environment:

Ĥsys = ε

L−1∑
r=1

b̂†r b̂r =
ε

2

L−1∑
r=1

iĉr,2ĉr+1,1 + const.,

Ĥenv =

L∑
r=1

N∑
n=1

ωr,n

(
f̂ (n)
r

)†
f̂ (n)
r =

L∑
r=1

N∑
n=1

ωr,n
2
iγ̂

(n)
r,1 γ̂

(n)
r,2 + const.,

Ĥint = −λ
L∑
r=1

N∑
n=1

(â†rf̂
(n)
r + h.c.) =

λ

2

L∑
r=1

N∑
n=1

(−iĉr,1γ̂(n)
r,2 + iĉr,2γ̂

(n)
r,1 ).

(5.95)

{ωr,n} are the values of the energy gaps for environment fermions; we will assume that they

are independently and identically distributed random variables with a probability density

function f(E). λ is a real parameter14 representing a tunneling amplitude.

Derivation of the master equation. We will now derive a Markovian master equation

for the Kitaev chain, following the approach presented in Appendix D.

The interaction Hamiltonian in (5.95) can be writeen, in the language of Appendix D, as

Ĥint =

L∑
r=1

∑
s=1,2

Âr,sB̂r,s : Âr,s = ĉr,s, B̂r,s =
λ

2

∑
s′=1,2

(σ2)ss′
N∑
n=1

γ̂
(n)
r,s′ . (5.96)

The interaction-picture environment operators are

B̂r,s(t) =
λ

2

N∑
n=1

2∑
s′=1

eiĤintt(σ2)ss′ γ̂
(n)
r,s′e

−iĤintt =
λ

2

N∑
n=1

2∑
s′=1

eiωr,nt iγ̂
(n)
r,1 γ̂

(n)
r,2 (σ2)ss′ γ̂

(n)
r,s′

=
λ

2

N∑
n=1

2∑
s′=1

(σ2)ss′
(

cos(ωr,nt) + i sin(ωr,nt)iγ̂
(n)
r,1 γ̂

(n)
r,2

)
γ̂

(n)
r,s′ . (5.97)

Noting that iγ̂
(n)
r,1 γ̂

(n)
r,2 γ̂

(n)
r,s′ =

2∑
s′′=1

(σ2)s′s′′γ
(n)
r,s′′ , we can rewrite (5.97) as

B̂r,s(t) =
λ

2

N∑
n=1

2∑
s′′=1

(cos(ωr,nt)(σ2)s,s′′ + i sin(ωr,nt)δs,s′′) γ̂
(n)
r,s′′ . (5.98)

14Any complex phase in λ can be “gauged” away by redefining the f̂ operators.
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The correlation function defined in (D.11) is

Kr,s;r′,s′(t) =
Trenv

(
B̂r,s(t)B̂r′,s′(0)

)
Trenv

(
1̂env

)
=
λ2

4

N∑
n,n′=1

2∑
j,j′=1

(cos(ωr,nt)(σ2)s,j + i sin(ωr,nt)δs,j) (σ2)s′,j′
Trenv

(
γ̂

(n)
r,j γ̂

(n′)
r′,j′

)
Trenv

(
1̂env

)
=
λ2

4
δr,r′

N∑
n=1

(
cos(ωr,nt)(σ2σ

T
2 )ss′ + i sin(ωr,nt)(σ

T
2 )ss′

)
. (5.99)

Since σT2 = −σ2 and (σ2)2 = σ0, this simplifies to

Kr,s;r′,s′(t) = −λ
2

4
δr,r′

N∑
n=1

(
eiωr,nt σ2

)
ss′
. (5.100)

Averaging over the bath gap spectrum yields

〈Kr,s;r′,s′(t)〉 = −Nλ
2

4
δrr′

ˆ
dEf(E)

(
eiEt σ2

)
ss′
. (5.101)

This is easily diagonalized – the eigenvectors are 1√
2
(Ar,1 ± iAr,2) and the corresponding

eigenvalues are −Nλ
2

4 e±iEt. Finally, the Fourier transformation of (5.101) is

〈γ±r,r′(ω)〉 =

ˆ ∞
−∞

dτ〈K±rr′(τ)〉eiωτ = −Nλ
2

4
δrr′

ˆ ∞
−∞

dτ

ˆ
dEf(E)e±iEτ

= −Nλ
2

4
δrr′

ˆ
dEf(E)2πδ(ω ± E) = −πNλ

2

2
δrr′f (∓ω) . (5.102)

The Lindblad operators are obtained by taking the weak coupling limit (N → ∞, λ → 0)

while keeping πNλ2/2 = g2 constant. They are{√
2g2f(−ω)âr(ω),

√
2g2f(ω)â†r(ω) : r ∈ {1, . . . L}

}
. (5.103)

In general f(E) has a cut-off energy Ω above which it drops exponentially: f(E)|E�Ω .

e−E/Ω. Thus the only Lindblad operators that matter in the ε� Ω limit are{√
2g2f(0)âr(0),

√
2g2f(0)â†r(0) : r ∈ {1, . . . , L}

}
. (5.104)
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Now, it is clear that the ω = 0 part of a “bulk” mode â
(†)
r (0) is zero. For an edge mode like

â1 one has instead a non-zero static component:

eitĤsys â1e
−itĤsys = ei

ε
2 tĉ1,2ĉ2,1

ĉ1,1 + iĉ1,2
2

e−i
ε
2 tĉ1,2ĉ2,1 =

ĉ1,1
2

+ ieiεtĉ1,2ĉ2,1
ĉ1,2
2

=
ĉ1,1
2

+ i cos(εt)
ĉ1,2
2
− sin(εt)

ĉ2,1
2
. (5.105)

Therefore â1(0) = 1
2 ĉ1,1. Analogously, for the other edge, âL(0) = i

2 ĉL,2.

In the ε→∞ limit, therefore, the only non-vanishing Lindblad operators are15
√
g2f(0)ĉ1,1

and
√
g2f(0)ĉL,2

As for the Lamb-shift Hamiltonian, the only term that does not get suppressed by a large

gap is

〈Sr,s;r′,s′(0)〉 =
1

2i

ˆ +∞

−∞
dt sign (t) 〈Kr,r′;s,s′(t)〉

= −Nλ
2

8i
δrr′

ˆ +∞

−∞
dt

ˆ +∞

−∞
dEf(E)sign (t)

(
eiEt σ2

)
ss′
. (5.106)

Diagonalizing it in the same way as γr,s;r′,s′ was diagonalized, one gets

〈
S±r,r′(0)

〉
= −Nλ

2

8i
δrr′

ˆ +∞

−∞
dEf(E)

ˆ +∞

−∞
dt sign (t) e±iEt

= ±Nλ
2

4
δrr′

 +∞

−∞
dE

f(E)

E
, (5.107)

where
ffl

denotes the Cauchy principal part of the integral. While the coefficient itself may

be ill-defined16 (depending on the behavior of f), the resulting Lamb-shift Hamiltonian

vanishes:

lim
ε→∞

ĤLS =

L∑
r,r′=1

∑
σ=±

〈
Sσr,r′(0)

〉
Âσr′(0)Âσr (0)

=

L∑
r=1

〈
S+
r,r(0)

〉((
Â+
r (0)

)2

−
(
Â−r (0)

)2
)
, (5.108)

where the second equality comes from the fact that
〈
S−r,r(0)

〉
= −

〈
S+
r,r(0)

〉
, which is clear

from (5.107). Then, since Â+
r =

√
2âr, one has Â+

r (0) =
√

2âr(0), which is either zero or a

Majorana edge mode (squaring to 1̂). Analogous considerations apply to Â−r (0). Therefore

the term in brackets in (5.108) vanishes, and so does limε→∞ ĤLS .

15A factor of
√

2 comes from the fact that each Lindblad operator appears twice, because â1(0) = â†1(0)
and âL(0) = −â1(0). The minus sign is irrelevant as the Lindbladian is quadratic in the Lindblad operators.

16 The weak-coupling limit, which involves N →∞ and thus makes f(E) a continuous spectrum, instead
of a sum of δ functions, should be taken after all the calculations are done to avoid this type of problems. If
one regards f(E) as a sum of δ functions, then (5.107) is well defined, and ĤLS vanishes for all finite values
of N .
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Memory performance. The resulting master equation for the two-chain system in the

large-gap limit is

d

dt
ρ̂(t) = −i

[
Ĥsys, ρ̂

]
+

∑
(r,j)∈{edges}

g2f(0)
(
ĉr,j ρ̂ĉr,j − ρ̂

)
. (5.109)

Assuming a ground-space encoding, and therefore neglecting the Hamiltonian part of the

dynamics, the action of the Lindbladian L on a given monimial µ̂ is L (µ̂) = −2νg2f(0)µ̂,

where ν is the number of Majorana edge-modes involved by µ̂. Since the logical operators{
σ̂Lα
}

are sums of monomials with ν = 2, they are globally damped by a factor of e−4g2f(0)t,

and the upper bound on the recovery fidelity (2.12) is

F opt
t =

1

2
+

1

2
e−4g2f(0)t. (5.110)

The storage time for the encoded information therefore does not scale with the chain length

L. No topological protection of quantum information is observed.

Remark. If the environment has no zero-modes, i.e. if f(0) = 0, then there is no dissipation

at all in the large gap limit, and the storage time diverges.

5.5.2 Bosonic environment

We shall now turn to a Markovian bosonic environment, consisting of spins, and prove a

positive result about the memory performance of the pair of Kitaev chains. In the limit

of large gap in the chain Hamiltonian, all harmful perturbations are suppressed; those that

remain are innocuous on the ground-space encoding. Therefore the encoded qubit survives

indefinitely.

Noise model. The setting is the same as the one considered in the fermionic case (§5.5.1),

except for the fact that each mode of the chain âr interacts with spins, instead of fermions.

Each site mode has a distinct environment made of N spins, {σr,n : n ∈ {1, . . . , N}}, where

σr,n = (Xr,n, Yr,n, Zr,n) are the Pauli operators for the nth spin of the rth environment.

The Hamiltonian governing the extended system (Kitaev chain and spin environment) is the

sum of Ĥsys, which is the Kitaev Hamiltonian (5.12); Ĥenv, acting on the spins; and Ĥint,
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coupling the chain to the spins.

Ĥsysε

L−1∑
r=1

b̂†r b̂r =
ε

2

L−1∑
r=1

iĉr,2ĉr+1,1 + const.

Ĥenv =

L∑
r=1

N∑
n=1

ωr,n
2
Zr,n,

Ĥint = −λ
L∑
r=1

N∑
n=1

â†rârXr,n = −λ
L∑
r=1

N∑
n=1

iĉr,1ĉr,2Xr,n + const.

(5.111)

{ωr,n} are the values of the energy gaps of the environment spins. We will assume that they

are independently and identically distributed random variables with a probability density

function f(E).

Derivation of the master equation. We shall briefly show how to compute the functions

that are needed in order to perform the derivation in Appendix D.

The decomposition of Ĥintis as follows:

Ĥint =

L∑
r=1

ÂrB̂r, Âr = iĉr,1ĉr,2, B̂r = −λ
N∑
n=1

Xr,n (5.112)

The interaction-picture B̂r(t) operators are

B̂r(t) = −λeitĤenv

N∑
n=1

Xr,ne
−itĤenv = −λ

N∑
n=1

eiωr,nt Zr,nXr,n

= −λ
N∑
n=1

(cos(ωr,nt)Xr,n − sin(ωr,nt)Yr,n) . (5.113)

The correlation function defined in (D.11) is

Kr,r′(t) =
Trenv

(
B̂r(t)B̂r′(0)

)
Trenv (Ienv)

= λ2
N∑

n,n′=1

Trenv ((cos(ωr,nt)Xr,n − sin(ωr,nt)Yr,n)Xr′,n′)

Trenv (Ienv)

= λ2δr,r′
N∑
n=1

cos(ωr,nt). (5.114)

Averaging over the bath gap spectrum yields

〈Krr′(t)〉 = Nλ2δr,r′

ˆ
dEf(E) cos(Et), (5.115)
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whose Fourier transform is

〈γrr′(ω)〉 =

ˆ ∞
−∞

dτ〈Krr′(τ)〉eiωτ = Nλ2δr,r′

ˆ ∞
−∞

dτ

ˆ
dEf(E) cos(Eτ)

= πNλ2δrr′

ˆ
dEf(E) (δ(ω + E) + δ(ω − E))

= πNλ2δr,r′ (f (ω) + f (−ω)) (5.116)

By taking the N → ∞ and λ → 0 limits, with πNλ2 = g2 kept constant (weak-coupling

limit), we finally obtain the set of Lindblad operators:{√
g2(f(ω) + f(−ω))Âr(ω) : r ∈ {1, . . . , L}

}
(5.117)

The only Lindblad operators that are not suppressed in the ε→∞ limit are{
g
√

2f(0)(iĉr,1ĉr,2)(0) : r ∈ {1, . . . , L}
}
. (5.118)

The Fourier components of iĉr,1ĉr,2 can be determined by computing its time evolution under

Ĥsys. If site r lies in the “bulk” of the chain, i.e. r ∈ {2, . . . L− 1}, then, letting n̂
(b)
r = b̂†r b̂r

be the number operator for the rth bond mode, we have

eitĤsysiĉr,1ĉr,2e
−itĤsys = iĉr,1ĉr,2e

−i 2tε (n̂
(b)
r−1+n̂(b)

r −1̂)

= iĉr,1ĉr,2

[
e−i 2εtn̂

(b)
r−1n̂

(b)
r + ei 2εt

(
1̂− n̂(b)

r−1

)(
1̂− n̂(b)

r

)
+
(
1̂− n̂(b)

r−1

)
n̂(b)
r + n̂

(b)
r−1

(
1̂− n̂(b)

r

) ]
. (5.119)

There are two oscillating components at ω = ±2ε and a static component:

(iĉr,1ĉr,2)(0) = iĉr,1ĉr,2

[(
1̂− n̂(b)

r−1

)
n̂(b)
r + n̂

(b)
r−1

(
1̂− n̂(b)

r

)]
=
i

2
ĉr,1ĉr,2 −

i

2
ĉr−1,2ĉr+1,1. (5.120)

If site r is an edge of the chain, e.g. r = 1, then

eitĤsysiĉ1,1ĉ1,2e
−itĤsys = iĉ1,1ĉ1,2e

−i tε iĉ1,2ĉ2,1 = cos(εt)iĉ1,1ĉ1,2 + sin(εt)iĉ1,1ĉ2,1

= iĉ1,1

(
eiεtb̂†1 + e−iεtb̂1

)
(5.121)

There are only ω = ±ε oscillating components, therefore (iĉ1,1ĉ1,2)(0) = 0. The same

conclusion applies to r = L.
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The only Lindblad operators that are not suppressed in the ε→∞ limit are therefore{√
g2f(0)

2
(iĉr,1ĉr,2)(0) : r ∈ {2, . . . L− 1}

}
(5.122)

As for the Lamb-shift Hamiltonian, it can be shown by same method applied to the fermionic

case that it vanishes in the large-gap limit.

Memory performance. Lindblad operators (5.122) are innocuous on a ground-space

encoding. As can be seen from the first form of (5.120), (iĉr,1ĉr,2)(0) acts non-trivially only

on states with exactly one excitation in the bond modes
{
b̂r−1, b̂r

}
. On such states, it moves

the excitation from one bond to the other. All other states, including in particular those in

the ground space, are annihilated.

The ground-space encoding is therefore stabilized by both the Hamiltonian Ĥsys and the

Lindblad operators (5.122); thus in the ε→∞ limit the dynamics is trivial and information

is stored indefinitely.

For finite values of εmuch larger than the cut-off energy of the bath gap spectrum Ω, the main

source of decoherence is represented by edge operators (5.121), whose Fourier frequencies

are ω = ±ε. The ω = ±2ε parts of “bulk” operators are a higher-order correction:

f(2ε) ∼ e−2ε/Ω ∼ (f(ε))
2

if ε� Ω. (5.123)

A qualitative understanding of the decoherence process can be gained in terms of bond

excitations. The operators (5.121) create excitations in the bond modes near the edges by

exchanging an energy ε with the environment (which makes the process unlikely if ε is large);

then, operators (5.120) can propagate the excitations without further energy exchanges. The

ω = ±2ε components of (5.119), on the other hand, can create pairs of excitations in two

adjacent bonds in the bulk of the chain. This requires exchanging an energy of 2ε with the

environment. Thus the creation of bulk excitations is much less likely than the creation of

edge excitations.

5.6 Conclusions

The models analyzed in Sections 5.3, 5.4 and 5.5 can be used to test the validity of some

conjectures about Majorana-based quantum memories. The results are summarized in Ta-

ble 5.2.

It is widely believed that information stored non-locally into distant Majorana zero-modes

should be protected against local perturbations. While this is true for closed systems under
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Lindblad operators

fermionic bosonic

8 modes 7 7
12 modes 7 7/3

Kitaev chain 7 3

Table 5.2: summary of the results obtained in §5.3, 5.4 and 5.5 about the performances of
different Majorana memory toy-models. 7 denotes a failure of protection, i.e. no advantage
over a local enconding; 3 denotes perfect recoverability of the information; “7/3” means

that both behaviors are displayed under different choices of encoding subspace.

Hamiltonian perturbations, the models we analyzed show that this strategy is not always

effective in open-system scenarios.

Particle exchanges with the environment, represented by “fermionic” Lindblad operators,

are generally able to couple directly to the Majorana zero-modes. Even though no coherent

action on the different zero-modes is allowed, in all the toy-models we examined we found

that this coupling degrades the encoded information over a time-scale determined by the

local details of the system-environment interaction. Thus, even in the thermodynamic limit

(arbitrarily separated sites in the 8-mode and 12-mode models, or infinitely long Kitaev

chains), the use of de-localized fermionic modes yields no benefit over a simple local encoding.

Even when single-particle exchanges are forbidden, the memory performance is not guaran-

teed to be satisfactory. The 12-mode model is the most interesting one in this respect, as it

shows completely different results depending on the chosen encoding subspace. The ground

space of a non-local Hamiltonian was shown to provide no protection, while the ground space

of a local Hamiltonian allowed perfect recoverability of information at all times.

We did not find any models such that, choosing ρ̂enc as the ground-space projector of a local

Hamiltonian and assuming a parity-preserving Markovian noise, the encoded qubit would

not be protected. This suggests that not only the locality of interactions should be stressed,

but also that of correlations in the initial state. Additional long-range correlations beyond

those strictly required seem to spoil the memory performance.

Finally, parity preservation does not guarantee a satisfactory memory performance, but it

definitely appears to be a necessary condition. This, if proven in a general and rigorous

way, would pose a fundamental limitation on the domain of applicability of Majorana-based

quantum memories – the protection would work only against a particular class of noise

models. It is however argued in [66] that at low temperatures, in a superconducting device,

the main source of decoherence would be represented by Cooper pair tunneling, with only a

small fraction of individual electrons in the environment. This would provide an important

class of systems for which Majorana-based protection might be effective in the open-system

scenario.



Chapter 6

Conclusion and Outlook

6.1 The Importance of Recovery Operations

Several works in the existing literature on quantum memories discuss the problem of keeping

quantum states fixed, and evaluate the performance of quantum memory models accordingly,

i.e. by simply comparing the initial and final states of the quantum memory. That approach,

though physically motivated, is not completely satisfactory, because it leaves room for false-

negative results: information may still be present in the large state space of the quantum

memory, though not in the sub-manifold in which it was originally encoded.

The use of non-trivial recovery operations avoids such false-negative results: the optimal re-

covery fidelity is by construction a bona fide measure of the amount of information present in

the memory. In this thesis we discuss a specific instance (§5.4.2) in which a discussion based

on the optimal recovery fidelity proves necessary: the fidelity between the initially encoded

states and the time-evolved ones drops to a very small value after a short time – which could

be naively interpreted as a bad memory performance; however, all the information can be

exactly recovered at all times via a non-trivial operation.

It is therefore crucial to include the optimization over physical recovery operations in the

study of quantum memory models. While it would be desirable to find quantum systems

that are capable of “freezing” a qubit, so that no recovery operation is required for their

correct operation, it should be emphasized that this class of systems does not encompass

the whole domain of functional quantum memories. It is entirely possible, on the contrary,

that such systems form a very rare subclass. It would thus be unreasonable to dismiss all

other functional quantum memory models by ignoring non-trivial recovery operation.

One interesting direction for future work on quantum recovery operations is the restriction

to particular classes of “simple” operations, i.e. time evolutions that can be obtained with
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physically inexpensive resources, such as nearest-neighbor interactions. The optimal recovery

fidelity is a good measure of the amount of information that is present in the system, but

it may be impractical (or technically impossible) to actually retrieve all the information.

Therefore in some cases a discussion based on e.g. the optimal gaussian recovery fidelity

[20] may have more practical relevance than one based on the optimal recovery fidelity itself.

6.2 Dissipation as a Resource for Quantum Memories

In Chapter 3 we discussed continuous-time quantum error correction as a strategy to preserve

qubit states over long periods of time. One remarkable aspect of this strategy is that it

employs dissipation as a resource: more specifically, it uses suitably engineered forms of

dissipation in order to oppose other types of dissipation that would otherwise degrade the

encoded information.

In recent years dissipation has been proven to be a powerful resource for quantum information

applications, including state engineering and computation [10]. Quantum error correction

and quantum memories are no exception [13, 15]. The discussion of Appendix C, based on

[13], proves that the physical resources needed to engineer an arbitrary form of Markovian

dissipation are rather inexpensive: a small number of ancillary qubits, simple cooling pro-

cesses1 and Hamiltonian interactions. These resources are considered less expensive than the

fast, reliable unitary operations that are required by many quantum information protocols,

including standard, discrete-time quantum error correction.

In this thesis we studied simple instances of “dissipative quantum memories” based on quan-

tum error-correcting codes: the recovery operation defined by the error correction procedure

is implemented continuously in time by means of dissipation; the two dissipative processes

(the one modeling noise and the one modeling error correction) work against each other, and

the resulting balance depends on how strong is the error-correcting dissipation with respect

to the noise. In the strong error-correction regime, the storage time for the encoded qubit

scales approximately linearly with the error correction strength. Thus, at least in principle,

we can store a qubit with a fidelity threshold of, say, 99.9% for as long as we like, by simply

tuning the strength of the error-correcting dissipation to the required value. In every real

implementation, however, there will be a technical limitation to the strength that can be

attained, which poses a fundamental limitation to this type of schemes2.

We studied the dissipative implementation of the 3-qubit bit-flip code and the 5-qubit per-

fect code. The former had already been studied in [14], while the results about the latter

are entirely original. For the 3-qubit code, we considered a bit-flip noise; we derived an ana-

lytical expression for the average recovery fidelity in the case of trivial read-out, and proved

1Technically, single-qubit amplitude damping channels.
2This limitation should however be weaker than the corresponding one for discrete-time quantum error

correction.
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that in the strong error correction regime that fidelity is nearly optimal (i.e. continuous-

time quantum error correction causes an effective “freezing” of the encoded states, and no

further recovery operation is needed at read-out). For the 5-qubit code, we considered a

depolarizing noise and followed a numerical approach based on the Trotter expansion. We

found results that are remarkably similar to those derived (analytically) for the 3-qubit

code. This represents a proof of principle that the depolarizing noise, generally considered

the most aggressive type of quantum noise, can be effectively fought with dissipation-based

strategies.

The results we presented about the 5-qubit code can be straightforwardly generalized to any

stabilizer code. However, increasing the number of qubits makes numerical computations

more difficult, since the dimension of the state space scales exponentially; thus there is a

technical limit to the size of quantum codes that can be studied in this way. Moreover,

the Hamiltonians that must be implemented in order to simulate the action of the error-

correcting dissipators are highly non-local. Thus, while we may reasonably expect future

implementations of continuous-time quantum error correction on three or five qubits, the

dissipative versions of larger codes are less likely to ever become experimentally testable.

This problem might however be partially overcome. Operator (or subsystem) quantum error

correction [70] can reduce the weight of stabilizers by introducing convenient “gauge qubits”

into the code. A continuous-time implementation of operator quantum error correction may

therefore yield to experimentally viable dissipation-based memories with a larger number of

qubits. Increasing the size of the code would yield several benefits, such as the encoding

of two or more logical qubits, or the ability to detect and correct d-qubit errors, for some

d > 1. Thus, continuous-time operator quantum error correction may be a way to overcome

some limits of the analysis presented in Chapter 3.

Finally, all schemes based on a single, global recovery operation R are subject to an impor-

tant limitation that was pointed out by Pastawski et al. [13]. By considering a “stochastic

unraveling” of the master equation ρ̇ = γ(R(ρ)−ρ), one sees that on average a time interval

∆t ∼ γ−1 must elapse before the first recovery step occurs; in this time interval, an n-qubit

code undergoes on average nκ∆t ∼ nκγ errors. If this number is too large, the first occur-

rence of the recovery operation fails and so does the quantum memory. Thus, in order to

protect the encoded information, one needs to set γ
κ � n, i.e. larger codes require stronger

error-correcting noise to work properly. This is a fundamental limitation to the scalability

of the approach.

Because of this general limitation, the existence of scalable quantum memories based on

dissipation is a non-trivial open problem. Pastawski et al. [13] gave numerical evidence for

the existence of a non-zero error threshold for a local, scalable, dissipative quantum memory

based on the 4-dimensional toric code, and similar results have been proven very recently

for a 2-dimensional toric code controlled by a classical cellular automaton [71]. This type of

schemes looks therefore very promising.
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6.3 Passive Protection of Information through Majo-

rana Zero-Modes

Because of their remarkable physical properties, including non-Abelian anyonic statistics,

Majorana “fermions”3 have gained great popularity in the condensed matter community in

recent years. Their non-local nature led many theorists to believe that they could be used to

protect quantum information from local perturbations. This belief, though never proven in

the open-system scenario, has enjoyed widespread acceptance, especially in the experimental

literature. In this thesis we tested the extent to which the assumption is correct in some

simple, analytically solvable models, relating the results to the concepts of locality and parity.

The first conclusion that emerges from such models is that the preservation of number-parity

seems to be a necessary condition. This means that the tunneling of single fermions (or the

coherent tunneling of any odd number of them) between the system and the environment

must be forbidden:

• Noise models that involve single-particle tunneling are allowed to couple directly to

the zero-modes alone. This causes the memory to fail in constant time, without any

benefit from the non-local encoding. Moreover, the very absence of a gap makes the

zero-modes particularly vulnerable.

• Parity-preserving noise, on the other hand, cannot involve a zero-mode alone (as that

would not preserve number parity). This leaves room for the protection of information,

but does not ensure it. Different memory performances are shown to be possible under

this class of noise models.

The second conclusion is that locality is a fundamental requirement not only for the dy-

namics, which was to be expected, but also for the initial state of the quantum memory.

Indeed, there are in general many ways to encode a qubit state in a Majorana-based mem-

ory, which can be though of as ground spaces of different Hamiltonians (sharing the same

zero-modes, but generally differing on the non-zero energy sector). We showed an example

in which a Majorana-based memory exposed to a parity-preserving local noise succeeds or

fails at protecting the information depending on whether the encoding space is defined by a

local or non-local Hamiltonian (§5.4). This effect can be interpreted in terms of additional

long-range entanglement spoiling the local nature of the noise: no long-range correlations

beyond those strictly required by the encoding should be present in the initial state of the

memory. The role of the encoding subspace in the context of Majorana-based memories

has never been investigated so far, and it would be interesting to study other more realistic

models and test the validity of our interpretation based on locality.

3Because of their anyonic statistics, Majorana quasiparticles in condensed matter systems are not
fermions. More accurate terms include “unpaired Majorana modes”, “Majorana zero-modes” and “Ma-
jorana bound states”.
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Finally, we derived a positive result about the memory performance of a pair of Kitaev chains

exposed to parity-preserving, local Markovian dynamics, in the limit of a large gap in the

chain Hamiltonian. We derived the Markovian master equation in the weak-coupling limit,

starting from a Hamiltonian interaction with a bosonic bath, and showed that the resulting

Markovian dynamics does not degrade the encoded information. The physical factors that

seem to underpin this positive results are:

• Locality of the dynamics (both Hamiltonian and dissipative).

• Encoding in the ground space of a local Hamiltonian.

• Large Hamiltonian gap.

One limitation of this result is the fact that the modeling of the Kitaev chains and of the

dissipative process is not completely realistic: the Kitaev chain is an effective description

of a more complicated system, namely a semiconductor nanowire with proximity-induced

superconductivity; and a local noise can be much more complicated than the one we consid-

ered, e.g. coupling several neighboring sites instead of dephasing a single one. An interesting

direction for future investigation may be the adaptation of the techniques presented in this

thesis to more complicated and realistic models.

Also, a numerical study about the finite-gap behavior of the optimal recovery fidelity might

prove very interesting. Under Hamiltonian perturbations, the storage time scales exponen-

tially with the length of the chain: it would be interesting to compare the Hamiltonian

scenario to the dissipative one.

More generally, a detailed understanding of Majorana-based memories, including a list of

necessary and sufficient physical requirements and quantitative criteria, is still missing. As

the experimental pursuit for Majorana fermions progresses, a parallel progress in the theo-

retical understanding of their potential for quantum information is in order. The optimal

recovery operations, as shown in this thesis, are the appropriate tools to pursue this task.



Appendix A

Diagonal Elements of SO(3)

Matrices

In this Appendix we prove a lemma that is used in §2.4.

Lemma (diagonal elements of SO(3) matrices). The set of possible diagonals of SO(3)

matrices,

∆ ≡
{
v ∈ R3 : vi = Rii for some R ∈ SO(3)

}
, (A.1)

is the tetrahedron T of vertices (1, 1, 1), (1,−1,−1), (−1, 1,−1) and (−1,−1, 1).

Proof. Let us start by recalling that a general 3-dimensional rotation can be parametrized

by three Euler angles:

R =

cos ζ − sin ζ 0

sin ζ cos ζ 0

0 0 1


1 0 0

0 cosχ − sinχ

0 sinχ cosχ


cos η − sin η 0

sin η cos η 0

0 0 1

 =

=

cos ζ cos η − sin ζ sin η cosχ . . . . . .

. . . cos ζ cos η cosχ− sin ζ sin η . . .

. . . . . . cosχ

 . (A.2)

From this parametrization we see that the general v ∈ ∆ is

v =

cos ζ cos η − sin ζ sin η cosχ

cos ζ cos η cosχ− sin ζ sin η

cosχ

 . (A.3)
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Then we can apply the trigonometric identities cos ζ cos η = 1
2 (cos(ζ + η) + cos(ζ − η)) and

sin ζ sin η = − 1
2 (cos(ζ + η)− cos(ζ − η)) and define α = ζ + η, β = ζ − η in order to rewrite

the general v ∈ ∆ as follows:

v =


1
2 (cosα+ cosβ) + 1

2 (cosα− cosβ) cosχ
1
2 (cosα+ cosβ) cosχ+ 1

2 (cosα− cosβ)

cosχ

 =

cosα 1+cosχ
2 + cosβ 1−cosχ

2

cosα 1+cosχ
2 − cosβ 1−cosχ

2

cosχ

 . (A.4)

Finally let us parametrize T as the set of convex combinations of its vertices: let a, b, c, d ∈
[0, 1] be such that a+ b+ c+ d = 1; then a general point in T can be written as

v = a

+1

+1

+1

+ b

+1

−1

−1

+ c

−1

+1

−1

+ d

−1

−1

+1

 =

a+ b− c− d
a− b+ c− d
a− b− c+ d

 . (A.5)

Now, equating (A.5) and (A.4) we can prove the two inclusions T ⊆ ∆ and ∆ ⊆ T .

1. Assuming a, b, c, d ∈ [0, 1] and a + b + c + d = 1, one can solve for cos(α), cos(β) and

cos(χ) to find 

cosχ = a− b− c+ d,

cosα =
2(a− d)

1 + a− b− c+ d
=

2(a− d)

2a+ 2d
=
a− d
a+ d

,

cosβ =
2(b− c)

1− a+ b+ c− d
=

2(b− c)
2b+ 2c

=
b− c
b+ c

.

(A.6)

It is easy to see that each cosine lies in [−1, 1], so that the three Euler angles α, β and

χ are well defined, and every point of T belongs to ∆.

2. Solving a, b, c and d = 1− a− b− c, one gets
a =

(1 + cosα)(1 + cosχ)

4
, b =

(1 + cosβ)(1− cosχ)

4
,

c =
(1− cosβ)(1− cosχ)

4
, d =

(1− cosα)(1 + cosχ)

4
.

(A.7)

Each parameter is clearly non-negative, and clearly not larger than 1, and it is easy to

see that a+ b+ c+ d = 1. Therefore every point of ∆ belongs to T .

Both inclusions being proven, we can conclude that ∆ = T .



Appendix B

Liouville Representation for

Super-Operators

The Liouville representation is a mathematical way to describe linear operators as vectors

and super-operators as matrices acting on them. The idea is the following: if {|i〉 : i ∈
{1, . . . N}} is an orthonormal basis of the Hilbert space H, then each operator Â ∈ B (H)

can be identified with a vector of H⊗2 as follows:

Â =

N∑
i,j=1

Aij |i〉 〈j| 7→
∣∣∣Â〉〉 =

N∑
i,j=1

Aij |i〉 ⊗ |j〉 ∈ H⊗2. (B.1)

The double angle bracket is used to distinguish “super-kets” (vectors of H⊗2) from ordinary

kets (vectors of H).

Mathematically, (B.1) amounts to the statement that B (H) and H ⊗ H are isomorphic,

which is true if H is finite-dimensional1. This fact can be used to perform some convenient

manipulations with super-operators. Since super-operators are elements of B (B (H)), they

act on “super-kets” of B (H) as ordinary matrices:

|Φ(ρ̂)〉〉 =MΦ |ρ̂〉〉 , MΦ ∈ B
(
H⊗2

)
. (B.2)

Lemma (ABC rule). The Liouville representation of a product of three operators Â, B̂

and Ĉ obeys the following rule:∣∣∣ÂB̂Ĉ〉〉 =
(
Â⊗ ĈT

) ∣∣∣B̂〉〉 . (B.3)

1It is always true that B (H) ∼= H⊗H∗; if H is finite-dimensional, one also has H ∼= H∗.
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Proof.(
Â⊗ ĈT

) ∣∣∣B̂〉〉 =
∑

i,j,k,l,m,n

AijClkBmn(|i〉 〈j| ⊗ |k〉 〈l|) |m〉 ⊗ |n〉

=
∑
ijkl

AijBjlClk |i〉 ⊗ |k〉 =

N∑
i,k=1

(
ÂB̂Ĉ

)
ik
|i〉 ⊗ |k〉 =

∣∣∣ÂB̂Ĉ〉〉 . (B.4)

The “ABC rule” can also be applied to pairs of operators by conveniently including an

identity operator:

∣∣∣ÂB̂〉〉 =


∣∣∣ÂB̂I〉〉 =

(
Â⊗ I

) ∣∣∣B̂〉〉 ,∣∣∣IÂB̂〉〉 =
(
I ⊗ B̂T

) ∣∣∣Â〉〉 . (B.5)

Applying identities (B.3) and (B.5) to the case of a Lindbladian super-operator

L(ρ̂) = −i[Ĥ, ρ̂] +
∑
k

(
L̂kρ̂L̂

†
k −

1

2

{
ρ̂, L̂†kL̂k

})
, (B.6)

we obtain

ML = −i
(
Ĥ ⊗ I + I ⊗ ĤT

)
+
∑
k

(
L̂k ⊗ L̂∗k −

1

2
I ⊗ L̂Tk L̂∗k −

1

2
L̂†kL̂k ⊗ I

)
. (B.7)



Appendix C

Approximating Arbitrary

Master Equations with

Hamiltonians and Damped

Qubits

In Chapter 3 we discuss the power of dissipation as a tool to protect quantum information.

In the examples that we consider, the environment acts on the system through very peculiar

Lindblad operators, each one involving several qubits. From an experimental point of view,

it is not clear a priori whether such complicated and unnatural dissipative process can be

engineered.

In this Appendix we shall see how arbitrary dissipative processes can be simulated using

relatively inexpensive physical resources, such as Hamiltonian interactions and single-qubit

cooling processes [10, 13].

Let us consider for simplicity a noise represented by a single Lindblad operator. Then the

following theorem holds.

Theorem (simulation of target master equations). The target master equation

d

dt
ρ̂ = γ

(
L̂ρ̂L̂† − 1

2

{
L̂†L̂, ρ̂

})
, (C.1)
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where Tr
(
L†L

)
= 1, can be approximated by using an ancillary qubit subject to an amplitude-

damping noise of strength χ and engineering the system-ancilla Hamiltonian

ĤSA =

√
χγ

2

(
L̂⊗ σ+ + L̂† ⊗ σ−

)
. (C.2)

Proof. The full master equation governing the system and the ancilla is

d

dt
ρ̂SA = −iω

[
L̂Sσ

+
A + L̂†Sσ

−
A , ρ̂SA

]
+ χ

(
σ−A ρ̂SAσ

+
A −

1

2

{
σ+
Aσ
−
A , ρ̂SA

})
, (C.3)

where we set ω =
√
γχ

2 for brevity. Let us define the matrices ρ̂00, ρ̂01, ρ̂10 and ρ̂11 by

ρ̂ij = A 〈i| ρ̂SA |j〉A , (C.4)

so that ρ̂S ≡ TrA (ρ̂SA) = ρ̂00 + ρ̂11. (C.3) is equivalent to the following system:

d

dt
ρ̂00 = −iωL̂†ρ̂10 + iωρ̂01L̂+ χρ̂11,

d

dt
ρ̂01 = −iωL̂†ρ̂11 + iωρ̂00L̂

† − χ

2
ρ̂01,

d

dt
ρ̂11 = −iωL̂ρ̂01 + iωρ̂10L̂

† − χρ̂11.

(C.5)

Notice that while ρ̂00 and ρ̂11 are self-adjoint, one has ρ̂†01 = ρ̂10. The equation for ρ̂10 is

thus omitted. The following integral representation for ρ̂01 and ρ̂11 holds:

ρ̂01(t) = e−χt/2ρ̂01(0) + iω

ˆ t

0

dτe−χτ/2
(
L̂†ρ̂11(t− τ)− ρ̂00(t− τ)L̂†

)
, (C.6)

ρ̂11(t) = e−χtρ̂11(0) + iω

ˆ t

0

dτe−χτ
(
L̂ρ̂01(t− τ)− ρ̂10(t− τ)L̂†

)
. (C.7)

By initializing the ancilla in the |0〉 state, one has ρ̂01(0) = ρ̂11(0) = 0, so that

‖ρ̂01(t)‖op ≤ ω
ˆ t

0

dτe−χτ/2
∥∥∥L̂†ρ̂11(t− τ)− ρ̂00(t− τ)L̂†

∥∥∥
op

≤ ω
ˆ t

0

dτe−χτ/2
∥∥∥L̂†∥∥∥

op
·
(
‖ρ̂00(t− τ)‖op + ‖ρ̂11(t− τ)‖op

)
≤ ω

ˆ t

0

dτe−χτ/2 =
2ω

χ

ˆ χt/2

0

dθe−θ ≤ 2ω

χ
(C.8)
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(the third inequality comes from the fact that
∥∥∥L̂†∥∥∥

op
≤
∥∥∥L̂†∥∥∥

tr
= 1). Analogously,

‖ρ̂11(t)‖op ≤ ω
ˆ t

0

dτe−χτ
∥∥∥L̂ρ̂01(t− τ)− ρ̂10(t− τ)L̂†

∥∥∥
op

≤ ω
ˆ t

0

dτe−χτ‖L̂‖op · 2‖ρ̂01(t− τ)‖op ≤
(

2ω

χ

)2

. (C.9)

Assuming ε = 2ω
χ � 1, one has that ρ̂01 and ρ̂11 are both small at all times, bounded by ε

and ε2 respectively. Now, by using integration by parts on (C.6) one gets

ρ̂01(t) = iω

ˆ t

0

dτe−χτ/2

(
L̂†ρ̂11(t− τ) +

2

χ

d

ds
ρ̂00(s)

∣∣∣∣
s=t−τ

L̂†

)
+ iερ̂00(t)L̂† − iεe−χt/2ρ̂00(0)L̂†. (C.10)

Substituting d
ds ρ̂00(s) with its expression (C.5), we see that the integral term is O(ε2), so

that after an initial transient

ρ̂01(t) ' iερ̂00(t)L̂†. (C.11)

By an analogous reasoning one has

ρ̂11(t) ' −i ε
2

(
L̂ρ̂01(t)− ρ̂10(t)L̂†

)
' ε2L̂ρ̂00(t)L̂†. (C.12)

Now, since ρ̂11 is small with respect to ρ̂00, the reduced density matrix ρ̂S = TrA (ρ̂SA) is

well approximated by ρ̂00, and from (C.5) we can conclude that

d

dt
ρ̂S '

d

dt
ρ̂00 = −iωL̂†ρ̂10 + iωρ̂01L̂+ χρ̂11

' −iωL̂†(−iεL̂ρ̂00) + iω(iερ̂00L̂
†)L̂+ χε2L̂ρ̂00L̂

†

=
4ω2

χ

(
L̂ρ̂00L̂

† − 1

2

{
ρ̂00, L̂

†L̂
})

. (C.13)

The choice ω =
√
γχ

2 ensures that the strength of the effective dissipation is γ. The condition

ε� 1 becomes
√

γ
χ � 1.

A more rigorous version of this derivation, complete with error estimates, is provided in [13].

In order to simulate dissipative processes with multiple Lindblad operators, more ancillas

must be added (one ancilla for each Lindblad operator).



Appendix D

Microscopic Derivation of a

Markovian Master Equation in

the Weak-Coupling Limit

This derivation follows the one presented in [23], §3.3.1.

We have a system and an environment, governed by a total Hamiltonian Ĥtot = Ĥsys +

Ĥenv + Ĥint. We are interested in a particular limit in which the dynamics of the reduced

density matrix of the system becomes Markovian. What follows is a derivation of the form

of the resulting master equation, given Ĥsys, Ĥenv, and Ĥint.

We shall work in the interaction picture: let ĤI(t) ≡ ei(Ĥsys+Ĥenv)tĤinte
−i(Ĥsys+Ĥenv)t; then

d

dt
ρ̂(t) = −i[ĤI(t), ρ̂(t)]. (D.1)

Integrating this equation we get ρ̂(t) = ρ̂(0)− i
´ t

0
ds[ĤI(s), ρ̂(s)], which can be substituted

into the right-hand side of (D.1) to obtain

d

dt
ρ̂(t) = −i[ĤI(t), ρ̂(0)]−

ˆ t

0

ds
[
ĤI(t), [ĤI(s), ρ̂(s)]

]
. (D.2)

Here we invoke the Born approximation (ρ̂(t) ≈ ρ̂sys(t) ⊗ ρ̂env(0), which removes memory

effects of the environment) and the Markov approximation (ρ̂sys(s) ≈ ρ̂sys(t), which removes

any dependence on the previous history of the system). Furthermore, let us assume for the

moment that the first term in (D.2) vanishes:

Trenv

(
[ĤI(t), ρ̂(0)]

)
= 0 (D.3)
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(we shall prove it later). Under these simplifying assumptions, (D.2) becomes

d

dt
ρ̂sys(t) ' −

ˆ t

0

dsTrenv

([
ĤI(t), [ĤI(s), ρ̂sys(t)⊗ ρ̂env]

])
. (D.4)

In order to get a semi-group solution, the dependence on the initial condition (t = 0) must

be removed. We shall change the variable of integration from s to s′ = t− s, and integrate

on the range (0,∞) (instead of (0, t)):

d

dt
ρ̂sys(t) ' −

ˆ ∞
0

ds′ Trenv

([
ĤI(t), [ĤI(t− s′), ρ̂sys(t)⊗ ρ̂env]

])
. (D.5)

Now let us define the traceless1, Hermitian operators
{
Âα

}
and

{
B̂α

}
, acting on the system

and on the environment respectively, such that Ĥint =
∑
α Âα⊗ B̂α. Let us also write down

a Fourier decomposition of the operators
{
Âα

}
:

Âα(t) = e−itĤsysÂαe
itĤsys =

∑
ω

Âα(ω)e−iωt. (D.6)

Applying this decomposition, we have

ĤI(t) =
∑
α,ω

e−iωtÂα(ω)⊗ B̂α(t), B̂α(t) = eiĤenvtB̂αe
−iĤenvt. (D.7)

We are now in a position to prove (D.3):

Trenv

(
[ĤI(t), ρ̂(0)]

)
=
∑
α,ω

e−iωtTrenv

(
[Âα(ω)⊗ B̂α(t), ρ̂sys(0)⊗ ρ̂env]

)
=
∑
α,ω

e−iωt[Âα(ω), ρ̂sys(0)]Tr
(
B̂α(t)ρ̂env

)
= 0, (D.8)

assuming Tr
(
B̂αρ̂env

)
= 0, which holds in particular for the choice we always adopt in this

thesis, i.e. ρ̂env ∝ I.

The decomposition (D.6), plugged into (D.5), yields

d

dt
ρ̂sys(t) = −

∑
α,ω

∑
α′,ω′

ˆ ∞
0

dse−iωte−iω
′(t−s)

Trenv

([
Âα(ω)⊗ B̂α(t), [Âα′(ω

′)⊗ B̂α′(t− s), ρ̂sys(t)⊗ ρ̂env]
])

;

(D.9)

1 They can be assumed traceless up to a redefinition of Ĥsys or Ĥenv: e.g. one can write Â1 ⊗ B̂1 =

(Â1 − αIsys)⊗ B̂1 + αIsys ⊗ B̂1 and absorb the last term into Ĥenv. A suitable choice of α annihilates the

trace of Â1.
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and, expanding the nested commutators,

d

dt
ρ̂sys(t) = −

∑
α,ω

∑
α′,ω′

ˆ ∞
0

dse−iωte−iω
′(t−s)

(
Âα(ω)Âα′(ω

′)ρ̂sys(t)Tr
(
B̂α(t)B̂α′(t− s)ρ̂env

)
− Âα(ω)ρ̂sys(t)Âα′(ω

′)Tr
(
B̂α(t)ρ̂envB̂α′(t− s)

)
− Âα′(ω′)ρ̂sys(t)Âα(ω)Tr

(
B̂α′(t− s)ρ̂envB̂α(t)

)
+ ρ̂sys(t)Âα′(ω

′)Âα(ω)Tr
(
ρ̂envB̂α′(t− s)B̂α(t)

))
. (D.10)

Now let us define the environment correlation function

Kαβ(s) = Tr
(
B̂α(t)B̂β(t− s)ρ̂env

)
, (D.11)

which does not depend on t because of time translation invariance. (D.10) involves the

Fourier transform of Θ(s)Kαβ(s),

Γαβ(ω′) ≡
ˆ ∞
−∞

dsΘ(s)Kαβ(s)eiω
′s =

ˆ ∞
0

dsKαβ(s)eiω
′s. (D.12)

Assuming [ρ̂env, B̂α(t)] = 0 ∀α, t, which holds in particular for ρ̂env ∝ I, we can rewrite

(D.10) as

d

dt
ρ̂sys(t) = −

∑
α,ω

∑
β,ω′

e−i(ω+ω′)tΓαβ(ω′)
(
Âα(ω)Âβ(ω′)ρ̂sys(t) + ρ̂sys(t)Âβ(ω′)Âα(ω)

− Âα(ω)ρ̂sys(t)Âβ(ω′)− Âβ(ω′)ρ̂sys(t)Âα(ω)
)

(D.13)

At this point we invoke the rotating wave approximation, and neglect all terms of the sum

with ω + ω′ 6= 0:

d

dt
ρ̂sys(t) =

∑
α,β

∑
ω

Γαβ(ω)
(
Âα(ω)ρ̂sys(t)Âβ(−ω) + Âβ(−ω)ρ̂sys(t)Âα(ω)

− Âα(ω)Âβ(−ω)ρ̂sys(t)− ρ̂sys(t)Âβ(−ω)Âα(ω)
)

(D.14)

By relabeling some dummy indices, (D.14) becomes

d

dt
ρ̂sys(t) =

∑
α,β

∑
ω

(
(Γαβ(ω) + Γβα(−ω))Âα(ω)ρ̂sys(t)Âβ(−ω)

− Γβα(−ω)Âβ(−ω)Âα(ω)ρ̂sys(t)− Γαβ(ω)ρ̂sys(t)Âβ(−ω)Âα(ω)
}
.

(D.15)
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Now let
Γαβ(ω) + Γβα(−ω) =

ˆ +∞

−∞
ds eiωsTr

(
B̂α(s)B̂β(0)ρ̂env

)
≡ γαβ(ω),

Γαβ(ω)− Γβα(−ω) =

ˆ +∞

−∞
ds sign (s) eiωsTr

(
B̂α(s)B̂β(0)ρ̂env

)
≡ 2iSαβ(ω).

(D.16)

Both γ(ω) and S(ω) are Hermitian matrices. Plugging these definitions into (D.15) we get

d

dt
ρ̂sys(t) =

∑
α,β

∑
ω

(
γαβ(ω)Âα(ω)ρ̂sys(t)Âβ(−ω)− 1

2
γαβ(ω)

{
Âβ(−ω)Âα(ω), ρ̂sys(t)

}
+ iSαβ(ω)

[
Âβ(−ω)Âα(ω), ρ̂sys(t)

] )
. (D.17)

The term involving the commutator yields the so-called “Lamb-shift Hamiltonian” contri-

bution, which is a renormalization of the original system Hamiltonian, while the remaining

terms can cast into Lindblad form by diagonalizing the γ(ω) matrices, and using the fact

that Â(−ω) =
(
Â(ω)

)†
:

d

dt
ρ̂sys(t) = −i[ĤLS , ρ̂sys(t)] +

∑
α,ω

(
L̂α,ωρ̂sys(t)L̂

†
α,ω −

1

2

{
L̂†α,ωL̂α,ω, ρ̂sys(t)

})
, (D.18)

finally, going back from the interaction representation to the Schroedinger picture, the orig-

inal system Hamiltonian Ĥsys must be added to ĤLS .

In conclusion: if we start from Ĥsys, Ĥenv and Ĥint =
∑
α Âα ⊗ B̂α, the final Hamiltonian

will be

Ĥsys + ĤLS = Ĥsys −
∑
α,β

∑
ω

Sαβ(ω)Âβ(ω)
†
Âα(ω), (D.19)

while the Lindblad operators representing the dissipative part of the dynamics will be

L̂α,ω =
∑
β

√
dαα(ω)cαβ(ω)Âβ(ω), (D.20)

where, for each ω, c(ω) is the unitary matrix that diagonalizes γ(ω) to d(ω): γ(ω) =

c(ω)
†
d(ω)c(ω).

Remark. This derivation is formulated for spin systems. In the Thesis we apply it to

fermionic systems as well. The main difference between the two cases is that fermionic

operators do not have a tensor structure, hence system operators may anti-commute with

environment operators. It can be shown, however, that the derivation works anyway, with

minor sign adjustments.



Appendix E

Parity-Preserving Noise Models

In this Appendix we prove two lemmas about parity-preserving noise models. One is about

general quantum channels, the other about Markovian dynamics. These lemmas are used

in §5.3 through §5.5 to constrain the parity-preserving noise models to which the Majorana

memory toy-models are exposed.

Lemma (parity-preserving channels). A quantum channel Φ is parity-preserving (PP)

if and only if its Kraus operators are all “bosonic” (BK).

Proof.

• (BK) =⇒ (PP): the Kraus operators
{
M̂k

}
commute with P̂f , therefore

〈
P̂f

〉
Φ(ρ̂)

= Tr
(
P̂fΦ(ρ̂)

)
= Tr

(
Φ∗(P̂f )ρ̂

)
=
∑
k

Tr
(
M̂†k P̂fM̂kρ̂

)
= Tr

(∑
k

M̂†kM̂kP̂f ρ̂

)
; (E.1)

by invoking the Kraus completeness relation (1.10) one has
〈
P̂f

〉
Φ(ρ̂)

=
〈
P̂f

〉
ρ̂
.

• (PP) =⇒ (BK): we have

Tr
(
P̂f ρ̂

)
= Tr

(
P̂fΦ(ρ̂)

)
= Tr

(
Φ∗(P̂f )ρ̂

)
(E.2)
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for all physical states ρ̂, i.e. for all bosonic operators. Let us consider a generic operator

µ̂; (E.2) must hold for its bosonic part:

Tr

(
P̂f
µ̂+ P̂f µ̂P̂f

2

)
= Tr

(
Φ∗
(
P̂f

) µ̂+ P̂f µ̂P̂f
2

)
, (E.3)

which can be rewritten by isolating µ̂:

Tr
(
µ̂
(

2P̂f − Φ∗(P̂f )− P̂fΦ∗(P̂f )P̂f

))
= 0 ∀µ̂ ∈ B (FN ) . (E.4)

By taking µ̂ =
(

2P̂f − Φ∗(P̂f )− P̂fΦ∗(P̂f )P̂f

)†
, we can see that the Hilbert-Schmidt

norm of the operator in brackets vanishes; hence we must have

2 · 1̂− P̂fΦ∗(P̂f )− Φ∗(P̂f )P̂f = 2 · 1̂−
∑
k

(
P̂fM̂

†
k P̂fM̂k + M̂†k P̂fM̂kP̂f

)
= 0. (E.5)

Decomposing the Kraus operators
{
M̂k

}
into their fermionic and bosonic parts, and

recalling the Kraus completeness relation (1.10), one gets

∑
k

[
2
(
M̂ b
k + M̂f

k

)†(
M̂ b
k + M̂f

k

)
−
(
M̂ b
k − M̂

f
k

)† (
M̂ b
k + M̂f

k

)
−
(
M̂ b
k + M̂f

k

)† (
M̂ b
k − M̂

f
k

)]
= 0. (E.6)

The bosonic and fermionic parts of this expression must vanish separately; considering

the bosonic part one gets

∑
k

(
M̂f
k

)†
M̂f
k = 0. (E.7)

Taking the trace of (E.7), and recalling the definition of the Hilbert-Schmidt norm

‖Â‖2 =

√
Tr
(
Â†Â

)
, we can conclude that

∑
k

(
‖M̂f

k ‖2
)2

= 0 =⇒ ‖M̂f
k ‖2 = 0 ∀ k =⇒ M̂f

k = 0 ∀ k, (E.8)

hence all Kraus operators are purely bosonic.

Lemma (parity-preserving Markovian dynamics). Let L be a Lindbladian and Dt =

etL be the associated decoherence process. Dt is parity preserving (PP) if and only if the

Lindblad operators that define L are all bosonic (BL).
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Proof.

• (PP) =⇒ (BL): the conservation of average parity yields

d

dt

〈
P̂f

〉
t

= Tr
(
P̂fL(ρ̂(t))

)
= Tr

(
L∗(P̂f )ρ̂(t)

)
= 0 ∀ t. (E.9)

This must hold for every physical state ρ̂, hence for all bosonic operators; it must

therefore hold for the bosonic part of a generic operator µ̂:

Tr

(
L∗(P̂f )

µ̂+ P̂f µ̂P̂f
2

)
=

1

2
Tr
(
µ̂
(
L∗(P̂f ) + P̂fL∗(P̂f )P̂f

))
= 0. (E.10)

Therefore we must have

P̂fL∗(P̂f ) + L∗(P̂f )P̂f = 0. (E.11)

Using the same techniques that led to the proof of the previous lemma, one gets∑
k

(
L̂fk

)†
L̂fk = 0, and thus

∑
k

Tr

((
L̂fk

)†
L̂fk

)
=
∑
k

(
‖L̂fk‖2

)2

= 0. (E.12)

This proves that L̂fk = 0 ∀ k, i.e. that all Lindblad operators must be bosonic.

• (BL) =⇒ (PP): expressing d
dt

〈
P̂f

〉
t

as in (E.9), by the (BL) property one has

L∗(P̂f ) = P̂fL∗(1̂); then, since L∗(1̂) =
∑
k L̂
†
kL̂k −

1
2

{
1̂, L̂†kL̂k

}
= 0,

d

dt

〈
P̂f

〉
t

= Tr
(
ρ̂L∗(P̂f )

)
= Tr

(
ρ̂P̂fL∗(1̂)

)
= 0. (E.13)

Thus
〈
P̂f

〉
t

is constant and Dt is parity-preserving.



Appendix F

Local Noise Models

F.1 Lieb-Robinson Bound for Spins

It has been known since the 1970’s that two-point correlations in spin systems propagate

with an effective group velocity [72]. Mathematically, this statement is known as the Lieb-

Robinson bound (LRB) [73]. LRBs have proven to be powerful tools for quantum many-body

physics [74]. Their validity was also recently established in experiments with cold atoms [75].

Theorem (closed spin systems). Let Λ be a spin lattice, and let A,B ⊂ Λ be two disjoint

regions separated by a distance dAB; if the system is governed by a local Hamiltonian Ĥ,

then for every pair of operators ÔA, ÔB supported on regions A and B the following holds:∥∥∥[ÔA(t), ÔB(0)
]∥∥∥

op
≤ cV ‖ÔA‖op‖ÔB‖op exp

(
−dAB − vt

ξ

)
, (F.1)

where V is the size of the largest region and c, v, ξ are model-dependent constants.

The physical meaning of (F.1) is that the effect of local interactions is to “spread” corre-

lations within an effective light-cone, defined by the group velocity v. However, while in

a relativistic quantum field theory signaling outside the c light-cone is strictly forbidden

by causality, (F.1) allows exponentially small tails outside the v effective light-cone. The

parameter ξ defines the characteristic decay length of those tails.

The original formulation of the LRB (F.1) deals with short-range Hamiltonian interactions.

However, the scope of the result was recently extended to encompass Markovian quantum

dynamics [76].

Theorem (open spin systems, Markovian dynamics). Let Λ be a spin lattice, and

let A,B ⊂ Λ be two disjoint regions separated by a distance dAB; if the system is governed

by a Lindbladian L =
∑
X⊆Λ LX , with each LX represented by Lindblad operators supported
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on region X, and LX = 0 for all regions X of diameter greater that some fixed distance d,

then the following holds:∥∥∥[Dt (ÔA) , ÔB]∥∥∥
op
≤ cV ‖ÔA‖op‖ÔB‖op exp

(
−dAB − vt

ξ

)
, (F.2)

with Dt = etL.

F.2 Lieb-Robinson Bound for Fermions

Consider a fermionic system on a lattice Λ, with a Dirac mode âi on each site of the lattice.

The LRB for closed spin systems (F.1) can be straightforwardly generalized to pairs of distant

“bosonic” operators on the fermionic lattice [77]. Since Hamiltonians are necessarily bosonic,

all the commutation properties for distant operators that are used in the derivation of (F.1)

hold in this case as well. Moreover, by exchanging all commutators with anti-commutators,

a similar bound for pairs of distant “fermionic” operators can be proven.

Theorem (closed fermionic systems). Let Λ be a fermionic lattice, and let A,B ⊂ Λ

be two disjoint regions separated by a distance dAB; if the system is governed by a local

Hamiltonian Ĥ, then for every pair of bosonic operators ÔbA, ÔbB supported on regions A

and B one has ∥∥∥[ÔbA(t), ÔbB

]∥∥∥
op
≤ cV ‖ÔbA‖op‖Ô

b
B‖op exp

(
−dAB − vt

ξ

)
; (F.3)

analogously, for every pair of fermionic operators ÔfA, ÔfB supported on regions A and B,

one has ∥∥∥{ÔfA(t), ÔfB

}∥∥∥
op
≤ cV ‖ÔfA‖op‖Ô

f
B‖op exp

(
−dAB − vt

ξ

)
. (F.4)

For the case of Markovian decoherence no general theorem is yet known. This is because,

unlike Hamiltonians which are necessarily bosonic, Lindblad operators are allowed to be

fermionic (e.g. tunneling processes from the environment may be represented by L̂ ∝ â†).

The failure of commutativity between distant operators invalidates the known proofs.

However, in the simple case of purely bosonic Lindblad operators (which by the results

of Appendix E corresponds to parity-preserving noise models), the derivation of the LRB

for open spin systems (F.2) applies entirely, if ÔA and ÔB are both bosonic. Exchanging

commutators with anti-commutators, the case in which ÔA and ÔB are both fermionic is

covered as well. Thus the LRBs (F.3) and (F.4) hold in the open-system scenario as well,

provided all Lindblad operators are bosonic.
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Theorem (open fermionic systems, Markovian parity-preserving dynamics). Let

Λ be a fermionic lattice, and let A,B ⊂ Λ be two disjoint regions separated by a distance

dAB; if the system is governed by a Lindbladian L =
∑
X⊆Λ LX , with each LX represented

by bosonic Lindblad operators supported on region X, and LX = 0 for all regions X of

diameter greater that some fixed distance d, then for every pair of bosonic operators ÔbA, ÔbB
supported on regions A and B one has∥∥∥[Dt (ÔbA) , ÔbB]∥∥∥

op
≤ cV ‖ÔbA‖op‖Ô

b
B‖op exp

(
−dAB − vt

ξ

)
; (F.5)

analogously, for every pair of fermionic operators ÔfA, ÔfB supported on regions A and B,

one has ∥∥∥{Dt (ÔfA) , ÔfB}∥∥∥
op
≤ cV ‖ÔfA‖op‖Ô

f
B‖op exp

(
−dAB − vt

ξ

)
. (F.6)

F.3 Clustering Property of Distant Operators

Theorem (open spin systems, Heisenberg picture). Consider a spin lattice Λ and

two operators ÔA and ÔB supported on distant regions A,B ⊂ Λ. Assuming the dynamics is

Markovian and described by local Lindblad operators, then the following clustering property

holds: ∥∥∥D∗t (ÔAÔB)−D∗t (ÔA)D∗t (ÔB)∥∥∥
op
≤ c′V ‖ÔA‖op‖ÔB‖ope

− dAB−2vt

2ξ , (F.7)

where D∗t is the adjoint of the decoherence channel Dt = etL.

Remark. Equation (F.7) means that

D∗t
(
ÔAÔB

)
' D∗t

(
ÔA

)
D∗t
(
ÔB

)
, (F.8)

up to LRB corrections, which are small as long as the space-like sections of the effective

light-cones of regions A and B do not overlap.

Proof. This proof is based on the one provided in [76]. Let L be the Lindbladian that induces

Dt. Let us split Λ into three parts, as in Figure F.1: Ã, B̃ and R, where A ⊂ Ã, B ⊂ B̃,

and R is a strip thick enough that each Lindblad operator is supported either in Ã ∪ R or

in B̃ ∪R (i.e. a Lindblad operator cannot couple Ã and B̃ directly). Let

LR =
∑
X:

X∩R 6=∅

LX , L0 = L − LR, L(η) = L0 + ηLR. (F.9)
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A

Ã

B

B̃

R1

2

3

4

5

6

Figure F.1: partition of the system used to prove the clustering property for distant

operators. The system is partitioned into three regions: Ã, that includes A; B̃, that
includes B; and R, a strip that separates Ã from B̃. The dashed circles represent local
contributions to the Lindbladian: regions of types 1 and 5 contribute to L0; regions of
types 2, 3 and 4 contribute to LR. R is taken thick enough to ensure that no contributions

to the Lindbladian come from regions of type 6 (intersecting both Ã and B̃).

Let D(η)
t = etL(η) for brevity. This defines a family of quantum channels parametrized by

η: for η = 0 the regions A and B are separated by a barrier R in which no dynamics takes

place; increasing η the dynamics in R is turned on, and for η = 1 one gets the original

channel D(1)
t ≡ Dt.

Equation (F.7) can be proven starting from the fact that D(0)∗
t obeys the following exact

clustering property:

D(0)∗
t

(
ÔAÔB

)
= D(0)∗

t

(
ÔA

)
D(0)∗
t

(
ÔB

)
, (F.10)

which shall be proven separately, and using the following integral representation:

D∗t = etL
∗

= etL
∗
0 +

ˆ 1

0

dη
∂

∂η
etL(η)∗ = etL

∗
0 +

ˆ 1

0

dη

ˆ t

0

dβe(t−β)L(η)∗L∗ReβL(η)∗

= D(0)∗
t +

ˆ 1

0

dη

ˆ t

0

dβD(η)∗
t−β ◦ L

∗
R ◦ D

(η)∗
β . (F.11)

Let us denote the second term as Ft. Then following bound holds:

∥∥∥Ft(ÔA)
∥∥∥

op
≤
ˆ 1

0

dη

ˆ t

0

dβ
∥∥∥D(η)∗

t−β ◦ L
∗
R ◦ D

(η)∗
β (ÔA)

∥∥∥
op

≤
ˆ 1

0

dη

ˆ t

0

dβ
∥∥∥L∗R ◦ D(η)∗

β (ÔA)
∥∥∥

op

≤ ‖L∗R‖op‖ÔA‖opcV exp

(
−dAB − 2vt

2ξ

)
. (F.12)

The second inequality follows from the contractivity of quantum channels; as for the third

one, the Markovian LRB (F.2) is invoked to bound the amplitude of D(η)
β (ÔA) in the support
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of L∗R (which is a distance ∼ dAB
2 from A). The same reasoning applies to ÔB and to the

product ÔAÔB . Finally, applying the exact clustering property (F.10), one has∥∥∥Dt (ÔAÔB)−Dt (ÔA)Dt (ÔB)∥∥∥
op

=

∥∥∥∥Ft (ÔAÔB)−Ft (ÔA)D(0)
t

(
ÔB

)
−D(0)

t

(
ÔA

)
Ft
(
ÔB

)
+ Ft

(
ÔA

)
Ft
(
ÔB

)∥∥∥∥
op

≤ 4‖LR‖op‖ÔA‖op‖ÔB‖opcV exp

(
−dAB − 2vt

2ξ

)
,

(F.13)

which is precisely (F.7) after redefining c′ = c‖LR‖op.

We shall now separately prove formula (F.10), which was a key step in the previous proof.

Lemma (exact clustering property) The channel D(0)∗
t = etL

∗(0) obeys an exact version

of the clustering property (F.7), i.e.

D(0)∗
t

(
ÔAÔB

)
= D(0)∗

t

(
ÔA

)
D(0)∗
t

(
ÔB

)
. (F.14)

Proof. Consider a Lindbladian LX consisting of Lindblad operators
{
L̂X,k

}
supported on

X ⊂ Λ and an operator ÔY supported on Y ⊂ Λ. If X ∩ Y = ∅, then L∗X(ÔY ) = ÔY L∗X(1̂)

(because ÔY commutes with all the {LX,k}). But L∗X(1̂) =
∑
k(L̂†X,kL̂X,k− L̂

†
X,kL̂X,k) = 0.

Thus, decomposing L0 = LÃ+LB̃ , one has that L∗(ÔA) = L∗
Ã

(ÔA) and L∗(ÔB) = L∗
B̃

(ÔB).

As a consequence, the Leibniz rule applies to the product of any two operators on opposite

sides of R:

L∗0
(
ÔÃÔB̃

)
= L∗

Ã

(
ÔÃ

)
ÔB̃ + ÔÃL

∗
B̃

(
ÔB̃

)
= L∗0

(
ÔÃ

)
ÔB̃ + ÔÃL

∗
0

(
ÔB̃

)
. (F.15)

It follows that, since L∗
Ã

(ÔA) ( L∗
B̃

(ÔB)) is still supported in Ã (B̃),

D(0)∗
t

(
ÔAÔB

)
=

∞∑
k=0

tk

k!
(L∗0)k

(
ÔAÔB

)
=
∞∑
k=0

tk

k!

k∑
q=0

(
k

q

)
(L∗0)q

(
ÔA

)
(L∗0)k−q

(
ÔB

)
=

∞∑
q,j=0

tq+j

q!j!
(L∗0)q

(
ÔA

)
(L∗0)j

(
ÔB

)
= D(0)∗

t

(
ÔA

)
D(0)∗
t

(
ÔB

)
, (F.16)

where the index j was defined as k − q.

The result can be generalized to Schroedinger-picture channels as well, under an additional

hypothesis.
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Theorem (open spin systems, Schroedinger picture). Consider a spin lattice Λ and

two operators ÔA and ÔB supported on distant regions A,B ⊂ Λ. Assuming the dynam-

ics is Markovian and described by local and normal Lindblad operators, then the following

clustering property holds:

Dt
(
ÔAÔB

)
' Dt

(
ÔA

)
Dt
(
ÔB

)
, (F.17)

up to LRB corrections.

Proof. The only property of the Heisenberg picture that was used in the previous proof

is the fact that the adjoint of a Lindbladian always annihilates the identity: L∗(1̂) = 0.

This holds as well in the Schroedinger picture, provided all Lindblad operators are normal:

L(1̂) =
∑
k

[
L̂k, L̂

†
k

]
= 0.

Remark 1. The assumption of normal Lindblad operators is necessary: it is very easy to

provide counter-examples to (F.17) using e.g. ladder operators σ± as Lindblad operators.

Remark 2. The whole discussion can be straightforwardly mapped from a spin framework to

a fermionic one, provided all Lindblad operators are bosonic. This additional assumption is

necessary since otherwise the Jordan-Wigner transformation that implements this mapping

would yield non-local Lindblad operators, thus invalidating the key assumption of locality.
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