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Introduction

Why speaking about multicriteria optimization?
The answer is easy: even if we are economists and we know for sure what

an optimization problem is, we usually do not realize that we optimize in each
moment of our lives. Think about when you have to pick a red or a blue dress
to pair with a specific pair of shoes, or when you have to choose between a
sportive-aggressive car or a toasty-family driven car; it is always a matter
of optimization. As we can see from real-life examples, sometimes we have
multiple alternatives and multiple criteria on the basis of which we can decide
which is the best solution: in the case of a car, we may look at the price,
the consumption of oil and the powerfulness in deciding among an Audi, a
BMW and a Volkswagen - this is exactly a multicriteria or multiobjective
optimization problem. Actually, when we solve a problem of this kind, the
main point is to collect - or create - a set of solutions where the decision-
maker - you in the case of the car, the government in the case of taxation
and so on - can find the suitable alternative(s). In fact, it is not necessarily
true that the solution is one and only one; genuinely, for decision-makers
it is better to have a range of alternatives rather than only one restrictive
solution.

It is exactly here that issues starting arise. First of all, the creation of
this set of optimal alternatives is not so easy as it seems to be; in some
situations, the problem may display features that are not good for finding
this set, such as non-convexities or disconnections. In addition to this, the
multicriteria optimization problem may not be so easy to be solved and may
presents some properties that are not very good for the analysis. For the
latter reasons, we usually look at a “modified” version of the problem rather
to the original one. The ways of “modifying” a multiobjective optimization
problem can be divided into scalarized and non-scalarized methods: to the
first group belongs the well-known weighted sum method, while a second-
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group member is the lexicographic method. Since both groups are made by
tons of techniques, we concentrate only on the former group and on some
particular methods.

Therefore, we briefly introduce what a multicriteria optimization problem
is, also thanks to many examples, and we establish the concept of cone and of
ordering through a cone, since this is useful for the following sections. Then
we give a definition of efficient and nondominated points, by looking at their
properties and features. The core of the work is in the second part. We
start by introducing the broad-used weighted sum method, the most famous
and adopted scalarization technique to solve a multiobjective optimization
problem. Then we introduce the ε-constraint and the hybrid method, tight
connected to the previous method. As we will highlight, the weighted sum
method has many positive features - among which, the simplicity - but it has
many weaknesses; for this reason, we study the Pascoletti-Serafini method
that can be seen as a generalization of all the previous methods and that it
does not only point out the pitfalls of the already presented methods, but it
also overcomes them with its generality. Last but not least, we give a brief
sketch of the new scalarization technique proposed by Burachik et al.
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Chapter 1

Multicriteria Optimization

Life is generally made by decision making, choices and compromises, and
usually we look for the best outcome among these factors, that it to say the
optimal alternative that maximizes all of them. The problem here is the
conflict (even only partial) between many objectives and goals. We are not
only speaking about planning and pricing production systems, but also de-
signing bridges, spacecraft or managing pollution problem, and even simpler
problem like choosing a cellular phone, a car, a dress. In this framework, the
traditional methods of single objective optimization are not enough and we
need new methods for nonlinear multiobjective optimization.

Problems with multiple objectives and criteria are known as multiplecrite-
ria optimization or multiplecriteria decision-making problems. According to
MacCrimmon (1973), depending on the properties of the feasible solutions,
we distinguish between multiattribute decision analysis and multiobjective
optimization. In multiattribute decision analysis, the set of feasible alterna-
tive is discrete, finite and known. Possible examples are the selection of the
locations of power plants and dumping sites or the purchasing of cars. In
multiobjective optimization problems, the feasible alternatives are not known
in advance, there exists an infinite number of them and they are represented
by decision variables restricted by constraint functions. Our discussion will
concentrate on the latter.
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1.1 Notations, optimality, orders and cones

The multicriteria optimization is born from the necessity of finding an “opti-
mal” solution suggested by criteria, i.e. the solution that satisfies all decision-
makers under the considered constraints, when it is not possible to attain the
“best” alternative. Consider some examples to clarify the idea.

Example 1.1 A firm would like to maximize profits by fixing a level of pro-
duction compatible with its budget constraints. At the same time, it is in-
terested in maximizing investments in publicity and physical capital. Those
objectives are not comparable and in conflict, since a decision to lower the
investment in publicity could permit to build more plants (more physical cap-
ital) and/or buy more raw materials (more production and more profits).

Example 1.2 Suppose you are a businessman and you want to buy a com-
puter; you can choose among an iMac, a MacBook Pro, an HP Envy TouchS-
mart and a HP PC All-in-One G1. A decision is taken by considering price,
processor and portability. You prefer a cheap powerful notebook since you
have to travel a lot for work. In this case you have four possible alternatives
and three criteria. The problem is that the most powerful computer with the
best performance is also the most expensive and it is a desktop computer,
while if you choose to take the cheapest one, you will have to sacrifice per-
formance and again portability. Of course, if you base your decision only
on one criterium, e.g. the processor, you will end up with a simple decision
problem and subsequent simple solution, i.e. an iMac.

Example 1.3 Consider the following maximization problem over the non-
negative real line

“ max ”
x∈X

(f1(x), f2(x)) (1.1)

The criteria or objective functions are

f1(x) = −
√
x+ 2 and f2(x) = 8x− x2 + 16. (1.2)

and plotted in Figure 1.1. For each function individually the corresponding
maximizers for f1(x) and f2(x) are x1 = 0 and x2 = 4, respectively.

Take Example 1.2, where we consider as a key criteria for the choice only
the price and the portability. The set X = {iMac, MacBook Pro, HP Envy
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f2 (x) = 8x - x
2 +16

f1(x)= - x+2

Figure 1.1: Objective functions of Example 1.3

TouchSmart, HP PC All-in-One G1} is the set of alternatives of the decision
problem, or feasible set, and it is a subset of the decision space.

Denote price with f1 and portability with f2, the mapping fi : X → R are
criteria or objective functions and the optimization problem can be written
as follows:

“ max ”
x∈X

(f1(x), f2(x)) (1.3)

The image of X under f = (f1, f2) is denoted by Y := f(X ) := {y ∈ R2 :
y = f(x) for some x ∈ X}and it is called image of the feasible set, or the
feasible set in the criterion space. The space from which the criterion values
are taken is called criterion space.

To make it even clearer, take Example 1.3. Here the feasible set is

X = {x ∈ R : x ≥ 0} (1.4)

and the objective functions are

f1(x) = −
√
x+ 2 and f2(x) = 8x− x2 + 16. (1.5)

The decision space is R since X ∈ R, while the criterion space is R2

because f(X ) ⊂ R2. To find the image space of the feasible set in criterion
space we substitute y1 for f1(x) and y2 for f2(x) to obtain x = (y1)2 − 2.
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Therefore, we get y1 = −
√
x+ 2 by solving for x and we obtain y2 = 12(y1)2−

y2
1 − 4 by substituting the definition of y1.

Computing the maximum of y2 as a function of y1, the efficient solutions
x ∈ [0, 2] are equivalent to values of y1 = f1(x) ∈ [

√
2,
√

6] and y2 = f2(x) ∈
[16, 32]. The points of y2(y1) with

√
2 ≤ y1 ≤

√
6 and 16 ≤ y2 ≤ 32

are called nondominated points and they represent the image of the set of
efficient points.

Through those examples, we see that we often have many efficient so-
lutions of a multicriteria optimization problem and a final choice has to be
made among different efficient outcomes. The first problem that must be
solved is the definition what we mean by saying minimize or maximize many
objective functions. Although finding an efficient solution is one of the most
common form of optimization, this point is crucial and for this reason until
now we use the notation “max”. Consider the following example.

Example 1.4 Suppose we want to maximize both x1 and x2 of a circle with
unitary ray

max (x1, x2)

subject to x2
1 + x2

2 ≤ 1
(1.6)

Obviously, if we maximize for x1 (x1 = 1), we cannot maximize for x2 and
viceversa.

Example 1.5 Suppose we want to minimize both x1 and x2 of a circle with
unitary ray

min (x1, x2)

subject to x2
1 + x2

2 ≥ 4
(1.7)

Obviously, if we minimize for x1 (x1 = 4), we cannot minimize for x2 and
viceversa.

Rational agents try to find the “best” solution over the set of feasible alter-
natives; but what do we mean for “best”?

In economics, the concept of “best” arises both in microeconomics, where
decisions are taken by consumers and firms, and macroeconomics, where we
have to optimize many criteria such as welfare of society and revenues of
the government. An example is taxation: the government has to extract a
certain amount of money to finance itself, but at the same time it must not
disincentive people from working.
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One of the first that dealt with those kind of tradeoffs was Francis Y.
Edgeworth. For the first time, he defined the concept of optimum for multi-
criteria economic decision making, considering a multiutility problem where
the consumer has two criteria, P and Π (Edgeworth, 1881):

It is required to find a point (xy) such that, in whatever direction
we take an infinitely small step, P and Π do not increase together,
but that, while one increases, the other decreases.

Historically, probably the most popular solution concept is that of a con-
temporary of Edgeworth, the Pareto optimality. Indeed, using the words by
Pareto (Pareto, 1906):

Diremo che i componenti di una collettività godono, in una certa
posizione, del massimo di ofelimità, quando è impossibile allon-
tanarsi pochissimo da quella posizione giovando, o nuocendo, a
tutti i componenti la collettività; ogni piccolissimo spostamento
da quella posizione avendo necessariamente per effetto di giovare
a parte dei componenti la collettività e nuocere ad altri 1.

Loosely speaking, a feasible solution is Pareto optimal if there is no other
solution that is strictly better in one objective without being worse in an-
other. However, the first sentence of the definition of maximum ophelimity
at equilibrium contains an ambiguous passage, leading to a very carelessly
definition:

In such a manner that the ophelimity enjoyed by each of the
individuals of that collectivity increases or decreases.

It may be thought that this is the result of a bad translation from Italian,
but even adopting another translation such as “so as to benefit, or harm,

1In the English translation (Pareto, 1971):

We will say that the members of a collectivity enjoy maximum ophelimity in
a certain position when it is impossible to find a way of moving from that
position very slightly in such a manner that the ophelimity enjoyed by each of
the individuals of that collectivity increases or decreases. That is to say, any
small displacement in departing from that position necessarily has the effect of
increasing the ophelimity which certain individuals enjoy, and decreasing that
which others enjoy, of being agreeable to some and disagreeable to others.
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all the members of the community”, the problem still remains and it is in
the “or harm” part of the sentence. Similar wording can be found also in
the Appendix of the Manuel. The second part of the definition excludes the
possibility that all might be harmed, instead. Among the various reviews
written about the Manuel by Pareto, the critical one written by Knut Wick-
sell (1913) for Zeitschrift für Volkswirtschaft, Sozialpolitik und Verwaltung is
crucial for understanding this point.

He focused principally on the mathematical appendix and he concluded
that “many truths are not new [...] and that most of the really new regret-
tably is not true”. In particular, for what concerned the ambiguous sentence,
Wicksell stated:

The last adjunct sounds strange, for if the attained utility benefits
cannot be decreased either, then one could just as well speak of
a minimum d’ophélimité.

The problem is that Pareto did not have in hand the mathematical con-
cept of quasi-concavity, needed for the general proof. He simply relied on
concavity of the utility (ophelimity) function. According to Bergson (1948),
it was left to Barone (1908) to give a correct definition of equilibrium concept,
introduced by Pareto. Barone wrote:

It must be impossible by any allocation of resources to enhance
the welfare of one household without reducing that of another.

As we can see, this is the definition usually used; consider again Example
1.4: each point on the arch AB with A = (0, 1) and B = (1, 0) is an optimal
solution in the sense of Pareto because we cannot increases x1 without making
worse off x2 and viceversa.

While in the economic theory, multiobjective optimization problems have
arisen first as maximization problems, in management science and in opti-
mization theory, more attention have been devoted to minimization problems.
In what follows we will refer to the latter ones; recalling that max f(x) =
−min−f(x) the presented results can be easily translated even for maxi-
mization problems.

Going back to the definition of minimization in a multiobjective frame-
work, it is also possible that we are interested in assigning a priority among
objectives, that is to say having a ranking among the objectives; e.g. we
assign the first priority to the objective f1, second priority to f2 and so on,
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and an optimal solution of the problem is obtained by minimizing firstly the
function f1 and subsequently f2 on the optimal solutions set of f1, and so on
i.e.:

You solve the problem P1 : min f1(x), x ∈ S and let S1 the set of
optimal solutions of P1.

You solve the problem P2 : min f2(x), x ∈ S1 and let S2 the set of
optimal solutions of P2.

You solve the problem Pp : min fm(x), x ∈ Sp−1 and let Sp the set
of optimal solutions of Pp.

Every x ∈ Sp is a solution of the problem min(f1(x), . . . , fp(x))x ∈
S.

If we do not want to exclude any objective, we can judge each single
objectives through weights, i.e. you define p1 > 0, p2 > 0, . . . , pp > 0 and
consider the problem min(p1f1(x) + p2f2(x) + . . . + ppfp(x)), x ∈ S. With
p1 < p2 < . . . < pp we give “more importance” to the first objective than
the second one, the second one with respect to the third one, and so on.

Finally, we may think that for each value of the objective functions, we get
a certain level of “cost” C; in this way, we obtain a function C(f1(x), . . . , fp(x))
and we may be interested in minimizing C 2 (if the cost function is linear,
then we end up with the previous case).

In order to define the meaning of “min” (“max”), we need to define how
objective function vectors (f1(x), . . . , fp(x)) have to be compared for different
alternatives x ∈ X : what do I have to consider to choose between an iMac
and a PC: price, processor and/or portability?

In fact, from an analytical point of view, there is no doubt about the
meaning of min f(x), x ∈ S, (max f(x), x ∈ S) while doubts arise about the
meaning of min(f1(x), f2(x)), x ∈ S (max(f1(x), f2(x)), x ∈ S).

In the first case f(x) is a number and we have to determine the minimum
(maximum) element for all possibile values taken by the function on the
domain S. In R we have a complete order, i.e. a relation that, for every
x, y ∈ R, we have x ≤ y or y ≤ x; the minimum (maximum) element of a
subset A of R is the number M such that a ≤M,∀a ∈ A.

2In the case of maximization problems, we refer to a certain level of satisfaction or
“utility”; we obtain a function U(f1(x), . . . , fp(x)) and we may be interested in maximizing
U .

15



In the second case (f1(x), f2(x)) is a couple of numbers. Here arises the
question about how couple of numbers can be ordered and we can determine
the minimum (maximum) element in a subset of Rp, p ≥ 2 where there is no
canonical order as on R. Definitions of order have to be introduced for this
purpose.

Let S be any set. A binary relation on S is a subset of R of S × S.

Definition 1.6 A binary relation R on S has the following properties:

• reflexive: if (s, s) ∈ R for all s ∈ S,

• irreflexive: if (s, s) /∈ R for all s ∈ S,

• symmetric: if (s1, s2) ∈ R =⇒ (s2, s1) ∈ R for all s1, s2 ∈ S,

• asymmetric: if (s1, s2) ∈ R =⇒ (s2, s1) /∈ R for all s1, s2 ∈ S,

• antisymmetric: if (s1, s2) ∈ R and (s2, s1) ∈ R =⇒ s1 = s2 for all
s1, s2 ∈ S,

• transitive: if (s1, s2) ∈ R and (s2, s3) ∈ R =⇒ (s1, s3) ∈ R for all
s1, s2, s3 ∈ S,

• negatively transitive: if (s1, s2) /∈ R and (s2, s3) /∈ R =⇒ (s1, s3) /∈ R
for all s1, s2, s3 ∈ S,

• connected or complete: if (s1, s2) ∈ R or (s2, s1) ∈ R for all s1, s2 ∈ S
with s1 6= s2.

Definition 1.7 A binary relation R on S is

• an equivalence relation if it is reflexive, symmetric, and transitive,

• a preorder (quasi-order) if it is reflexive and transitive.

For (s1, s2) ∈ R we can also write s1Rs2. We write s1 � s2 for (s1, s2) ∈ R
and s1 � s2 for (s1, s2) /∈ R.

Given any preorder �, we can define other two relations:

s1 ≺ s2 :⇐⇒ s1 � s2 and s1 � s2, (1.8)

s1 ∼ s2 :⇐⇒ s1 � s2 and s2 � s1. (1.9)

where ≺ is the strict preference relation and ∼ is the indifference relation.
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Definition 1.8 A binary relation � on S is

• a total preorder if it is reflexive, transitive, and connected,

• a total order if it is an antisymmetric total preorder,

• a strict weak order if it is asymmetric and negatively transitive.

Remark 1.9 For some authors, reflexive and connected is meant to be com-
plete.

Example 1.10 In R the relation: aRb ⇔ b − a ≥ 0 (i.e. the order a ≥ 0)
is a total order. The relation aR1b⇔ b− a > 0 is only transitive.

Example 1.11 (Lexicographic order) Define on R2 the following rela-
tion

(x1, y1)R(x2, y2) if x1 < x2 or x1 = x2, y1 ≤ y2.

This is a total order and the relation can be rewritten as follow

(x1, y1) < (x2, y2) if x1 < x2 or x1 = x2, y1 < y2,

(x1, y1) = (x2, y2) if x1 = x2 y1 = y2.

From a geometric point of view, fixing a point (a, b), the couple (x, y) such
that (a, b) < (x, y) are represented by the neither close nor open half-plane
Γ+ = {(x, y) : x > a or x− a and y ≥ b} (Figure 1.2).

The most important classes of relations in multicriteria optimization are
partial orders and strict partial orders.

Definition 1.12 A binary relation � is said to be

• a partial order if it is reflexive, transitive, and antisymmetric,

• a strict partial order if it is antisymmetric and transitive.

Example 1.13 In the set of positive integers consider the relation: aRb if
a divides b that is if b is a multiple of a, i.e.

17
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Figure 1.2: Examples of lexicographic orders

aRb⇔ b = ka, k ≥ 1.

For example 2R6 since 6 = 3 · 2. We can easily verifies that this a partial
and not total order. In fact,

1. it is reflexive aRa since a = 1 · a,

2. it is antisymmetric, i.e. if aRb and bRa, then b = ka and a = hb, from
which we get b = (kh)b, and this is true if kh = 1 that, in the set of
positive integers, implies k = h = 1; it follows that a = b,

3. it is transitive: if aRb and bRc, that is if b = ka and c = hb, then
c = (kh)a from which it follows that aRc,

4. it is not connected because, for example, 3 and 7 are not ”comparable”,
that is it is false either the relation 3R7, as 7 is not multiple of 3, or
the relation 7R3.
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As a consequence, this relation is a partial order.

Example 1.14 In the set of rectangles on the plane, consider the relation:

R1RR2 if the area of R1 is lower or equal than the area of rectangle R2.

This relation is not antisymmetric as two rectangle having the same area are
not necessarily equal. This implies that it is not a partial order and neither
a total order.

Example 1.15 On R2 define the relation

(x1, y1) ≤ (x2, y2) if x1 ≤ x2, y1 ≤ y2 and (x1, y1) < (x2, y2)

when at least one of the two previous inequalities is strictly verified.
It is easy to verify that this is a partial and not total order because, for

example, couples like (2, 3) and (5, 1) cannot be compared with respect to the
given relation.

Geometrically, all elements (x, y) such that (a, b) ≤ (x, y) with (a, b)
fixed, belong to the cone of vertex (a, b) obtained by translating in (a, b) the
cone R2

+.

Example 1.16 Consider all the possible investments that can be done on two
types of shares A and B. Be x the quantity invested on A and y the quantity
invested on B for the generic investment I. As a convention, if x > 0, y > 0
we have a purchase of shares, while x < 0, y < 0 means a sell of shares.

If I1 = (x1, y1) and I2 = (x2, y2) are two investments, express a ”prefer-
ence” through as follows

I1RI2 if y1 ≤ y2, and x1 + y1 ≤ x2 + y2.

The relation y1 ≤ y2 expresses the idea that the quantity of shares of type
B in the first investment must not exceed the quantity of shares of type B in
the second one; the relation x1 + y1 ≤ x2 + y2 expresses the fact that the total
amount invested in I1 must not exceed the amount invested on I2.

If I0 = (a, b) is a generic investment, the set of preferred investments with
respect of I0 is given by the cone C = {(x, y) : x + y ≥ a + b, y ≥ b}. This a
partial order, but not a total one.

As shown in the examples, a partial order in Rp can be represented thor-
ough a cone.
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Definition 1.17 A subset C ⊆ Rp is called cone, if αd ∈ C for all d ∈ C and
for all α ∈ R, α > 0.

Example 1.18 An example of cone is given by the nonnegative orthant and
it is the cone of all those vectors which have nonnegative entries (Figure 1.3)

C = {x ∈ Rn : x ≥ 0}.

x

y

x ≥ 0

Figure 1.3: C = {x ∈ Rn : x ≥ 0}

Generally, if C = Rn+, we get an order “component by component” on
the n-dimensional space. This order corresponds to the concept of optimal
solution introduced by Pareto; in fact, Rn is also called Pareto cone (Figure
1.4).

Figure 1.4: C = R2
+

Another example is given by the so called ice cream cone or Lorentz cone
or second-order cone. It is the cone C defined over Rn such that

C = {x ∈ Rn :
√
x2

1 + . . . + x2
n−1 ≤ xn}

20



Figure 4: The Lorentz Cone in R3.

This property is not just a mathematical curiosity but allows, as can be seen in the next

definition, an elegant formulation of conic programmes reminiscent of linear programmes.

Definition 3.5. A conic programme is a mathematical programme of the form:

min
x2Rn

cT x

subject to Ax = b

x ⌫C 0 (x 2 C)

This, in e↵ect, says that a conic programme is just the minimisation (or maximisation) of a

linear function over a conic section (that is, the intersection of a cone and an a�ne subspace).

Now, as mentioned in the introduction, a powerful property of conic programmes is that

any convex programme can be reformulated as one:

Proposition 3.6. Any convex programme can be written as a conic programme.

Proof. From the end of Section 2 we know that convex programmes can be written in the

following form:

min
x2Rn

cT x

subject to x 2G

where G is a convex feasible region. Now embed Rn into Rn+1 as the hyperplane ⇤ = {1}⇥Rn ⇢
Rn+1 and define a proper cone in Rn+1 as follows:

K = cl({(t, x) 2 Rn+1 :
x

t
2 G})

where cl stands for the standard Euclidean closure. Notice that x 2 G , (1, x) 2 K. Now

setting d =
�
0
c

�
, we can write the above convex programme as the following conic programme:

min
(t,x)2Rn+1

dT x

subject to x 2 ⇤ \ K

6

Figure 1.5: The Lorentz Cone in R3

Example 1.19 By referring to our previous examples, we can see how orders
can be represented through cones.

In R2, if we choose the following cone

C = R2
+ = {(x, y) : x ≥ 0, y ≥ 0},

we get the order of Example 1.15, plotted in Figure 1.6.
Instead, if we take the cone C = {(x, y) : y ≥ 0, x + y ≥ 0}, we get the

order of Example 1.16. It is represented in Figure 1.7.
By taking C = {(x, y) : x > 0} ∪ {(x, y) : x = 0, y ≥ 0}, we obtain the

lexicographic order of Example 1.11 (Figure 1.8).

Let S, S1, S2 ⊂ Rp and α ∈ R. The multiplication of a set with a scalar
is

αS1 := {αs : s ∈ S}, (1.10)

with −S = { −s : s ∈ S }. The algebraic sum of S1 and S2 is given by

S1 + S2 := {s1 + s2 : s1 ∈ S1, s
2 ∈ S2}. (1.11)

Definition 1.20 A cone C in Rp is

• nontrivial or proper if C 6= ∅ and C 6= Rn,

• convex if αd1 + (1− α)d2 ∈ C for all d1, d2 ∈ C and for all 0 < α < 1,

• pointed if for d ∈ C, d 6= 0,−d /∈ C, i.e., C ∩ (−C) ⊆ {0}.

• acute if there exists an open half space Hα = {x ∈ Rp : 〈x a〉 > 0} such
that clC ⊂ Hα ∪ {0}.
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x

y

x ≥ 0, y ≥ 0

Figure 1.6: Order of Example 1.15

x

y

x + y ≥ 0, y ≥ 0

Figure 1.7: Order of Example 1.16

x

y

x > 0{ }∪ x = 0, y ≥ 0{ }

Figure 1.8: Order of Example 1.11
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Remark 1.21 If C is acute, then it is pointed.
Suppose not. Then there exists d ∈ C : −d ∈ C. Since C is acute, then there
exists α such that αx > 0, ∀x ∈ C; but if αd > 0, then α(−d) < 0 and this
cannot be true.
The viceversa is not necessarily true, i.e. C is pointed then it is also acute,
because, by considering the lexicographic order given by

C = {(x, y) :∈ R2 : x > 0}
⋃
{x = 0, y > 0},

it is easy to see that there does not exist α ∈ R\{0} such that αx > 0,∀x ∈ C.

Proposition 1.22 Let C ⊆ Rp be a cone. Then C is convex if and only if
∀d1, d2 ∈ C, d1 + d2 ∈ C.

Proof. Assume that C is a convex cone.
If d1, d2 ∈ C, then ∀α ∈ [0, 1], αd1 + (1− α)d2 ∈ C given the convexity of

C. Take α = 1
2
, then 1

2
d1 + 1

2
d2 ∈ C ⇒ 1

2
(d1 + d2) ∈ C. If z = 1

2
(d1 + d2) ∈ C,

then kz ∈ C,∀k > 0. Take k = 2⇒ d1 + d2 ∈ C.
Now assume that C is a cone. Take d1 ∈ C ⇒ αd1 ∈ C and d2 ∈ C ⇒

(1−α)d2 ∈ C, then αd1 + (1−α)d2 ∈ C. The graphical representation of the
proof is given in Figure 1.9

d1

d2

d1 + d2

Figure 1.9: Proof of Proposition 1.22
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Given an order relation R on Rp, we can define a set

CR := {y2 − y1 : y1Ry2}, (1.12)

that is to say the set of nonnegative elements of Rp according toR. Shown
below there are some relationships between the properties of CR and R.

Proposition 1.23 Let R be compatibile with scalar multiplication, i.e., for
all (y1, y2) ∈ R and all α ∈ R> it holds that (αy1, αy2) ∈ R. Then CR defined
in (1.12) is a cone.

In order to say that CR(y), y ∈ Rp does not depend on y, we must be able
to say that R is compatible with addition, i.e. R is said to be compatible
with addition if (y1 + z, y2 + z) ∈ R for all z ∈ Rp and all (y1, y2) ∈ R. The
independence from y follows from Lemma 1.37.

Lemma 1.24 If R is compatibile with addition and d ∈ CR then 0Rd.

Compatibility with addition of relations is useful for further results.

Theorem 1.25 Let R be a binary relation on Rp which is compatible with
scalar multiplication and addition. Then the following statements hold.

1. 0 ∈ CR if and only if R is reflexive.

2. CR is pointed if and only if R is antisymmetric.

3. CR is convex if and only if R is transitive.

Until now we have defined a cone CR given a relation R, but we can use
a cone to define an order relation. Let C be a cone and define RC by

y1Ry2 ⇐⇒ y2 − y1 ∈ C. (1.13)

Proposition 1.26 Let C be a cone. Then RC define in (1.13) is compatible
with scalar multiplication and addition in Rp.

Theorem 1.27 Let C be a cone and RC be as defined in (1.13). Then the
following statements hold.

1. RC is reflexive if and only if 0 ∈ C.

2. RC is antisymmetric if and only if C is pointed.

3. RC is transitive if and only if C is convex.
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1.2 Efficiency and nondominance

Consider the multicriteria optimization problem of the kind:

min
x∈X

(f1(x), . . . , fp(x)) (1.14)

where the image of the feasible set X under the objective mapping f
is Y := f(X ). In order to present the concepts of efficient solution and
of nondominated point, throughout this dissertation, we will refer to the
following notations:

1. f(x) 5 f(x̂) means that fi(x) ≤ fi(x̂) for every i;

2. f(x) ≤ f(x̂) means that fi(x) ≤ fi(x̂) for every i and f(x) 6= f(x̂);

3. f(x) < f(x̂) means that fi(x) < fi(x̂) for every i.

Definition 1.28 A feasible solution x̂ ∈ X is called efficient or Pareto op-
timal, if there is no other x ∈ X such that f(x) ≤ f(x̂). If x̂ is efficient,
f(x̂) is a nondominated point. If x1, x2 ∈ X and f(x1) ≤ f(x2) we say x1

dominates x2 and f(x1) dominates f(x2). The sets of all efficient solutions
x̂ ∈ X is denoted XE and called the efficient set. The set of all nondom-
inated points ŷ = f(x̂) ∈ Y, where x̂ ∈ XE, is denoted YN and called the
nondominated set.

There are other equivalent definitions of efficiency. Indeed, x̂ is efficient
if

1. there is no x ∈ X such that fk(x) ≤ fk(x̂) for k = 1, . . . , p and fi(x) <
fi(x̂) for some i ∈ {1, . . . , k};

2. there is no x ∈ X such that f(x)− f(x̂) ∈ −Rp= \ {0};

3. f(x)− f(x̂) ∈ Rp \ −{Rp= \ {0}} for all x ∈ X ;

4. f(X ) ∩ (f(x̂)− Rp=) = {f(x̂)}};

5. there is no f(x) ∈ f(X ) \ {f(x̂)} with f(x) ∈ f(x̂)− Rp=;

6. f(x) 5 f(x̂) for some x ∈ X implies f(x) = f(x̂).
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40 2 Efficiency and Nondominance

The essential difference as compared to the proofs of Theorems 2.10 and
2.12 is that in those theorems we deal with sets y−Rp

! which are closed. Here,

we have sets y + Rp
> which are open. Note that y /∈ y + Rp

>.
Theorem 2.25 and continuity of f can now be used to prove existence of

weakly efficient solutions.

Corollary 2.26. Let X ⊂ Rn be nonempty and compact. Assume that f :
Rn → Rp is continuous. Then XwE ̸= ∅.

Proof. The result follows from Theorem 2.19 and XE ⊂ XwE or from Theorem
2.25 and the fact that f(X ) is compact for compact X and continuous f . ⊓(

As indicated earlier, the inclusion YN ⊂ YwN is in general strict. The
following example shows that YwN can be nonempty, even if YN is empty,
and also, of course, if Y is not compact. It also illustrates that YwN \ YN

might be a rather large set.

Example 2.27. Consider the set

Y =
{

(y1, y2) ∈ R2 : 0 < y1 < 1, 0 ≤ y2 ≤ 1
}

. (2.21)

Then YN = ∅ but YwN = (0, 1)×{0} = {y ∈ Y : 0 < y1 < y2, y2 = 0} (Figure
2.9).
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Fig. 2.9. YN is empty, YwN is not.

Let us now look at the closed square, i.e.

Y = {(y1, y2) ∈ R2 : 0 ≤ yi ≤ 1}. (2.22)

We have YN = {0} and YwN = {(y1, y2) ∈ Y : y1 = 0 or y2 = 0}. (Figure
2.10)

⊓(

98 4 Scalarization Techniques

• If x̂ ∈ XpE then there is some λ > 0 such that x̂ is an optimal solution
of (4.2).

• If x̂ ∈ XwE then there is some λ ≥ 0 such that x̂ is an optimal solution
of (4.2).

For nonconvex problems, however, it may work poorly. Consider the fol-
lowing example.

Example 4.2. Let X = {x ∈ R2
! : x2

1 + x2
2 ≥ 1} and f(x) = x. In this case

XE = {x ∈ X : x2
1 + x2

2 = 1}, yet x̂1 = (1, 0) and x̂2 = (1, 0) are the only
feasible solutions that are optimal solutions of (4.2) for any λ ≥ 0.
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Fig. 4.1. The weighted sum method fails for nonconvex problems.

⊓$

In this chapter we introduce some other scalarization methods, which are
also applicable when Y is not Rp

!
-convex.

4.1 The ε-Constraint Method

Besides the weighted sum approach, the ε-constraint method is probably the
best known technique to solve multicriteria optimization problems. There is no
aggregation of criteria, instead only one of the original objectives is minimized,
while the others are transformed to constraints. It was introduced byHaimes
et al. (1971), and an extensive discussion can be found in Chankong and
Haimes (1983).

We substitute the multicriteria optimization problem (4.1) by the ε-
constraint problem
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Fig. 4.1. The weighted sum method fails for nonconvex problems.
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also applicable when Y is not Rp
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-convex.

4.1 The ε-Constraint Method

Besides the weighted sum approach, the ε-constraint method is probably the
best known technique to solve multicriteria optimization problems. There is no
aggregation of criteria, instead only one of the original objectives is minimized,
while the others are transformed to constraints. It was introduced byHaimes
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consist of isolated points. We will then proceed to prove some basic properties
of nondominated sets, before we present several existence theorems for efficient
solutions/nondominated points. Results on connectedness of YN and XE will
be given in Chapter 3.

Example 2.2 (Göpfert and Nehse (1990)). Consider a bicriterion optimization
problem with feasible set

X =

⎧

⎪
⎨

⎪
⎩

(x1, x2) ∈ R2

∣
∣
∣
∣
∣
∣
∣

−1 ≤ x1 ≤ 1,

−
√

−x2
1 + 1 < x2 ≤ 0 if −1 ≤ x1 ≤ 0,

−
√

−x2
1 + 1 ≤ x2 ≤ 0 if 0 < x1 ≤ 1

⎫

⎪
⎬

⎪
⎭

(2.2)

and objective function

f(x1, x2) = (x1, x2). (2.3)

The feasible sets X in decision space and Y in criterion space (the latter
coincides with X in this example) are depicted in Figure 2.2.

Clearly, there are no nondominated points, and therefore the bicriterion
problem given by (2.2) and (2.3)does not have any efficient solutions: YN =
XE = ∅, even though X and Y are convex and f is continuous.

If we modify the problem slightly by letting

X =

⎧

⎪
⎪
⎪
⎨

⎪⎪
⎪
⎩

(x1, x2) ∈ R2

∣
∣
∣
∣
∣
∣
∣
∣
∣

−1 ≤ x1 ≤ 1,
x2 = 0 if x1 = −1,

−
√

−x2
1 + 1 < x2 ≤ 0 if −1 < x1 < 0,

−
√

−x2
1 + 1 ≤ x2 ≤ 0 if 0 ≤ x1 ≤ 1

⎫

⎪
⎪
⎪
⎬

⎪⎪
⎪
⎭

(2.4)
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coincides with X in this example) are depicted in Figure 2.2.

Clearly, there are no nondominated points, and therefore the bicriterion
problem given by (2.2) and (2.3)does not have any efficient solutions: YN =
XE = ∅, even though X and Y are convex and f is continuous.

If we modify the problem slightly by letting

X =

⎧

⎪
⎪
⎪
⎨

⎪⎪
⎪
⎩

(x1, x2) ∈ R2

∣
∣
∣
∣
∣
∣
∣
∣
∣

−1 ≤ x1 ≤ 1,
x2 = 0 if x1 = −1,

−
√

−x2
1 + 1 < x2 ≤ 0 if −1 < x1 < 0,

−
√

−x2
1 + 1 ≤ x2 ≤ 0 if 0 ≤ x1 ≤ 1

⎫

⎪
⎪
⎪
⎬

⎪⎪
⎪
⎭

(2.4)

Figure 1.10: Representation of Definition 1., 4., and 5.
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The essential difference as compared to the proofs of Theorems 2.10 and
2.12 is that in those theorems we deal with sets y−Rp

! which are closed. Here,

we have sets y + Rp
> which are open. Note that y /∈ y + Rp

>.
Theorem 2.25 and continuity of f can now be used to prove existence of

weakly efficient solutions.

Corollary 2.26. Let X ⊂ Rn be nonempty and compact. Assume that f :
Rn → Rp is continuous. Then XwE ̸= ∅.

Proof. The result follows from Theorem 2.19 and XE ⊂ XwE or from Theorem
2.25 and the fact that f(X ) is compact for compact X and continuous f . ⊓(

As indicated earlier, the inclusion YN ⊂ YwN is in general strict. The
following example shows that YwN can be nonempty, even if YN is empty,
and also, of course, if Y is not compact. It also illustrates that YwN \ YN

might be a rather large set.

Example 2.27. Consider the set

Y =
{

(y1, y2) ∈ R2 : 0 < y1 < 1, 0 ≤ y2 ≤ 1
}

. (2.21)

Then YN = ∅ but YwN = (0, 1)×{0} = {y ∈ Y : 0 < y1 < y2, y2 = 0} (Figure
2.9).
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Fig. 2.9. YN is empty, YwN is not.

Let us now look at the closed square, i.e.

Y = {(y1, y2) ∈ R2 : 0 ≤ yi ≤ 1}. (2.22)

We have YN = {0} and YwN = {(y1, y2) ∈ Y : y1 = 0 or y2 = 0}. (Figure
2.10)
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consist of isolated points. We will then proceed to prove some basic properties
of nondominated sets, before we present several existence theorems for efficient
solutions/nondominated points. Results on connectedness of YN and XE will
be given in Chapter 3.

Example 2.2 (Göpfert and Nehse (1990)). Consider a bicriterion optimization
problem with feasible set
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⎪
⎭

(2.2)

and objective function

f(x1, x2) = (x1, x2). (2.3)

The feasible sets X in decision space and Y in criterion space (the latter
coincides with X in this example) are depicted in Figure 2.2.

Clearly, there are no nondominated points, and therefore the bicriterion
problem given by (2.2) and (2.3)does not have any efficient solutions: YN =
XE = ∅, even though X and Y are convex and f is continuous.

If we modify the problem slightly by letting
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solutions/nondominated points. Results on connectedness of YN and XE will
be given in Chapter 3.
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The feasible sets X in decision space and Y in criterion space (the latter
coincides with X in this example) are depicted in Figure 2.2.

Clearly, there are no nondominated points, and therefore the bicriterion
problem given by (2.2) and (2.3)does not have any efficient solutions: YN =
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Figure 1.11: Representation of Definition 2. and 3.

Definition 1.28 is equivalent to definitions 1., 4., and 5.: take f(x̂) and
check for images of feasible solutions to the right and above of that point.

Equivalent definitions as 2. and 3. through f(x) − f(x̂) translated the
set Y = f(X ) so that the origin coincides with f(x̂), and the intersection of
the translated set Y with the negative orthant is checked. This intersection
contains only f(x̂) if x̂ is efficient.

Nondominated points are defined by the componentwise order on Rp, but
when we use the weak and strict componentwise order, we get definitions of
strictly and weakly nondominated points.

Definition 1.29 A feasible solution x̂ ∈ X is called weakly efficient or
weakly Pareto optimal if there is no other x ∈ X such that f(x) < f(x̂),

26



i.e. fk(x) < fk(x̂) for all k = 1, . . . , p. The point ŷ = f(x̂) is called weakly
nondominated.
A feasible solution x̂ ∈ X is called strictly efficient or strictly Pareto optimal
if there is no other x ∈ X , x 6= x̂ such that f(x) 5 f(x̂). The weakly (strictly)
efficient and nondominated sets are XwE (XsE) and YwN , respectively.

98 4 Scalarization Techniques

• If x̂ ∈ XpE then there is some λ > 0 such that x̂ is an optimal solution
of (4.2).

• If x̂ ∈ XwE then there is some λ ≥ 0 such that x̂ is an optimal solution
of (4.2).

For nonconvex problems, however, it may work poorly. Consider the fol-
lowing example.

Example 4.2. Let X = {x ∈ R2
! : x2

1 + x2
2 ≥ 1} and f(x) = x. In this case

XE = {x ∈ X : x2
1 + x2

2 = 1}, yet x̂1 = (1, 0) and x̂2 = (1, 0) are the only
feasible solutions that are optimal solutions of (4.2) for any λ ≥ 0.
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Fig. 4.1. The weighted sum method fails for nonconvex problems.

⊓$

In this chapter we introduce some other scalarization methods, which are
also applicable when Y is not Rp

!
-convex.

4.1 The ε-Constraint Method

Besides the weighted sum approach, the ε-constraint method is probably the
best known technique to solve multicriteria optimization problems. There is no
aggregation of criteria, instead only one of the original objectives is minimized,
while the others are transformed to constraints. It was introduced byHaimes
et al. (1971), and an extensive discussion can be found in Chankong and
Haimes (1983).

We substitute the multicriteria optimization problem (4.1) by the ε-
constraint problem
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also applicable when Y is not Rp

!
-convex.

4.1 The ε-Constraint Method

Besides the weighted sum approach, the ε-constraint method is probably the
best known technique to solve multicriteria optimization problems. There is no
aggregation of criteria, instead only one of the original objectives is minimized,
while the others are transformed to constraints. It was introduced byHaimes
et al. (1971), and an extensive discussion can be found in Chankong and
Haimes (1983).

We substitute the multicriteria optimization problem (4.1) by the ε-
constraint problem
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Fig. 2.10. Nondominated and weakly nondominated points.

XE ,XsE and XwE can be characterized geometrically. To derive this char-
acterization, we introduce level sets and level curves of functions.

Definition 2.28. Let X ⊂ Rn, f : X → R, and x̂ ∈ X .

L≤(f(x̂)) = {x ∈ X : f(x) ≤ f(x̂)} (2.23)

is called the level set of f at x̂.

L=(f(x̂)) = {x ∈ X : f(x) = f(x̂)} (2.24)

is called the level curve of f at x̂.

L<(f(x̂)) = L≤(f(x̂)) \ L=(f(x̂))

= {x ∈ X : f(x) < f(x̂)} (2.25)

is called the strict level set of f at x̂.

Obviously L=(f(x̂)) ⊂ L≤(f(x̂)) and x ∈ L=(f(x̂)).

Example 2.29. We use an example with X = R2 for illustration purposes. Let
f(x1, x2) = x2

1 + x2
2. Let x̂ = (3, 4). Hence

L≤(f(x̂)) =
{

(x1, x2) ∈ R2 : x2
1 + x2

2 ≤ 25
}

, (2.26)

L=(f(x̂)) =
{

(x1, x2) ∈ R2 : x2
1 + x2

2 = 25
}

. (2.27)

The level set and level curve are illustrated in Figure 2.11, as disk and circle
in the x1-x2-plane, respectively.

⊓&

For a multicriteria optimization problem we consider the level sets and
level curves of all objectives f1, . . . , fp at x̂. The following observation shows
how level sets can be used to decide efficiency of x̂.

Figure 1.12: Nondominated points and weakly nondominated points

From the definitions

YN ⊂ YwN (1.15)

and

XsE ⊂ XE ⊂ YwE. (1.16)

It is important to have in mind that what will follow depends on Definition
1.28, i.e. that we are able to find the minimum on the image space on the
basis of an order defined by a Pareto cone. In fact, by changing the choice
of the order, we would have another definition. Just as an example, consider
lexicographic optimization problems; those problems arise when there is a
conflict among different objects but those objects are hierarchically ordered.
A problem of this kind can be stated in the following way:

lexmin
x∈X

(f1(x), . . . , fp(x)).
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A feasible solution x̂ ∈ X is lexicographically optimal or a lexicographic
solution if there is no x ∈ X such that f(x) <lex f(x̂). If this is true for all
x ∈ X then x̂ ∈ XE. As we can see, by changing the definition of order we
get a different concept of optimal and efficient solution.

40 2 Efficiency and Nondominance

The essential difference as compared to the proofs of Theorems 2.10 and
2.12 is that in those theorems we deal with sets y−Rp

! which are closed. Here,

we have sets y + Rp
> which are open. Note that y /∈ y + Rp

>.
Theorem 2.25 and continuity of f can now be used to prove existence of

weakly efficient solutions.

Corollary 2.26. Let X ⊂ Rn be nonempty and compact. Assume that f :
Rn → Rp is continuous. Then XwE ̸= ∅.

Proof. The result follows from Theorem 2.19 and XE ⊂ XwE or from Theorem
2.25 and the fact that f(X ) is compact for compact X and continuous f . ⊓(

As indicated earlier, the inclusion YN ⊂ YwN is in general strict. The
following example shows that YwN can be nonempty, even if YN is empty,
and also, of course, if Y is not compact. It also illustrates that YwN \ YN

might be a rather large set.

Example 2.27. Consider the set

Y =
{

(y1, y2) ∈ R2 : 0 < y1 < 1, 0 ≤ y2 ≤ 1
}

. (2.21)

Then YN = ∅ but YwN = (0, 1)×{0} = {y ∈ Y : 0 < y1 < y2, y2 = 0} (Figure
2.9).
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Fig. 2.9. YN is empty, YwN is not.

Let us now look at the closed square, i.e.

Y = {(y1, y2) ∈ R2 : 0 ≤ yi ≤ 1}. (2.22)

We have YN = {0} and YwN = {(y1, y2) ∈ Y : y1 = 0 or y2 = 0}. (Figure
2.10)

⊓(
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• If x̂ ∈ XpE then there is some λ > 0 such that x̂ is an optimal solution
of (4.2).

• If x̂ ∈ XwE then there is some λ ≥ 0 such that x̂ is an optimal solution
of (4.2).

For nonconvex problems, however, it may work poorly. Consider the fol-
lowing example.

Example 4.2. Let X = {x ∈ R2
! : x2

1 + x2
2 ≥ 1} and f(x) = x. In this case

XE = {x ∈ X : x2
1 + x2

2 = 1}, yet x̂1 = (1, 0) and x̂2 = (1, 0) are the only
feasible solutions that are optimal solutions of (4.2) for any λ ≥ 0.

0.0 0.5 1.0 1.50.5

0.0

0.5

1.0

1.5

0.5

...........................................................
................

.......

......

......

......

......

......

.............................

.......................

•

•

Y

YN

ŷ1
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Fig. 4.1. The weighted sum method fails for nonconvex problems.

⊓$

In this chapter we introduce some other scalarization methods, which are
also applicable when Y is not Rp

!
-convex.

4.1 The ε-Constraint Method

Besides the weighted sum approach, the ε-constraint method is probably the
best known technique to solve multicriteria optimization problems. There is no
aggregation of criteria, instead only one of the original objectives is minimized,
while the others are transformed to constraints. It was introduced byHaimes
et al. (1971), and an extensive discussion can be found in Chankong and
Haimes (1983).

We substitute the multicriteria optimization problem (4.1) by the ε-
constraint problem
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Fig. 2.7. Efficient set, ideal, and nadir point.

Table 2.1. Pay-off table and ideal point.

x1 x2 · · · xp−1 xp

f1 yI
1 f1(x

2) · · · f1(x
p−1) f1(x

p)

f2 f2(x1)
. . . · · · · · · f2(xp)

...
...

...
. . .

...
...

fp−1 fp−1(x1) · · · · · ·
. . . fp−1(xp)

fp fp(x1) fp(x
2) · · · fp(x

p−1) yI
p

the largest element in row i, as an estimate for yN
i .

Although appealing at first glance, the problem with pay-off tables is
that ỹN may over- or under-estimate yN , when more than two objectives are
present, and when there are multiple optimal solutions of the single objective
problems minx∈X fk(x). The example below illustrates the phenomenon.

Example 2.23 (Korhonen et al. (1997)). Consider the multicriteria linear
programming problem
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Fig. 2.7. Efficient set, ideal, and nadir point.

Table 2.1. Pay-off table and ideal point.

x1 x2 · · · xp−1 xp

f1 yI
1 f1(x

2) · · · f1(x
p−1) f1(x

p)

f2 f2(x1)
. . . · · · · · · f2(xp)

...
...

...
. . .

...
...

fp−1 fp−1(x1) · · · · · ·
. . . fp−1(xp)

fp fp(x1) fp(x
2) · · · fp(x

p−1) yI
p

the largest element in row i, as an estimate for yN
i .

Although appealing at first glance, the problem with pay-off tables is
that ỹN may over- or under-estimate yN , when more than two objectives are
present, and when there are multiple optimal solutions of the single objective
problems minx∈X fk(x). The example below illustrates the phenomenon.

Example 2.23 (Korhonen et al. (1997)). Consider the multicriteria linear
programming problem
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Fig. 2.7. Efficient set, ideal, and nadir point.

Table 2.1. Pay-off table and ideal point.

x1 x2 · · · xp−1 xp

f1 yI
1 f1(x

2) · · · f1(x
p−1) f1(x

p)

f2 f2(x1)
. . . · · · · · · f2(xp)

...
...

...
. . .

...
...

fp−1 fp−1(x1) · · · · · ·
. . . fp−1(xp)

fp fp(x1) fp(x
2) · · · fp(x

p−1) yI
p

the largest element in row i, as an estimate for yN
i .

Although appealing at first glance, the problem with pay-off tables is
that ỹN may over- or under-estimate yN , when more than two objectives are
present, and when there are multiple optimal solutions of the single objective
problems minx∈X fk(x). The example below illustrates the phenomenon.

Example 2.23 (Korhonen et al. (1997)). Consider the multicriteria linear
programming problem

Figure 1.13: Nadir and ideal points

Another example is given by the definition of ideal and nadir points.
Assume that XE and YN are nonempty; we look for real numbers y

k
, ȳk,

k = 1, . . . , p with y
k
≤ yi ≤ ȳk for all y ∈ YN .

A possibility is to choose

y
k

:= min
y∈Y

yi, (1.17)

ȳk := max
y∈Y

yi. (1.18)

While for the lower bound (1.17) there is no problem since there is always
an efficient point y ∈ YN with yk = y

k
, the upper bound (1.18) has a tendency

to be far away from actual nondominated points. For this reason, the upper
bound is usually defined as the maximum over nondominated points.

Definition 1.30 1. The point yI = (yI1 , . . . , y
I
p) given by

yIk := min
x∈X

fk(x) = min
y∈Y

yk (1.19)

is called the ideal point of the multicriteria optimization problem.
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2. The point yN = (yN1 , . . . , y
N
p ) given by

yNk := max
x∈XE

fk(x) = max
y∈YN

yk (1.20)

is called the nadir point of the multicriteria optimization problem.

1.2.1 On the existence of nondominated points

Going back to Definition 1.28, the first issue that has to be analyzed is the
existence and the properties of the efficient set and the nondominated set.
The problem of existence of efficient points can be solved by simply looking
for conditions that guarantee the existence of nondominated elements of the
image space, ordered by the Pareto cone. Since R= is a convex and pointed
cone we are going to state the definition of nondominated points and to give
sufficient conditions for their existence in a more general context, namely by
referring to a set Y ⊂ Rp ordered by a convex pointed cone 3.

Definition 1.31 Consider a set Y ⊂ Rp ordered by a convex pointed cone
C; ŷ ∈ Y is said be nondominated or minimal point if there is no y ∈ Y such
that y ∈ ŷ − C. The set of all minimal points is denoted by YN .

Let us first consider the following properties of nondominated sets.

Proposition 1.32 Let Y ⊂ Rp ordered by a convex pointed cone C. YN =
(Y + C)N .

When C = Rp=, Proposition 1.32 allows us to say that nondominated points

are located in “lower left part” of Y , i.e. “adding” Rp= to Y does not change

the nondominated set (Figure 1.10). Sometimes the new set obtained with
the sum has more and better properties than the initial set.

A second intuitive result is that nondominated points must belong to the
boundary of Y .

Proposition 1.33 YN ⊂ cl(Y).

3Regarding the definition of nondominated and efficient points, we do not have a com-
mon reference framework; each author has worked in its own environment, by using dif-
ferent notations and wordings for the same concept, creating space for misunderstandings
and confusion. A possible summary of different notations for the same concepts is given
by Erghott, p. 60.
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2.1 Efficient Solutions and Nondominated Points 27

The following properties of nondominated sets are mainly proved as tools
for the proofs of theorems later in the text. However, they may well enhance
an intuitive understanding of the concept of nondominance. First we show
that nondominated points are located in the “lower left part” of Y: Adding
Rp

! to Y does not change the nondominated set.

So let Y ⊂ Rp. Let YN = {y ∈ Y : there is no y′ ∈ Y such that y′ ≤ y}.
In particular YN ⊂ Y.

Proposition 2.3. YN =
(

Y + Rp
!

)

N
.

Proof. The result is trivial if Y = ∅, because Y + Rp
! = ∅ and the nondomi-

nated subsets of both are empty, too.
So let Y ̸= ∅. First, assume y ∈ (Y + Rp

!
)N , but y /∈ YN . There are two

possibilities. If y /∈ Y there is y′ ∈ Y and 0 ̸= d ∈ Rp
!

such that y = y′ + d .

Since y′ = y′ + 0 ∈ Y + Rp
! we get y /∈ (Y + Rp

!)N , a contradiction. If y ∈ Y
there is y′ ∈ Y such that y′ ≤ y. Let d = y−y′, which is in Rp

!
\{0}. Therefore

y = y′ + d and y /∈ (Y + Rp
!)N , again contradicting the assumption. Hence in

either case y ∈ YN .
Second, assume y ∈ YN but y /∈ (Y+Rp

!)N . Then there is some y′ ∈ Y+Rp
!

with y − y′ = d′ ∈ Rp
!
\ {0}. I.e. y′ = y′′ + d′′ with y′′ ∈ Y, d′′ ∈ Rp

!
and

therefore y = y′+d′ = y′′+(d′+d′′) = y′′+d with d = d′+d′′ ∈ Rp
!\{0}. This

implies y /∈ YN , contradicting the assumption. Hence, y ∈ (Y + Rp
!

)N . ⊓(

Proposition 2.3 is illustrated in Figure 2.4.
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Figure 1.14: Nondominated points of Y and YN + Rp= are the same

From Propositions 1.32 and 1.33 we get conditions for the emptiness of
YN .

Corollary 1.34 If Y is open or if Y + Rp= is open YN = ∅.

The following propositions are connected to the properties of nondomi-
nated set with respect to the algebraic sum of two sets and of a set multiplied
by a positive scalar.

Proposition 1.35 (Y1 + Y2)N ⊂ (Y1)N + (Y2)N .

Proposition 1.36 (αY)N = α(YN), for α ∈ R, α > 0.

The following Lemma provides some sufficient conditions for the existence
of minimal points of a set which is ordered by a convex pointed cone.

Lemma 1.37 Let Y be a nonempty subset of Rp and let C be a convex and
pointed cone of Rp.

1. If there exists an y0 ∈ Y such that the set (y0 − clC) ∩ Y is compact,
then YN 6= 0.

2. If there exists a y0 ∈ Y + clC such that the set (y0− clC)∩ (Y + clC) is
compact, then YN 6= 0.
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The compactness of (y0−clC)∩Y and (y0−clC)∩(Y+clC) is sufficient to
guarantee the existence of efficient points in Y . In order to define necessary
and/or sufficient conditions to undertake such compactness, it is useful to
introduce the concept of compact, closed and bounded set with respect to a
given cone.

Definition 1.38 Let C be a cone on Rp and Y be a non empty set on Rp. Y
is C-compact if (y − clC) ∩ Y is compact ∀y ∈ Y.

40 2 Efficiency and Nondominance

The essential difference as compared to the proofs of Theorems 2.10 and
2.12 is that in those theorems we deal with sets y−Rp

! which are closed. Here,

we have sets y + Rp
> which are open. Note that y /∈ y + Rp

>.
Theorem 2.25 and continuity of f can now be used to prove existence of

weakly efficient solutions.

Corollary 2.26. Let X ⊂ Rn be nonempty and compact. Assume that f :
Rn → Rp is continuous. Then XwE ̸= ∅.

Proof. The result follows from Theorem 2.19 and XE ⊂ XwE or from Theorem
2.25 and the fact that f(X ) is compact for compact X and continuous f . ⊓(

As indicated earlier, the inclusion YN ⊂ YwN is in general strict. The
following example shows that YwN can be nonempty, even if YN is empty,
and also, of course, if Y is not compact. It also illustrates that YwN \ YN

might be a rather large set.

Example 2.27. Consider the set

Y =
{

(y1, y2) ∈ R2 : 0 < y1 < 1, 0 ≤ y2 ≤ 1
}

. (2.21)

Then YN = ∅ but YwN = (0, 1)×{0} = {y ∈ Y : 0 < y1 < y2, y2 = 0} (Figure
2.9).
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Fig. 2.9. YN is empty, YwN is not.

Let us now look at the closed square, i.e.

Y = {(y1, y2) ∈ R2 : 0 ≤ yi ≤ 1}. (2.22)

We have YN = {0} and YwN = {(y1, y2) ∈ Y : y1 = 0 or y2 = 0}. (Figure
2.10)

⊓(

Figure 1.15: Geometric representation of Y compactness with respect to C

Definition 1.39 Let Y be a non empty set on Rp, ordered by a convex
pointed cone C. Y is C-closed if Y + clC is closed.

Definition 1.40 Let Y be a non empty set on Rp, ordered by a convex
pointed cone C. Y is C-bounded if Y+ ∩ −clC = {0}, where Y+ is the
recession cone defined in the following way:

Y+ = {x ∈ Rp : ∃αk −→ 0, αk > 0, {yk} ⊂ Y : αky
k −→ y}.

Definition 1.41 Let Y be a non empty set on Rp, ordered by a convex
pointed cone C. Y is L-bounded if (y − clC) ∩ Y is bounded ∀y ∈ Y.

A compact set is also C-compact with respect to any C. For what concerns
the recession cone Y+, Y+ = {0} if and only if Y is a bounded set.

The following examples show that the closedness of Y does not imply
closedness of Y + clC and viceversa.
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Example 1.42 Let Y = {(x, y) : xy = −1, x > 0} and C = R2
+. It is easy

to recognize that Y is closed, but Y + clC = {(x, y) : x > 0} is not closed.

Example 1.43 Let Y = {(x, y) : x2 + y2 < 1} ∪ {(x, y) : x2 + y2 = 1, x ≤
0, y ≤ 0} and C = R2

+. Y is not closed, while Y + clC is closed.

A sufficient condition such that the closedness of Y implies the closedness
of Y − clC is provided by the following theorem.

Theorem 1.44 Let Y be a non empty set on Rp, ordered by a convex pointed
cone C. If Y is closed and C-bounded, then Y is C-closed.

Corollary 1.45 A compact set Y is C-closed with respect to any cone C.

Let’s now exploit the relationship between L-bounded and C-bounded
sets.

Theorem 1.46 Let Y be a non empty set on Rp, ordered by a convex pointed
cone C. If Y is a C-bounded set, then Y is L-bounded.

Theorem 1.46 shows that the class of C-bounded sets is contained in that
of L-bounded set, while Example 1.47 clarifies that this inclusion is proper.

Example 1.47 Let Y = {(x, y) : xy = −1, x < 0} and C = R2
+. It is easy to

verify that Y is L-bounded, while it is not C-bounded because (−1, 0), (0, 1) ∈
Y+ ∩ −clC 6= {0}.

The L-bounded condition is weaker than the C-bounded one since the
latter implies the former but the viceversa does not hold; however, there
are classes of sets with respect to which the L-bounded is equivalent to the
C-bounded condition. The following result holds.

Theorem 1.48 Let Y be a non empty set on Rp, ordered by a convex pointed
cone C. If Y is convex, then Y is L-bounded if and only if Y is C-bounded.

A class of sets that are L-bounded and C-bounded at the same time is
given by lower bounded sets with respect to the cone C.

Definition 1.49 Y is bounded from below with respect to the cone C if ∃a ∈
Rp≥ such that Y ⊂ a+ clC.
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When C = Rp= (Pareto cone), Definition 1.49 is equivalent to ask yi ≤
M, i = 1, . . . , s,∀y = (y1, . . . , ys) ∈ Y .

Theorem 1.50 Let Y be a non empty set on Rp, ordered by an acute cone
C. If Y is bounded from below with respect to the cone C, then it is C-bounded
and L-bounded.

Theorem 1.50 establishes that a set bounded from above is both L-
bounded and C-bounded with respect to an acute cone C, and, thus, gives
us a sufficient condition for L-boundedness. The previous theorem is false
if we consider a pointed cone instead of an acute cone. For example, con-
sider the cone C = {(x, y) : y > 0}⋃{(x, y) : y = 0, x ≥ 0} and the set
Y = {(x, y) : y = 0}, we have that Y ⊂ 0− clC and (1, 0) ∈ Y+ ∩ clC.

Theorem 1.51 Let Y be a closed set ordered by a closed pointed cone C.
Then Y is L-bounded if and only if Y is C-bounded.

Corollary 1.52 Let Y be a closed set ordered by a closed pointed cone C. If
Y is C-bounded then Y is C-compact.

For closed sets, the C-compactness is not equivalent to the C-boundedness,
differently for what happens for L-boundedness; the following theorem gives
a sufficient condition for such equivalence.

Theorem 1.53 Let Y be a closed and convex set and let C be a convex
pointed cone. Then Y is C-bounded if and only if Y is C-compact.

In Example 1.43, the set Y is C-closed and C-bounded but it is not C-
compact; Theorem 1.53, together with Theorem 1.44, provides a class of sets
for which the hypothesis of C-closedness and C-boundedness are equivalent
to the hypothesis of C-compactness.

Theorem 1.54 Let C be a closed, convex and pointed cone and Y ⊂ Rp be
a closed and convex set. Then Y is C-closed and C-bounded if and only if Y
is C-compact.

All results about C-compactness of Y and Y + clC, through Lemma 1.37,
allow to state many conditions for the existence of efficient points.
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Theorem 1.55 Let Y ⊂ Rp be a nonempty set ordered by an acute convex
cone C ⊂ Rp . The set YN of nondominated points of Y with respect to the
cone C is nonempty when one of the following conditions is satisfied:

1. Y is C-compact;

2. Y is C-closed and C-bounded;

3. Y is C-closed and bounded from below;

4. Y is closed and L-bounded;

5. Y is closed and C-bounded;

6. Y is closed and bounded from below.

As we have already observed, L-boundedness condition is more general than
C-boundedness; in particular, the C-closedness together with L-boundedness
do not imply that a Y + clC is C-compact. However, the existence of efficient
points is ensured by the following theorem for a C-closed and L-bounded set.

Theorem 1.56 Let C ⊂ Rp be a convex, closed and pointed cone and Y ⊂ Rp
be a nonempty set. If Y is C-closed and L-bounded then YN 6= ∅.

Remark 1.57 Until now, we worked on the image space and we looked at
properties that this space must satisfy in order to get some important result.
The issue is that, at the beginning of the problem, we have not the image
space, but the objective functions. For this reason, we may want that those
functions satisfy some important properties. Conditions that are easily sat-
isfied are continuity of functions and compactness of the initial space.

1.3 Proper efficiency and proper dominance

The definition of efficiency given until now allows for improvements of one
criterion only through the decline of at least another criterion, i.e. it is not
possible to improve one criterion by maintaining all others unchanged. These
trade-offs can be measured through the increase fi in terms of decrease in
fj, where fi and fj are two different objective functions, and connected to
this concept it is possibile to introduce another definition of efficient solution
with bounded trade-offs - the properly efficient solutions.

34



We have many definitions of properly efficient solution and many relation-
ships occurs among them; we present each of them, by looking at how they
are related.

Geoffrion’s definition of proper efficiency The first definition of
proper efficiency that we introduce is by Geoffrion.

Definition 1.58 (Geoffrion (1968)) A feasible solution x̂ ∈ X is called
properly efficient, if it is efficient and if there is a real number M > 0 such
that for all i and x ∈ X satisfying fi(x) < fi(x̂) there exists an index j such
that fj(x̂) < fj(x) such that

fi(x̂)− fi(x)

fj(x)− fj(x̂)
≤M.

The corresponding point ŷ = f(x̂) is called properly nondominated.

According to the definition given by Geoffrion, points are properly effi-
cient solutions when they have bounded trade-offs between the objectives.
Properly efficient solutions can be obtained by minimizing a weighted sum
of the objective functions with all positive weights.
The last point that must be highlighted when we speak about properly ef-
ficient points is that all the conditions given until now for the existence of
nondominated and efficient points (in the general and weak meaning) do not
guarantee the existence of properly nondominated points.

Borwein & Benson’s definition of proper efficiency Another def-
inition of proper efficiency was given by Borwein and Benson. Before stating
the definition itself, we need for this purpose the definitions of a tangent cone
and a conical hull.

Definition 1.59 Let Y ⊂ Rp and y ∈ Y.

1. The tangent cone of Y at y ∈ Y is

TY(y) := {d ∈ Rp : ∃{tk} ⊂ R, {yk} ⊂ Y s.t. yk −→ y, tk(y
k−y) −→ d}.

2. The conical hull of Y is

cone(Y) = {αy : α ≥ 0, y ∈ Y} =
⋃

α≥0

αY .
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Now we are able to give the definition of proper efficient points for Borwein
and Benson.

Definition 1.60 1. (Borwein (1977)) A solution x̂ ∈ X is called prop-
erly efficient (in Borwein’s sense) if

TY+Rp

=
(f(x̂)) ∩ (−Rp=) = {0}.

2. (Benson (1979)) A solution x̂ ∈ X is called properly efficient if

cl(cone(Y + Rp= − f(x̂))) ∩ (−Rp=) = {0}.
From the definition of conical hull and tangent cone, it immediately fol-

lows that
TY+Rp

=
(f(x̂)) ⊂ cl(cone(Y + Rp= − f(x̂)))

meaning that Benson’s definition is stricter than Borwein’s one. The rela-
tionship between these two definitions is given by the following theorem.

Theorem 1.61 1. If x̂ is properly efficient in Benson’s sense, it is also
properly efficient in Borwein’s sense.

2. If X is convex and fk : Rn −→ R are convex then both definitions
coincide.

Differently from the Geoffrion’s definition, the latter definitions of proper
efficiency do not require x̂ to be efficient; the following proposition avoids any
doubts about efficiency of proper efficient solutions in the sense of Borwein
or Benson.

Proposition 1.62 If x̂ is properly efficient in Borwein’s sense, then x̂ is
efficient.

Another difference between these two definition and the Geoffrion’s one of
proper efficiency is given by the explicit use of the componentwise order, Rp=:

in fact, while Geoffrion used directly Rp=, in Berson’s and Borwein’s cases

we can substitute Rp= with whatever arbitrary closed convex cone. When

C = Rp=, Geoffrion’s definition and Benson’s definition of proper efficiency
coincide and we can see the latter as a generalization of the former.

Theorem 1.63 (Benson (1979)) Feasible solution x̂ ∈ X is properly effi-
cient in Geoffrion’s sense if and only if it is properly efficient in Benson’s
sense.
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Kuhn & Tucker’s definition of proper efficiency The last defini-
tion of proper efficient solutions is suitable especially for the following type
of problem

min f(x)

subject to g(x) 5 0,

where both the objective functions, fi, i = 1, . . . , p and the constraint func-
tions gj, j = 1, . . . ,m are continuously differentiable. In this case, the defini-
tion of proper efficiency that must be used is the one provided by Kuhn and
Tucker.

Definition 1.64 (Kuhn and Tucker (1951)) A feasible solution x̂ ∈ X
is called properly efficient (in Kuhn and Tucker’s sense) if it is efficient and
if there is no d ∈ Rn satisfying

1. 〈∇fk(x̂), d〉 ≤ 0,∀k = 1, . . . , p,

2. 〈∇fi(x̂), d〉 < 0, for some i ∈ {1, . . . , p},

3. 〈∇gj(x̂), d〉 ≤ 0, ∀j ∈ J (x̂) = {j = 1, . . . ,m : gj(x̂) = 0},

where J (x̂) represents the set of active indices.

This definition means that if a vector d satisfying 1., 2. and 3., exists, then
moving from x̂ in direction d causes that no objective function increases, one
strictly decreases and the feasible set is not left. As in the case of Geoffrion’s
definition, the componentwise order is assumed and so it is not possible to
use this definition for orders coming from closed and convex cone.

For the equivalence between the Kuhn and Tucker’s definition and the
Geoffrion’s one, we need the subsequent definition.

Definition 1.65 A differentiable multiobjective optimization problem sat-
isfies the KT constraint qualification at x̂ ∈ X if for any d ∈ Rn with
〈∇gj(x̂), h〉 ≤ 0 for all j ∈ J (x̂) there is a real number t̄ > 0, a func-
tion θ : [0, t̄] −→ Rn, and α > 0 such that θ(0) = x̂, g(θ(t)) ≤ 0 for all
t ∈ [0, t̄] and θ′(0) = αd.

This definition gives us a constraint qualification for the equivalence be-
tween these definitions and it means that every feasible direction d can be
written as the gradient of a feasible curve starting in x̂.
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Theorem 1.66 (Geoffrion (1968)) If a differentiable multiobjective opti-
mization problem satisfies the KT constraint qualification at x̂ and x̂ is prop-
erly efficient in the Geoffrion’sense, then it is properly efficient in the Kuhn
and Tucker’s sense.

The reverse of the latter theorem holds without the constraint qualifica-
tion.

Theorem 1.67 Let fk, gj : Rn −→ R be convex, continuously differentiable
functions and suppose x̂ is a properly efficient in Kuhn and Tucker’s sense.
Then x̂ is properly efficient in the Geoffrion’sense.

Now we are able to give the definition of proper e�cient points for Borwein
and Benson. Definition 1.60

Definition 1.60 1. (Borwein (1977)) A solution x̂ 2 X is called prop-
erly e�cient (in Borwein’s sense) if

TY+Rp

=
(f(x̂)) \ (�Rp

= = {0}.

2. (Benson (1979)) A solution x̂ 2 X is called properly e�cient if

cl(cone(Y � Rp
= � f(x̂))) \ (�Rp

=) = {0}.

From the definition of conical hull and tangent cone, it immediately fol-
lows that

TY+Rp

=
(f(x̂)) ⇢ cl(cone(Y + Rp

= � f(x̂)))

meaning that Benson’s definition is stricter than Borwein’s one. The rela-
tionship between these two definitions is given by the following theorem.

Theorem 1.61 1. If x̂ is properly e�cient in Benson’s sense, it is also
properly e�cient in Borwein’s sense.

2. If X is convex and fk : Rn �! R are convex then both definitions
coincide.

Di↵erently from the Geo↵rion’s definition, the latter definitions of proper
e�ciency do not require x̂ to be e�cient; the following proposition avoids any
doubts about e�ciency of proper e�cient solutions in the sense of Borwein
or Benson.

Proposition 1.62 If x̂ is properly e�cient in Borwein’s sense, then x̂ is
e�cient.

Another di↵erence between these two definition and the Geo↵rion’s one of
proper e�ciency is given by the explicit use of the componentwise order, Rp

=:

in fact, while Geo↵rion used directly Rp
=, in Berson’s and Borwein’s cases

we can substitute Rp
= with whatever arbitrary closed convex cone. When

C = Rp
=, Geo↵rion’s definition and Benson’s definition of proper e�ciency

coincide and we can see the latter as a generalization of the former.
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x ∈ X = {x ∈ Rn : g(x) ≤ 0}

Fig. 2.17. Relationships among definitions of proper efficiency for the case

C = Rp

!
.

In order to derive further results on proper efficiency and important prop-
erties of (weakly) efficient sets we have to investigate weighted sum scalariza-
tions in greater detail, i.e. the relationships between those types of solutions
and optimal solutions of single objective optimization problems

min
x∈X

p
∑

k=1

λkfk(x),

where λ ∈ Rp
≥ is a vector of nonnegative weights of the objective functions.

This is the topic of Chapter 3.

2.5 Notes

As we have pointed out after the definition of efficient solutions and nondomi-
nated points (Definition 2.1) notation for efficient solutions and nondominated
points is not unique in the literature. Table 2.4 below gives an overview of
some of the notations used. Another term for efficient point is admissible
point (Arrow et al., 1953), but this is rarely used today. Although some au-
thors distinguish between the case that the decision space is Rn or a more
general vector space (Jahn) or the order is defined by Rp

!
or a more general

cone (Miettinen), most of these definitions use the same terms in decision and

Now we are able to give the definition of proper e�cient points for Borwein
and Benson. Definition 1.60

Definition 1.60 1. (Borwein (1977)) A solution x̂ 2 X is called prop-
erly e�cient (in Borwein’s sense) if

TY+Rp

=
(f(x̂)) \ (�Rp

= = {0}.

2. (Benson (1979)) A solution x̂ 2 X is called properly e�cient if

cl(cone(Y � Rp
= � f(x̂))) \ (�Rp

=) = {0}.

From the definition of conical hull and tangent cone, it immediately fol-
lows that

TY+Rp

=
(f(x̂)) ⇢ cl(cone(Y + Rp

= � f(x̂)))

meaning that Benson’s definition is stricter than Borwein’s one. The rela-
tionship between these two definitions is given by the following theorem.

Theorem 1.61 1. If x̂ is properly e�cient in Benson’s sense, it is also
properly e�cient in Borwein’s sense.

2. If X is convex and fk : Rn �! R are convex then both definitions
coincide.

Di↵erently from the Geo↵rion’s definition, the latter definitions of proper
e�ciency do not require x̂ to be e�cient; the following proposition avoids any
doubts about e�ciency of proper e�cient solutions in the sense of Borwein
or Benson.

Proposition 1.62 If x̂ is properly e�cient in Borwein’s sense, then x̂ is
e�cient.

Another di↵erence between these two definition and the Geo↵rion’s one of
proper e�ciency is given by the explicit use of the componentwise order, Rp

=:

in fact, while Geo↵rion used directly Rp
=, in Berson’s and Borwein’s cases

we can substitute Rp
= with whatever arbitrary closed convex cone. When

C = Rp
=, Geo↵rion’s definition and Benson’s definition of proper e�ciency

coincide and we can see the latter as a generalization of the former.

Theorem 1.63 (Benson (1979)) Feasible solution x̂ 2 X is properly e�-
cient in Geo↵rion’s sense if and only if it is properly e�cient in Benson’s
sense.
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We have many definitions of properly e�cient solution and many relation-
ships occurs among them; we present each of them, by looking at how they
are related.

Geo↵rion’s definition of proper e�ciency The first definition of
proper e�ciency that we introduce is by Geo↵rion.

Definition 1.58 (Geo↵rion (1968)) A feasible solution x̂ 2 X is called
properly e�cient, if it is e�cient and if there is a real number M > 0 such
that for all i and x 2 X satisfying fi(x) < fi(x̂) there exists an index j such
that fj(x̂) < fj(x) such that

fi(x̂) � fi(x)

fj(x) � fj(x̂)
 M.

The corresponding point ŷ = f(x̂) is called properly nondominated.

According to the definition given by Geo↵rion, points are properly e�-
cient solutions when they have bounded trade-o↵s between the objectives.
Properly e�cient solutions can be obtained by minimizing a weighted sum
of the objective functions with all positive weights.
The last point that must be highlighted when we speak about properly ef-
ficient points is that all the conditions given until now for the existence of
nondominated and e�cient points (in the generale and weak meaning) do
not guarantee the existence of properly nondominated points.

Borwein & Benson’s definition of proper e�ciency Another def-
inition of proper e�ciency was given by Borwein and Benson. Before stating
the definition itself, we need for this purpose the definitions of a tangent cone
and a conical hull.

Definition 1.59 Let Y ⇢ Rp and y 2 Y.

1. The tangent cone of Y at y 2 Y is

TY(y) := {d 2 Rp : 9{tk} ⇢ R, {yk} ⇢ Y s.t. yk �! y, tk(y
k�y) �! d}.

2. The conical hull of Y is

cone(Y) = {↵y : ↵ � 0, y 2 Y} =
[

↵�0

↵Y .
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Kuhn & Tucker’s definition of proper e�ciency The last defini-
tion of proper e�cient solutions is suitable especially for the following type
of problem

min f(x)

subject to g(x) 5 0,

where both the objective functions, fi, i = 1, . . . , p and the constraint func-
tions gj, j = 1, . . . , m are continuously di↵erentiable. In this case, the defini-
tion of proper e�ciency that must be used is the one provided by Kuhn and
Tucker.

Definition 1.64 (Kuhn and Tucker (1951)) A feasible solution x̂ 2 X
is called properly e�cient (in Kuhn and Tucker’s sense) if it is e�cient and
if there is no d 2 Rn satisfying

1. hrfk(x̂), di  0, 8k = 1, . . . , p,

2. hrfi(x̂), di < 0, for some i 2 {1, . . . , p},

3. hrgj(x̂), di  0, 8j 2 J (x̂) = {j = 1, . . . , m : gj(x̂) = 0},

where J (x̂) represents the set of active indices.

This definition means that if a vector d satisfying 1., 2. and 3., exists, then
moving from x̂ in direction d causes that no objective function increases, one
strictly decreases and the feasible set is not left. As in the case of Geo↵rion’s
definition, the componentwise order is assumed and so it is not possible to
use this definition for orders coming from closed and convex cone.

For the equivalence between the Kuhn and Tucker’s definition and the
Geo↵rion’s one, we need the subsequent definition.

Definition 1.65 A di↵erentiable multiobjective optimization problem sat-
isfies the KT constraint qualification at x̂ 2 X if for any d 2 Rn with
hrgj(x̂), hi  0 for all j 2 J (x̂) there is a real number t̄ > 0, a func-
tion ✓ : [0, t̄] �! Rn, and ↵ > 0 such that ✓(0) = x̂, g(✓(t))  0 for all
t 2 [0, t̄] and ✓0(0) = ↵d.

This definition gives us a constraint qualification for the equivalence be-
tween these definitions and it means that every feasible direction d can be
written as the gradient of a feasible curve starting in x̂.
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Now we are able to give the definition of proper e�cient points for Borwein
and Benson.

Definition 1.60 1. (Borwein (1977)) A solution x̂ 2 X is called prop-
erly e�cient (in Borwein’s sense) if

TY+Rp

=
(f(x̂)) \ (�Rp

= = {0}.

2. (Benson (1979)) A solution x̂ 2 X is called properly e�cient if

cl(cone(Y � Rp
= � f(x̂))) \ (�Rp

=) = {0}.

From the definition of conical hull and tangent cone, it immediately fol-
lows that

TY+Rp

=
(f(x̂)) ⇢ cl(cone(Y + Rp

= � f(x̂)))

meaning that Benson’s definition is stricter than Borwein’s one. The rela-
tionship between these two definitions is given by the following theorem.

Theorem 1.61 1. If x̂ is properly e�cient in Benson’s sense, it is also
properly e�cient in Borwein’s sense.

2. If X is convex and fk : Rn �! R are convex then both definitions
coincide.

Di↵erently from the Geo↵rion’s definition, the latter definitions of proper
e�ciency do not require x̂ to be e�cient; the following proposition avoids any
doubts about e�ciency of proper e�cient solutions in the sense of Borwein
or Benson. closed convex cone C x 2 X
Proposition 1.62 If x̂ is properly e�cient in Borwein’s sense, then x̂ is
e�cient.

Another di↵erence between these two definition and the Geo↵rion’s one of
proper e�ciency is given by the explicit use of the componentwise order, Rp

=:

in fact, while Geo↵rion used directly Rp
=, in Berson’s and Borwein’s cases

we can substitute Rp
= with whatever arbitrary closed convex cone. When

C = Rp
=, Geo↵rion’s definition and Benson’s definition of proper e�ciency

coincide and we can see the latter as a generalization of the former.

Theorem 1.63 (Benson (1979)) Feasible solution x̂ 2 X is properly e�-
cient in Geo↵rion’s sense if and only if it is properly e�cient in Benson’s
sense.
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closed convex cone C
x ∈ X

C = R
p

!

x ∈ X

C = R
p

!

x ∈ X = {x ∈ Rn : g(x) ≤ 0}

Fig. 2.17. Relationships among definitions of proper efficiency for the case

C = Rp

!
.

In order to derive further results on proper efficiency and important prop-
erties of (weakly) efficient sets we have to investigate weighted sum scalariza-
tions in greater detail, i.e. the relationships between those types of solutions
and optimal solutions of single objective optimization problems

min
x∈X

p
∑

k=1

λkfk(x),

where λ ∈ Rp
≥ is a vector of nonnegative weights of the objective functions.

This is the topic of Chapter 3.

2.5 Notes

As we have pointed out after the definition of efficient solutions and nondomi-
nated points (Definition 2.1) notation for efficient solutions and nondominated
points is not unique in the literature. Table 2.4 below gives an overview of
some of the notations used. Another term for efficient point is admissible
point (Arrow et al., 1953), but this is rarely used today. Although some au-
thors distinguish between the case that the decision space is Rn or a more
general vector space (Jahn) or the order is defined by Rp

!
or a more general

cone (Miettinen), most of these definitions use the same terms in decision and

Figure 1.16: Link among different proper efficient definitions

1.4 Efficient frontier

After seeing the existence of nondominated points and efficient solutions
and the different concepts of efficiency, we are going to use scalarization to

38



study a very important topological property of efficient and nondominated
set - connectedness. In fact, if YN or XE is connect, then the whole set can
be explored starting from a single nondominated/efficient point using local
search. In addition to this, connectedness will make easier to select a final
compromise solution from the set of efficient solutions XE.

40 2 Efficiency and Nondominance

The essential difference as compared to the proofs of Theorems 2.10 and
2.12 is that in those theorems we deal with sets y−Rp

! which are closed. Here,

we have sets y + Rp
> which are open. Note that y /∈ y + Rp

>.
Theorem 2.25 and continuity of f can now be used to prove existence of

weakly efficient solutions.

Corollary 2.26. Let X ⊂ Rn be nonempty and compact. Assume that f :
Rn → Rp is continuous. Then XwE ̸= ∅.

Proof. The result follows from Theorem 2.19 and XE ⊂ XwE or from Theorem
2.25 and the fact that f(X ) is compact for compact X and continuous f . ⊓(

As indicated earlier, the inclusion YN ⊂ YwN is in general strict. The
following example shows that YwN can be nonempty, even if YN is empty,
and also, of course, if Y is not compact. It also illustrates that YwN \ YN

might be a rather large set.

Example 2.27. Consider the set

Y =
{

(y1, y2) ∈ R2 : 0 < y1 < 1, 0 ≤ y2 ≤ 1
}

. (2.21)

Then YN = ∅ but YwN = (0, 1)×{0} = {y ∈ Y : 0 < y1 < y2, y2 = 0} (Figure
2.9).
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Fig. 2.9. YN is empty, YwN is not.

Let us now look at the closed square, i.e.

Y = {(y1, y2) ∈ R2 : 0 ≤ yi ≤ 1}. (2.22)

We have YN = {0} and YwN = {(y1, y2) ∈ Y : y1 = 0 or y2 = 0}. (Figure
2.10)
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Let us now look at the closed square, i.e.

Y = {(y1, y2) ∈ R2 : 0 ≤ yi ≤ 1}. (2.22)

We have YN = {0} and YwN = {(y1, y2) ∈ Y : y1 = 0 or y2 = 0}. (Figure
2.10)
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Fig. 3.9. Connectedness of YN .

connectedness of S(Y) in the case that Y is compact, which implies the con-
nectedness of YN with Lemma 3.32.

Proposition 3.33. If Y is compact and convex then S(Y) is connected.

Proof. Suppose S(Y) is not connected. Then we have open sets Y1,Y2 such
that Yi ∩ S(Y) ̸= ∅ for i = 1, 2, Y1 ∩Y2 ∩ S(Y) = ∅, and S(Y) ⊂ Y1 ∪Y2. Let

Li := {λ ∈ Rp
> : S(λ,Y) ∩ Yi ̸= ∅}, i = 1, 2. (3.67)

Because S(λ,Y) is convex and every convex set is connected, we know that
S(λ,Y) is connected. Therefore

Li = {λ ∈ Rp
> : S(λ,Y) ⊂ Yi}, i = 1, 2 (3.68)

and L1 ∩ L2 = ∅. But since Yi ∩ S(Y) ̸= ∅ we also have Li ∩ Rp
> ̸= ∅ for

i = 1, 2. From S(Y) ⊂ Y1 ∪ Y2 it follows that Rp
> ⊂ L1 ∪ L2 (in fact, these

sets are equal). By Lemma 3.34 below the sets Li are open, which implies the
absurd statement that Rp

!
is not connected. ⊓(

Lemma 3.34. The sets Li = {λ ∈ Rp
> : S(Y) ⊂ Yi} in the proof of Proposi-

tion 3.33 are open.

Proof. We will show the Lemma for L1, which by symmetry is enough. If L1

is not open there must be λ̂ ∈ L1 and {λk, k ≥ 1} ⊂ Rp
> \ L1 = L2 such that

λk → λ̂.
Let yk ∈ S(λk,Y), k ≥ 1. Since Y is compact, we can assume (taking

a subsequence if necessary) that yk → ŷ ∈ Y and ŷ ∈ S(λ̂,Y). Note that
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Fig. 3.9. Connectedness of YN .

connectedness of S(Y) in the case that Y is compact, which implies the con-
nectedness of YN with Lemma 3.32.

Proposition 3.33. If Y is compact and convex then S(Y) is connected.

Proof. Suppose S(Y) is not connected. Then we have open sets Y1,Y2 such
that Yi ∩ S(Y) ̸= ∅ for i = 1, 2, Y1 ∩Y2 ∩ S(Y) = ∅, and S(Y) ⊂ Y1 ∪Y2. Let

Li := {λ ∈ Rp
> : S(λ,Y) ∩ Yi ̸= ∅}, i = 1, 2. (3.67)

Because S(λ,Y) is convex and every convex set is connected, we know that
S(λ,Y) is connected. Therefore

Li = {λ ∈ Rp
> : S(λ,Y) ⊂ Yi}, i = 1, 2 (3.68)

and L1 ∩ L2 = ∅. But since Yi ∩ S(Y) ̸= ∅ we also have Li ∩ Rp
> ̸= ∅ for

i = 1, 2. From S(Y) ⊂ Y1 ∪ Y2 it follows that Rp
> ⊂ L1 ∪ L2 (in fact, these

sets are equal). By Lemma 3.34 below the sets Li are open, which implies the
absurd statement that Rp

!
is not connected. ⊓(

Lemma 3.34. The sets Li = {λ ∈ Rp
> : S(Y) ⊂ Yi} in the proof of Proposi-

tion 3.33 are open.

Proof. We will show the Lemma for L1, which by symmetry is enough. If L1

is not open there must be λ̂ ∈ L1 and {λk, k ≥ 1} ⊂ Rp
> \ L1 = L2 such that

λk → λ̂.
Let yk ∈ S(λk,Y), k ≥ 1. Since Y is compact, we can assume (taking

a subsequence if necessary) that yk → ŷ ∈ Y and ŷ ∈ S(λ̂,Y). Note that

Figure 1.17: Example of connectedness and non-connectedness of YN

Definition 1.68 A set S ∈ Rp is called not connected if it can be written
as S = S1∪S2, with S1,S2 6= ∅, clS1∩S2 = S1∩ clS2 = ∅. Equivalently, S is
not connected if there exist open sets O1,O2 such that S ⊂ O1∪O2,S∩O1 6=
∅,S ∩ O2 6= ∅,S ∩ O1 ∩ O2 = ∅. Otherwise, S is connected.

Proposition 1.69 If Y is compact and convex then S(Y) is connected.

Theorem 1.70 (Naccache (1978)) If Y is closed, convex and Rp=-compact
then YN is connected.

With Theorem 1.70 we have a criterion for connectedness on the objective
space; for the decision space, by assuming that f is convex, we are able to
say that also XwE is connected.

Theorem 1.71 Let X be a compact, convex set and assume that fk : Rn −→
R, k = 1, . . . , p are convex. Then XwE is connected.
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Generalazing for XE.

Theorem 1.72 Let X ∈ Rn be a convex and compact set. Assume that all
objective functions fk are convex.Then XE is connected.

As a consequence of Theorems 1.71 and 1.72, the results on X derived on
Y are given by the following Corollary.

Corollary 1.73 If X is a convex, compact set and fk : Rn −→ R, k =
1, . . . , p are convex functions then YwN , YN and YpE are connected.
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Chapter 2

Scalarization Techniques

Generally, multiobjective optimization problems are solved by scalarization
and scalarization means the replacement of a vector optimization problem
with a scalar optimization problem, that is to say it means converting the
problem into a single or a family of single objective optimization problems
with real-valued objective function, called scalarizing function, depending, if
possible, on some parameters. The crucial point is that the optimal solutions
of a multicriteria optimization problem can be characterized as solutions of
certain single objective optimization problems.

Sawaragi et al. (1985) define three requirement that scalarizing functions
should respect:

1. it can cover any Pareto optimal solution,

2. every solution is Pareto optimal,

3. its solution is satisfying if the aspiration levels used are feasible (in the
case in which the scalarizing functions is based on aspiration levels).

However, there is no scalarizing function that satisfy all three require-
ments.

There is a wide range of methods for solving a multiobjective problem.
It is not possible to create a hierarchy among them since, depending on the
features of the problem, a specific method would be better than the others.
In addition to this, there are the preferences of the decision-maker that may
lead to a choice based not on the deep knowledge of solution methods, but
simply on the fact that he/she likes more a method rather than another one.
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Through these kind of methods, we are able to generate many solutions
for the multicriteria optimization problem, but the main focus is to generate
the entire frontier of efficient solutions, so that the decision-maker has a wide
range of values among which he can choose. There are many scalarization
techniques that can be used for solving a multiobjective problem and in this
work we simply concentrate on the weighted sum method, the ε-constraint
method, the Serafini-Pascoletti method and the weighted-constraint method
presented by Burachik.

In the following, we highlight strengths and weaknesses of each method
and we make a brief comparison among them.

2.1 The weighted sum method

The final goal is to define a specific Pareto optima of the problem; however,
this aim may require to generate all the frontier (if it is possibile) or a subset
of it. To solve the multicriteria optimization problem, i.e. to find its efficient
solutions, we can solve single objective problem of the type

min
x∈X

p∑

k=1

λkfk(x), (2.1)

where λ denotes the scalar product in Rp. This optimization problem is
called weighted sum scalarization of the multicriteria optimization problem.

Let Y ⊂ Rp. For a fixed λ ∈ Rp≥ the set of optimal points of Y with
respect to λ is given by

S(λ,Y) :=

{
ŷ ∈ Y : 〈λ, ŷ〉 = min

y∈Y
〈λ, y〉

}
. (2.2)

Due to the definition of nondominated points, we have to consider only
nonnegative weighting λ ∈ Rp≥ and it is essential to make a distinction among
optimal points with nonnegative and positive weights. For this purpose,
define

S(Y) :=
⋃

λ∈Rp
>

S(λ,Y) =
⋃

{λ>0:
∑p

k=1 λk=1}
S(λ,Y) (2.3)

and S0(Y) :=
⋃

λ∈Rp
≥

S(λ,Y) =
⋃

{λ≥0:
∑p

k=1 λk=1}
S(λ,Y). (2.4)

42



As a simple notation, we have

Λ :=

{
λ ∈ Rp= :

p∑

k=1

λk = 1

}

Λ0 := riΛ

{
λ ∈ Rp> :

p∑

k=1

λk = 1

}
.

We exclude the case in which λ = 0. Finally, following from the definition

S(Y) ⊂ S0(Y). (2.5)

For many of the following results, we need some convexity assumption; the
problem is that convexity assumption on Y would be too restrictive. Having
in mind that we are looking for nondominated points that are located in the
“south-west” part of Y , we define Rp=-convex.

Definition 2.1 A set Y ∈ Rp= is called Rp=-convex, if Y + Rp= is convex.

Every convex set Y is Rp=-convex. A fundamental result from convex sets
is that nonintersecting convex sets can be separated by a hyperplane.

Theorem 2.2 Let Y1,Y2 ⊂ Rp be nonempty convex sets. There exists some
y∗ ∈ Rp such that

inf
y∈Y1
〈y, y∗〉 ≥ sup

y∈Y2
〈y, y∗〉 (2.6)

and sup
y∈Y1
〈y, y∗〉 > inf

y∈Y2
〈y, y∗〉 (2.7)

if and only if ri(Y1) ∩ ri(Y2) 6= ∅. In this case Y1,Y2 are properly separated
by a hyperplane with normal y∗.

Recall that ri(Yi) is the interior in the space of appropriate dimension
dim(Yi) ≤ p.

Theorem 2.3 Let Y ⊂ Rp be a nonempty, closed, convex set and let y0 ∈
Rp \ Y. Then there exists a y∗ ∈ Rp \ {0} and α ∈ R such that

〈y∗, y0〉 < α < 〈y∗, y〉
for all y ∈ Y.
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2.1.1 Efficiency and weak efficiency

Optimal solutions of the weighted sum problem with positive (nonnegative)
weights are always (weakly) efficient and under convexity assumptions all
(weakly) efficient solutions are optimal solutions of scalarized problems with
positive (nonnegative) weights.

Theorem 2.4 For any set Y ⊂ Rp we have S(Y) ⊂ S0(Y) ⊂ YwN .

For Rp=-convex sets it is also true the converse.

Theorem 2.5 If Y is Rp=-convex, then S(Y) ⊂ S0(Y) = YwN .

Theorem 2.6 allows us to relate S(Y) and S0(Y) to YN .

Theorem 2.6 Let Y ⊂ Rp. Then S(Y) ⊂ YN .

Corollary 2.7 If Y is an Rp=-convex set, then YN ⊂ S0(Y) = YwN .

An extension of Theorem 2.6 is given by the following proposition.

Proposition 2.8 If ŷ is the unique element of S(λ,Y) for some λ ∈ Rp≥
then ŷ ∈ YN .

Now turn all those results in terms of decision space, that is to say refer-
ring to (weakly) efficient solutions of multicriteria optimization problems.

Proposition 2.9 Suppose that x̂ is an optimal solution of the weighted sum
optimization problem with λ ∈ Rp≥. Then the following statements hold.

1. If λ ∈ Rp≥ then x̂ ∈ XwE.

2. If λ ∈ Rp> then x̂ ∈ XE.

3. If If λ ∈ Rp≥ and x̂ is a unique solution of the problem, then x̂ ∈ XsE.

Proposition 2.10 Let X be a convex set, and let fk be convex functions,
k = 1, . . . , p. If x̂ ∈ XE there is some λ ∈ Rp≥ such that x̂ is an optimal
solution of the weighted sum optimization problem.
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98 4 Scalarization Techniques

• If x̂ ∈ XpE then there is some λ > 0 such that x̂ is an optimal solution
of (4.2).

• If x̂ ∈ XwE then there is some λ ≥ 0 such that x̂ is an optimal solution
of (4.2).

For nonconvex problems, however, it may work poorly. Consider the fol-
lowing example.

Example 4.2. Let X = {x ∈ R2
! : x2

1 + x2
2 ≥ 1} and f(x) = x. In this case

XE = {x ∈ X : x2
1 + x2

2 = 1}, yet x̂1 = (1, 0) and x̂2 = (1, 0) are the only
feasible solutions that are optimal solutions of (4.2) for any λ ≥ 0.
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ŷ2

......

......

......

......

......

......

......
......
.......
.......
.......
.......
.......
.......
........
........
........
.........

..........
..........

...........
..............

.................
.......................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 4.1. The weighted sum method fails for nonconvex problems.

⊓$

In this chapter we introduce some other scalarization methods, which are
also applicable when Y is not Rp

!
-convex.

4.1 The ε-Constraint Method

Besides the weighted sum approach, the ε-constraint method is probably the
best known technique to solve multicriteria optimization problems. There is no
aggregation of criteria, instead only one of the original objectives is minimized,
while the others are transformed to constraints. It was introduced byHaimes
et al. (1971), and an extensive discussion can be found in Chankong and
Haimes (1983).

We substitute the multicriteria optimization problem (4.1) by the ε-
constraint problem
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Figure 2.1: Case in which YN =
⋃
λ>0 min

∑p
i=1 λif(x) is not true

Now the first question that arises is the following: are we able to say that
YN =

⋃
λ>0 min

∑p
i=1 λif(x)?

The answer is negative. Consider the circle with center in the origin and
unitary ray, and let f(x) = {(y1, y2) ∈ R2 : y2

1 + y2
2 = 1}: as it is shown

in Figure 2.1, the black bold line indicates the set YN and it is immediately
clear that A and B are no possible solution of the weighted sum problem for
λ > 0, i.e. {(0,−1); (−1, 0) /∈ ⋃λ>0 min

∑p
i=1 λif(x) }.

The second question is directly connected to the first one: is it true that
YN =

⋃
λ≥0 min

∑p
i=1 λif(x)?

Unfortunately, we cannot answer in a general way because if we consider
again Figure 2.1, in that case the answer to the second question is positive,
i.e. YN =

⋃
λ≥0 min

∑p
i=1 λif(x), but now turn to Figure 2.2: in this case, all

the points on AB are solutions of the weighted sum problem, but only A is
an efficient solution belonging to YN , while all the others are weakly efficient
solution, i.e. they belong to YwN .

2.1.2 Proper efficiency

In the previous section, we show that optimal solution of the weighted sum
problem are (weakly) efficient solutions with positive (nonnegative) weights
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Figure 2.2: Case in which YN =
⋃
λ≥0 min

∑p
i=1 λif(x) is not true

and that also the viceversa holds true under convexity assumptions. Since we
have spoken about also proper efficient and nondominated points, we need
to analyze the relationship between solutions of the weighted sum problem
and proper nondominated points.

Denote with YpN the set of proper efficient points in the Geoffrion’s sense
and XpE the set of proper efficient solutions of the multiobjective problem in
the Geoffrion’s sense.

Theorem 2.11 (Geoffrion (1968)) Let λk > 0, k = 1, . . . , p with
∑p

k=1 λk =
1 be positive weights. If x̂ is an optimal solution of the weighted sum problem
then x̂ is a proper efficient solution of the multiobjective problem.

In other words, Theorem 2.11 tells us that an optimal solution of the
weighted sum problem is a proper efficient solution of the multiobjective
optimization problem if λ > 0.

Corollary 2.12 Let Y ⊂ Rp. Then S(Y) ⊂ YpN .

Theorem 2.13 If Y is Rp=-convex then YpN ⊂ S(Y).

Theorem 2.14 (Geoffrion (1968)) Let X ∈ Rn be convex and assume
fk : X −→ R are convex for k = 1, . . . , p. Then x̂ ∈ X is properly efficient if
and only if x̂ is an optimal solution of the weighted sum problem, with strictly
positive weights λk, k = 1, . . . , p.
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Thanks to those results about proper nondominance and efficiency, we
can state the following relationships:

S(Y) ⊂ YpN ⊂ YN and S0(Y) ⊂ YwN
holds for general sets, while for Rp=-convex sets

S(Y) = YpN ⊂ YN ⊂ YwN = S(Y).

The gap between YwN and YN may be quite large also in the case of
convex sets, while this cannot be true for the gap between YpN and YN .

Theorem 2.15 (Hartley (1978)) If Y 6= ∅ is Rp=-closed and Rp=-convex,
the following inclusions hold

S(Y) ⊂ YN ⊂ clS(Y) = clYpN .
Even if Theorem 2.15 tells us that YN ⊂ clYpN , the inclusion cl YpN ⊂ YN

is not necessarily always true.

2.1.3 Optimality condition for weak efficiency

At this point, let us introduce some necessary and sufficient conditions for
weak efficiency of solutions of a multicriteria optimization problem.

Recall the Karush-Kuhn-Tucker necessary and sufficient condition of op-
timality for single objective problem.

Theorem 2.16 Let f, gj : Rn −→ R be continuously differentiable functions
and consider the single objective optimization problem

min{f(x) : gj(x) 5 0, j = 1, . . . ,m}. (2.8)

Denote X := {x ∈ Rn : gj(x) ≤ 0, j = {1, . . . ,m}}.
• If a qualification constraint condition holds and if x̂ ∈ X is a (locally)

optimal solution of (2.8) there is some µ̂ ∈ Rm= such that

∇f(x̂) +
m∑

j=1

µ̂j∇gj(x̂) = 0, (2.9)

m∑

j=1

µ̂gj(x̂) = 0. (2.10)
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• If f, gj are convex and there are x̂ ∈ X and µ̂ ∈ Rm= such that (2.9) and

(2.10) hold then x̂ is a locally, thus globally, optimal solution of (2.8).

Conditions for weak efficiency is given by Theorem 2.17.

Theorem 2.17 Suppose that the KT constraint qualification (Definition 1.65
is satisfied at x̂ ∈ X . If x̂ is weakly efficient there exist λ̂ ∈ Rp≥ and µ̂ ∈ Rm=
such that

p∑

k=1

λ̂k∇fk(x̂) +
m∑

j=1

µ̂j∇gj(x̂) = 0 (2.11)

m∑

j=1

µ̂jgj(x̂) = 0 (2.12)

λ̂ ≥ 0 (2.13)

µ̂ = 0 (2.14)

For convex functions, we have a sufficient condition for weakly efficient
solutions.

Corollary 2.18 Under the assumption of Theorem 2.17 and the additional
assumption that all functions fk and gj are convex (2.11) - (2.14) with λ̂ ≥ 0
and µ̂ = 0 in Theorem 2.17 are sufficient for x̂ to be weakly efficient.

2.1.4 Optimality condition for proper efficiency

For what concerns proper efficient solutions, consider first the definition of
Kuhn and Tucker based on the following inequalities

〈∇fk(x̂, d)〉 ≤ 0 ∀ k = 1, . . . , p (2.15)

〈∇fi(x̂, d)〉 < 0 for some i ∈ {1, . . . , p} (2.16)

〈∇gj(x̂, d)〉 ≤ 0 ∀ j ∈ J (x̂) = {j = 1, . . . ,m : gj(x̂) = 0}. (2.17)
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Theorem 2.19 If x̂ is properly efficient in KT sense there exist λ̂ ∈ Rp and
µ̂ ∈ Rm such that

p∑

k=1

λ̂k∇fk(x̂) +
m∑

j=1

µ̂j∇gj(x̂) = 0 (2.18)

m∑

j=1

µ̂jgj(x̂) = 0 (2.19)

λ̂ ≥ 0 (2.20)

µ̂ = 0 (2.21)

Theorem 2.19 gives us necessary conditions for Kuhn-Tucker proper effi-
ciency. Knowing that Geoffrion’s proper efficiency implies Kunh and Tucker’s
proper efficiency under the constraint qualification (Theorem 1.66), we get
the following corollary.

Corollary 2.20 If x̂ is properly efficient in Geoffrion’s sense and the KT
constraint qualification is satisfied at x̂, then (2.18) - (2.21).

To obtain the relationship among different proper efficiency definitions we
use the Karush-Kuhn-Tucker sufficient optimality conditions seen in Theorem
2.16 and apply them to the weighted sum problem, getting the following
theorem.

Theorem 2.21 Assume that fk, gj : Rn −→ R are convex, continuously

differentiable functions. Suppose that there are x̂ ∈ X , λ̂ ∈ Rp and µ̂ ∈
Rp satisfying (2.18) - (2.21). Then x̂ is properly efficient in the sense of
Geoffrion.

Two corollaries follow.

Corollary 2.22 Let fk, gj : Rn −→ R be convex, continuously differentiable
functions and suppose that x̂ is properly efficient in Kuhn and Tucker’s sense.
Then x̂ is properly efficient in Geoffrion’s sense.

Corollary 2.22 tells us that proper efficiency in Kuhn-Tucker’s sense im-
plies proper efficiency in Geoffrion’s sense for convex problems.
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Corollary 2.23 If, in addition to assumptions of Theorem 2.21, the KT
constraint qualification is satisfied at x̂, (2.18) - (2.21) are sufficient for x̂
to be properly efficient in KT’s sense.

Instead, Corollary 2.23 gives us sufficient conditions for proper efficiency
in Kuhn and Tucker’s sense, and it follows from Theorems 2.21 and 1.66.

Until now we have shown necessary and sufficient conditions for weakly
and strictly efficient solutions, but actually they also include the conditions
for efficient solutions. In fact, since XE ⊂ XwE, the necessary condition of
Theorem 2.17 holds for efficient solutions, too and as S(Y) = XpE ⊂ XE for
convex problems, the sufficient condition of Theorem 2.21 are sufficient for x̂
to be efficient, too.

2.2 The ε-constraint method

The ε-constraint method is the most known method to solve multi-criteria
problems, especially in engineering design, and it consists in minimizing only
one original objective and let the others being the constraints. The scalarized
problem can be stated in the following way

min
x∈X

fj(x)

subject to fk(x) ≤ εk, k = 1, . . . , p, k 6= j,
(2.22)

where ε ∈ Rp.

Proposition 2.24 Let x̂ be an optimal solution of (2.22) for some j. Then
x̂ is weakly efficient.

This Proposition 2.52 becomes stronger if we require the optimal solution
to be unique.

Proposition 2.25 Let x̂ be a unique optimal solution of (2.22) for some j.
Then x̂ ∈ XsE (and so x̂ ∈ XE).

Theorem 2.26 The feasible solution x̂ ∈ X is efficient if and only if there
exists an ε̂ ∈ Rp such that x̂ is an optimal solution of (2.22) for all j =
1, . . . , p.
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Theorem 2.26 tells us that under appropriate choices of ε all efficient
solutions can be found. However, these εj values are equal to the actual
values of the efficient solution one would like to find. We have a confirmation
of efficiency and not a discovery of efficient solutions.

Denote by

Ej := {ε ∈ Rp : {x ∈ X : fk(x) ≤ εk, k 6= j} 6= ∅}
the sets of right hand sides for which (2.22) is feasible and by

Xj(ε) := {x ∈ X : is an optimal solution of (2.22)}
for ε ∈ Ej the set of optimal solution of (2.22). From Theorem 2.26 and

Proposition 2.52 we have that for each ε ∈ ∩pj=1Ej
p⋂

j=1

Xj(ε) ⊂ XE ⊂ Xj(ε) ⊂ XwE (2.23)

for all j = 1, . . . , p.

Theorem 2.27 (Chankong and Haimes (1983)) 1. Suppose x̂ is an
optimal solution of minx∈X

∑p
k=1 λkfk(x). If λ > 0 there exists ε̂ such

that x̂ is an optimal solution of (2.22), too.

2. Suppose X is a convex set and fk : Rn −→ R are convex functions. If
x̂ is an optimal solution of (2.22) for some j, there exists λ̂ ∈ Rp≥ such

that x̂ is optimal for minx∈X
∑p

k=1 λ̂kfk(x).

This theorem gives us the link between the weighted sum method and
the ε-constraint method.

2.3 The hybrid method

The hybrid method can be obtained by combining the weighted sum method
with the ε-constraint method. The problem becomes a scalarized one to be
solved with a weighted sum objective and constraints on all objectives. Let
x0 be an arbitrary feasible point for a multicriteria optimization problem and
consider the following problem:
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min

p∑

k=1

λkfk(x)

subject to fk(x) ≤ fk(x
0) k = 1, . . . , p

x ∈ X

(2.24)

where λ ∈ Rp≥.

Theorem 2.28 (Guaddat et al. (1985)) Let λ ∈ Rp>. A feasible solution
x0 ∈ X is an optimal solution of the problem (2.24) if and only if x0 ∈ XE.

2.4 The Pascoletti-Serafini method

As we sketch previously, all methods presented until now - weighted sum,
ε-constraint, hybrid - have some weaknesses. For instance, consider the most
used method - the weighted sum method; it is not appropriate for non-convex
problems. Look at the following example.

Example 2.29 Let X = {x ∈ R2
= : x2

1 + x2
2 ≥ 1} and f(x) = x. The set of

efficient solutions is given by XE = {x ∈ X : x2
1 +x2

2 = 1}; with the exception
of the points x̂1 = (1, 0) and x̂2 = (1, 0), none of the points x ∈ XE can be
obtained as an optimal solution of (2.1), by a suitable choice of λ ≥ 0.

In order to understand better those drawbacks, let us now concentrate on
the Pascoletti-Serafini method from which we can study all other methods
as specification of this more general scalarization technique.

Pascoletti and Serafini started from the question about effectiveness of the
transformation of a vector problem into a scalar one, since the latter provides
more effective ways of computation of optima than vector problems do. In
particular, they stated that two are the requirements that a scalarization
should respect to be effective:

• the possibility of finding all vector optima among the scalar optima
obtained by varying the parameters,

• the well-behavior dependence of optima on the parameters.
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98 4 Scalarization Techniques

• If x̂ ∈ XpE then there is some λ > 0 such that x̂ is an optimal solution
of (4.2).

• If x̂ ∈ XwE then there is some λ ≥ 0 such that x̂ is an optimal solution
of (4.2).

For nonconvex problems, however, it may work poorly. Consider the fol-
lowing example.

Example 4.2. Let X = {x ∈ R2
! : x2

1 + x2
2 ≥ 1} and f(x) = x. In this case

XE = {x ∈ X : x2
1 + x2

2 = 1}, yet x̂1 = (1, 0) and x̂2 = (1, 0) are the only
feasible solutions that are optimal solutions of (4.2) for any λ ≥ 0.
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Fig. 4.1. The weighted sum method fails for nonconvex problems.
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In this chapter we introduce some other scalarization methods, which are
also applicable when Y is not Rp

!
-convex.

4.1 The ε-Constraint Method

Besides the weighted sum approach, the ε-constraint method is probably the
best known technique to solve multicriteria optimization problems. There is no
aggregation of criteria, instead only one of the original objectives is minimized,
while the others are transformed to constraints. It was introduced byHaimes
et al. (1971), and an extensive discussion can be found in Chankong and
Haimes (1983).

We substitute the multicriteria optimization problem (4.1) by the ε-
constraint problem
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ŷ1

ŷ2
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ŷ1

ŷ2
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ŷ1

ŷ2
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ŷ2

......

......

......

......

......

......

......
......
.......
.......
.......
.......
.......
.......
........
........
........
.........

..........
..........

...........
..............

.................
.......................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 4.1. The weighted sum method fails for nonconvex problems.

⊓$

In this chapter we introduce some other scalarization methods, which are
also applicable when Y is not Rp

!
-convex.

4.1 The ε-Constraint Method

Besides the weighted sum approach, the ε-constraint method is probably the
best known technique to solve multicriteria optimization problems. There is no
aggregation of criteria, instead only one of the original objectives is minimized,
while the others are transformed to constraints. It was introduced byHaimes
et al. (1971), and an extensive discussion can be found in Chankong and
Haimes (1983).

We substitute the multicriteria optimization problem (4.1) by the ε-
constraint problem

98 4 Scalarization Techniques

• If x̂ ∈ XpE then there is some λ > 0 such that x̂ is an optimal solution
of (4.2).

• If x̂ ∈ XwE then there is some λ ≥ 0 such that x̂ is an optimal solution
of (4.2).

For nonconvex problems, however, it may work poorly. Consider the fol-
lowing example.

Example 4.2. Let X = {x ∈ R2
! : x2

1 + x2
2 ≥ 1} and f(x) = x. In this case

XE = {x ∈ X : x2
1 + x2

2 = 1}, yet x̂1 = (1, 0) and x̂2 = (1, 0) are the only
feasible solutions that are optimal solutions of (4.2) for any λ ≥ 0.

0.0 0.5 1.0 1.50.5

0.0

0.5

1.0

1.5

0.5

...........................................................
................

.......

......

......

......

......

......

.............................

.......................

•

•

Y

YN

ŷ1
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Fig. 4.1. The weighted sum method fails for nonconvex problems.

⊓$

In this chapter we introduce some other scalarization methods, which are
also applicable when Y is not Rp

!
-convex.

4.1 The ε-Constraint Method

Besides the weighted sum approach, the ε-constraint method is probably the
best known technique to solve multicriteria optimization problems. There is no
aggregation of criteria, instead only one of the original objectives is minimized,
while the others are transformed to constraints. It was introduced byHaimes
et al. (1971), and an extensive discussion can be found in Chankong and
Haimes (1983).

We substitute the multicriteria optimization problem (4.1) by the ε-
constraint problem

Figure 2.3: Failure of weighted sum method in presence of non-convexities

For a decision maker, it is important to have in hand all possible al-
ternatives of the problem, but the quality of information depends on the
approximation obtained by varying the parameters. As a consequence, a
good choice of parameters is needed. Pascoletti and Serafini provided a par-
ticular scalarization technique effective in full generality and it is possibile to
see other scalarization techniques as a modification of this method, i.e. the
Pascoletti-Serafini method.

What we look for is a solution for the following multiobjective or vector
optimization problem

min f(x) = (f1(x), . . . , fn(x))

subject to x ∈ X ⊂ Rn.

In the following, consider a set X , a real linear space Y , a function f :
X −→ Y and a closed pointed convex cone K = Rp=

1.

1In the original paper by Pascoletti and Serafini, this method is presented in a more
general framework; the ordering is made with respect to any cone, K, while we used as
reference cone the Pareto cone, K = Rp

=. This choice is made for the sake of simplicity

and uniformity with previous sections.
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The set of all efficient points is XE(f(X ),Rp=), while the set of all weakly

efficient points is given by XwE(f(X ),Rp=). As a consequence, we have

YN(f(X ),Rp=) = {f(x) ∈ Rp : x ∈ XE(f(X ),Rp=)}, while YwN(f(X ),Rp=) =

{f(x) ∈ Rp : x ∈ XwE(f(X ),Rp=)}.
The scalarized problem can be stated as follow:

min ξ

subject to p+ ξq − f(x) ∈ Rp=,
ξ ∈ R,
x ∈ X .

As we said, this scalar problem is solved by moving the cone −Rp= along
the line p+ ξq, ξ ∈ R, starting from the point p in direction −q until the set
(p+ ξq−Rp=)∩ f(X ) = ∅. The smallest value of ξ̂ for which (p+ ξ̂q−Rp=)∩
f(X ) 6= ∅ is the minimal value of the scalar problem.

, a real linear space Y, a function

, starting from the point p in direction

in direction �q
ˆ

p + ⇠q � Rp
=

ˆ

� =
p + ⇠̂q �Rp

=
Rp

Figure 2.4: Way of solving the scalar problem in Pascoletti-Serafini

The problem P (p, q) has all features a scalarization method for determin-
ing minimal solutions of a multi-objective optimization problem should have:
if the couple (ξ̂, x̂) is a minimal solution of the scalar problem, then the point
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x̂ is, at least, a weakly efficient solution of the vector optimization problem.
Thus, by varying the two parameters (p, q), it would be possibile to obtain
all efficient points of the original problem as solution of P (p, q).

The vector and scalar problems are equivalent if

• for any efficient solution x0, there exists some pair (p, q) such that the
scalarized problem has a solution (ξ, x) with x = x0,

• for any pair (p, q), the problem P (p, q) has solutions (ξ, x), with x as
an efficient solution.

The following theorems show how the vector and the scalar problems are
equivalent. We consider the scalar optimization problem P (p, q) and the
multiobjective optimization problem.

Theorem 2.30 Let x̂ ∈ XE(f(X ),Rp=), then (0, x̂) is a minimal solution of

P (p, q) with the parameter p = f(x̂) and q ∈ Rp=\{0}. Let x̂ ∈ XwE(f(X ),Rp=),

then (0, x̂) is a minimal solution of P (p, q) with the parameter p = f(x̂) and
q ∈ int(Rp=).

Theorem 2.31 For any solution (ξ̂, x̂) of P (p, q), x̂ ∈ XwE(f(X ),Rp=) and

p+ ξ̂q − f(x̂) ∈ ∂Rp= with ∂Rp= the boundary of the cone Rp=.

Theorem 2.32 Let x̂ be a locally weakly efficient solution of the multiobjec-
tive problem, then (0, x̂) is a local minimal solution of P (p, q) for parameter
p = f(x̂) and for arbitrary q ∈ int(Rp=). Let x̂ be a locally efficient solution of

the multiobjective problem, then (0, x̂) is a local minimal solution of P (p, q)
for parameter p = f(x̂) and for arbitrary q ∈ Rp= \ {0}.

Theorem 2.33 Let (ξ̂, x̂) be a local minimal solution of P (p, q), then x̂ is
a locally weakly efficient solution of the multi-objective optimization problem
and p+ ξ̂q − f(x̂) ∈ ∂Rp=.

Theorem 2.31 does not always ensure that we obtain a x̂ weakly efficient
point for arbitrary (p, q); hence, it is possible that the problem P (p, q) has
no minimal solution, as shown in Figure 2.5
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Under stronger assumptions, we get the following result.

Proposition 2.8 If x̂ is unique in an optimal solution of (2.4), then x̂ 2 XsE

is a strictly e�cient solution of the multicriteria optimization problem.

Actually it is possible that for µ > 0 we have an optimal solution that is
weakly e�cient; however, if all "k are chosen in such a way that no weakly
e�cient solution satisfies the "-constraint, an optimal solution of the problem
(2.4) with µ > 0 will have an e�cient solution.

Under appropriate choice of k, " and µ, we have that optimal solutions of
(2.4) are (properly) e�cient solutions. Corollary 2.9 follows from Theorem 2.4

Corollary 2.9 If X is a convex, compact set and fk : Rn �! R, k = 1, . . . , p
are convex functions then YwN , YN and YpE are connected.

2.3 The Pascoletti-Serafini method

Pascoletti and Serafini started from the question about e↵ectiveness of the trans-
formation of a vector problem into a scalar one, since the latter provides more
e↵ective ways of computation of optima than vector problems do. In particular,
they stated that two are the requirements that a scalarization should respect to
be e↵ective

• the possibility of finding all vector optima among the scalar optima ob-
tained by varying the parameters,

• the well-behavior dependence of optima on the parameters.

For a decision maker, it is important to have in hand all possible alternatives
of the problem, but the quality of information depends on the approximation
obtained by varying the parameters. As a consequence, a good choice of pa-
rameters is needed. Pascoletti and Serafini provided a particular scalarization
technique e↵ective in full generality and it is possibile to see other scalarization
techniques as a modification of this method, i.e. the Pascoletti-Serafini method.

What we look for is a solution for the following multi-objective or vector
optimization problem

min f(x) = (f1(x), . . . , fn(x))

subject to x 2 X ⇢ Rn.

In the following, consider a set X , a real linear space Y, a function f :
X �! Y and a closed pointed convex cone K ⇢ Y. Given the cone K, we give
the definition of K-optimal solution.

Definition 2.10 A point x̂ 2 X is K-optimal (or K-minimal) if

(f(x̂) � K) \ (f(X ) = {f(x̂)}.
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A point x̂ 2 X is locally or weakly K-optimal if

(f(x̂) � int(K)) \ (f(K)) = {;}.

The set of all K-minimal points is M(f(X , K), while the set of all weakly K-
minimal points is given by Mw(f(X , K). As a consequence the set of e�cient
points is E(f(X ), K) = {f(x) 2 Rn : x 2 M(f(X , K), while Ew(f(X ), K) =
{f(x) 2 Rn : x 2 Mw(f(X , K). It is easy to see that, for K = Rn

=, the K-

minimal points are Pareto-minimal points.
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A point x̂ 2 X is locally or weakly K-optimal if

(f(x̂) � int(K)) \ (f(K)) = {;}.

The set of all K-minimal points is M(f(X , K), while the set of all weakly K-
minimal points is given by Mw(f(X , K). As a consequence the set of e�cient
points is E(f(X ), K) = {f(x) 2 Rn : x 2 M(f(X , K), while Ew(f(X ), K) =
{f(x) 2 Rn : x 2 Mw(f(X , K). It is easy to see that, for K = Rn

=, the K-

minimal points are Pareto-minimal points.
Let us define now the scalarization, P (p, q), of the vector problem since we

want to solve the vector problem by examining a parameter dependent scalar
problem. The scalarized problem born directly from the K-optimality: if, for
some y 2 Y, the set {y + K}\ f(X ) is a singleton, then its preimage through f
is a set of K-optima. We fix two vectors p and q in Y and translate K from p
to q until its intersection with f(X ) is equal to the empty set. The pair (p, q)
are parameters that a↵ect the solution of P (p, q).

The scalarized problem can be stated as follow:

min ⇠

subject to p + ⇠q � f(x) 2 K,

⇠ 2 R,

x 2 X .

This scalar problem is solved by moving the cone �K along the line p+⇠q, ⇠ 2
R, starting from the point p in direction �q untile the set (p+⇠q�K)\f(X ) = ;.
The smallest value of ⇠̂ for which (p + ⇠q �K) \ f(X ) 6= ; is the minimal value
of the scale problem. ŷ = f(x̂)

40 2 Efficiency and Nondominance

The essential difference as compared to the proofs of Theorems 2.10 and
2.12 is that in those theorems we deal with sets y−Rp

! which are closed. Here,

we have sets y + Rp
> which are open. Note that y /∈ y + Rp

>.
Theorem 2.25 and continuity of f can now be used to prove existence of

weakly efficient solutions.

Corollary 2.26. Let X ⊂ Rn be nonempty and compact. Assume that f :
Rn → Rp is continuous. Then XwE ̸= ∅.

Proof. The result follows from Theorem 2.19 and XE ⊂ XwE or from Theorem
2.25 and the fact that f(X ) is compact for compact X and continuous f . ⊓(

As indicated earlier, the inclusion YN ⊂ YwN is in general strict. The
following example shows that YwN can be nonempty, even if YN is empty,
and also, of course, if Y is not compact. It also illustrates that YwN \ YN

might be a rather large set.

Example 2.27. Consider the set

Y =
{

(y1, y2) ∈ R2 : 0 < y1 < 1, 0 ≤ y2 ≤ 1
}

. (2.21)

Then YN = ∅ but YwN = (0, 1)×{0} = {y ∈ Y : 0 < y1 < y2, y2 = 0} (Figure
2.9).
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Fig. 2.9. YN is empty, YwN is not.

Let us now look at the closed square, i.e.

Y = {(y1, y2) ∈ R2 : 0 ≤ yi ≤ 1}. (2.22)

We have YN = {0} and YwN = {(y1, y2) ∈ Y : y1 = 0 or y2 = 0}. (Figure
2.10)

⊓(
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following example shows that YwN can be nonempty, even if YN is empty,
and also, of course, if Y is not compact. It also illustrates that YwN \ YN

might be a rather large set.

Example 2.27. Consider the set

Y =
{

(y1, y2) ∈ R2 : 0 < y1 < 1, 0 ≤ y2 ≤ 1
}

. (2.21)

Then YN = ∅ but YwN = (0, 1)×{0} = {y ∈ Y : 0 < y1 < y2, y2 = 0} (Figure
2.9).
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Fig. 2.9. YN is empty, YwN is not.

Let us now look at the closed square, i.e.

Y = {(y1, y2) ∈ R2 : 0 ≤ yi ≤ 1}. (2.22)

We have YN = {0} and YwN = {(y1, y2) ∈ Y : y1 = 0 or y2 = 0}. (Figure
2.10)
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Fig. 3.9. Connectedness of YN .

connectedness of S(Y) in the case that Y is compact, which implies the con-
nectedness of YN with Lemma 3.32.

Proposition 3.33. If Y is compact and convex then S(Y) is connected.

Proof. Suppose S(Y) is not connected. Then we have open sets Y1,Y2 such
that Yi ∩ S(Y) ̸= ∅ for i = 1, 2, Y1 ∩Y2 ∩ S(Y) = ∅, and S(Y) ⊂ Y1 ∪Y2. Let

Li := {λ ∈ Rp
> : S(λ,Y) ∩ Yi ̸= ∅}, i = 1, 2. (3.67)

Because S(λ,Y) is convex and every convex set is connected, we know that
S(λ,Y) is connected. Therefore

Li = {λ ∈ Rp
> : S(λ,Y) ⊂ Yi}, i = 1, 2 (3.68)

and L1 ∩ L2 = ∅. But since Yi ∩ S(Y) ̸= ∅ we also have Li ∩ Rp
> ̸= ∅ for

i = 1, 2. From S(Y) ⊂ Y1 ∪ Y2 it follows that Rp
> ⊂ L1 ∪ L2 (in fact, these

sets are equal). By Lemma 3.34 below the sets Li are open, which implies the
absurd statement that Rp

!
is not connected. ⊓(

Lemma 3.34. The sets Li = {λ ∈ Rp
> : S(Y) ⊂ Yi} in the proof of Proposi-

tion 3.33 are open.

Proof. We will show the Lemma for L1, which by symmetry is enough. If L1

is not open there must be λ̂ ∈ L1 and {λk, k ≥ 1} ⊂ Rp
> \ L1 = L2 such that

λk → λ̂.
Let yk ∈ S(λk,Y), k ≥ 1. Since Y is compact, we can assume (taking

a subsequence if necessary) that yk → ŷ ∈ Y and ŷ ∈ S(λ̂,Y). Note that
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Fig. 3.9. Connectedness of YN .

connectedness of S(Y) in the case that Y is compact, which implies the con-
nectedness of YN with Lemma 3.32.

Proposition 3.33. If Y is compact and convex then S(Y) is connected.

Proof. Suppose S(Y) is not connected. Then we have open sets Y1,Y2 such
that Yi ∩ S(Y) ̸= ∅ for i = 1, 2, Y1 ∩Y2 ∩ S(Y) = ∅, and S(Y) ⊂ Y1 ∪Y2. Let

Li := {λ ∈ Rp
> : S(λ,Y) ∩ Yi ̸= ∅}, i = 1, 2. (3.67)

Because S(λ,Y) is convex and every convex set is connected, we know that
S(λ,Y) is connected. Therefore

Li = {λ ∈ Rp
> : S(λ,Y) ⊂ Yi}, i = 1, 2 (3.68)

and L1 ∩ L2 = ∅. But since Yi ∩ S(Y) ̸= ∅ we also have Li ∩ Rp
> ̸= ∅ for

i = 1, 2. From S(Y) ⊂ Y1 ∪ Y2 it follows that Rp
> ⊂ L1 ∪ L2 (in fact, these

sets are equal). By Lemma 3.34 below the sets Li are open, which implies the
absurd statement that Rp

!
is not connected. ⊓(

Lemma 3.34. The sets Li = {λ ∈ Rp
> : S(Y) ⊂ Yi} in the proof of Proposi-

tion 3.33 are open.

Proof. We will show the Lemma for L1, which by symmetry is enough. If L1

is not open there must be λ̂ ∈ L1 and {λk, k ≥ 1} ⊂ Rp
> \ L1 = L2 such that

λk → λ̂.
Let yk ∈ S(λk,Y), k ≥ 1. Since Y is compact, we can assume (taking

a subsequence if necessary) that yk → ŷ ∈ Y and ŷ ∈ S(λ̂,Y). Note that

Figure 2.2: Example of connectedness and non-connectedness of YN

The vector and scalar problems are equivalent if

• for any C-optimal x0, there exists some pair (p, q) such that the scalarized
problem has a solution (⇠, x,�) with x = x0,

36

Figure 2.2: K-optimality

Let us define now the scalarization, P (p, q), of the vector problem since we
want to solve the vector problem by examining a parameter dependent scalar
problem. The scalarized problem born directly from the K-optimality: if, for
some y 2 Y, the set {y + K}\ f(X ) is a singleton, then its preimage through f
is a set of K-optima. We fix two vectors p and q in Y and translate K from p
to q until its intersection with f(X ) is equal to the empty set. The pair (p, q)
are parameters that a↵ect the solution of P (p, q).

The scalarized problem can be stated as follow:

min ⇠

subject to p + ⇠q � f(x) 2 K,

⇠ 2 R,

x 2 X .

This scalar problem is solved by moving the cone �K along the line p+⇠q, ⇠ 2
R, starting from the point p in direction �q untile the set (p+⇠q�K)\f(X ) = ;.
The smallest value of ⇠̂ for which (p + ⇠̂q �K) \ f(X ) 6= ; is the minimal value
of the scale problem.

The vector and scalar problems are equivalent if

• for any C-optimal x0, there exists some pair (p, q) such that the scalarized
problem has a solution (⇠, x,�) with x = x0,
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A point x̂ 2 X is locally or weakly K-optimal if

(f(x̂) � int(K)) \ (f(K)) = {;}.

The set of all K-minimal points is M(f(X , K), while the set of all weakly K-
minimal points is given by Mw(f(X , K). As a consequence the set of e�cient
points is E(f(X ), K) = {f(x) 2 Rn : x 2 M(f(X , K), while Ew(f(X ), K) =
{f(x) 2 Rn : x 2 Mw(f(X , K). It is easy to see that, for K = Rn

=, the K-

minimal points are Pareto-minimal points.

Under stronger assumptions, we get the following result.

Proposition 2.8 If x̂ is unique in an optimal solution of (2.4), then x̂ 2 XsE

is a strictly e�cient solution of the multicriteria optimization problem.

Actually it is possible that for µ > 0 we have an optimal solution that is
weakly e�cient; however, if all "k are chosen in such a way that no weakly
e�cient solution satisfies the "-constraint, an optimal solution of the problem
(2.4) with µ > 0 will have an e�cient solution.

Under appropriate choice of k, " and µ, we have that optimal solutions of
(2.4) are (properly) e�cient solutions. Corollary 2.9 follows from Theorem 2.4

Corollary 2.9 If X is a convex, compact set and fk : Rn �! R, k = 1, . . . , p
are convex functions then YwN , YN and YpE are connected.

2.3 The Pascoletti-Serafini method

Pascoletti and Serafini started from the question about e↵ectiveness of the trans-
formation of a vector problem into a scalar one, since the latter provides more
e↵ective ways of computation of optima than vector problems do. In particular,
they stated that two are the requirements that a scalarization should respect to
be e↵ective

• the possibility of finding all vector optima among the scalar optima ob-
tained by varying the parameters,

• the well-behavior dependence of optima on the parameters.

For a decision maker, it is important to have in hand all possible alternatives
of the problem, but the quality of information depends on the approximation
obtained by varying the parameters. As a consequence, a good choice of pa-
rameters is needed. Pascoletti and Serafini provided a particular scalarization
technique e↵ective in full generality and it is possibile to see other scalarization
techniques as a modification of this method, i.e. the Pascoletti-Serafini method.

What we look for is a solution for the following multi-objective or vector
optimization problem

min f(x) = (f1(x), . . . , fn(x))

subject to x 2 X ⇢ Rn.

In the following, consider a set X , a real linear space Y, a function f :
X �! Y and a closed pointed convex cone K ⇢ Y. Given the cone K, we give
the definition of K-optimal solution.

Definition 2.10 A point x̂ 2 X is K-optimal (or K-minimal) if

(f(x̂) � K) \ (f(X ) = {f(x̂)}.

35
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of the problem, but the quality of information depends on the approximation
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technique e↵ective in full generality and it is possibile to see other scalarization
techniques as a modification of this method, i.e. the Pascoletti-Serafini method.

What we look for is a solution for the following multi-objective or vector
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min f(x) = (f1(x), . . . , fn(x))

subject to x 2 X ⇢ Rn.

In the following, consider a set X , a real linear space Y, a function f :
X �! Y and a closed pointed convex cone K ⇢ Y. Given the cone K, we give
the definition of K-optimal solution.
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(f(x̂) � K) \ (f(X ) = {f(x̂)}.
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A point x̂ 2 X is locally or weakly K-optimal if

(f(x̂) � int(K)) \ (f(K)) = {;}.

The set of all K-minimal points is M(f(X , K), while the set of all weakly K-
minimal points is given by Mw(f(X , K). As a consequence the set of e�cient
points is E(f(X ), K) = {f(x) 2 Rn : x 2 M(f(X , K), while Ew(f(X ), K) =
{f(x) 2 Rn : x 2 Mw(f(X , K). It is easy to see that, for K = Rn

=, the K-

minimal points are Pareto-minimal points.
Let us define now the scalarization, P (p, q), of the vector problem since we

want to solve the vector problem by examining a parameter dependent scalar
problem. The scalarized problem born directly from the K-optimality: if, for
some y 2 Y, the set {y + K}\ f(X ) is a singleton, then its preimage through f
is a set of K-optima. We fix two vectors p and q in Y and translate K from p
to q until its intersection with f(X ) is equal to the empty set. The pair (p, q)
are parameters that a↵ect the solution of P (p, q).

The scalarized problem can be stated as follow:

min ⇠

subject to p + ⇠q � f(x) 2 K,

⇠ 2 R,

x 2 X .

This scalar problem is solved by moving the cone �K along the line p+⇠q, ⇠ 2
R, starting from the point p in direction �q untile the set (p+⇠q�K)\f(X ) = ;.
The smallest value of ⇠̂ for which (p + ⇠q �K) \ f(X ) 6= ; is the minimal value
of the scale problem. ŷ = f(x̂)

40 2 Efficiency and Nondominance

The essential difference as compared to the proofs of Theorems 2.10 and
2.12 is that in those theorems we deal with sets y−Rp

! which are closed. Here,

we have sets y + Rp
> which are open. Note that y /∈ y + Rp

>.
Theorem 2.25 and continuity of f can now be used to prove existence of

weakly efficient solutions.

Corollary 2.26. Let X ⊂ Rn be nonempty and compact. Assume that f :
Rn → Rp is continuous. Then XwE ̸= ∅.

Proof. The result follows from Theorem 2.19 and XE ⊂ XwE or from Theorem
2.25 and the fact that f(X ) is compact for compact X and continuous f . ⊓(

As indicated earlier, the inclusion YN ⊂ YwN is in general strict. The
following example shows that YwN can be nonempty, even if YN is empty,
and also, of course, if Y is not compact. It also illustrates that YwN \ YN

might be a rather large set.

Example 2.27. Consider the set

Y =
{

(y1, y2) ∈ R2 : 0 < y1 < 1, 0 ≤ y2 ≤ 1
}

. (2.21)

Then YN = ∅ but YwN = (0, 1)×{0} = {y ∈ Y : 0 < y1 < y2, y2 = 0} (Figure
2.9).
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Fig. 2.9. YN is empty, YwN is not.

Let us now look at the closed square, i.e.

Y = {(y1, y2) ∈ R2 : 0 ≤ yi ≤ 1}. (2.22)

We have YN = {0} and YwN = {(y1, y2) ∈ Y : y1 = 0 or y2 = 0}. (Figure
2.10)

⊓(
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Y =
{
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}
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Then YN = ∅ but YwN = (0, 1)×{0} = {y ∈ Y : 0 < y1 < y2, y2 = 0} (Figure
2.9).
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Fig. 2.9. YN is empty, YwN is not.

Let us now look at the closed square, i.e.

Y = {(y1, y2) ∈ R2 : 0 ≤ yi ≤ 1}. (2.22)

We have YN = {0} and YwN = {(y1, y2) ∈ Y : y1 = 0 or y2 = 0}. (Figure
2.10)
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connectedness of S(Y) in the case that Y is compact, which implies the con-
nectedness of YN with Lemma 3.32.

Proposition 3.33. If Y is compact and convex then S(Y) is connected.

Proof. Suppose S(Y) is not connected. Then we have open sets Y1,Y2 such
that Yi ∩ S(Y) ̸= ∅ for i = 1, 2, Y1 ∩Y2 ∩ S(Y) = ∅, and S(Y) ⊂ Y1 ∪Y2. Let

Li := {λ ∈ Rp
> : S(λ,Y) ∩ Yi ̸= ∅}, i = 1, 2. (3.67)

Because S(λ,Y) is convex and every convex set is connected, we know that
S(λ,Y) is connected. Therefore

Li = {λ ∈ Rp
> : S(λ,Y) ⊂ Yi}, i = 1, 2 (3.68)

and L1 ∩ L2 = ∅. But since Yi ∩ S(Y) ̸= ∅ we also have Li ∩ Rp
> ̸= ∅ for

i = 1, 2. From S(Y) ⊂ Y1 ∪ Y2 it follows that Rp
> ⊂ L1 ∪ L2 (in fact, these

sets are equal). By Lemma 3.34 below the sets Li are open, which implies the
absurd statement that Rp

!
is not connected. ⊓(

Lemma 3.34. The sets Li = {λ ∈ Rp
> : S(Y) ⊂ Yi} in the proof of Proposi-

tion 3.33 are open.

Proof. We will show the Lemma for L1, which by symmetry is enough. If L1

is not open there must be λ̂ ∈ L1 and {λk, k ≥ 1} ⊂ Rp
> \ L1 = L2 such that

λk → λ̂.
Let yk ∈ S(λk,Y), k ≥ 1. Since Y is compact, we can assume (taking

a subsequence if necessary) that yk → ŷ ∈ Y and ŷ ∈ S(λ̂,Y). Note that
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connectedness of S(Y) in the case that Y is compact, which implies the con-
nectedness of YN with Lemma 3.32.

Proposition 3.33. If Y is compact and convex then S(Y) is connected.

Proof. Suppose S(Y) is not connected. Then we have open sets Y1,Y2 such
that Yi ∩ S(Y) ̸= ∅ for i = 1, 2, Y1 ∩Y2 ∩ S(Y) = ∅, and S(Y) ⊂ Y1 ∪Y2. Let

Li := {λ ∈ Rp
> : S(λ,Y) ∩ Yi ̸= ∅}, i = 1, 2. (3.67)

Because S(λ,Y) is convex and every convex set is connected, we know that
S(λ,Y) is connected. Therefore

Li = {λ ∈ Rp
> : S(λ,Y) ⊂ Yi}, i = 1, 2 (3.68)

and L1 ∩ L2 = ∅. But since Yi ∩ S(Y) ̸= ∅ we also have Li ∩ Rp
> ̸= ∅ for

i = 1, 2. From S(Y) ⊂ Y1 ∪ Y2 it follows that Rp
> ⊂ L1 ∪ L2 (in fact, these

sets are equal). By Lemma 3.34 below the sets Li are open, which implies the
absurd statement that Rp
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is not connected. ⊓(

Lemma 3.34. The sets Li = {λ ∈ Rp
> : S(Y) ⊂ Yi} in the proof of Proposi-

tion 3.33 are open.

Proof. We will show the Lemma for L1, which by symmetry is enough. If L1

is not open there must be λ̂ ∈ L1 and {λk, k ≥ 1} ⊂ Rp
> \ L1 = L2 such that

λk → λ̂.
Let yk ∈ S(λk,Y), k ≥ 1. Since Y is compact, we can assume (taking

a subsequence if necessary) that yk → ŷ ∈ Y and ŷ ∈ S(λ̂,Y). Note that

Figure 2.2: Example of connectedness and non-connectedness of YN

The vector and scalar problems are equivalent if

• for any C-optimal x0, there exists some pair (p, q) such that the scalarized
problem has a solution (⇠, x,�) with x = x0,

36

Figure 2.2: K-optimality

Let us define now the scalarization, P (p, q), of the vector problem since we
want to solve the vector problem by examining a parameter dependent scalar
problem. The scalarized problem born directly from the K-optimality: if, for
some y 2 Y, the set {y + K}\ f(X ) is a singleton, then its preimage through f
is a set of K-optima. We fix two vectors p and q in Y and translate K from p
to q until its intersection with f(X ) is equal to the empty set. The pair (p, q)
are parameters that a↵ect the solution of P (p, q).

The scalarized problem can be stated as follow:

min ⇠

subject to p + ⇠q � f(x) 2 K,

⇠ 2 R,

x 2 X .

This scalar problem is solved by moving the cone �K along the line p+⇠q, ⇠ 2
R, starting from the point p in direction �q untile the set (p+⇠q�K)\f(X ) = ;.
The smallest value of ⇠̂ for which (p + ⇠̂q �K) \ f(X ) 6= ; is the minimal value
of the scale problem.

The vector and scalar problems are equivalent if

• for any C-optimal x0, there exists some pair (p, q) such that the scalarized
problem has a solution (⇠, x,�) with x = x0,

36

Figure 2.5: Case of no minimal solution of scalar problem

Theorem 2.34 Let the set f(X ) be Rp=-closed and Rp=-convex. Assume

YN(f(X ),Rp=) 6= ∅. Then

{
(p, q) ∈ Rp × int(Rp=) :

∑
(p, q) 6= ∅

}
= Rp × int(Rp=),

i.e. for any choice of parameters (p, q), P (p, q) has feasible points.
Besides all parameters (p, q), there exists a minimal solution of the scalar
problem P (p, q).

Corollary 2.35 Let the set f(X ) be Rp=-closed and Rp=-convex. If there is a

parameter (p, q) ∈ Rp × int(Rp=) such that P (p, q) has no minimal solution

then YN(f(X ),Rp=) = ∅.

The meaning of Theorem 2.34 is that if for some parameter p ∈ Rp
and q ∈ int(Rp=) P (p, q) has no minimal solution, then under some further
assumptions we can said that the related multiobjective problem has no
efficient solution at all. Instead, if the scalar problem for arbitrary parameters
satisfies Corollary 2.35, then we either obtain a weakly efficient solution or
we get information about the fact that there are no efficient points of the
problem.
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According to Theorem 2.30, it is not always true that a point x̂ of P (p, q)
is efficient; it may be weakly efficient and, thus, there exists another point
x′ which dominates x̂. However, x′ corresponds to some other solution of
P (p, q) with same values of p and q. Hence, the scalar problem is a perfect
representation of vector problem.

Theorem 2.36 If the point (ξ̂, x̂) is a minimal solution of P (p, q) with k̂ =
p+ ξ̂q − f(x̂) and if there is a point y′ = f(x′) ∈ f(X ) dominating the point
f(x̂) w. r. t. the cone Rp=, then the point (ξ̂, x′) is also a minimal solution

P (p, q) and there exists a k′ ∈ ∂Rp=, k 6= 0, with p+ ξ̂q − f(x′) = k̂ + k′.

Corollary 2.37 If the point (ξ̂, x̂) is an image-unique minimal solution of
the scalar problem P (p, q) w. r. t. f , i. e. there is no other minimal solution
(ξ′, x′) with f(x′) = f(x̂), then x̂ is an efficient solution of the multiobjective
optimization problem.

A further characterization of solutions of the scalarized problem is needed
in order to test efficiency; in fact, it is possible that points that are weakly
efficient, are not efficient. However, this possibility is atypical, while it is
more probable that solutions of P (p, q) give efficient solutions. A sufficient
assumption to get efficient solution is to require the strict optimality from
solutions of P (p, q).

Theorem 2.38 The point x̂ is efficient for the multiobjective optimization
problemif and only if

1. there is some ξ̂ ∈ R so that (ξ̂, x̂) is a minimal solution of P (p, q) for
some parameters p ∈ R and q ∈ int(Rp=),

2. for k := p+ ξ̂q − f(x̂) it is:

((p+ ξ̂q)− ∂Rp=) ∩ (f(x̂)− ∂Rp=) ∩ f(X ) = {f(x̂)}.

Theorem 2.38 means that if (ξ̂, x̂) is a minimal solution of the scalar
problem P (p, q), with q ∈ int(Rp=), then x̂ is a weakly efficient solution and

for checking if x̂ is also efficient it is sufficient to test the points ((p + ξ̂q)−
∂Rp=) ∩ (f(x̂)− ∂Rp=) of the set f(X ).
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The aim of this method is to get all efficient solutions of the multiob-
jective optimization problem throughout the scalar problem with different
parameters. On the basis of Theorem 2.30, we can get all efficient solutions
given q ∈ Rp= \ {0} and varying p. However, it is possible to further restrict
the set of all values of p and still obtaining all efficient solutions. Before
considering briefly the bicriteria case, consider the following theorem.

Theorem 2.39 Let x̂ be an efficient solution for the multiobjective optimiza-
tion problem and define a hyperplane

H = {y ∈ Rp : bTy = β}

with b ∈ Rp \ {0} and β ∈ R. Let q ∈ Rn= with bT q 6= 0 be arbitrarily given.

Then there is a parameter p ∈ H and some ξ̂ ∈ R so that (ξ̂, x̂) is a minimal
solution of P (p, q). This holds for instance for

ξ̂ =
bTf(x̂)− β

bT q

and
p = f(x̂)− ξ̂q.

Now consider the bicriteria case; assume x̂i, i = 1, 2 are the minimal solu-
tions of min

x∈X
fi(x), i = 1, 2, and choose a parameter q ∈ Rp= and a hyperplane

H = {y ∈ Rp : bTy = β} with b ∈ Rp, β ∈ R and bT q 6= 0. Then set

ξ̂i =
bTf(x̂i)− β

bT q

and
p̂i = f(x̂i)− ξ̂iq.

Now we have just to consider parameters p ∈ Hp with

Hp := {y ∈ H : y = λp̂1 + (1− λ)p̂2, λ ∈ [0, 1]}

the line segment on the hyperplane H between points p̂1 and p̂2.

Theorem 2.40 We consider the multiobjective optimization problem with
p = 2 and K = R2

+. For any x̂ ∈ XE(f(X ),R2
+) there exists a parameter

p ∈ Hp ⊂ H and a scalar ξ̂ ∈ R with (ξ̂, x̂) a minimal solution of P (p, q).
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In the general case, things are a little bit tricky. Even if the ordering cone
Rp= is finitely generated by three vectors, we cannot generalized the results in
the bicriteria case for determining the set Hp. However, a weaker restriction
of the set H for the parameter p is obtained by projecting the image set f(X )
in direction q onto the set H, determining in this way the set

H̃ := {y ∈ H : y + ξq = f(x), ξ ∈ R, x ∈ X} ⊂ H. (2.25)

Since H̃ ⊂ H has generally an irregular boundary, making itself unsuitable
for systematic procedure, we embed the set H̃ in a (p−1)-dimensional cuboid
H0 ⊂ Rp, chosen as minimal as possible. To get H0, first determine p − 1
vectors v1, . . . , vp−1, which span the hyperplane H with H̃ ⊂ H and which
are orthogonal and normalized by one, that is to say

viTvj =

{
0, for i 6= j, i, j ∈ {1, . . . , p− 1},
1, for i = j, i, j ∈ {1, . . . , p− 1}. (2.26)

These vectors form an orthonormal basis of the smallest subspace of Rp
containing H. We have that vi ∈ H, i = 1, . . . , p− 1, i.e.

bTvi = β, i = 1, . . . , p− 1. (2.27)

This leads to the representation

H = {y ∈ Rp : y =

p−1∑

i=1

siv
i, s ∈ Rp−1} (2.28)

of the hyperplane H. Then, we can find the cuboid by solving the 2(p − 1)
scalar-values optimization problems

min sj

subject to

p−1∑

i=1

siv
i + ξq = f(x),

ξ ∈ R,
x ∈ X ,

s ∈ Rp−1.

(2.29)

for j ∈ {1, . . . , p−1} with minimal solution (ξmin,j, xmin,j, smin,j) and minimal
value smin,j

j and
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min − sj

subject to

p−1∑

i=1

siv
i + ξq = f(x),

ξ ∈ R,
x ∈ X ,

s ∈ Rp−1.

(2.30)

for j ∈ {1, . . . , p − 1} with minimal solution (ξmax,j, xmax,j, smax,j) and
minimal value smax,j

j . We can now define H0 as follow

H0 := {y ∈ Rp : y =

p−1∑

i=1

siv
i, si ∈ [smin,i

i , smax,i
i ], i = 1, . . . , p− 1}

with H̃ ⊂ H0, leading us to the suitable restriction of H for which we were
looking for.

Lemma 2.41 Let x̂ be an efficient solution of the multiobjective optimization
problem. Let q ∈ Rp= \ {0}. Then there is a parameter p̂ ∈ H0 and some

ξ̂ ∈ R so that (ξ̂, x̂) is a minimal solution of P (p̂, q).

In this way, we restrict the parameter set in the case of more than two
objectives and arbitrary ordering cones Rp=.

2.5 Modified Pascoletti-Serafini scalarization

A modified version of the Pascoletti-Serafini problem is given by P̄ (p, q)

min ξ

subject to p+ ξq − f(x) = 0,

ξ ∈ R,
x ∈ X ,

where p+ ξq − f(x) ∈ Rp= is replaced with p+ ξq − f(x) = 0.
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Theorem 2.42 Let a hyperplane H = {y ∈ Rp : bTy = β} with b ∈ Rp \ {0}
and β ∈ R be given. Let (ξ̂, x̂) be a minimal solution of the scalar optimization
problem P (p, q) for the parameters p ∈ Rp and q ∈ Rp with bT q 6= 0. Hence
there is a k̂ ∈ Rp= with

p+ ξ̂q − f(x̂) = k̂.

Then there is a parameter p′ ∈ H and some ξ′ ∈ R so that (ξ′, x̂) is a minimal
solution of P (p′, q) with

p′ + ξ′q − f(x̂) = 0.

Theorem 2.42 gives us the link between P (p, q) and P̄ (p, q), i.e. for a
minimal solution (ξ̂, x̂) of the scalar optimization problem P (p, q) with

p+ ξ̂q − f(x̂) = k̂, k̂ 6= 0,

there exists a parameter p′ ∈ H and some ξ′ ∈ R so that the couple (ξ′, x̂) is
a minimal solution of P (p′, q) with

p′ + ξ′q − f(x̂) = 0

and hence (ξ′, x̂) is also a minimal solution of P̄ (p′, q).
It is important to point out that minimal solution of the modified scalar

problem not necessarily are weakly efficient points of the multiobjective op-
timization problem. However, thanks to Theorem 2.42, it is still possible to
find all efficient points only by varying the parameter p on a hyperplane.

Theorem 2.43 Let a hyperplane H = {y ∈ Rp : bTy = β} with b ∈ Rp,
β ∈ R be given. Let x̂ ∈ XE(f(X ),Rp=) and q ∈ Rp= \ {0} with bT q 6= 0.

Then there is a parameter p ∈ H and some ξ̂ ∈ R so that (ξ̂, x̂) is a minimal
solution of the scalar optimization problem P̄ (p, q).

2.6 Relationship between scalarizations

As we have seen, the Pascoletti-Serafini method has many interesting prop-
erties and, as we said previously, other scalarization techniques can be seen
as a special case or as a modification of this method. We concentrate on the
ε-constraint method and on the weighted sum method.
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Since Lagrange multipliers will play a role in the following sections, it
is necessary to consider them and then extend Theorem 2.42. Consider the
following scalar optimization problem

min F (x)

subject to G(x) ∈ C,
H(x) = 0,

x ∈ S,

where C ⊂ Rm is a closed convex cone, Ŝ ⊂ Rn is an open subset, S ⊂ Ŝ is a
closed convex set and functions F : Ŝ −→ R, G : Ŝ −→ Rp, H : Ŝ −→ Rq are
continuously differentiable. Then the related Langrange function is given by
L : Rn × C∗ × Rq −→ R,

L(x, µ, φ) := F (x)− µTG(x)− φTH(x).

If x is feasible and there exists (µ, φ) ∈ C∗ × Rq with

∇xL(x, µ, φ)T (s− x) ≥ 0,∀s ∈ S

and
µTG(x) = 0

then µ and φ are called Lagrange multipliers to the point x.
Given the following assumption,

Assumption 2.44 Let K be a closed pointed convex cone in Rp and C a
closed convex cone in Rm. Let Ŝ be a nonempty open subset of Rn and
assume S ⊂ Ŝ to be closed and convex. Let the functions f : Ŝ −→ Rm, g :
Ŝ −→ Rp, h : Ŝ −→ Rq be continuously differentiable on Ŝ.

we restate Theorem 2.42 as follow.

Lemma 2.45 We consider the scalar optimization problem P (p, q) under
the Assumption 2.44. Let (ξ̂, x̂) be a minimal solution and assume there exist
Lagrange multipliers (µ, υ, φ) ∈ K∗ × C∗ × Rq to the point (ξ̂, x̂). According
to Theorem 2.27 there exists a parameter p′ ∈ H and some ξ′ ∈ R so that
(ξ′, x̂) is a minimal solution of P (p′, q) and p′ + ξ′q = f(x̂).

Then (µ, υ, φ) are Lagrange multipliers to the point (ξ′, x̂) for the problem
P (p′, q), too.
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2.6.1 Relationship with ε-constraint method

Recall the ε-constraint problem for an arbitrary j ∈ {1, . . . , n} and parame-
ters ε ∈ R, k ∈ {1, . . . , p} \ {k} as follow

min
x∈X

fj(x)

subject to fk(x) ≤ εk, k ∈ {1, . . . , p} \ {k}.

The ε-constraint method can be seen as a special case of the Pascoletti-
Serafini one if you consider the ordering cone K = Rp=; another way of seeing
the connection between these two methods is by considering the Lagrange
multipliers.

Theorem 2.46 Let Assumption 2.44 hold and let K = Rp=, C = Rm+ , Ŝ =
S = Rn. A point x̂ is a minimal solution of the ε-constraint problem with
Lagrange multipliers µ̂k ∈ R+ for k ∈ {1, . . . , p} \ {k}, υ̂ ∈ Rm+ , and φ̂ ∈
Rq, if and only if (fk(x̂, x̂)) is a minimal solution of P (p, q) with Lagrange
multipliers (µ̂, υ̂, φ̂) with µ̂k = 1, and

pk = εk, ∀k ∈ {1, . . . , p} \ {k}, pk = 0 andq = ek, (2.31)

with ek the kth unit vector in Rp.

The ε-constraint method is a restriction of the Pascoletti-Serafini scalar-
ization because parameter p is chosen from the hyperplane H = {y ∈ Rp :
yj = 0}, while q is maintained constant and equal to ek. From Theo-
rem 2.30, any efficient solution x̂ of the multiobjective optimization prob-
lem can be obtained by solving the ε-constraint problem for the parameters
εk = fk(x̂), k ∈ {1, . . . , p}\{k}. The difference with respect to the Pascoletti-
Serafini method is that not all efficient solution can be determined by solving
the ε-constraint problem because q ∈ ∂K = ∂Rp= in the ε-constraint method.
However, from Theorem 2.30, any efficient solution of the ε-constraint prob-
lem is, at least, a weakly efficient solution of the multiobjective optimization
problem.

Corollary 2.47 If x̂ is a minimal solution of the ε-constraint problem, then
x̂ ∈ XwE(f(X ),Rp=).
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The "-constraint method is a restriction of the Pascoletti-Serafini scalar-
ization because parameter p is chosen from the hyperplane H = {y 2 Rm :
yj = 0}, while q is maintained constant and equal to ek. From Theorem
2.31, any K-minimal solution x̂ of the multiobjective optimization prob-
lem can be obtained by solving the "-constraint problem for the parame-
ters "k = fk(x̂), k 2 {1, . . . , m} \ {k}. The di↵erence with respect to the
Pascoletti-Serafini method is that not all K-minimal solution can be deter-
mined by solving the "-constraint problem because q 2 @K = @Rm

+ in the
"-constraint method. However, from Theorem 2.31, any minimal solution
of the "-constraint problem is, at least, a weakly K-minimal solution of the
multiobjective optimization problem.

Corollary 2.49 If x̂ is a minimal solution of the "-constraint problem, then
x̂ 2 Mw(f(X , Rm

+ ).

According to Corollary 2.49, for E(f(X ), Rm
+ ) 6= ; and for closed and

convex f(X ) + K, there exists a minimal solution of P (p, q) for any choice
of (p, q) 2 Rm ⇥ int(K). The main problem with "-constraint method is
exactly here: it may happen that the "-constraint problem is solved for a
wide range of parameters without getting any solution or by obtaining the
only information that M(f(X ), Rm

+ ) = ;. It is possible to restrict the set of
parameters to be considered in order to find an arbitrary K-minimal point
by using Theorem 2.41.

Corollary 2.50 Let m = 2, K = R2
+, and x̂ 2 M(f(X ), K). Let x̂1 be a

minimal solution of minx2X f1(x) and x̂2 be a minimal solution of minx2X f2(x).
Then there exists a parameter " 2 {y 2 R : f(x̂

1)  y  f1(x̂
2)} such that x̂

is a minimal solution of the second "-constraint problem.
The same for the first "-constraint problem.

2.6.2 Relationship with weighted sum method

We turn now to analyze the most used scalarization method; as we said
before, the problem to be solved is

min
nX

i=1

wifi(x) = wT f(x)

subject to x 2 X ,

57

f1(x)  "1f(x̂)f(X )f(x̂) � Kpq

The "-constraint method is a restriction of the Pascoletti-Serafini scalar-
ization because parameter p is chosen from the hyperplane H = {y 2 Rm :
yj = 0}, while q is maintained constant and equal to ek. From Theorem
2.31, any K-minimal solution x̂ of the multiobjective optimization prob-
lem can be obtained by solving the "-constraint problem for the parame-
ters "k = fk(x̂), k 2 {1, . . . , m} \ {k}. The di↵erence with respect to the
Pascoletti-Serafini method is that not all K-minimal solution can be deter-
mined by solving the "-constraint problem because q 2 @K = @Rm

+ in the
"-constraint method. However, from Theorem 2.31, any minimal solution
of the "-constraint problem is, at least, a weakly K-minimal solution of the
multiobjective optimization problem.

Corollary 2.49 If x̂ is a minimal solution of the "-constraint problem, then
x̂ 2 Mw(f(X , Rm

+ ).

According to Corollary 2.49, for E(f(X ), Rm
+ ) 6= ; and for closed and

convex f(X ) + K, there exists a minimal solution of P (p, q) for any choice
of (p, q) 2 Rm ⇥ int(K). The main problem with "-constraint method is
exactly here: it may happen that the "-constraint problem is solved for a
wide range of parameters without getting any solution or by obtaining the
only information that M(f(X ), Rm

+ ) = ;. It is possible to restrict the set of
parameters to be considered in order to find an arbitrary K-minimal point
by using Theorem 2.41.

Corollary 2.50 Let m = 2, K = R2
+, and x̂ 2 M(f(X ), K). Let x̂1 be a

minimal solution of minx2X f1(x) and x̂2 be a minimal solution of minx2X f2(x).
Then there exists a parameter " 2 {y 2 R : f(x̂

1)  y  f1(x̂
2)} such that x̂

is a minimal solution of the second "-constraint problem.
The same for the first "-constraint problem.

2.6.2 Relationship with weighted sum method

We turn now to analyze the most used scalarization method; as we said
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subject to x 2 X ,
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The "-constraint method is a restriction of the Pascoletti-Serafini scalar-
ization because parameter p is chosen from the hyperplane H = {y 2 Rm :
yj = 0}, while q is maintained constant and equal to ek. From Theorem
2.31, any K-minimal solution x̂ of the multiobjective optimization prob-
lem can be obtained by solving the "-constraint problem for the parame-
ters "k = fk(x̂), k 2 {1, . . . , m} \ {k}. The di↵erence with respect to the
Pascoletti-Serafini method is that not all K-minimal solution can be deter-
mined by solving the "-constraint problem because q 2 @K = @Rm

+ in the
"-constraint method. However, from Theorem 2.31, any minimal solution
of the "-constraint problem is, at least, a weakly K-minimal solution of the
multiobjective optimization problem.

Corollary 2.49 If x̂ is a minimal solution of the "-constraint problem, then
x̂ 2 Mw(f(X , Rm

+ ).

According to Corollary 2.49, for E(f(X ), Rm
+ ) 6= ; and for closed and

convex f(X ) + K, there exists a minimal solution of P (p, q) for any choice
of (p, q) 2 Rm ⇥ int(K). The main problem with "-constraint method is
exactly here: it may happen that the "-constraint problem is solved for a
wide range of parameters without getting any solution or by obtaining the
only information that M(f(X ), Rm

+ ) = ;. It is possible to restrict the set of
parameters to be considered in order to find an arbitrary K-minimal point
by using Theorem 2.41.

Corollary 2.50 Let m = 2, K = R2
+, and x̂ 2 M(f(X ), K). Let x̂1 be a

minimal solution of minx2X f1(x) and x̂2 be a minimal solution of minx2X f2(x).
Then there exists a parameter " 2 {y 2 R : f(x̂

1)  y  f1(x̂
2)} such that x̂

is a minimal solution of the second "-constraint problem.
The same for the first "-constraint problem.

2.6.2 Relationship with weighted sum method

We turn now to analyze the most used scalarization method; as we said
before, the problem to be solved is

min
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wifi(x) = wT f(x)

subject to x 2 X ,
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The "-constraint method is a restriction of the Pascoletti-Serafini scalar-
ization because parameter p is chosen from the hyperplane H = {y 2 Rm :
yj = 0}, while q is maintained constant and equal to ek. From Theorem
2.31, any K-minimal solution x̂ of the multiobjective optimization prob-
lem can be obtained by solving the "-constraint problem for the parame-
ters "k = fk(x̂), k 2 {1, . . . , m} \ {k}. The di↵erence with respect to the
Pascoletti-Serafini method is that not all K-minimal solution can be deter-
mined by solving the "-constraint problem because q 2 @K = @Rm

+ in the
"-constraint method. However, from Theorem 2.31, any minimal solution
of the "-constraint problem is, at least, a weakly K-minimal solution of the
multiobjective optimization problem.

Corollary 2.49 If x̂ is a minimal solution of the "-constraint problem, then
x̂ 2 Mw(f(X , Rm

+ ).

According to Corollary 2.49, for E(f(X ), Rm
+ ) 6= ; and for closed and

convex f(X ) + K, there exists a minimal solution of P (p, q) for any choice
of (p, q) 2 Rm ⇥ int(K). The main problem with "-constraint method is
exactly here: it may happen that the "-constraint problem is solved for a
wide range of parameters without getting any solution or by obtaining the
only information that M(f(X ), Rm

+ ) = ;. It is possible to restrict the set of
parameters to be considered in order to find an arbitrary K-minimal point
by using Theorem 2.41.

Corollary 2.50 Let m = 2, K = R2
+, and x̂ 2 M(f(X ), K). Let x̂1 be a

minimal solution of minx2X f1(x) and x̂2 be a minimal solution of minx2X f2(x).
Then there exists a parameter " 2 {y 2 R : f(x̂

1)  y  f1(x̂
2)} such that x̂

is a minimal solution of the second "-constraint problem.
The same for the first "-constraint problem.

2.6.2 Relationship with weighted sum method

We turn now to analyze the most used scalarization method; as we said
before, the problem to be solved is

min
nX
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wifi(x) = wT f(x)

subject to x 2 X ,
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The "-constraint method is a restriction of the Pascoletti-Serafini scalar-
ization because parameter p is chosen from the hyperplane H = {y 2 Rm :
yj = 0}, while q is maintained constant and equal to ek. From Theorem
2.31, any K-minimal solution x̂ of the multiobjective optimization prob-
lem can be obtained by solving the "-constraint problem for the parame-
ters "k = fk(x̂), k 2 {1, . . . , m} \ {k}. The di↵erence with respect to the
Pascoletti-Serafini method is that not all K-minimal solution can be deter-
mined by solving the "-constraint problem because q 2 @K = @Rm

+ in the
"-constraint method. However, from Theorem 2.31, any minimal solution
of the "-constraint problem is, at least, a weakly K-minimal solution of the
multiobjective optimization problem.

Corollary 2.49 If x̂ is a minimal solution of the "-constraint problem, then
x̂ 2 Mw(f(X , Rm

+ ).

According to Corollary 2.49, for E(f(X ), Rm
+ ) 6= ; and for closed and

convex f(X ) + K, there exists a minimal solution of P (p, q) for any choice
of (p, q) 2 Rm ⇥ int(K). The main problem with "-constraint method is
exactly here: it may happen that the "-constraint problem is solved for a
wide range of parameters without getting any solution or by obtaining the
only information that M(f(X ), Rm

+ ) = ;. It is possible to restrict the set of
parameters to be considered in order to find an arbitrary K-minimal point
by using Theorem 2.41.

Corollary 2.50 Let m = 2, K = R2
+, and x̂ 2 M(f(X ), K). Let x̂1 be a

minimal solution of minx2X f1(x) and x̂2 be a minimal solution of minx2X f2(x).
Then there exists a parameter " 2 {y 2 R : f(x̂

1)  y  f1(x̂
2)} such that x̂

is a minimal solution of the second "-constraint problem.
The same for the first "-constraint problem.

2.6.2 Relationship with weighted sum method

We turn now to analyze the most used scalarization method; as we said
before, the problem to be solved is
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wifi(x) = wT f(x)

subject to x 2 X ,
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The "-constraint method is a restriction of the Pascoletti-Serafini scalar-
ization because parameter p is chosen from the hyperplane H = {y 2 Rm :
yj = 0}, while q is maintained constant and equal to ek. From Theorem
2.31, any K-minimal solution x̂ of the multiobjective optimization prob-
lem can be obtained by solving the "-constraint problem for the parame-
ters "k = fk(x̂), k 2 {1, . . . , m} \ {k}. The di↵erence with respect to the
Pascoletti-Serafini method is that not all K-minimal solution can be deter-
mined by solving the "-constraint problem because q 2 @K = @Rm

+ in the
"-constraint method. However, from Theorem 2.31, any minimal solution
of the "-constraint problem is, at least, a weakly K-minimal solution of the
multiobjective optimization problem.

Corollary 2.49 If x̂ is a minimal solution of the "-constraint problem, then
x̂ 2 Mw(f(X , Rm

+ ).

According to Corollary 2.49, for E(f(X ), Rm
+ ) 6= ; and for closed and

convex f(X ) + K, there exists a minimal solution of P (p, q) for any choice
of (p, q) 2 Rm ⇥ int(K). The main problem with "-constraint method is
exactly here: it may happen that the "-constraint problem is solved for a
wide range of parameters without getting any solution or by obtaining the
only information that M(f(X ), Rm

+ ) = ;. It is possible to restrict the set of
parameters to be considered in order to find an arbitrary K-minimal point
by using Theorem 2.41.

Corollary 2.50 Let m = 2, K = R2
+, and x̂ 2 M(f(X ), K). Let x̂1 be a

minimal solution of minx2X f1(x) and x̂2 be a minimal solution of minx2X f2(x).
Then there exists a parameter " 2 {y 2 R : f(x̂

1)  y  f1(x̂
2)} such that x̂

is a minimal solution of the second "-constraint problem.
The same for the first "-constraint problem.

2.6.2 Relationship with weighted sum method

We turn now to analyze the most used scalarization method; as we said
before, the problem to be solved is
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subject to x 2 X ,
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The "-constraint method is a restriction of the Pascoletti-Serafini scalar-
ization because parameter p is chosen from the hyperplane H = {y 2 Rm :
yj = 0}, while q is maintained constant and equal to ek. From Theorem
2.31, any K-minimal solution x̂ of the multiobjective optimization prob-
lem can be obtained by solving the "-constraint problem for the parame-
ters "k = fk(x̂), k 2 {1, . . . , m} \ {k}. The di↵erence with respect to the
Pascoletti-Serafini method is that not all K-minimal solution can be deter-
mined by solving the "-constraint problem because q 2 @K = @Rm

+ in the
"-constraint method. However, from Theorem 2.31, any minimal solution
of the "-constraint problem is, at least, a weakly K-minimal solution of the
multiobjective optimization problem.

Corollary 2.49 If x̂ is a minimal solution of the "-constraint problem, then
x̂ 2 Mw(f(X , Rm

+ ).

According to Corollary 2.49, for E(f(X ), Rm
+ ) 6= ; and for closed and

convex f(X ) + K, there exists a minimal solution of P (p, q) for any choice
of (p, q) 2 Rm ⇥ int(K). The main problem with "-constraint method is
exactly here: it may happen that the "-constraint problem is solved for a
wide range of parameters without getting any solution or by obtaining the
only information that M(f(X ), Rm

+ ) = ;. It is possible to restrict the set of
parameters to be considered in order to find an arbitrary K-minimal point
by using Theorem 2.41.

Corollary 2.50 Let m = 2, K = R2
+, and x̂ 2 M(f(X ), K). Let x̂1 be a

minimal solution of minx2X f1(x) and x̂2 be a minimal solution of minx2X f2(x).
Then there exists a parameter " 2 {y 2 R : f(x̂

1)  y  f1(x̂
2)} such that x̂

is a minimal solution of the second "-constraint problem.
The same for the first "-constraint problem.

2.6.2 Relationship with weighted sum method

We turn now to analyze the most used scalarization method; as we said
before, the problem to be solved is

min
nX

i=1

wifi(x) = wT f(x)

subject to x 2 X ,
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Figure 2.6: Relationship between Pascoletti-Serafini and ε-constraint method

According to Corollary 2.47, for YN(f(X ),Rp=) 6= ∅ and for closed and

convex f(X ), there exists a minimal solution of P (p, q) for any choice of
(p, q) ∈ Rp × int(Rp=). The main problem with ε-constraint method is ex-
actly here: it may happen that the ε-constraint problem is solved for a wide
range of parameters without getting any solution or by obtaining the only
information that XE(f(X ),Rp=) = ∅. It is possible to restrict the set of pa-
rameters to be considered in order to find an arbitrary efficient point by using
Theorem 2.40.

Corollary 2.48 Let p = 2, K = R2
+, and x̂ ∈ XE(f(X ),R2

+). Let x̂1 be a
minimal solution of minx∈Xf1(x) and x̂2 be a minimal solution of minx∈Xf2(x).
Then there exists a parameter ε ∈ {y ∈ R : f1(x̂1) ≤ y ≤ f1(x̂2)} such that x̂
is a minimal solution of the second ε-constraint problem.

The same for the first ε-constraint problem.
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2.6.2 Relationship with weighted sum method

We turn now to analyze the most used scalarization method; as we said
before, the problem to be solved is

min
n∑

i=1

wifi(x) = wTf(x)

subject to x ∈ X ,

with w ≥ 0. The connection with the Pascoletti-Serafini method is given in
the following theorem.

Theorem 2.49 A point x̂ is a minimal solution of the weighted sum problem
for the parameter w ≥ 0 if and only if there is some ξ̂ so that (ξ̂, x̂) is a
minimal solution of P (p, q) with p ∈ Rp arbitrarily chosen and q ∈ int(Rp=).

By varying the weights w, we get a variation in the ordering cone Rp=;
the latter cone is a closed convex polyhedral cone, but it is not pointed. For
this reason, Theorem 2.30 cannot be used for the weighted sum method and
it is also the reason why the multiobjective problem cannot be solved, i.e.
it is not possibile to find all efficient points, by means of this method in
general and in the case of non-convex set. However, it is possible to find all
efficient points of the problem in the convex set case. From Theorem 2.30, it
is possibile to get the following result.

Corollary 2.50 Let x̂ be a minimal point of the weighted sum problem with
parameter w ≥ 0, then x̂ is weakly efficient for multiobjective optimization
problem.

The weighted sum method has the same pitfall with respect to the Pascoletti-
Serafini method as the ε-constraint method, that is not for any choice of the
parameters w ≥ 0 there exists a minimal solution, even in the case in which
XE(f(X ),Rp=) 6= ∅.

2.7 The weighted-constraint method

As already said, the main goal of multiobjective optimization problem is to
find the best “compromise” among different criteria, i.e. to find all Pareto
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optimum solutions that composes the Pareto frontier. In general, this frontier
is an infinite set and it can be created by solving the scalar problem over the
whole set of the parameters of the scalarization. However, the main issues
are: 1) it may be necessary to solve the scalar problem many times in order
to get an approximation of the frontier; 2) this procedure is quite costly; 3)
the Pareto frontier and/or the feasible set may be disconnected, things that
further complicate the computation.

Burachik, Kaya and Rizvi (2013) proposed a new approach that can be
used not only in presence of disconnected Pareto frontier, but also in presence
of disconnected feasible set - the so called kth-objective weighted-constraint
method. The name comes from the fact that this technique is based on the
minimization of the weighted kth-objective function, for each fixed k, given
that all other functions are taken as constraints.

First of all, defined the set of non-negative weights

Λ := {λ ∈ Rp≥ :

p∑

i=1

λi = 1},

and the set of positive weights

Λ0 := {λ ∈ Rp> :

p∑

i=1

λi = 1}.

Then we are interested in the following problem

min
x∈X

λkfk(x)

subject to λifi(x) ≤ λkfk(x),

i = 1, . . . , p, i 6= k.

This is the kth-objective weighted-constraint problem; the feasible set (for
fixed k and λ) is given by

X k
λ := {x ∈ X : λifi(x) ≤ λkfk(x),∀i 6= k},

while the solution set is

Skλ := {x ∈ X : x solves the problem}.
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For each fixed λ ∈ Λ0, we have

X :=

p⋃

k=1

X k
λ .

Define also the following set

Λ(x) := {λ ∈ Λ0 : x ∈ Skλ,∀k = 1, . . . , p},

this set may be empty for some x ∈ X .

Theorem 2.51 x̂ ∈ X is a weak efficient solution of the multiobjective op-
timization problem, if and only if there exists some λ ∈ Λ0 such that x̂ solves
the kth-objective weighted-constraint problem for all k ∈ {1, . . . , p}.

It is important to point out that the “only if” part holds for efficient
points that, by definition, are weakly efficient; but if a point solves the kth-
objective weighted-constraint problem for all k, then it is not necessarily an
efficient point, unless all objective functions are strictly convex.

Proposition 2.52 Suppose that X is convex and fi = 1, . . . , p, are strictly
convex functions defined on X . If x̂ ∈ X is a weak efficient solution of the
multiobjective optimization problem, then x̂ is an efficient solution of the
latter problem.

Proposition 2.53 If Λ(x̂) 6= ∅, then Λ(x̂) is a singleton. Consequently,
x ∈ XwE if and only if x̂ ∈ ⋂p

k=1 S
k
λ̂

where λ̂i = (1/fi(x̂))/(
∑p

j=1 1/fj(x̂).

Proposition 2.53 tells us that if there exists λ ∈ Λ0 such that a point
solves the kth-objective weighted-constraint problem for all k, then this λ is
unique.

Theorem 2.51 implies that, for all λ′ ∈ Λ0, we have

p⋂

k=1

Skλ′ ⊆ XwE ⊂
⋃

λ∈Λ0

[
p⋂

k=1

Skλ

]
.

In the case in which, for some λ′ ∈ Λ0,
⋂p
k=1 S

k
λ′ 6= ∅, then the left hand side

of the previous statement gives a way of computing weak efficient points.
Instead, if

⋂p
k=1 S

k
λ′ = ∅, Proposition 2.54 and Corollary 2.56 provide tools

for generating new weak efficient points.
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Proposition 2.54 Assume ∃λ ∈ Λ0 such that Sjλ 6=,∀j = 1, . . . , p. Suppose
that, for some k ∈ {1, . . . , p},∃x̂k ∈ Skλ such that ∀r 6= k, ∃x̂r ∈ Srλ, which
satisfies

fr(x̂r) ≥ fr(x̂k).

Then x̂k ∈ XwE.

Corollary 2.55 Let λ ∈ Λ0. Suppose that (x̂1, . . . , x̂l) ∈ S1
λ × . . . × Slλ and

that ∀r, k ∈ {1, . . . , p},
fr(x̂r) ≥ fr(x̂k).

Then x̂k ∈ XwE, for every k = 1, . . . , p.

2.7.1 Relationship with the weighted sum method

The relationship between the kth-objective weighted-constraint approach and
the weighted sum method is given by the fact that the Pareto frontier created
by means of the latter can be reproduced by the former, but the converse is
not true, i.e. the kth-objective weighted-constraint method provides us with
some Pareto points that are not achievable with weighted sum problem.

Corollary 2.56 If there exists λ ∈ Λ such that x̂ solves the weighted sum
problem, then there exists α ∈ Λ0 such that x̂ solves the kth-objective weighted-
constraint problem for all k.

The following example by Burachik et al. shows that the converse of
Corollary 2.56 is not true.

Example 2.57 Consider the problem

min
x∈X

(x1, x2)

with

X = {x ∈ R2 : (x1 − 1)2 + (x2 − 1)2 − 1 ≤ 0, 0.3− x2
1 − x2

2 ≤ 0}.

Consider as weights λ1 = 0.48 and λ2 = 0.52. For k = 1, 2, the weighted sum
problems can be written as minx∈X λ1x1 s.t. λ2x2−λ1x1 ≤ 0, and minx∈X λ2x2

s.t. λ1x1 − λ2x2 ≤ 0. Here, x̂ = (0.4, 0.37) is located on the concave part
of the front and this means that x̂ cannot be obtained as a solution of the
weighted sum problem for λ ∈ Λ.
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