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Abstract— In this paper, we show that large annotated data 
sets have great potential to provide strong priors for saliency 
estimation rather than merely serving for benchmark evaluations. 

To this end, we present a novel image saliency detection method 
called saliency transfer. Given an input image, we first retrieve a 
support set of best matches from the large database of saliency 

annotated images. Then, we assign the transitional saliency scores 
by warping the support set annotations onto the input image 
according to computed dense correspondences. To incorporate 

context, we employ two complementary correspondence strate- 
gies: a global matching scheme based  on  scene-level  analysis 
and a local matching scheme  based  on  patch-level  inference. 

We then introduce two refinement measures  to  further  refine 
the saliency maps and apply the random-walk-with-restart by 
exploring the global saliency structure to estimate the affinity 

between foreground and background assignments. Extensive 
experimental results on four publicly available benchmark data 
sets demonstrate that the proposed saliency algorithm consis- 

tently outperforms the current state-of-the-art  methods. 

Index Terms— Image saliency, salient object detection, saliency 

transfer, correspondence, random-walk-with-restart. 

I. INTRODUCTION 

ALIENCY detection is an  important  research  problem 

in both neuroscience and computer vision. According    to 

the studies of psychology and cognitive science, the human 

vision system is remarkably effective in localizing the most 

visually important regions in a scene. In order to simulate 

such attentional and selective capability of human perception, 

early saliency detection algorithms aimed at predicting scene 

locations where a human observer may fixate, which are 

mostly based on cognitive theories (e.g., feature integration 

theory (FIT) [1]) and biologically inspired visual attention 

models (e.g., Koch and Ullman [2] and Itti et al. [5]). In recent 

years, intensive research has been carried out for salient object 
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detection to accurately extract the most informative and notice- 

able regions or objects. This new trend is driven by object 

based vision applications, such as object detection [6], content- 

aware  image  resizing  [3],  image  segmentation  [4],     [40], 

and other applications [38],  [39],  [41],  [43].  In  this  work, 

we focus on the salient object detection, and the algorithm 

outputs a gray saliency image, where a brighter pixel stands  

for a higher saliency  value. 

A large number of salient object detection methods have 

been proposed in the  past  few  years.  From  the  perspec- 

tive of information processing,  those  saliency  algorithms 

can be broadly categorized as either top-down or bottom-up 

approaches. Top-down approaches [7]–[10] are goal-directed 

and usually adopt supervised learning with a specific class. 

Most of the saliency detection methods are based on bottom- 

up visual attention mechanisms [11]–[15], [17], [18], [21], 

which are independent of the knowledge of the content in the 

image and utilize various low level features, such as intensity, 

color and orientation. Those bottom-up saliency models are 

generally based on different mathematical formulations of 

center-surround contrast or treat the image boundary as the 

background. Albeit previous saliency models have achieved 

success in their own aspects, a  few  commonly  noticeable 

and critically influencing issues still exist. Firstly, traditional 

stimuli-driven saliency models are often constructed by simple 

bottom-up and low-level heuristics and lack of adaptability to 

capture image content for describing complex scenarios and 

object structures. Secondly, for top-down saliency approaches, 

the salient object classes are usually limited and constrained 

to the training images, which restricts its applicability seri- 

ously. Thirdly, existing saliency models, no matter top-down 

or bottom-up, ignore the contextual information in saliency 

detection. Therefore, it is unclear how current models perform 

on complex, cluttered scenes. An example is  presented in 

Fig. 1. In the depicted scene, the state-of-the-art methods 

unsurprisingly fail since they omit key contextual information. 

Here, we explore the value of the contextual information and 

introduce a correspondence-based saliency transfer approach 

that infers foreground regions from a support set of annotated 

images (see Fig. 1-f) that share similar context to the input 

image. The algorithm is essentially an example-driven mecha- 

nism, which is more generally valid than traditional heuristics 

methods. For an input image, our method first retrieves a 

support set of its most similar matches from a large database 

of images annotated with salient regions. The support images 

only share high-level scene characteristics, yet they provide the 

contextual information that we are after. Instead of estimating 

saliency only from the features within the query image, we 

transfer the annotations from the support images into the query 
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Fig. 1. We can  ask  how  to  identify  correctly  the  salient  region  in  
complex scenario (a). The state-of-the-art methods, e.g., (b)  the  contrast 
prior based RC [11] and (c) the background prior based MR [15], face with 
ambiguity since they have no mechanism to incorporate additional contextual 
information. Our correspondence-based saliency transfer method (d) utilizes 
the saliency prior (f) from a set of support images (e) that share similar 
contextual scene information with the input  image. 

 
 

image according to their global and local correspondences. 

We employ the deformable spatial pyramid matching  [22] 

that simultaneously regularizes match consistency at multiple 

spatial extents ranging from global-level of the entire image, 

to local patch-level, and to every single pixel in order to 

establish dense correspondences for each pair of query-support 

images. Then, we map the annotations of the support images 

onto a transitional saliency map according to their dense 

correspondences, and utilize two refinement measures to refine 

the saliency maps (Sec. III-C). Finally, we apply the random- 

walk-with-restart (RWR) segmentation (Sec. III-D) to obtain 

the final saliency map. Our source code will be available at.1 

Compared to the existing approaches, the proposed method 

offers the following contributions: 

• A novel saliency technique, called saliency transfer, is 

proposed for transferring the labels from existing anno- 

tated images to the input image through dense scene 

correspondences. 

• Scene level and patch level matching strategies are pro- 

posed for selecting nearest-support images and transfer- 

ring saliency. 

• Two complementary saliency distance measurements and 

an RWR based approach are incorporated for inferring  
the saliency assignment. 

• Saliency transfer is an example-driven mechanism relying 

on semantic correspondence, which is more generalizable 
compared with traditional heuristics  models. 

 
II. RELATED WORK 

Image saliency is a classic problem that has been extensively 

studied for decades.  Instead  of  surveying the  large volume 

of literature, which is impractical here, we mainly focus on 

recent bottom-up saliency methods and top-down models, and 
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analyze their properties and limitations. We refer the readers  

to [23] and [24] for more detailed reviews of the saliency 

models. 

 
A. Top-Down Saliency Detection 

Saliency detection can be regarded as a specific task, which 

assumes a priori knowledge or constraints on scenes, and thus 

performs in a top-down manner [8]–[10], [25]. In [8], a multi- 

task rank learning was proposed for inferring multiple saliency 

models that apply to different scene clusters. Liu et al. [9] pre- 

sented a conditional random field based supervised approach 

to detect a salient object in an image or sequential images. 

Borji et al. [10] proposed a Bayesian approach to model task- 

driven visual attention by utilizing the sequential nature of 

real-world tasks. Several sources of information, including 

global context of a scene, previous attended locations, and 

previous motor actions, are integrated over  time  to  predict 

the next attended location. Li et al. [25] presented  a  top- 

down saliency approach to incorporate low-level features and 

the objectness measure via label propagation. Generally, such 

task-driven methods are useful especially for object recogni- 

tion [7], but they require knowledge learning that increases  

the complexity of saliency detection in  general. 

 
B. Bottom-Up Saliency Detection 

Bottom-up saliency detection methods are largely indepen- 

dent of the knowledge of content in the image and can be 

broadly classified as either contrast prior based or boundary 

prior based approaches. As argued by the pioneering per- 

ceptual research studies [26], [27], contrast is one of the 

influential factors in low-level visual saliency. Since the salient 

regions in the visual field would first pop out through different 

low-level features from their surroundings, numerous bottom- 

up models [11]–[13], [28]–[30], [44] have been proposed to 

detect salient regions in images based on different mathe- 

matical principles. These saliency approaches built saliency 

models focusing on high contrast regions between candidate 

foreground objects and their surrounding backgrounds. More 

specifically, Cheng et al. [28] aimed at two saliency indicators: 

global appearance contrast and spatially compact distribution. 

Goferman et al. [12] built a content-aware saliency detection 

model with the consideration of the contrast from both local 

and global perspectives. Klein and Frintrop [13] presented a 

saliency detection framework based on the fusion of differ-  

ent feature channels and the local center-surround  hypoth- 

esis. Such methods, however, may suffer from the internal 

attenuation problem that causes emphasizing mainly object 

boundaries rather than highlighting the entire object  region, 

and are limited by the high complexity and large variety of 

object appearances in real  scenarios. 

The core of those contrast prior based mechanisms is 

performing saliency detection via exploring the notion of 

“what salient object is”. More recently, alternative approaches 

attempted to tackle this problem from an opposite viewpoint 

by focusing on “what the background should look  like”.  

These methods treat image boundaries as background, further 

enhancing  saliency  computation.  Wei  et  al.  [31]  exploited 
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boundary prior by noting that the  image  boundary regions 

are more likely to belong to the background. Similarly, many 

follow-up studies [14]–[16], [18], [21] were proposed to treat 

image boundaries as background samples. To improve the per- 

formance, these approaches also explore more robust boundary 

priors. For example, Jiang et al. [14] proposed a graph-based 

method that models boundary regions as the absorbing nodes 

in a Markov chain and computes the saliency according to the 

absorption time in a random walk propagation. In [15], the 

saliency of image regions was measured by their relevance to 

the image boundary via a manifold ranking scheme. The work 

in [18] constructed a robust boundary prior based on boundary 

connectivity. Qin et al. [21] used the clustered boundary  

seeds into a cellular automata. While these methods have 

demonstrated impressive results, they also encounter critical 

issues. Their performance may deteriorate when the object 

connects with an image boundary. Furthermore, when the 

background is close to the center of the image, extra efforts 

should be paid for this  situation. 

 
III. SALIENCY TRANSFER 

A. Overview 

In this work, we introduce  a  novel  method  to  predict  

what is salient or interesting in a scene using a saliency 

transfer strategy. Our algorithm can be decomposed into three 

phases. In the first stage, we introduce a correspondence- 

based transitional saliency estimation. This method is based on 

an observation that saliency can be estimated by transferring 

the labels from  semantically  related  images  and  patches.  

We introduce global as  well  as  local  matching  strategies  

for transferring saliency, which  are  based  on  scene  level  

and patch level, respectively. This stage produces rough and 

initial saliency estimation, which is detailed in Sec.  III-B. 

After that, we introduce two refinement measures to further 

improve the initial  saliency  constructed  in  the  first  stage.  

A detailed description on separating the salient region from  

the background based on these two refinement measures is 

given in Sec. III-C. Finally, in Sec. III-D, we utilize an RWR 

based method to further modify the saliency map generated at 

the second stage. 

 
B. Correspondence-Based Transitional Saliency 

This stage provides initial saliency  estimates by making 

the best use of the available saliency annotations in a large 

reference dataset. We start our system by finding a support 

group of the input image, which consists of the nearest 

neighbors of the input image  from  the  annotated  dataset. 

We use a scene retrieval technique to find M-best support 

images that share similar scene configuration with the input. 

The distance between the query image and the support images 

is measured via the GIST descriptor, which can model the 

scene characteristic and is widely used in image retrieval [20]. 

After this, we establish the correspondences from the input 

image to each support image using a deformable scene match- 

ing scheme [22] by comparing dense, pixel-wise SIFT descrip- 

tors on a spatial pyramid that divides the image recursively 

into four rectangular grid cells until it reaches the   pixel-level 

 

 

Fig. 2.  Illustration of the dense correspondences w between the input image I 

and a support image  IS  via scene matching. 

 

resolution. The SIFT descriptor is an efficient representation 
for matching objects under different views. Suppose I and IS 

denote the input image and a support image respectively, 
reliable pixel-wise correspondences w between I and  IS  can 

be established. As shown in Fig. 2, pixel x of image I is 

associated with pixel x + w(x) of support image IS . Based on 

such pixel-wise correspondences, we can warp support images 
and the annotations. The warped images are closer  to  the 
input image according to the correspondences than support 

image IS , and the warped annotations are used for inferring 

the saliency of the input  image. 

We introduce the following two correspondence based 

matching strategies for excluding noisy images and incorrect 

assignments, and transferring saliency on both image and patch 

levels. 

1) Global   Correspondence-Based   Saliency:    For   input 

image I , we build a SIFT feature map fI that contains the 

detected SIFT feature landmark points x = (x, y) and their 
descriptors fI (x). Then we establish a set of M-best support 

images {Ii, fi , gi }i=1:M , where Ii is the i -th nearest support 
image through GIST matching;  fi  is  the  SIFT  feature  map 
of the warped image of Ii ; gi is the warped annotation of Ii . 
The warped image of Ii and the warped annotation gi are 
obtained according to  the  correspondences [22] to  the  input 

image. Fig. 3 illustrates such correspondence-based warping. 

We further select N (N < M) closest support images as 

candidates for image I , and the matching accuracy is measured 

using the distance between the SIFT image fI and the SIFT 

image fi from the warped image of the i -th support image. 

This candidate set is used for transferring the available saliency 

annotation  onto  the  input  image.  The  N  closest candidates 

{It j , ft j , gt j } j =1:N,tj ∈{1:M } are determined by: 

argmin 
. .

( f I (x) − ft j (x))  . (1) 

t   
t1:N t j x 

j ∈{1:M } 

Via (1), N closest candidate images are selected according  

to the difference between the warped image and the input 

image via their SIFT feature distances. Support images with 

inaccurate matching correspondences can be excluded as their 

warped images are largely different from the input image 

measured via accumulated pixel-wise SIFT feature distance. 

Fig.  4-a  directly  illustrates  the  global  matching  strategy.  

In  our  global  matching  process,  the   N   candidate   images 
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might be consistent. To address this, we introduce a local 

correspondence method that improves matching accuracy via 

patch alignment instead of matching the whole  scene. 

For each 4 ×4 patch p in image I , we select N most similar 
patches {It r (p), ft r (p), gt r (p)} j =1:N,t r as its candidates, 

j j j j ∈{1:M } 

where  f j r (p)  and  g j r (p)  are extracted from patch p of  the 

j rth warped support image and warped annotation. The can- 

didate patch set for patch p is selected   by: 

argmin 
. .

( f I (x) − ft r (x))2. (3) 
t r 1:N 

t r 
r   x  p 
j 

 

 

 
Fig. 3. Illustration of correspondence-based warping. We choose the N best 
matching images and patches according to the  feature  similarity  between  
the warped image and the input image using SIFT descriptors.(a)  Input  
image  I .  (b)  A  support  image  Ii  retrieved  from  the  reference  dataset via 
GIST matching. (c) The annotation of Ii . (d) Pixel-wise correspondences 
between I  and  Ii  established  via  [22].  (e)  Warped  image  of  Ii  according 
to the correspondences  in (d), which is similar  to test image  I . (f)    Warped 
annotation gi  of (c) according to the correspondences in   (d). 

j ∈{1:M } 

Based on (3), a  patch in  input image  I  is  matched with  

its N closest patches from different support images according 

to their SIFT feature similarity scores. As shown in Fig. 4-b, 

the N green patches of support images are selected as the 

candidate patches for the green patch of the input image. 

Similarly, the red patches of support images  correspond to  

the red one of the input image. The candidate patch sets of 

different patches from image I are different since they may 

come from different support images. In contrast, the global 

matching based candidate set is same to all the pixels of    I . 
Via the candidate patch set {It r (p), ft r (p), gt r (p)} j =1:N for 

j j j 

patch p, a voting strategy is used for local   saliency: 

1 . 

Sl(p) = 
N

 
r 
j 

g r (p). (4) 
j 

 
 

 
 

 

 
 

 

 
 
 

Fig. 4. Illustration of our global as well as local matching strategies. (a) Our 
global matching strategy considers the similarity between the input image and 
the warped images of M-best support images on the scene level. The green 
images indicate the  N  candidate images. (b) Our local matching strategy is  
on the patch level. The red (green) patches of the warped images of support 
images are selected as the N candidate patches for the red (green) one of the 
input image. 

 

 
(green images in (a)) are selected from the M-best support 

images according to the SIFT feature similarities between their 

warped images and the input  image. 

Based on the candidate set {It j , ft j , gt j } j =1:N , we adopt a 
voting strategy for estimating saliency: 

1 . 

More specifically, we resize the input image, the warped 

support  images,  and  their  annotations  to  a  quarter  of   the 

original size, thus one pixel in the resized image corresponds 

to a 4 × 4 patch of the original image. We compute the SIFT 
feature of  the resized  image, and  the SIFT feature of     each 

pixel in the resized image is treated as the SIFT feature of the 

corresponding 4 × 4 patch of the original  image. 
Evidently,  these  two  correspondence-based  saliency cues 

are complementary, therefore we merge Sg and Sl into a 

transitional saliency SIni  via: 

SIni = Sg · Sl. (5) 

Example results of the correspondence-based saliency esti- 

mation are given in Fig.  5. 

 

C. Saliency Refinement via Foreground 

and Background Cues 

Our  correspondence-based transitional  saliency estimation 

can roughly infer the position of the foreground and the 

background. For precisely separating salient object from    the 

Sg = 
N

 gt j , (2) 
j 

background, we introduce two types of saliency distance 

measures  based  on  foreground  and  background  cues.   The 

where gt j is computed through warping the annotation of 

candidate image It j according to the correspondence using 
scene matching (see Fig.  3-f). 

2) Local Correspondence-Based Saliency: In (1), we con- 

sider global matching of two images. This strategy, however, 

ignores patch-wise details in the matching process despite that 

only small part of the input image and the support images 

first one d1 is based on a principle that a pixel which is 

spatially closer to salient pixels should have a higher saliency 

value. That is because the salient object regions are usually 

relatively compact in spatial distribution. The second saliency 

distance d2  is  based on  the  observation that  a  pixel  which 

is more different with unsalient regions should gain higher 

saliency. Both d1 and d2 terms are explained   next. 

t 
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Fig. 5. Saliency maps obtained at each phase of our method. (a) Input image I . (b) Global correspondence-based saliency Sg via (1). (b) Local correspondence- 
based saliency Sl via (4). (d) Initial saliency SIni via (5). (e) Refined saliency estimation  SRef  via  (11). (f) Object’s  rectangular  area  W  indicated  by the white 

area. We found the K = 3 is a suitable number to represent salient regions in our model. (g) Final saliency SFin using RWR via (17). 
 

We oversegment the image I into superpixels via the SLIC 

algorithm [32] for computational efficiency. For region ri , we 

express the saliency measurements via  the above distances    

d1  and d2 as: 

D(ri) = d1(ri) · d2(ri). (6) 

Inspired by the first observation, we design  a  saliency  

bias, which enhances the saliency value of the regions near  

the saliency center while suppresses the saliency of the 

regions far away from the saliency center. Such a saliency  

bias  is  expressed  by  a  two-dimensional  Gaussian  distribu- 

tion G(x, y|μx, μy, σx, σy). For a region ri in an image, the first 
distance d1 is defined  as: 

d1(ri) = G(xri , yri |μx, μy, σx, σy), (7) 

where (xri , yri ) indicates the coordinate of the center of  

region ri . The center (μx, μy) of Gaussian distribution G(x, y) 
is computed as: 

We then construct an undirected weighted graph by connecting 
all adjacent superpixels (ri, r j ) and assigning their weights 

w(ri, r j ) as the Euclidean distance (normalized to [0, 1]) 

between their mean colors. Following [31], a virtual node v    

is  added to  connect all  boundary regions [rg ] and we define 

w(v, rg) = SIni(rg). The second type of saliency distance  d2 

is defined as the geodesic distance between superpixel ri and 

virtual node v : 

d2(ri) = min 
. 

w( p, q), p, q ∈ Cri ,v, (10) 

Cri ,v  p,q 

where Cri ,v is a path connecting nodes ri and v . d2 for region ri 

is computed as the accumulated distance along its shortest path 

to the virtual node. 

As mentioned earlier, these two measurements d1  and d2  

are complementary. The former explores saliency of a region 

via its spatial distance to the saliency center, while the latter 

exploits the  saliency  in  an  opposite view  based  on its  geo- 
desic distance to the background. Then, the refined    saliency 

(μx, μy) = 
. 

exp(θ · SIni(x)) · x . (8) estimation is: 
.

x exp(θ · SI ni(x)) 

In above equation, (μx, μy) is computed as the geometric 

centroid of the pixels weighted by exp(θ · SIni(x)). When θ is 
large, the pixels with large saliency are emphasized. While   θ 
is set as small as zero, (8) is reduced to the center-bias prior, 

which is based on the fact that the objects near the center of 

an image are more likely to be salient. We set θ = 1 to allow  
a  balance  between  compactness  of  salient  regions  and the 

center-bias prior. The horizontal variance σx and the vertical 

variance σy of Gaussian distribution G(x, y) are computed as 
follows: 

1 

SRef = SIni · D, (11) 

where term D is defined in (6) based on d1 and d2. Example 

refined saliency results are shown in Fig.  5-e. 

 
D. RWR-Based Final Saliency Derivation 

While most saliency maps produced in Sec. III-C well 

identify the salient object and the background, there are still 

partial foregrounds of the saliency maps that are not uniformly 

highlighted, which can be seen in the two examples of Fig.  5. 
To alleviate this issue, we extract foreground and  background 

σx = 

 

σy = 

. 
exp(θ · SIni(x)) · (x − μx)2 

. 
2 

.
x exp(θ · SI ni(x)) 

. 
exp(θ · SIni(x)) · (y − μy)2 

. 
2 

.
x exp(θ · SI ni(x)) 

, 
 

. (9) 

samples from previous saliency results SRef and apply RWR  

to generate final accurate saliency. 

Our intuition here is straightforward. We aim to simul- 

taneously use foreground and background samples into a  

graph based segmentation method to obtain spatially consistent 

For  the  second  principle,  we   measure  the  saliency  of  

a region by its  shortest  distance  to  the  boundary  regions  

on geodesics. Geodesic distance is a  powerful  measure-  

ment for saliency detection [18], [31]. Additionally, our 

correspondence-based saliency offers an indication of a bound- 

ary  region  whether  it  belongs  to  the  background  or    not. 

results. RWR is a variant of the conventional random walk, and 

has been widely employed in several applications [19], [42], 

including data mining [33] and image segmentation [34]. 

Image  I   is  represented  as  an  undirected,  weighted   graph 

G = (V, E) with superpixels as nodes V. Edge eij in the edge 
set E connects adjacent superpixels ri and r j in V. Edges E are 

. 
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ij = − 
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weighted by an affinity matrix W = [wij ], which is  defined  
as a typical Gaussian weighting function  [34]: 

 2 

distribution bl as: 

 
bl 

 
.

0   if l 

 

= foreground; 

 

 
(15) 

w exp(   
"ci − c j " ), (12) 

i  =   
1   if l = background. 

τ 

where  ci  indicates  the  colors  of  region  ri  and  τ  is  a scale 
For a region ri inside the object rectangle area W = [Wk ], 

its restart distribution bl  is defined  as: 

parameter.  RWR   iteratively  transmits  to  its   neighborhood 
according to  the  transition  probability which  is proportional 

. 

b
l Ref (ri)   if l = foreground;  

(16) 
to the edge weight between them. The transition probability 

pi j  between nodes i, j  is defined as:  pi j  = wi j / 
.

k wkj . The 

transition matrix P = [ pij ] is computed by normalizing each 
column of affinity matrix W. 

After each walk, the  random  walker  returns  to  the 

starting   node   with   a   restart   probability   z.   Let   bl    = 
[bl , ... , bl, .. .]T , l  ∈ {0, 1} be the restart distribution for 

i =   
0 if l = background. 

We bias the regions outside the salient window  W  with 

high probabilities for the background by (15) while give the 

regions inside the salient window W respectively conservative 

tendency for  the  foreground  by  (16).  This  is  mainly  due  

to  the  fact  that  our  saliency  estimation  tends  to  be   more 
1 i accurate for the background than foreground. Additionally, we 

the random walker, the random walk process converges and 

the random walker finally has a stationary distribution π l    = 
[πl, ... , πl,.. .]T . The i -th element πl is the probability that 

observe that the background areas usually are much  larger 

than salient regions (on average, 4∼6 times larger    according 
1 i i 

the random walker stays at node i in the equilibrium condition. 

The stationary distribution π l  can be obtained via: 

π l = z(I − (1 − z)P)−1bl. (13) 

to statistics from typical saliency datasets). According to    the 

stationary distribution in (13), the final saliency for ri is 

computed as: 

π f ore 

SFin(ri) = i f ore . (17) 

A simple strategy that derives the foreground and back- 

ground samples via thresholding the saliency map is not an 

excellent choice. That is merely because that RWR is sensitive 

to the restart distribution; a low-quality distribution often leads 

to unfavorable results. Therefore, we design a more intelligent 

strategy that extracts a reliable restart distribution from a 

saliency map. We first extract salient regions Rs = [r s ] 
according to our saliency result SRef , where SRef (rs) > 
mean(SRef ). We employ the K-means algorithm to divide the 
salient regions into K  clusters  according to  the  coordinates 
of their centers. We empirically set the number of boundary 

clusters K  = 3 in this paper. 
The salient superpixels belonging to cluster k is represented 

as Rs = [r s  ], where rs   ∈ Rs and k = 1, 2, ... , K . For each 

π
i 

+ πback 

Some results of our RWR algorithm based saliency opti- 

mization are presented in Fig.  5-g. 

 
IV. EXPERIMENTAL RESULTS 

Our saliency transfer method can identify the salient  area  

in an image by transferring saliency from candidates  that 

share a similar scene with the input. In this section, we  

provide exhaustive comparison results to demonstrate the 

effectiveness  of  our  approach.  We   compare  our   method 

to 8 top performing saliency detection methods: geodesic 

saliency (GS12) [31], saliency filter (SF12) [30], hierarchical 

saliency  (HS13) [35], saliency  model via  absorbing  markov 
k i,k i,k chain  (MC13)  [14],  saliency  model  via  graph-based mani- 

cluster k, we  build an  object rectangle  Wk ,  where the center 
(xWk, yWk) of Wk is the center of cluster k. The width wk and 

height hk  of Wk  are defined as: 

fold ranking (MR13) [15], saliency model via robust back- 

ground detection (wCtr14) [18], saliency model via cellular 

automata (BSCA15) [21], and  saliency model via    bootstrap 
2   .. . 1 . learning (BL15) [36]. 

wk  = min
.
 
| Rs | 

2 

(xp − xW )
2
 

p 

2 , 0.3×wI , 

 
1 

Parameter  Settings:  In Sec.  III-B, the  algorithm  retrieves 

M-best  support  images  for  the  input  and  selects  N closest 
hk = min

.
 

. .
(yp − yW  )

2
. 

2 ,  0.3×h I 

.
 (14) support  images/patches  as  candidates  for  voting    saliency. 

 

| Rs | k
 

. 
We   empirically  set  M =  50  and   N =  10  for  all   the 

 
where (xp, yp) denotes the coordinate of the center of the 

salient region p ∈ Rs , and wI and h I are the width and height 
of image  I .  Based  on  (14), the salient  object is represented 

by  K  components, which can  be observed in  Fig. 5-f. This  

is beneficial for representing salient objects with complex 

structures on the one hand, while occupying a smaller portion 

of the background, on the  other. 

The height and width of rectangle  Wk  is  defined as  twice 
as  the  mean  42-normalized  distance  from  the  regions  of    

k  to  the  center  of  cluster  k.  For  a  region  ri   outside the 

object  rectangle  area  W   =   [Wk ],  we  define  its     restart 

experiments. In Sec. III-D, an RWR  based saliency  approach 

is introduced for generating more accurate saliency results.  

We set the restart probability z = 4 × 10−4 of RWR. In our 
experiments, all the parameters of our algorithm are fixed    to 

unity. 

Datasets: We mainly evaluate our method on four 

benchmark datasets: MSRA-5000 [9], ECCSD [35], DUT- 

OMRON [15] and PASCAL-S [37]. The MSRA-5000 dataset, 

containing 5000 natural images, is widely used for saliency 

detection and  covers  a  large  variety  of  image  contents. 

The ECCSD dataset consists of  1000  images  with  multi-  

ple  objects  with  complex  structures.  Some  of  the   images 



 

 
 

 

Fig. 6.   Comparison of saliency  maps with eight state-of-the-art  methods. From top to bottom: Input images, ground-truth,  saliency  maps generated  by   
GS12 [31], SF12 [30], HS13 [35], MC13 [14], MR13 [15], wCtr14 [18], BSCA15 [21], BL15 [36] and our method. Note that the proposed method generates 
more reasonable saliency maps compared with the  state-of-the-art. 

 

come from the challenging Berkeley-300 dataset. The DUT- 

OMRON dataset is another challenging saliency dataset and 

contains 5172 images with high background clutter. We further 

report our performance on the newly developed PASCAL-S 

dataset [37], which is one of the most challenging saliency 

benchmarks. It contains 850 natural images where in most 

cases multiple objects with various locations and scales, and/or 

highly cluttered backgrounds. Unlike the traditional bench- 

marks, PASCAL-S is believed to eliminate the dataset design 

bias. For all the datasets, pixel-wise groundtruth annotation  

for each image is available. In our experiments, unless stated 

otherwise, 40% of the images from each dataset are randomly 

selected for testing. The remaining images are used for trans- 

ferring saliency. 

 
 

A. Performance Comparison 

To evaluate the quality of the proposed approach, we 

provide in this section quantitative comparison for perfor- 

mance of the proposed method against eight top-performing 

alternatives: GS12  [31], SF12  [30], HS13  [35], MC13  [14], 

MR13   [15],  wCtr14   [18],  BSCA15   [21],  BL15  [36]   on 

MSRA-5000   [9],   ECCSD   [35],   DUT-OMRON   [15]  and 

PASCAL-S [37] datasets. For a fair comparison, all saliency 

maps generated using different saliency models are normalized 

into the same range of [0, 255] with the full resolution of 

original images. 

1) Qualitative Results: To provide qualitative comparison of 

the different saliency outputs, we present results of saliency 

maps generated by our method and eight state-of-the-art meth- 

ods in Fig. 6. The top row shows input images. The second 

row shows the ground truth detection results of salient objects. 

We observe that the proposed algorithm captures foreground 

salient objects faithfully in  most  test  cases.  In  particular, 

the proposed algorithm yields good performance on more 

challenging scenarios, even for objects on image boundaries 

and blurred backgrounds. This can be attributed to the use of 

contextual information based on saliency transfer. Thanks to 

our RWR based optimization, our method is able to detect 

salient objects accurately despite similar appearance to the 

background regions. The proposed saliency model can high- 

light salient object regions more completely with well-defined 

boundaries, and suppress background regions more effectively 

compared to previous saliency models. 



 

 
 

 
 

   
 

Fig. 7. Statistical comparison with 8 alternative saliency detection methods using MSRA-5000 [9], ECCSD [35], DUT-OMRON [15] and PASCAL-S [37] 
datasets: (a) PR curves, (b) F-measure, (c)   MAE. 

 

2) Quantitative Results: Three  measures  are  employed  

for the quantitative evaluation: precision-recall (PR) curves, 

F-measure and MAE. We first use precision-recall (PR) curves 

for performance evaluation. Fig. 7-a shows the PR curves. Our 

saliency transfer method performs superior on  all  datasets. 

The minimum recall value in these curves can be regarded 

as an indicator of robustness. As can be seen, minimum recall 

scores of GS12, SF12, HS13, MC13, wCtr14 and BSCA15 

become very small, and the recall scores of MR13 and BL15 

shrink to 0. This is because those saliency maps do not 

correspond well to the ground truth objects. To our advantage, 

the minimum recall score of our method is about 0.2, which is 



 

 
 

 
 

Fig. 8. Cross-dataset validation of the proposed method. Top: evaluation 
results on the ECCSD [35] database. Bottom: evaluation results on the 
PASCAL-S [37] dataset. Fairly close performance in PR curves and MAE 
with different settings consistently demonstrate effectiveness of our  method. 

 

 
higher than other methods. This demonstrates that our saliency 

maps align better with the correct objects. In addition, our 

saliency method achieves the best precision rates over other 

algorithms, which shows it is more precise and responsive to 

the actual salient information. The resulting F-measure scores 

on famous datasets are given in Fig. 7-b. Our method again 

gives the highest F-measure scores among all approaches, 

which indicates the effectiveness of the proposed  method. 

The MAE estimates the approximation degree between the 

saliency map and the ground truth map, and it is normalized 

into [0, 1]. The MAE provides a direct  way  of  measuring 

how close a saliency map is to the ground truth. The MAE 

results are presented in Fig. 7-c. Our algorithm achieves the 

lowest MAE scores on the four corresponding datasets, which 

indicates that the resultant maps are closest to ground   truth. 

 
B. Cross-Dataset Validation 

In the above experiments, our approach searches and builds 

the support group of the input image from the same dataset.  

To test the generalization of our idea, cross-dataset vali-  

dation is provided here.  We  use  40%  of  the  images  from 

the ECCSD  [35]  dataset,  which  are  the  images  used  in  

the previous experiment, as the test images. And the DUT- 

OMRON [15] dataset is used to establish  the support group.  

In Fig. 8, PR curves and MAE in the ECCSD dataset using  

the DUT-OMRON dataset for transferring saliency are plotted. 

ECCSD + ECCSD indicates the saliency results using the 
ECCSD to build the support group, which are plotted in blue. 

ECCSD + DUT-OMRON  corresponds to  the  saliency results 

 
using the DUT-OMRON to transfer saliency, which are plotted 
in red. We can observe that the performance with different 
settings is fairly  comparable. Interestingly, the performance  

of ECCSD + DUT-OMRON  in MAE is even slightly     better 
than  that  of  ECCSD + ECCSD.  A  cross-dataset  validation 
is  also  performed on  the  PASCAL-S  [37]  dataset  using the 

same settings with the previoustest on the ECCSD  dataset.    

A similar conclusion can also be drawn from this experiment 

on the PASCAL-S dataset. All the above observations are 

further evidence for the generalization and effectiveness of  

our correspondence-based saliency transfer. 

 
C. Runtime Analysis 

We carry out time analysis on a personal computer equipped 

with Intel Core 2 Duo E8400 3-GHz CPU and 4GB RAM.  

The computational cost of our method consists of three parts. 

The first is our correspondence-based transitional saliency 

computation in Sec. III-B, including SIFT descriptor based 

scene matching [22], which typically requires 15s for    image 

and patch level based saliency estimation with N  =  10.  
Scene matching [22] occupies almost all the computation time, 

since the GIST descriptor can be pre-stored for an annotated 

dataset and scene retrieval takes little time. The second part   

is the saliency refinement stage in Sec. III-C, including SLIC 

superpixel segmentation [32], which takes 0.15s. The third is 

the final stage in Sec. III-D, which costs   0.1s. 
 

V. CONCLUSION 

In this paper, we have presented a novel saliency transfer 

method to take the advantage of the existing large annotated 

datasets for identifying the primary and smooth connected 

salient object areas from an image. The proposed algorithm 

emphasized the value of contextual information through trans- 

ferring the saliency from candidate images and patches to an 

input image using dense scene matching. Based on pixel-wise 

correspondences, we warp support images and the annotations. 

The warped image was used to transfer its warped annotations 

and infer the saliency of the input image. Aiming to select 

closest support images and exclude the images with unsatisfac- 

tory correspondences, we introduced two matching strategies 

that are based on scene level and patch level respectively. 

Based on the saliency transferred from those selected image or 

patch candidates, we refined the saliency estimation of a region 

according to its distance to the saliency center and the geodesic 

distance to the background. Furthermore, accurate saliency 

maps were finally generated via the RWR algorithm. Extensive 

experiment results on four benchmark datasets showed  that 

the proposed method achieves superior performance compared 

with the state-of-the-art techniques. 
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