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ABSTRACT 
 

Latino youth have substantially higher rates of obesity and T2D than their white 

peers. The higher prevalence of obesity and T2D among Latino youth places them at 

greater risk for cognitive dysfunction, an urgent and serious health threat to the United 

States. Exercise has been the cornerstone to combat the negative effects of obesity, 

diabetes and recent research also supports this effects for preventing cognitive 

dysfunction. A wealth of evidence suggests that a mediating mechanism linking exercise 

with brain health is BDNF, a cognitive biomarker that increases in the brain with 

exercise. BDNF is the most abundant neurotrophic factor that supports growth, survival 

and synaptic plasticity of neurons, all vital for cognitive function and brain health. The 

present study sought to investigate the effects of a 12-week lifestyle intervention of 

physical activity and lifestyle education on serum BDNF, in obese pre diabetic Latino 

youth.   

A total of twelve obese pre diabetic Latino youth were selected from a larger RCT 

sample to be the focus for this analysis. After an overnight fast, a serum concentration 

was collected from all youth to be used for the BDNF analysis. In addition, the following 

cardio metabolic measures were also at taken at baseline and post intervention:  

Submaximal VO2max, medical and family history questionnaire, anthropometric, fasting 

glucose and a 2-hour oral glucose tolerance test (OGTT).  A 12-weeks Lifestyle 

Intervention that involved a progressive moderate to high intensity exercise component 

and lifestyle education program did not significantly change serum BDNF levels in obese 

pre diabetic Latino youth. In conclusion, the variation of our serum BDNF results are 

highly speculative at this time, therefore the need for future investigations is crucial. 
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CHAPTER 1 

INTRODUCTION 

Latinos in the United States experience more health inequalities compared to non-

Hispanic Whites (1). The U.S. Office of Minority Health reported that in 2011, adult 

Latino Americans were 1.2 times more likely to be obese than non-Latino Whites. The 

most recent prevalence data on pediatric obesity suggests that 22.8% of Hispanic youth 

aged 12-19 years are obese (2). The pediatric obesity epidemic has contributed to the 

emergence of the type 2 diabetes (T2D) in children and adolescents (3). T2D is a 

complex disease that involves an interplay between social, behavioral, environmental and 

genetic risk factors. In genetically susceptible youth, poor diet and a sedentary lifestyle 

contribute synergistically to the premature development of T2D (4). Physical inactivity 

related disparities further contribute to an unbalanced disease risk burden among Latino 

youth who exhibit higher rates of prediabetes and T2D (5, 6). In addition, recent findings 

suggest that adverse health conditions are not limited to the physiological processes in the 

body. T2D is also linked to neurological aliments as evident by cognitive dysfunction in 

adults (7, 8, 9, 10), and these impairments are also evident in youth who are at high risk 

for developing T2D (11; 12). Adolescents who are obese and have T2D exhibit structural 

and functional impairments in their brain that is consistent with the cognitive decline in 

adulthood (13).  
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CHAPTER 2 

REVIEW OF LITERATURE 

 

Obesity, Diabetes, and Cognitive Function (CF)  

The current rise in dementia cases among older adults has trended to parallel the 

rising rates of obesity in the United States (14). Obesity is associated with a faster 

cognitive decline across the human lifespan. Based on epidemiological studies, obesity 

has been linked to an increased risk for Alzheimer’s disease (15, 16), and dementia (17; 

14). Obesity has also been linked to long-term declines in cognitive performance even 

when detectable neurological disease is not yet present (18). Additionally, obese adults 

perform significantly lower on tasks assessing global cognition, attention (19); executive 

function and memory (20) compared to their normal weight counterparts (21). More 

alarming is the negative impact obesity has on cognitive deficits when it co-exists with a 

metabolic disease like T2D (22). Older Individuals with T2D are at 50-100% at greater 

risk of developing dementia, especially those with a longer history of T2D, less glycemic 

control and more vascular complications (23, 24). Unfortunately, cognitive impairment is 

not only present in the aging population, obese adolescents also exhibit cognitive 

dysfunction relative to their normal-weight peers (25). This is an emerging area of 

literature that aims to understand the relationship between obesity and cognition during 

adolescence and across the lifespan. In the few papers that have been published to date, 

evidence demonstrates overweight and obese adolescents perform worse than healthy 

weight adolescents in executive function tasks, specifically in areas that require greater 
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amounts of executive control (66). The observations have revealed differences in brain 

functioning as measured by functional neuroimaging and electrophysiological techniques 

suggesting that, healthy-weight children exhibit more efficient and denser patters of 

neuroelectric activation relative to overweight/obese children in areas of executive 

control that require attention (28, 29), inhibition (30), and conflict monitoring (31). In 

addition, youth who are more fit also show differences in brain structure, as measured by 

magnetic-resonance imaging (MRI) voxel based morphomes (32, 33, 34)    

Recent evidence indicates that metabolic disease risk may be a contributing risk 

factor to the differences seen in the brain structure and function of overweight/obese 

children. Children who exhibit at least one metabolic risk factor demonstrate lower 

performance in the executive control task, compared to healthy weight counterparts with 

no risk factors (35). In addition, Yau et al., (36) observed differences in brain structure of 

obese children with one metabolic risk factor compared to healthy peers. These 

differences included smaller hippocampal volume and decreased white matter, both 

indicators of poor behavioral indices of attention, executive control and scholastic 

achievement. Morbidly obese adolescents with T2D perform significantly worse during 

executive function test and exhibit structural brain abnormalities compared to obese 

adolescents without T2D (13). Furthermore, obese youth with T2D demonstrate 

significant reductions in fast brainwave activity as measured via electroencephalograms 

(EEG), particularly in areas related to executive functioning such as the prefrontal cortex 

(37). Despite this growing area of inquiry, the relationship between obesity, diabetes, and 

cognitive function in children and adolescents remains poorly understood.  
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Potential Mechanisms Linking Cognitive Dysfunction with Obesity and Diabetes 

 To date, several models identify the mechanisms linking obesity and T2D to 

cognitive impairments. These mechanisms include, microvascular disease (22), disrupted 

glucose imbalances and impaired insulin signaling (38). Microvascular disease is caused 

by a variety of risk factors such as hypertension, T2D, hyperlipidemia and smoking. In 

addition to microvascular disease, these risk factors contribute to neurological diseases 

such as vascular dementia and Alzheimer disease. Hypertension in particular is the 

leading risk factor for cerebral microvascular complications such as stroke. In addition, 

an alteration in cerebral hemodynamics is directly linked to ischemic-related injury in the 

brain (39).  

Glucose imbalances: Poor glycemic control may be one of the strongest 

contributors to adverse brain structural changes and cognitive impairments in obese 

individuals. Recent evidence suggests that the brain plays an important role in the 

maintenance of glucose homeostasis (40), via the downstream mechanisms of leptin-

proopiomelanocortin (POMC) signaling pathway. Yaffe et al., (41) found that older 

nondiabetic women with higher HbA1c levels, exhibited greater declines in cognition 

over time. Other work demonstrates that poor glycemic control adversely impacts the 

integrity of the brain. The hippocampus and the frontal lobes are the two areas of the 

brain that are most susceptible to alterations in glucose homeostasis (42). These 

alterations may cause learning and memory deficits in adults and in children. For 

instance, the hippocampus sensitivity to the glucose and insulin imbalances may lead to a 

neuronal synaptic reorganization and impairment (43, 44, 45). Poor glycemic control also 
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alters cognitive performance due to the increased production of advanced glycation end 

products (AGE) that contribute to inflammation, and damage in the cellular and 

molecular structures (46). The process of the normal aging brain is characterized by a 

decrease in cognitive performance, and structural brain changes. However, when it is 

coupled with obesity and T2D, cognitive decline advances at a faster speed (47). There is 

a need for additional work to better understand the effects of poor glycemic control on 

the structure of the brain and cognitive function of obese individuals prior to developing 

T2D.  

 A separate mechanism that aims to understand the effects of obesity and T2D on 

cognitive function is an increase of insulin resistance. Insulin resistance may stimulate 

the hippocampus to decrease insulin-stimulated translocation of glucose transported such 

as GLUT-4. This may result in dysregulation of the hypothalamic-pituitary-adrenal axis 

(HPA) (48). One of the main roles of the HPA axis is to control stress reactions. Higher 

levels of chronic stress accelerate inflammatory markers that have been linked to 

cognitive deficits in obese individuals (49). Although, there are different possible 

mechanisms linking obesity and T2D with cognitive impairment, the casual relationship 

remains unclear (50).  

Exercise is the Cornerstone for Treating and Preventing Obesity, Type-Two 
Diabetes (T2D) and for Improving CF 

 

One of the most powerful and effective cognitive enhancers is physical exercise 

(51). Increases in physical exercise combined with improvements in dietary habits 

represent the cornerstone for preventing diabetes.  In particular, exercise has the capacity 
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to not only reduce diabetes risk but can improve cognitive function in a dose-dependent 

manner. (52). Improvements have been in a variety of species, for different memory tasks 

(53), neurogenic and neurotropic activity in the brain.  The neuroprotective effects of 

exercise include enhanced brain structure and function across the lifespan (125; 54, 55). 

Exercise training leads to an increase attention and performance on cognitive tasks 

related to executive function (56) and facilitates the development of adaptive, goal-

directed problem-solving skills (57). The interplay between obesity, exercise and brain 

function is executive function (explained in the next section) where the cognitive 

processes that are associated with monitoring and controlling both thought and goal-

directed behaviors are housed (58). Regular participation in physical activity among 

preadolescent children is associated with improved cognition, particularly in the domains 

of executive function, learning, and memory (59)  

Executive Function (EF) is the umbrella of fundamental cognitive processes and 

skills that are essential for mental and physical health (60). Among youth, executive 

function is necessary for academic achievement, and for appropriate social and 

psychological development (60, 61). There are three core areas of EF which include, 

inhibitory control (resisting distractions or habits to maintain focus), working memory 

(mentally holding and manipulating information), and cognitive flexibility (multi-

tasking). These three areas work collectively as well as independently depending on the 

task or behavior (57, 62). The prefrontal cortex (PFC) is the main area of the brain 

involved with EF and each core EF area belongs to a PFC sub-region. Unlike other 

regions of the brain, the PFC matures in late adolescence and early adulthood (63).  
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Exercise Neurological Impact 

The three current hypotheses that exist to explain how exercise may impact 

neurological status in the areas of executive function and cognitive health include, 1) 

enhancement in oxygen saturation in the areas of the brain that are crucial for cognitive 

performance, such as the PFC and hippocampus 2) increases in neurotransmitters that act 

as chemical messengers for communication between neurons (64) and 3) upregulation in 

neurotrophins such as brain-derived neurotropic factor (BDNF) that promote neuronal 

growth, survival and synaptic connectivity (65). The positive impact of exercise on 

cognition among youth is an area of importance as childhood is a critical period for the 

development of brain function, structure and connectivity and changes in these 

parameters can have lifelong implications (66). 

Chaddock-Heyman et al., (109) conducted a randomized control trial to assess the 

influence of a 9-month physical activity program on task-evoked brain activation during 

childhood by using functional magnetic resonance imaging (fMRI). Children in the 

intervention group engaged in physical activity classes for 60 minutes, 3 times / week for 

9 months, while the wait-list control group was given the opportunity to participate in the 

intervention the following year. Compared to the wait-list control group, the intervention 

children showed a greater activation in the prefrontal cortex and performed higher on an 

executive function task. These results suggest that exercise is important for the 

development of brain and cognition during childhood.  
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Brain Structures in Humans  
 

The influence of physical activity on cognition has been shown to be influential 

by enhancing areas related to executive control (66). The frontal lobe, prefrontal cortex 

(PFC) is the region of the brain where executive function skills are derived (67; 68). The 

PFC is jointly connected to the basolateral amygdala; the two structures are associated 

with decision-making processes that play an important role in impulsivity and 

compulsive choices (69). It is widely known that there are other areas in the brain that are 

involved in executive function including the dorsolateral PFC, the anterior cingulate 

cortex, the orbitofrontal cortex, and the medial PFC (70). These areas have extensive 

functional connections to other regions of the brain including the subcortical areas and 

brain stem which control the automatic systems that contribute to executive function (71).  

 
Exercise Benefits for Children and Adolescents   
 

Multiple studies (66, 72 and 73) and reviews (65 and 74) have been conducted to 

assess the influence of physical activity or exercise and executive function skills in 

children. The most recent, Hillman et al. (66) investigated the effects of a 9-month, 

randomized control physical activity (PA) program (Fitness Improves Thinking 

[FITKids]) on brain and behavior during tasks requiring attentional inhibition and 

cognitive flexibility among 221 children between 7-9 years of age. They hypothesized 

that, relative to a waiting list control group, the FITKids intervention would result in 

improved behavioral performance, increased attention allocation, and faster cognitive 

processing speed. In addition, the authors predicted a positive correlation between 

participation in the intervention and improvements in executive function skills as markers 
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of cognitive function. Among the intervention group, the results did demonstrate 

significant improvements in fitness, cognitive inhibition, and cognitive flexibility both 

markers of EF. The authors concluded an enhancement of cognitive performance and 

brain function during tasks requiring greater executive control, which provides support 

that PA can improve cognition and brain health in children. The authors suggested that 

their findings broaden the relevance for public health, the educational environment, and 

the context of learning.  

 
Brain Derived Neurotrophic Factor (BDNF) and Exercise 

Brain Derived Neurotrophic Factor (BDNF) is an essential neurotrophin encoded 

by the BDNF gene and transcribed with the signaling of its receptor tyrosine kinase 

TrkB. BDNF supports brain plasticity and health, through its involvement in regulating 

survival, growth and maintenance of neurons (76). In addition, BDNF is closely 

connected with central and peripheral molecular processes of energy metabolism (77, 

78), learning, and memory (79). It has been well established that BDNF synthesis is 

centrally mediated and activity dependent (80) where exercise can upregulate 

transcription levels in the brain (81). Although exercise is associated with a cascade of 

molecular and cellular processes that support brain plasticity and health, it was not until 

the 1990s that research began to explore the possible mechanisms linking exercise with 

brain health. One of the mayor breakthroughs started to investigate the effects of acute 

exercise and/or training on BDNF levels in animals (82, 83, 84, 65, 85, 86) and nearly a 

decade later in humans (87).  

Voluntary running results in significant upregulation of BDNF MRNA and 
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protein concentrations (88, 81, 82). Animal studies report the highest levels of BDNF to 

exist in the hippocampus (89), a critical area for learning and memory. To demonstrate 

the importance of BDNF in these processes, it has been reported that BDNF knock-out 

mice demonstrate deficits in spatial memory, learning and hippocampal Long Term 

Potentiation (LTP). LTP a model for the processes that may underlie the strength of 

information for long term storage within the synaptic neuronal networks (90). In addition 

to the functional role BDNF plays in the hippocampus it also contributes to hippocampal 

structure by increasing grey matter, which is crucial for maintaining life-long 

neurological health. 

Physical Activity stimulates BDNF production in an intensity-dependent manner 

(91, 92). A systematic review of acute aerobic exercise trials found that moderate and 

high intensity bouts of exercise increase circulating BDNF levels (93). To date, the most 

studies investigating the effects of PA on BDNF have focused on clinical populations and 

the role BDNF plays on mental disorders such as schizophrenia (87), Alzheimer’s 

disease, and depression or anxiety (94). Recent evidence suggests that BDNF plays an 

important role in the maintenance of glucose homeostasis (95, 96, 97). However, the 

degree to which BDNF is associated with T2D remains uncertain. Some reports indicate 

that circulating BDNF levels are lower in T2D compared to healthy counterparts (98, 96), 

while others have found the opposite (99). Three major factors that may explain the 

inconsistencies include the time point of measurement, the exercise protocol and the 

differences in populations across studies in terms of sex, age, and body-weight (100). 

These factors notwithstanding, the data more consistently show that among individuals 
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with T2D, peripheral BDNF levels decrease as length of disease increases (98).    

Preventative Measures of Obesity, T2D and Cognitive Dysfunction in Latino Youth 

Latino youth have substantially higher rates of obesity and T2D than their white 

peers. The higher prevalence of obesity and T2D among Latino youth places them at 

greater risk for cognitive dysfunction.

 

These negative health effects on Latino youth and 

the nation as a whole cannot be overlooked, as Latinos currently represent the most 

populous and fastest growing ethnic minority in the United States. In the years ahead, the 

negative health effects experienced in Latinos will likely affect the nation as a whole, 

resulting in greater health care expenditures, higher rates of metabolic and neurological 

diseases, loss of work productivity, and stunted educational academic achievement and 

economic growth. Therefore, preventative measures are needed to stop the negative riffle 

effects of obesity, T2D and cognitive dysfunction in Latino youth. Exercise has been a 

cornerstone for the prevention of obesity and T2D. In addition, recent evidence, has 

identified exercise as one of the most powerful and effective enhancers for cognitive 

function. Cognitive function across the lifespan is essential for learning and memory, 

goal setting and academic and career success in life.  

A wealth of evidence suggests that a mediating mechanism linking exercise with 

brain health is BDNF, a cognitive biomarker that increases in the brain with exercise. 

BDNF is the most abundant neurotrophic factor that supports growth, survival and 

synaptic plasticity of neurons, all vital for cognitive function and brain health. The 

majority of data examining the effects of exercise on BDNF comes from studies of 

animals or in adults whereas evidence on the effects of exercise on brain health is focused 
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on improvements in cognitive processes. No study has investigated the effects of exercise 

on BDNF in obese pre-diabetic Latino youth. Therefore, the purpose of my master’s 

thesis is to investigate the effects of a lifestyle intervention (physical activity and 

nutrition) on BDNF, a biomarker of cognitive health in obese Latino pre-diabetic youth. 

We hypothesize, that a 12-week lifestyle intervention of (physical activity and nutrition) 

will result in significant increases of serum BDNF compared to baseline.  
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CHAPTER 3 

METHODS 

Participants  
 

Effects of a lifestyle intervention (physical activity and nutritional education) on 

BDNF serum concentrations were investigated using a quasi-experimental, pre-test, post-

test design. The current intervention is a subset from the larger study described in more 

detailed in Williams et al., 2016. For the purpose of the present investigation, a total of 

12 pre-diabetic obese (BMI percentile ≥ 95th percentile for age and gender or BMI ≥ 30 

kg/m2) Latino Youth (self-report by parents) were included in the analyses (7 girls (BMI 

= 34.8 + 6.0 kg/m2) and 5 boys (BMI = 32.3 + 3.2 kg/m2) all between the ages of 14 and 

16 years (15.4 + 1.1 years). The youth were recruited to participate in the ASU ELSC 

lifestyle Intervention from churches, health clinic and schools in the local Phoenix 

metropolitan area. Serum samples of youth who participated in the intervention of the 

larger study but were not identified as pre-diabetic, and pre diabetic youth who did not 

complete a minimum of 75% participation/attendance in the intervention, or did not give 

consent for additional analysis were also excluded from the BDNF analysis. Due to 

ethical practices, all youth who were diagnosed as pre-diabetic at screening were not 

randomized, and were automatically placed in the intervention. Therefore, no pre-diabetic 

youth were included in the control group. The study was approved by Arizona State 

University’s Institutional Review Board. All participants and their parents provided 

informed written consent prior to any procedure.  
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12-Week Lifestyle Intervention: Lifestyle Curriculum  
 
 The ELSC intervention was developed through the team’s extensive experience 

working with obese Latino youth and our review of the literature. Components of the 

intervention are based upon enhancing key constructs of Social Cognitive Theory (SCT) 

including self-efficacy and fostering social support. The intervention is delivered in the 

community by bilingual/bicultural Promotoras (health educators) to adolescents and their 

families. Promotoras deliver weekly education classes in groups that focus on family 

history and obesity-related health risks, healthy eating, family roles and responsibilities, 

physical activity and inactivity, and emotional well-being. Participants are presented with 

their baseline clinical metabolic measures and this information is used to initiate the 

discussion on making healthy lifestyle choices. Participants learn behavior change 

strategies such as goal setting, self-monitoring, decision-making, and positive self-

imaging the power of positivity as they pertain to the following class sessions, health 

risks, culturally-appropriate nutrition education (i.e. healthy meal planning, reducing 

sugar and fat intake, increasing fiber intake, eating breakfast, portion sizes / snacking), 

physical activity, self-efficacy for making healthy nutrition and physical activity choices, 

self-esteem, and a final wrap-up session on sustaining a healthy and balanced lifestyle. 

Children and parents are asked to complete a behavioral contract at the beginning of the 

program and readiness to change is documented and discussed. Classes are delivered 

using an interactive format where youth and families are encouraged to share their 

personal experiences, beliefs, successes, and challenges. Out of class activities such as 

grocery shopping with parents to prepare a healthy family meal are used to facilitate 

curriculum integration into day-to-day lifestyle changes. Throughout the program, youth 
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and their families are asked reflection questions of how they incorporated information 

learned into their everyday life (e.g. What did you do last week to improve how you feel 

about yourself?). Success is recognized and acknowledged and challenges are discussed 

with a focus on strategies to overcome barriers. At the conclusion of the program, youth 

are presented with a certificate of completion and are applauded for their efforts by the 

Promotoras, families, peers, and research team.  

 
12-Week Lifestyle Intervention: Physical Activity  
 
 The physical activity component includes structured and unstructured exercise 3 

days/week for approximately 1-hour. The structured component includes both aerobic 

and resistance exercises that are progressive in nature with the first 2-4 weeks focusing 

on motor skill acquisition, exercise confidence, and developing a fitness base. Aerobic 

exercises include various group activity classes (e.g. spinning and basketball) delivered 

by YMCA instructors with the goal of maintaining average heart rates > 150 BPM. This 

high-intensity physical exercise has been shown to significantly improve cardiovascular 

fitness and other metabolic markers in obese youth (102). Heart rate monitoring and rate 

of perceived exertion were used to monitor and document exercise intensity throughout 

the program. Resistance exercise includes circuit training using age and size appropriate 

equipment. Resistance training is incorporated because previous studies suggest this form 

of exercise is both enjoyable and metabolically beneficial for obese youth (103). 

Unstructured exercises include team sports, games, and activities that promote social 

support, encouragement, and bonding among youth. We have observed significant 

heterogeneity in baseline fitness, activity levels, and exercise experience so youth are 
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encouraged to work at their own pace and support their peers at all levels. Healthy 

competition is encouraged but any negativity or teasing is immediately addressed on an 

individual and group level. Adolescents are encouraged to utilize the YMCA outside of 

the intervention and the YMCA will make special membership arrangements for families 

participating in the project. 

 
Cardiovascular Measures: Submaximal VO2 max 
 

Youth were tested with a Submaximal VO2max treadmill-based protocol by 

Ebbeling et al., (104) that was later validated to accurately predict maximal VO2 in obese 

children and adolescents (105). Resting heart rate (resting HR), in beats per minute (bpm) 

was obtained immediately before starting the test. Participants began to practice walking 

on the treadmill at a self-selecting walking pace and at 0% grade for an initial 4-minute 

phase. Immediately after the first 4 minutes, the grade was increased to 5%, maintaining 

the same speed for 4 more minutes. The HR as reported by the heart rate monitor watch 

was recorded at the end of the 8 minutes and entered into the prediction equation. The 

VO2max values were measured in mL·min-1.  

 
Cardiovascular Measures: Fasting Glucose and 2-Hour OGTT  
 

All participants completed baseline and post intervention assessments at the ASU 

Clinical Research Unit at ~8:00 am after an overnight fast. These measures included a 

medical and family history questionnaire, anthropometric (height, weight and waist 

circumference measure to the nearest 0.1 cm, 0.1 kg, 0.1 cm respectively), and a 2-hour 

oral glucose tolerance test (OGTT). The OGTT is a measure of diabetes risk. Participants 

ingested an oral glucose tolerance beverage of 75 grams of glucose solution and blood 
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samples were obtained six times for a period of 2-hours to determine plasma glucose 

concentrations (glucose oxidase, YSI INC., Yellow Springs, OH). These results detect if 

impaired glucose tolerance is present, which classifies the participants as pre-diabetic. 

According to the American Diabetes Association pre-diabetes is determined as having an 

OGTT equal or greater than 140 mg/dL to 199 mg/dl. A fasting sample collected prior to 

the OGTT was used to evaluate serum BDNF levels at baseline and post intervention.  

Cognitive Biomarker: BDNF Procedures  

 The blood samples drawn at baseline, and post intervention (estimated 15 hours post 

moderate to high intensity exercise session and 10 hours of fasting) will be centrifuged at 

3000 rpm to obtain serum. Serum will be frozen and stored at -80 oC until assayed to 

determine the serum BDNF concentrations. Serum samples will be taken out of the 

freezer to allow samples to reach room temperature for 150 minutes. Samples are mixed 

in the vortex before centrifugation for 15 minutes at 3000 x g. The serum samples require 

at least a 20-fold dilution into Calibrator Diluent RD6P prior to the assay. Utilizing the 

suggested 10 uL of sample + 190 uL of Calibrator Diluent RD6P. Samples will be 

analyzed in duplicate using the commercial enzyme-linked immunosorbent assay 

(ELISA) kits (R&D Systems, Minneapolis, MN, USA #DBD00). 

Statistical Analysis 

We conducted a Paired Sample T-Test examining pre and post differences for our 

primary measure, serum BDNF and for other cardio metabolic markers and fitness levels 

of each participant. We chose a p value maximum of 0.05 to demonstrate significance. 

Correlational analyses were also conducted to analyses the relationship between changes 
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in BDNF and changes in other cardio metabolic variables. Pearson’s correlation for 

associations between changes in serum BDNF and BMI, fitness and diabetes risk factors.  
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CHAPTER 4 

RESULTS 

Cognitive Biomarker: Serum BDNF 
 
A 12-weeks Lifestyle Intervention that involved a progressive moderate to high intensity 

exercise component and lifestyle education program did not significantly change serum 

BDNF levels in obese pre diabetic Latino youth. We conducted a pair sample T-test for 

serum BDNF levels at baseline (21050.8 + 5911.) vs post-intervention (21850.3 + 

6054.7) Pair Sample T-test p = .7 (Fig. 1). Analyzing baseline data from all participants, 

serum BDNF levels were comparable in males vs. females (males 20,083.3 + 4,586.4, 

females 21,717.8 + 6,978.4 pg/mL, (see Table 1 for additional variables between gender).  

 
 
Lifestyle Intervention: Demographics + Cardio Metabolic Assessments 
 

Participants demographics, fitness and glucose baseline and post-intervention data are 

provided in Table 2. These data demonstrate that the 12-week lifestyle intervention had 

significant changes in 2-hour glucose values from (151.0 + 9.2 to 123.4 + 31.5 ml/L p < 

.007), BMI (33.7 + 5.0 to 33.2 + 5.1 p< .016), and Fat percentage (44.4 + 4.9 to 40.5 + 

6.6 p<.004). However, it did not have significant changes in weight (90.0 + 10.8 to 89.6 + 

11.5) t(11) .72, p<.85. Submaximal V)2max Fitness assessments were statistically 

significant (2398.5 + 660.2 to 2859.6 + 399.2) p=.05. In addition, Graph 1 demonstrate 

the average heart rate (HR) bpm of the entire cohort for each week of the physical 

activity classes. The average HR for the intervention was 160 bpm which meets the goal 

of 150 bpm (classified as high intensity based on HR max for this age group) for the 
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intervention’s exercise intensity levels for all participants. Table 6 demonstrate the 

correlation data for changes in serum BDNF and measure of BMI, fitness and diabetes 

risk factors. We did not find any correlations.  
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Table 1. Baseline Gender Differences* 
 

T1 Female Male Total 
Participants p<.05 

Gender 7 5 12  
Age (years) 15.8 + 1.0 14.9 + 1.2 15.4 + 1.2  
Weight (kg) 90.9 + 12.9 88.7 + 8.3 90.1 + 10.8 .7 
BMI (kg/m

2
) 35.1 + 6.0 31.7 + 2.5 34.2 + 4.9 .3 

BMI % 97.8 + 1.9 98.5 + 0.9 98.2+ 1.9 .5 
Fasting 
Glucose 
(mg/dL) 

86.3 + 9.3 88.6 + 8.8 86.6 + 8.9 .7 

2-hour 
Glucose 
(mg/dL) 

149.4 + 11.3 153.2 + 5.6 150.4 + 9.4 .5 

*Data is shown as mean + SD values with p values < .05 are significantly different. 

Graph 1. Cohort Heart Rate (HR) bpm Averages* 
 

*Data is shown as group HR averages (bpm) + SD values for each week. Desired group 
HR averages per week: 150 bmp. 
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Table 2. Pre & Post Cardio Metabolic Values* 
 

 Pre 
N = 12 bpm 

Post 
N = 12 p-value 

BMI 
(kg/m

2
) 

33.70 + 5.01 33.18 + 5.2 .02 

Fasting Glucose 

(mg/dL) 
87.25 + 8.8 84.75 + 8.2 .09 

2-hr Glucose  
(mg/dL) 151.00 + 9.2 123.42 + 31.5 .01 

Fitness - VO2max 
(mL*min

-1
)  

2398.5 + 660.2 2859.6 + 399.2 .05 

*Data is shown as mean + SD values with p values < .05 are significantly different. 

Table 3. Individual Changes in BMI* 
 

Sample ID 
N = 12 Pre: BMI Post: BMI BMI Change 

003-1 35.8 34.8 -1.0 
010-1 34.1 33.8 -0.3 
015-1 33.2 32.6 -0.6 
021-1 37.5 37.9 0.4 
032-1 29.2 28.5 -0.7 
059-1 32.8 33.3 0.5 
124-1 30.7 30.0 -0.7 
130-1 28.2 27.2 -1.0 
134-1 34.6 32.9 -1.7 
142-1 46.4 45.9 -0.5 
158-1 27.8 26.9 -0.9 
164-1 34.1 34.3 0.2 

*Data is shown as individual pre and post BMI (kg/m
2
) values and the BMI change after 

the 12-week lifestyle intervention for each participant. 
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Figure 1. BDNF Pair Sample T-Test* 
 

 

*Data is shown as mean serum BDNF (pg/mL) group changes values post 12-week 
lifestyle intervention compared to baseline.  
 
 
Table 4. Individual Changes in BDNF * 
 

Sample ID 
N = 12 Pre: BDNF Post: BDNF Change in BDNF 

(pg/mL) 
003-1 30,969.5 29,386.2 -1,583.3 
010-1 27,687.5 30,283.5 2,596.0 
015-1 17,143.1 21,411.1 4,268.0 
021-1 23,164.9 25,058.2 1,893.9 
032-1 8,359.1 23,735.7 15,377.7 
059-1 19,965.8 23,168 3,202.2 
124-1 15,896.6 8,026.9 -7,870.7 
130-1 23,509.8 14,327.8 -9,182.0 
134-1 20,223.8 19,823.5 -400.3 
142-1 25,932.7 24,281.9 -1,651.8 
158-1 19,723.8 22,179.1 2,455.2 
164-1 20,032.7 20,521.4 489.6 

*Data is shown as individual pre and post BDNF (pg/mL) values and the BDNF change 
after the 12-week lifestyle intervention for each participant 
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Table 5. Additional Analysis for Each Participant* 

Sample 
ID 

Average 
Attendance (%) 

Average HR 
(bpm) 

Attendance on 
Friday (1) before 

T2 lab 
appointment 

Change in 
BDNF 

(pg/mL) 

003-1 94 153.9 1 -1583 
010-1 100 160.9 1 2596 
015-1 86 150.0 1 4268 
021-1 86 162.0 0 1893 
032-1 81 165.6 0 15377 
059-1 94 168.3 1 3202 
124-1 94 155.8 1 -7870 
130-1 86 164.8 1 -9182 
134-1 81 163.9 0 -400 
142-1 81 151.1 0 -1651 
158-1 97 149.7 1 2455 
164-1 75 172.3 1 489 

*Data is shown as individual analysis for different values that may have influenced the 
serum BDNF (pg/mL) for each participant. 
 
Table 6. Correlations of BMI, Fitness and Diabetes Risk Factors with Changes in 
Serum BDNF* 
 

Changes BDNF (pg/mL) P-value 
(<0.05) 

BF% -.11 .74 
BMI (kg/m

2
) .20 .52 

BMI percentage .11 .73 
Fitness: VO2max 
(mL*min-1) 

 
.07 .86 

Fasting Glucose (mg/dL) .49 .10 
2-hr. Glucose (mg/dL) .34 .28 
Attendance  -.15 .65 
HR Averages (bpm) .14 .68 

*Data is shown as group analysis for different values that may have correlation with the 
serum BDNF (pg/mL), values with p values < .05 are significantly correlated 
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CHAPTER 5 

DISCUSSION 

Exercise stimulates learning, survival of hippocampal neurons and neuronal 

synaptic plasticity. Recent evidence linked BDNF as one of the primary contributors of 

exercise benefits on the brain (106). To our knowledge, we are the first to investigate the 

effects of a lifestyle intervention on serum BDNF levels in pre-diabetic obese Latino 

youth. Our results did not show any significant change in serum BDNF levels following a 

12-week Lifestyle Intervention (Physical activity and lifestyle education) Fig. 1. Exercise 

training has been shown to increase BDNF levels not only in the brain, but also in the 

periphery through its high-affinity receptor, tyrosine kinase (TrkB) in response to acute 

exercise. The exercise response to BDNF synthesis and storage remain undetermined. 

However, based on the literature 70-80% of serum BDNF may derived from the brain at 

rest, 2-4 hours after the exercise (107). The rest might be released when induced by 

exercise from the platelets (111) and additional evidence demonstrated for BDNF to be 

synthesized in the contracting muscle, however it was not shown for the levels to be 

released into the circulation, instead these levels increase muscle metabolism (112). The 

BDNF increases due to exercise have been shown to be widely dependent on time of 

measurement post exercise. Previous studies have shown BDNF levels to peak 

immediately after moderate to high intensity acute exercise, and levels decline, reaching 

baseline levels at 24 hours post exercise (113). Same review also demonstrated increases 

of serum BDNF levels for long lasting aerobic exercise programs performed above 60% 

intensity. However, as show in acute exercise studies, the levels returned to baseline and 

were not long-lasting. We collected serum samples at an estimated 16-hours after the last 
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exercise session, therefore, any potential significant increases of the serum BDNF may 

have already returned to baseline by the time we took the measurement. That could have 

been one of the possible reasons why we did not see significance.  

 

To date, little is known about the sustainability of exercise induced BDNF levels 

and to what extent of time do the effects prevail as it relates to cognitive function and 

under which timeframe and conditions do these effects vanish. In addition to 

measurement time point, exercise intensity has been reported to have a strong effect in 

the BDNF levels. First reported by Ferris et al., (91) serum BDNF to be exercise 

intensity-dependent at levels higher than 75% of VO2max compared to the control group 

that exercised at 55% intensity. As reported in Table 5, our participants did reach the 

desired intensity. Animal studies have demonstrated for BDNF to cross the blood-brain 

barrier in both directions, proposing that serum BDNF do reflect BDNF levels in the 

brain (108). Normal values for resting BDNF concentrations are unclear, however based 

on previous work from a large sample of healthy adults reported to have 22,600 pg/mL 

(113). Our participants showed BDNF resting levels averaging 21,850.3 pg/mL slightly 

lower than the considered normal levels in healthy adults. It has been suggested for 

BDNF levels to increase as a compensatory mechanism in the pathogenesis of metabolic 

disorders (116) therefore it is possible for pre diabetic youth as shown in our study to 

have near considered normal levels of BDNF. However, the improvement of 

cardiovascular risk parallels the decrease of peripheral BDNF concentrations (11, 119). 

BDNF levels also have an inverse relationship with age and weight (113), with obese 

diabetic adults (98), and with obese youth (115). Considering these associations, the 



	
	 27 

importance of larger well-designed studies is needed to further investigate the effects of 

exercise on BDNF levels and its effects in cognitive function in at high risk populations, 

who are well on their way at developing T2D and or learning and mood disorders at an 

earlier age.   

To date, human observational studies have not controlled for possible lifestyle 

confounders such as nutrition or sleep. Patients with neurodegenerative diseases and 

psychological disorders including depression, post-traumatic stress, autism, 

schizophrenia, bipolar disorder addiction and attention-deficit hyperactivity disorder have 

also been shown to have lower levels of BDNF (120). Childhood and adolescence are a 

critical developmental period where neuronal programing for behavior is established 

(110). Our findings are in agreement with a study that demonstrated unaltered serum 

BDNF levels in T2D adolescents with similar age group, and timing of the measurement. 

However, to the authors surprise their control obese group did have significant changes 

after the 12-week moderate to high intensity exercise program (114). Based on other 

research it demonstrates that newly diagnosed T2D groups have elevated levels of serum 

BDNF (116) and similarly to CVD, BDNF levels lower as T2D progresses (117). Pareja-

Galeano et al., (102) was the first to report the effects of exercise training on peripheral 

BDNF levels in healthy adolescent boys. Emphasizing the importance and impact of 

exercise training during adolescence.  

Empirical research aiming to better understand the cognitive and neuronal 

development during puberty and adolescents has shown significant functional differences 

in all areas of executive function and PFC structural changes. Puberty represents a time 
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period where neuronal re-organization is undergoing development, which may influence 

executive function and social cognition during this period (27). A pilot cross sectional 

study investigated for the first time the variations of BDNF levels related to pubertal 

stages in plasma of healthy children and adolescents. It reported BDNF levels to be 

significantly lower from midpuberty to high puberty compared to prepuberty to mid 

puberty in females and higher in prepuberty in males. There were no significant 

differences between females compared to males (121). We did not measure for puberty 

status in our youth. Moreover, any lifestyle influence such as exercise that increases 

BDNF and influences cognition, could be a guiding force in the regulation of neuronal 

growth and prevention of psychiatric and neurological diseases during this period and in 

adulthood.  

There are several lifestyle factors in addition to exercise that have shown to have 

an association with serum BDNF levels. Factors that influence healthy levels of BDNF in 

healthy adults are; appropriate amounts of sleep, low levels of inflammation and stress, 

fruit and vegetable intake, low saturated fat meals and lower daily average of television 

watching (26). It is possible that our population may have been negatively influenced by 

one or more of these lifestyle factors after their exercise session and before attending the 

lab for the collection of the serum sample. Youth who participated in our study have 

anecdotally reported having less sleep and being stressed due to school projects, watching 

television or playing video games at night, and eating foods like pizza or fried foods 

which contain higher amounts of saturated fat. In contrast meals with high amount of 

omega-3 fatty acids increases BDNF levels and has greater influence in brain health. We 
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have to keep in mind that the youth who participated in our intervention are all high 

school students, their stressors can also range anywhere from emotional instability, 

break-ups with significant others, to homework, sleep and family issues. We did not 

measure for these lifestyle factors, which leaves us to speculate that the 16-hour window 

between the last exercise session and the time we collected their serum sample could 

have been influenced by one or more of these factors. Future research should account for 

these factors. 

Notwithstanding the results, there were several limitations to the present 

investigation. First, we were not able to compare our results to a control group due to our 

quasi-experimental design. Second, our sample size was small for the BDNF measures 

which may have decreased the strength of our statistical analysis, however it was big 

enough to demonstrate significant improvements in cardio metabolic markers due to the 

intervention. Third, the original study was designed to target youth at risk for developing 

T2D not youth who also had cognitive dysfunction or neurological disorders. Future 

research should explore the effects of exercise in pre-diabetic obese Latino youth who 

have well-characterized mood and learning problems or youth who have been clinically 

diagnosed with psychological disorders or neurological disease. Fourth, we did not 

include measures for brain imaging or cognitive function assessments to compare the 

exercise effects with cognitive function. Consequently, more research is needed. 

It is critical to continue to explore the effects of exercise in serum BDNF levels 

and cognition in pre-diabetic Latino youth since this population is placed at higher risk to 

develop diabetes and cognitive dysfunction which have the potential to be a burden to 
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society in healthcare cost and loss of academic and work productivity. Scientific evidence 

that addresses the impact of physical activity programs for children’s physical health, 

cognitive function, and overall psychological wellbeing is of critical importance. For 

youth, aerobic exercise is positively associated with academic achievement and 

performance in school (56). The shift from cognitive to physical focus in the literature 

has increased the need to educate school administrators, and policy makers who have 

reduced physical activity programs for children in trade for the demands of preparing 

children for standardized test.  The many questions concerning the relation between 

exercise and children’s cognitive functioning remains unanswered. One key area of 

research focuses on the potential benefits of the specific aspects of exercise (type, 

duration, or intensity) may have in cognitive enhancements (122). The literature supports 

the notion of participation in physical activity programs without negatively impacting 

children’s academic performance rather support that systematic exercise programs may 

actually enhance the development of specific types of mental processing known to be 

important for meeting challenges encountered both in academics and throughout the 

lifespan (123; 124). Tomporowski et al., (123) determined that exercise-training 

programs do not only enhance physical health, but may have an important aspect at 

improving children’s areas of cognitive control and social development.  

Despite the extensive amount of studies demonstrating the effects of exercise on 

BDNF levels in adults, we had a limitation to compare our results with studies involving 

adolescents. Although there are many missing links to fully understand the plausible 

effects of exercise on cognition and brain health in this population, current neuroimaging 



	
	 31 

and non-human molecular and cellular research suggest that aerobic exercise is an 

important lifestyle factor that influences cognitive function throughout the lifespan. 
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CHAPTER 6 

CONCLUSION 

In conclusion, the variation of our serum BDNF results are highly speculative at 

this time, therefore the need for future investigations is crucial. It is highly recognizable 

that exercise participation has the potential of improving brain health and preventing 

neurological disease. Determining the role exercise and BDNF regulation have in youth 

will provide with robust strategies for the development of therapeutic and preventative 

measures to take for the prevention of neurological disease and cognitive dysfunction in 

people thought their lifespan. 
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