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ABSTRACT

According to the Centers for Disease Control and Prevention (CDC), type 2 diabetes ac-

counts for 90-95% of diabetes (29.1 million) cases and manifests in 15-30% of predia-

betes (86 million) cases, where 9 out of 10 individuals do not know they have prediabetes.

Obesity, observed in 56.9% of diabetes cases, arises from the interactions among genetic,

biological, environmental, and behavioral factors that are not well understood. Assessing

the strength of these links in conjunction with the identification and evaluation of interven-

tion strategies in vulnerable populations is central to the study of chronic diseases. This

research addresses three issues that loosely connect three levels of organization utilizing

a combination of quantitative and qualitative methods. First, the nonlinear dynamics be-

tween insulin, glucose, and free fatty acids is studied via a hypothesis-based model and

validated with bariatric surgery data, demonstrating key metabolic factors for maintaining

glucose homeostasis. Second, the challenges associated with the treatment or management,

and prevention of diabetes is explored in the context of an individualized-based interven-

tion study, highlighting the importance of diet and environment. Third, the importance of

tailored school lunch programs and policies is studied through contagion models developed

within a social-ecological framework. The Ratatouille Effect, motivated by a pilot study

among PreK-8th grade Arizona students, is studied and exposes the importance of institu-

tionalizing practical methods that factor in the culture, norms, and values of the community.

The outcomes of this research illustrate an integrative framework that bridges physiologi-

cal, individual, and population level approaches to study type 2 diabetes and obesity from a

holistic perspective. This work reveals the significance of utilizing quantitative and quali-

tative methods to better elucidate underlying causes of chronic diseases and for developing

solutions that lead to sustainable healthy behaviors, and more importantly, the need for

translatable multilevel methodologies for the study of the progression, treatment, and pre-

vention of chronic diseases from a multidisciplinary perspective.
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Chapter 1

INTRODUCTION

1.1 Prevalence of Obesity and Type 2 Diabetes in the U.S.

Obesity is a complex disease, impacting nearly 1 in 3 adults and more than one-third of

children and adolescents (6-to-19-year olds) are considered to be overweight or obese ac-

cording to the National Institute for Diabetes and Digestive and Kidney Diseases (NIDDK)

(WIN, 2012). Despite several efforts to reduce adult and childhood obesity in the U.S., the

prevalence of obesity still remains to be an issue. From 1960-1970 to 2007-2008, adult

obesity has increased from 13% to 33.8% and childhood obesity has increased from 5-7%

to 17% (Johnson, 2012). In 2010-2011, it was estimated that now nearly 34.9% of adults

20 years of age or over are obese (Ogden, Carroll, Kit, & Flegal, 2014). Obesity increases

risk of coronary heart disease, type 2 diabetes (T2D), cancer, hypertension, stroke, dys-

lipidemia, liver and gallbladder disease, sleep apnea, osteoarthritis, respiratory problems,

and gynecological problems (see Table 1.1) (Brewis, 2011; López-Miranda et al., 2007).

Although obesity was not always considered a disease until the 20th century, many or-

ganizations now consider obesity a disease including: the American Medical Association

(2013), the National Institute of Health (1998), the Social Security Administration (1999),

the Centers for Medicare and Medicaid Services (2004), the Obesity Society (2008), and

the American Association for Clinical Endocrinology (2012) (Eknoyan, 2006).

Nearly 90-95% of diabetes cases in the U.S. are diagnosed with T2D, where of those

diagnosed, 85% were overweight or obese and 56.9% were obese (Abdullah, Peeters,

De Courten, & Stoelwinder, 2010; American Diabetes Association (ADA), 2014; Centers

for Disease Control and Prevention (CDC), 2013b; Zimmet, Alberti, & Shaw, 2001). The
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Centers for Disease Control and Prevention (CDC) estimated 29.1 million U.S. cases of di-

abetes in 2012, where 27.8% were undiagnosed cases. Diabetes puts individuals at higher

risk for blindness, kidney failure, high blood pressure, heart disease, stroke, amputations,

dental disease, depression, and pregnancy complications; thus increasing risk of morbidity

and mortality. Prediabetes, or blood glucose levels higher than normal levels, impacts 86

million of U.S. individuals, where 9 out of 10 people do not know they have prediabetes

and 15-30% are at risk for developing T2D within 5 years.

Table 1.1: Complications of Obesity (Centers for Disease Control and Prevention (CDC),

2015).

Description

All-causes of death (mortality)

High blood pressure (Hypertension)

High LDL cholesterol, low HDL cholesterol, or high levels of triglycerides (Dyslipidemia)

Type 2 diabetes

Coronary heart disease

Stroke

Gallbladder disease

Osteoarthritis (a breakdown of cartilage and bone within a joint)

Sleep apnea and breathing problems

Some cancers (endometrial, breast, colon, kidney, gallbladder, and liver)

Low quality of life

Mental illness such as clinical depression, anxiety, and other mental disorders

Body pain and difficulty with physical functioning
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Figure 1.1: Prevalence of Obesity in the U.S. (Centers for Disease Control and Prevention

(CDC), 2013a).
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Racial and ethnic disparities have been observed among those impacted by diabetes

and obesity. Non-hispanic black adults (37.3% men and 49.6% women) were more likely

to be obese compared to both Mexican American adults (35.9% men and 45.1% women)

and non-Hispanic white adults (31.9 % men and 33% women) according to the 2007-2008

National Health and Nutrition Examination Survey (NHANES), and these patterns do not

differ from the 1988-1994 NHANES results (Ogden & Carroll, 2010b). Childhood and

adolescent obesity has increased for all race and ethnicities. However, Mexican-American

boys (26.8%) and non-Hispanic black girls (29.2%) were more likely to be obese followed

by non-Hispanic black boys (19.8%) and Mexican-American girls (17.4%), and last were

non-Hispanic white boys (16.7%) and non-Hispanic white girls (14.5%) (Ogden & Carroll,

2010a). Diabetes is more prevalent among American Indians and Alaska Natives (15.9%),

Non-Hispanic blacks (13.2%), and Hispanics (12.8%) adults compared to Non-Hispanic

whites (7.6%) and Asian Americans (9.0%). Hence, the prevalence and association be-

tween obesity and diabetes is a growing concern and needs to be addressed.
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Figure 1.2: Prevalence of Obesity by Race/Ethnicity in the U.S. from (Centers for Disease

Control and Prevention (CDC), 2013a).
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1.2 Quantifying Body Fat

Clinical obesity refers to excessive body fat that can affect the well-being of an indi-

vidual or lead to adverse health effects (Brewis, 2011). Fat is essential for life and health.

Basic nutrition science reveal that dietary fat is a great source of energy, providing twice

as much energy as carbohydrate or protein. In fact, lipids are a major fuel source during

rest, physical activity, pregnancy, childhood, lactation, illness, and other cases when energy

demand is highest (Brewis, 2011). Hence, fat storage and the process of accessing fat as a

source of energy is a mechanism that is necessary for human survival and growth (Brewis,

2011). However, much research demonstrates that excessive fat can be harmful to the body

and increase risk of disease and illness. A weight considered unhealthy (either underweight

or overweight) is often a result of energy imbalance due to many factors underlying individ-

uals’ genetics, biology, and individual behaviors, which modify metabolism rates, energy

intake, and energy expenditure.

A standard and widely used measure of total body fat is the body mass index (BMI),

developed in the mid-1800s by Adolphe Quetelet, in order to have a standard measure for

quantifying an individuals’ weight relative to their height (Brewis, 2011). It is an easier

measure to obtain, the most common way to measure body fat, and used in the medical di-

agnosis of negative weight gain (Brewis, 2011). Although BMI is widely and conveniently

used, Brewis (2011) highlights that BMI does not distinguish between weight comprised of

fat, muscle, bone, cartilage, and water weight (Romero-Corral et al., 2006) and that much

variation between BMI and cutoff for disease risks vary across cultures (Brewis, 2011).

and differ based on age groups (e.g., children, adolescents, elder).

Additionally, other physical measures of body fat that prior studies show are clinically

relevant are central adiposity, or fat around the stomach and abdomen, such as waist cir-

cumference and waist-to-hip ratio. These measures give an approximation of subcutaneous
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adipose tissue (body fat underneath the skin) and visceral adipose tissue (body fat surround-

ing the organs) (see Figure 1.3).

Figure 1.3: Illustration of adipose tissue in the abdominal area. Visceral adipose tissue

refers to the body fat surrounding the organs and subcutaneous adipose tissue refers to the

body fat underneath skin (Mayo Clinic, n.d.-a, n.d.-b).

Hence, body fat in the central area of the body is recognized as an independent risk

factor for cardiovascular disease and similarly, visceral adipose tissue is acknowledged

in the development of metabolic syndrome (Burks et al., 2000; S. Haffner & Taegtmeyer,

2003; Liu, Wang, Lienhard, & Keller, 1999; Numan & Russell, 1999; M. P. Reilly & Rader,

2003). Though other techniques can be used to quantify body fat (summarized in Table 1.2)

these methods are not always feasible and can be costly. Other factors for diagnosing and

assessing risk of metabolic-diseases include lipid biomarkers such as measures of plasma

lipids such as triglycerides (TG), lipoprotein, LDL (“bad”) and HDL (“good”) cholesterol

levels.
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Table 1.2: Summary of methods used to measure body fat. Adapted from (Brewis, 2011).

Method Description

Calipers A measure of subcutaneous fat to estimate body

fat percentage

Bioelectrical impedance analysis A measure of the resistance of electrical flow

through the body to estimate body fat where more

electrical flow indicate more fat than muscle

Hydrostatic weighing A measure of how well an individual floats

after submerged in water, where more body

fat leads to floating

Dual x-ray absorptiometry Involves lab and medical scanning technique for

measuring fat mass, body fat percentage, and

variation in fat levels across regions of the body

MRI and CT scans Scanning equipment to measure body fat

Other technologies (Body Volume Index, or BVI) 3D scanning to examine both volume and weight

distribution, and where fat is deposited on the body

1.3 Population Heterogeneities for the Risk Assessment and Diagnosis of

Metabolic-Related Diseases

Clinical studies show that insulin resistance is a major defect in people with T2D

(American Diabetes Association (ADA), 1998) and a strong predictor for the development

of T2D (DeFronzo, 1988; S. M. Haffner, Mykkänen, Festa, Burke, & Stern, 2000; Petersen

et al., 2007). Diabetes is diagnosed when hyperglycemia, or high blood glucose levels, is

observed and the likely underlying cause is insulin resistance, which refers to the inability

of the body to produce enough insulin or the ineffective use of insulin. The manifestation

of insulin resistance is evidenced when hyperglycemia persists in an individual. Hence, a

measure of blood glucose levels to assess hyperglycemic characteristics is necessary for
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diagnosing prediabetes and diabetes, though obesity remains a risk factor for both predi-

abetes and diabetes. Three common tests are used to diagnose prediabetes and diabetes

(see Table 1.3 for a summary of clinical thresholds for the diagnosis of prediabetes and

diabetes). First, A1C (also called the hemoglobin A1c, HbA1c, or glycohemoglobin test)

is a blood test that captures the average percentage of blood glucose levels over the past 3

months. This test is typically used for detecting T2D and prediabetes. It does not require

fasting, nor reflect daily fluctuations, and can be measured at any time of the day. Second,

the fasting plasma glucose test (FPG) is used to measure blood glucose after a patient has

fasted for at least 8 hours. It is typically used for detecting diabetes and prediabetes. It is

the most common diagnostic test used, less expensive, more convenient, and most reliable

when given in the morning. Finally, blood glucose can also be measured using the oral glu-

cose tolerance test (OGTT) which requires a patient to fast for at least 8 hours and is given

2 hours after the patient drinks a liquid containing 7 grams of glucose dissolved in water.

The OGTT is typically used for detecting diabetes, prediabetes, and gestational diabetes. It

is more sensitive than the FPG and less convenient than FPG.

Prior studies demonstrated that assessing metabolic disease risk (FPG, blood pressure,

HbA1C levels, LDL and HDL cholesterol levels, and TG levels) varies across many factors

such as gender, ethnicity, and age (Adler-Wailes et al., 2013; Badoud, Perreault, Zuly-

niak, & Mutch, 2014; Golden et al., 2012; Lingvay, Szczepaniak, & Szczepaniak, 2014;

Nielsen et al., 2013; Tchernof & Després, 2013). For example, gender differences have

been observed in the measures of central obesity (either BMI or waist circumference) that

was used to best predict insulin resistance among African Americans (A. E. Sumner, 2008;

A. E. Sumner et al., 2008). These findings suggested that a good measure of central obe-

sity was BMI within the obese range, which best predicted insulin resistance in both men

and women, compared to using weight alone (A. E. Sumner, 2008; A. E. Sumner et al.,

2008). Racial differences among women have been observed where a waist circumfer-
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ence of 88cm predicts obesity in White females but overweight status in African-American

women (A. E. Sumner et al., 2008). Moreover, waist circumference best predicts risk of

diabetes, specifically the manifestation of insulin resistance, in African-American women

is 18cm higher than guidelines established by the IDF (� 94cm) and 10cm higher than

those classified by the NCEP-ATPIII (� 102cm) (A. E. Sumner, 2008; A. E. Sumner et

al., 2008). Another finding indicated that African-Americans were more likely to be in-

sulin resistant compared with Whites and Hispanics at normal TG levels (A. E. Sumner,

2009; A. E. Sumner & Cowie, 2008; A. E. Sumner et al., 2008). In addition to TG levels,

insulin resistance can also be assessed by the TG:HDL ratio, where � 3 indicate insulin

resistance (Eckel, 1989; A. E. Sumner et al., 2008). However, the association between TG

and insulin resistance was greater based on gender instead of ethnicity (A. E. Sumner et al.,

2008). Moreover, these examples, demonstrate challenges in assessing risk and diagnos-

ing disease in obese individuals when population heterogeneities are considered. Hence,

more work is needed in order to fully capture and understand risk of disease and associated

negative health outcomes based on physical measures of obesity and metabolic markers.

Table 1.3: Criteria for Diagnosing Prediabetes and Diabetes (Association et al., 2012).

Chacterization HbA1C (percent) FPG (mg/dL) OGTT (mg/dL)

Normal 5 99 or below 139 or below

Prediabetes 5.7 to 6.4 100 to 125 140 to 199

Diabetes 6.5 or above 126 or above 200 or above

1.4 The Role of FFA on Insulin Resistance

It is widely accepted that free fatty acids (FFA), stored in adipose tissue, have a causal

role in the onset of insulin resistance in skeletal muscle and liver (Bergman & Ader, 2000;
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Boden & Shulman, 2002; Pankow et al., 2004). FFA mostly come from diet, in which,

the energy derived from diet mostly come from macronutrients where approximately 50%

from carbohydrates, 35% from fats, and 15% from proteins (Austin, Ogden, & Hill, 2011).

Specifically, FFA are derived from TG and phospholipids supplied from food (see Table 1.4

for examples). FFA are either taken up to be used as a source of energy by cells (e.g., mus-

cle cells), can be used to make lipid-containing compounds in the body, or can be stored

in muscle or adipose tissue for later use (Thompson, Manore, & Vaughan, 2013). FFA

are very important to the body. For example, it is a source of energy supply, it forms the

myelin allowing for fast electrical communication between neurons, it provides insulation

to help conserve body heat, it forms the visceral adipose tissue which protects organs, it is

essential for growth and development of organs, especially the brain. FFA stored in adi-

pose cells (i.e., adipocytes) form TG, which are made up of three FFA and one glycerol

molecule. However, these adipocytes expand with increased fat storage. In consequence,

stored fat, glycogen, and protein modify the chemical composition of the body, and imbal-

ances in macronutrient consumption between dietary intake and metabolic utilization can

have adverse health effects.

FFA have been identified as having a critical role in the progression of insulin resistance,

that is, the inability of the body to produce enough insulin or the ineffective use of insulin.

Insulin is responsible for several metabolic functions such as regulating glucose home-

ostasis, modifying gene expression (which regulate amino acid uptake, lipid metabolism

in muscle and adipose tissue, and cell growth, development, and survival), and it also gov-

erns plasma FFA levels (Kimball, Vary, & Jefferson, 1994; Randazzo, Morey, Polishook, &

Jarett, 1990; Sell, Reese, & Ossowski, 1994; Taub, Roy, Dieter, & Koontz, 1987; Yenush &

White, 1997). Under normal physiological conditions, elevations in plasma glucose prompt

increased insulin secretion, which in turn, stimulates glucose uptake and glycogen synthe-

sis (Rhodes & White, 2002). Approximately 50% of insulin is removed immediately by the
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Table 1.4: Healthier and Harmful Fats (Mayo Clinic, n.d.-c).

Types of Healthier Fats Examples

Unsaturated fats Avocados, nuts, flaxseed, sunflower seeds, pumpkin seeds, fish, olive oil

Polyunsaturated fats Fish, salmon, oysters, anchovies, walnuts, kale, spinach, brussel sprouts

(Omega-3-Fatty Acids)

Types of Harmful Fats Examples

Trans fats Commercially-baked foods (cookies, cakes, muffins, breads),

packaged snack foods (crackers, microwave popcorn, chips, candy),

solid fats (stick margarine), fried foods (french fries, fried chicken),

pre-mixed products (cake, milk, pancake, chocolate milk)

Saturated fats Red meat, poultry, full-fat dairy products (Note: salmon, coconut milk

and whole milk differ from pizza, french fries, and processed meat products)

liver and kidney, and the remaining insulin mediates glucose removal (insulin-dependent re-

moval) in tissues such as muscle, adipose, and other cells. In consequence, plasma glucose

returns to normal levels, then the demand for insulin is inhibited, i.e. negative feedback

(see Figure 1.4 for a schematic diagram). When insulin fails to maintain glucose home-

ostasis over prolonged periods, the resulting outcome is hyperglycemia, implicating loss of

glycemic control and in consequence, impairments in both insulin action (e.g., peripheral

insulin resistance) and insulin secretion (e.g., beta-cell dysfunction) (American Diabetes

Association (ADA), 1998; S. M. Haffner et al., 2000; Osei, Gaillard, & Schuster, 1997;

Tripathy et al., 2000). In the long-term, persistent failure to maintain glucose homeostasis

leads to beta-cell compensation, beta-cell dysfunction, and potentially beta-cell death, and

possibly the manifestation of type 2 diabetes.
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Figure 1.4: Insulin and glucose regulation after a meal. Adapted from (Texas Higher Edu-

cation Coordinating Board, n.d.).

FFA is an important energy source for body tissues and is used as fuel for the liver,

resting skeletal muscle, renal cortex, and myocardium (Boden & Shulman, 2002). When

energy supply is low, the body adapts to provide energy and FFA often provides this addi-

tional source of energy. More specifically, demand for FFA is high during starvation, ex-

ercise, or pregnancy, and can account for more than 70% of total body energy expenditure

following an overnight fast (Boden & Shulman, 2002). When demand for fuel rises, then

the pancreas releases glucagon, which in turn, triggers energy supply from liver, skeletal

muscle, and stimulation of adipose tissue lipolysis. FFA are released into the bloodstream

mainly via lipolysis (adipose tissue-stimulated FFA production) in order to provide energy
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to the body when supply is low. Hence, FFA becomes available for use while glucose is

preserved for cerebral use (Boden & Shulman, 2002). However, when sufficient glucose

levels are in the body, then insulin inhibits lipolysis.

Several hypotheses have been proposed to explain the role of FFA and the onset of

insulin resistance (summarized in Table 1.5). In skeletal muscle, FFA may interfere with

the insulin signaling transduction pathway and affect of insulin action and hinder insulin

signaling. Some evidence suggests that FFA could increase glucose production in nondi-

abetic and diabetic individuals in liver. Prolonged circulating FFA could have direct toxic

effects on beta-cells, also referred to as the “lipotoxicity” hypothesis, and thereby, impair

the insulin secretary function of pancreatic beta-cells. Imbalanced regulation of FFA pro-

duction via adipose tissue-stimulated lipolysis and storage of FFA in adipose tissue could

create a “vicious cycle” impairing beta-cells indirectly by prompting insulin response (see

Figure 1.5). Moreover, an abnormality observed in diabetic individuals is FFA enhanced

basal and glucose-stimulated insulin secretion and the use of FFA as an energy source in

competition with glucose (Boden & Shulman, 2002).

Figure 1.5: An illustration of the phenomenon that links FFA promoting insulin resistance

in genetically predisposed individuals.
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Table 1.5: Evidence of FFAs role in promoting the development of insulin resistance.

Organ No. Observation (Reference)

Skeletal Muscle 1 FFA may impair insulin signaling transduction pathway

(Boden, Chen, Ruiz, White, & Rossetti, 1994)

(Savage, Petersen, & Shulman, 2005; Shulman, 2000)

(Wassink, Olijhoek, & Visseren, 2007)

2 Higher FFA may interfere with the action of insulin to skeletal muscle or

hinder insulin signaling (Bergman & Ader, 2000; Groop et al., 1991)

(Randle, 1998)

Liver 1 High FFA levels may increase hepatic glucose production

(via glycogenolysis and gluconeogenesis) in diabetes

(Boden, Chen, Capulong, & Mozzoli, 2001; Wassink et al., 2007)

2 High FFA levels may stimulate endogenous glucose production

(Boden & Shulman, 2002; Wassink et al., 2007)

3 Excessive endogenous glucose production may increase in response to

a rise influx of FFA in the liver from lipolysis of visceral adipose (excessive fat

surrounding internal organs) depots

(Bergman & Ader, 2000; Rebrin, Steil, Getty, & Bergman, 1995)

Pancreas 1 Long-term elevated FFA levels may have toxic effects on beta-cells

(e.g., “lipotoxicity hypothesis”) and impair insulin secretory function

(Bergman & Ader, 2000; Unger, 1995)

Adipose 1 Suppressed inhibitory effect of insulin on lipolysis increases FFA levels,

creating a vicious cycle (Boden et al., 2001; Wassink et al., 2007)

2 Increased release of FFAs from adipocytes can induce IR (Wassink et al., 2007)

3 Imbalanced production of adipokines (e.g., adipocyte dysfunction)

may promote IR (Greenberg & McDaniel, 2002; Wassink et al., 2007)

1.4.1 Bariatric Surgery as a Treatment Strategy: An Overview

Although prediabetes can be reversed by lifestyle changes including healthful eating

and regular physical activity, diabetes often requires both lifestyle changes and medica-
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tions to maintain glucose homeostasis. Other challenges with diabetes management include

reducing the risk of alternative cardiovascular disease risk factors such as high blood pres-

sure, high lipid levels, and eye, nerve, or kidney complications. More severe cases of type 2

diabetes require insulin delivered by injection of a pump to survive, which historically was

generally given only to type 1 diabetic patients. Among diagnosed diabetes cases seeking

treatment, 14% only use insulin (2.9 million adults), 56.9% use oral medication only (11.9

million adults), 14.7% use both insulin and oral medication (3.1 million adults), and 14.4%

use neither insulin nor oral medication (3 million adults). An increasingly common treat-

ment for type 2 diabetes patients who are severely obese is bariatric surgery. Some typical

bariatric surgery procedures include: gastric banding (such as adjustable and nonadjustable

bands), gastric bypass (such as Roux-en-Y variations or any other procedure combined

with gastric bypass), gastroplasty (such as vertical banded gastriplasty), biliopancreatic

diversion or duodenal switch (such as various modifications), mixed and other (biliary in-

testinal bypass, ileogastrostomy, jejunoileal bypass, and unspecified bariatric) (Buchwald

et al., 2004).

In a review of 134 studies (Buchwald et al., 2004), it was found that patients who under-

went bariatric surgery improved diabetes-related outcomes in 76.8% of patients (n=1846)

(or either resolved or improved in 85.4% of patients (n=485)). Specifically, 76.8% (70.7%

to 82.9%) of patients with type 2 diabetes and impaired glucose tolerance improved, that is,

they had the ability to discontinue all diabetes-related medications and maintain blood glu-

cose levels within the normal range; and 86.0% (78.4% to 93.7%) patients either resolved

or improved their condition. Nearly 99.1% (97.6% to 100%) of biliopancreatic diversion

of duodenal switch patients and 96.9% (93.6% to 100%) of gastric bypass patients ex-

periencing hyperlipidemia, hypercholesterolemia and/or hypertriglyceridemia experienced

significant improvement. Hypertension resolved in 61.7% (55.6% to 67.8%) of patients

or either resolved or improved in 78.5% (70.8% to 86.1%) of patients. 85.7% (79.2% to

16



92.2%) of patients diagnosed with obstructive sleep apnea experienced complete resolution

or 83.6% (71.8% to 95.4%) experienced either resolution or improvement (Buchwald et al.,

2004). Moreover, metabolic improvements include: recovery of acute insulin response, de-

creases of inflammatory indicators (C-reactive protein and interleukin 6), improvement in

insulin sensitivity that was correlated with increases in plasma adiponectin, changes in the

enteroglucagon response to glucose, a decrease in ghrelin levels, and significant improve-

ment in beta cell function (Buchwald et al., 2004). Although bariatric surgery is shown

to be successful for weight loss, life-long healthy habit changes are necessary for weight

management.

1.5 Health Disparities in Arizona

The Arizona state is comprised of demographics that closely resemble that of the U.S.

for age, gender, income levels, education levels, and employment status according to the

U.S. Census Bureau (United States Census Bureau (USCB), 2015a; (USCB), 2015; United

States Census Bureau (USCB), 2015b). However, Arizona is home to more Hispanics

(29.9% in A.Z. and 16.6% in the U.S.) and more American Indian or Alaska Natives (4.0%

in A.Z. and 0.7% in the U.S.), two populations who are well known to have higher risk of

obesity and associated adverse health outcomes, such as diabetes mellitus (see Table 1.6).

Additionally, the presence of food deserts and economical barriers puts vulnerable popula-

tions, such as the 14.3% of children (2-to-5-year olds) who live in low income households

(Arizona Department of Health Services (ADHS), 2012c), at increased risk of obesity and

onset of related chronic diseases. In Arizona, nearly 10.4% of children and adolescents (2-

to-19-year olds) and 25.9% of adults were obese in 2009 (Arizona Department of Health

Services (ADHS), 2012c) which is slightly less than the U.S. obesity prevalence of 16.9%

for 2-to-19-year olds and 34.9% for adults 20 years of age or over in 2010-2011 (Ogden et

al., 2014). The prevalence of overweight and obese adult residents has increased to 62%
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of adults based on the 2012 Behavior Risk Factor Surveillance Survey (BRFSS) (Arizona

Department of Health Services (ADHS), 2012c). Adults in households with food assis-

tance (WIC, SNAP, and/or Free and Reduced Lunch) were more likely to be obese (37.5%)

compared to those in households without food assistance (23.3%) (Arizona Department of

Health Services (ADHS), 2012c). Less than 40% of the population do not consume fruits

(37.6%) or vegetables (21.4%) at least once per day (Arizona Department of Health Ser-

vices (ADHS), 2012a). It was found that risk of obesity was higher for those who do not

consume fruits (30.3%) and vegetables (31.7%) per day compared to those who did eat

fruits (24.6%) and vegetables (25.6%) at least once per day (Arizona Department of Health

Services (ADHS), 2012c). Nearly half of the Arizona population report being active 53.2%

(17.2% active and 36% highly active) and the remaining 46.8% were insufficiently active

(18.7% insufficiently active and 28.1% inactive) in 2012 (Arizona Department of Health

Services (ADHS), 2012b). It was found that obesity was less likely to occur in those

who were physically active (only 22.6% who met aerobic recommendation and 20.5% who

met the strength recommendation were obese) (Arizona Department of Health Services

(ADHS), 2012c). Although these health disparities are reviewed here, they are not stud-

ied explicitly in this work. However, they are highlighted to show the significance of this

research conducted here.

1.6 Food Deserts and Environment.

Social environments (role modeling, social and cultural norms, and interactions with

family, friends, and peers), physical environments (availability and accessibility to food

outlets), and economical factors (socioeconomic status, income, and cost of food) shape

our eating behaviors. Food insecurity in rural communities and the study of resources in

food deserts are key in addressing health disparities and developing community-based pro-
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Table 1.6: Comparison of Demographics in A.Z. and the U.S. according to the 2013 esti-

mates reported by the U.S. Census Bureau (United States Census Bureau (USCB), 2015a;

(USCB), 2015; United States Census Bureau (USCB), 2015b).

Subject Arizona United States
Estimate (%) Estimate (%)

Total Population 6,634,997 316,497,531
Age
Under 5 years 446,556 (6.9%) 20,052,112 (6.4%)
5�19 years 1,360,419 (21%) 62,796,743 (20.2%)
20�24 years 461,534 (7.1 %) 22,099,887 (7.1 %)
25�44 years 827,151 (26.2 %) 40,874,162 (26.5%)
45�64 years 362,387 (24.4 %) 17,479,211 (26.4%)
65 years 931,722 (14.4%) 41,851,042 (13.4%)
Median Age 36.3 years (X) 37.3 years (X)
Gender
Male 2,393,283 (49.7%) 115,463,694 (49.2%)
Female 2,465,375 (50.3%) 122,195,422 (50.8%)
Race
White 3,716,047 (57.3%) 197,050,418 (63.3%)
Hispanic 1,935,948 (29.9%) 51,786,591 (16.6%)
American Indian or Alaska Natives 258,904 (4.0%) 2,061,752 (0.7%)
Black or African-Americans 252,752 (3.9%) 38,093,998 (12.2%)
Asian 178,627 (2.8%) 15,061,411 (4.8%)
Native Hawaiian and other Pacific Islanders 11,818 (0.2%) 488,646 (0.2%)
Other races 7,539 (0.1%) 606,356 (0.2%)
Two or more races 118,068 (1.8%) 6,387,422 (2.0%)
Education levels
High school graduate or higher X (85.7%) X (86.0%)
Bachelor’s degree or higher X (26.9%) X (28.8%)
Employment Status
Civilian Labor Force: Employed 2,721,866 (54.0%) 141,864,697 (57.6%)
Civilian Labor Force: Unemployed 316,360 (6.3%) 15,249,189 (6.2%)
Armed Forces 18,282 (0.4%) 1,083,691 (0.4%)
Not in Labor Force 87,994,377 (35.7%) 1,983,203 (39.4%)
Households Income levels
< 25,000 571,328 (24.1%) 27,063,516 (23.4%)
25,000�49,999 618,460 (26%) 27,652,909 (23.9%)
50,000�74,999 440,507 (18.6%) 20,744,045 (17.9%)
75,000�99,999 283,273 (12%) 14,107,031 (12.2%)
100,000�149,999 281,058 (11.9%) 14,858,239 (12.9%)
150,000�199,999 93,521 (3.9%) 5,651,848 (4.9%)
> 200,000 82,142 (3.5%) 5,532,628 (4.8%)
Median Income 49,774 dollars (X) 53,046 dollars (X)
Households with Supplemental Security Income 92,787 (3.9%) 5,716,592 (4.9%)
Households with Cash Public Assistance Income 60,518 (2.6%) 3,255,213 (2.8%)
Households with Food Stamp/SNAP benefits 312,330 (13.2%) 14,339,330 (12.4%)
Families Whose Income is Below Poverty Level

grams. Food deserts are geographic areas defined as Low Income (LI) and Low Access

(LA) geographic areas at 1(urban) and 10 (rural) miles away from the nearest supermarket
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(see Figure 1.6). Although food deserts are not addressed in this research, the physical en-

vironment is a necessary factors to consider in the study of community-based intervention

strategies.

Figure 1.6: Estimated Food Deserts in the U.S. generated by the USDA Economic Research

Service (United States Department of Agriculture (USDA), 2015b).
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1.7 Mathematical and Statistical Methodology

Although obesity is a risk factor for chronic diseases, the etiology of obesity result-

ing from complex interactions between genetics, biology, behavior, and environment are

not well understood. Hence, the interplay of many biological (genes and family history,

metabolism, medications, health conditions, age, pregnancy), behavioral (stress, sleep,

emotional, lifestyle, physical activity, diet, smoking), environmental (accessibility, avail-

ability), and other individual (culture, social influence, socioeconomic status) factors con-

tribute to obesity; in this research we focus on a subset of these factors shown in Figure

1.7. A combination of mathematical and statistical methods are used to study the aforemen-

tioned three aims. Mathematical models are used to study the role of free fatty acids on the

progression of type 2 diabetes within overweight and obese individuals at the physiological-

level in aim (1). Statistical methods are used to assess the links between health characteris-

tics, environment, and BMI at the individual-level; and to describe what an individualized-

based program might look like at the community-level in aim (2). Finally, mathematical

models are used to study nutrition education programs in school settings at the population-

level in aim (3). Through use of both mathematical and statistical methods, we combine

observational and experimental studies in addition to the study of phenomena’s and mech-

anisms, that underly the connection between type 2 diabetes and obesity in the context of

biology, behavior, and environment.

1.8 Aims of this Research

This research is structured into three parts. First, in the realm of biology, it is well-

understood that FFA, released into plasma from adipose tissue, have a causal role in insulin

resistance, which is a clinical marker of several metabolic-related complications, such as

T2D and metabolic syndrome. The regulatory role of plasma insulin on plasma FFA levels
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Figure 1.7: Multidisciplinary approach. Adapted from (Story et al., 2008).

is not well-understood, nor is the link between glycaemic levels and FFA in overweight and

obese patients clinically well-defined. For aim (1), a delay differential equations model is

proposed in order to capture the dynamics among insulin, glucose, and FFA dynamics. Key

physiological parameters (insulin sensitivity, glucose effectiveness, free fatty acid clear-

ance) are estimated to study the efficacy of insulin as a regulator of both plasma glucose

and FFA levels quantitatively and qualitatively. Model validation and parameter estimation

is completed using published data of patients undergoing bariatric surgery to assess when

insulin effectively, or ineffectively, maintain glucose homeostasis among individuals of

different glucose metabolism health statuses. In addition, the proposed model is compared

with the “minimal model” to assess how well both models fit to the data. Second, an under-

standing of behavior-based strategies for weight management is essential for the treatment

and management of diabetes in obese individuals. Previous studies show that developing

healthy habits rather than focusing on weight loss alone improves cardiovascular health,

that is, reversing prediabetes and improving the overall metabolic health of an individual

(see Chapter 2). In aim (2), the impact of simple habit changes on weight loss and manage-

ment is studied in the context of an individualized-based program pilot study implemented
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at ASU. The dataset is analyzed as a cross-sectional study in order to assess the links be-

tween health factors, at the individual and environmental levels, and BMI to describe health

behaviors in a college population. Additionally, this dataset is analyzed as a longitudinal

study to identify what a custom-tailored intervention program might look like in a commu-

nity setting and describe the healthy habits identified by the student population in building

their own healthy lifestyle. Third, though many community-based programs intend to re-

duce the prevalence of obesity, especially, in low-income neighborhoods, long-term effects

have yet to be observed. Children are an especially vulnerable population since they do not

have much control over their environments and are still developing their eating behaviors.

Moreover, it is suggested that eating behaviors learned early on in childhood could transi-

tion into adulthood. Food preference learning, based on classical conditioning theory, may

be a possible approach for developing more effective intervention strategies (see Chapter 3).

In aim (3), methods for teaching healthy eating in Arizona children are discussed empha-

sizing food preference learning, to instill practical methods for teaching healthier eating

when economic, social, and environmental barriers are considered. Mathematical models

are developed to study the dynamics of eating behaviors as a social-contagion process in

school settings (see Chapter 4). Hence, this dissertation aims to assess the strength of the

biological, behavioral, and environmental factors that lead to the onset of type 2 diabetes

and obesity, but more broadly, chronic diseases. The outcomes of studying these distinct

issues is the integrative approach and the development of frameworks that aim to bridge

physiological, individual, and population level approaches to study chronic diseases from

a holistic perspective. This work utilizes observational and experimental studies, as well as

quantitative and qualitative methods for developing frameworks to study the progression,

treatment, and prevention of chronic diseases from a multidisciplinary perspective.
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Figure 1.8: Three aims of this research.
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Chapter 2

MODELING INSULIN, GLUCOSE, AND FREE FATTY ACIDS FOR AN IVGTT

PROTOCOL

2.1 Background

The intravenous glucose tolerance test (IVGTT) has been clinically considered one of

the most accurate methods to determine insulin sensitivity and glucose effectiveness com-

pared to other glucose tolerance tests (Bergman & Cobelli, 1980; Bergman, Ider, Bowden,

& Cobelli, 1979; Caumo, Bergman, & Cobelli, 2000; Gresl et al., 2003; Steil, Volund,

Kahn, & Bergman, 1993). In this protocol, subjects fast overnight and then are given a

bolus of glucose infusion intravenously (e.g., 0.33 g/kg of body weight or 0.3 g/kg body

weight of a 50% solution) which is administered into the antecubital vein in approximately

2 minutes (De Gaetano & Arino, 2000; Li, Wang, De Gaetano, Palumbo, & Panunzi, 2012).

Subjects are then sampled for plasma glucose, insulin, and FFA levels over the duration of

the test. The data provided through an IVGTT offer rich information and offers a more

realistic picture of a subject’s metabolic portrait (Li et al., 2012).

Mathematical models for an IVGTT protocol aim to capture the mechanism underly-

ing insulin, glucose, and FFA regulation and provides a framework for quantifying two

clinically relevant characteristics that cannot be measured directly: insulin sensitivity and

glucose effectiveness. The dynamics studied begins with a rise in plasma glucose levels

that trigger pancreatic beta-cells to produce and secrete insulin into the bloodstream. In-

sulin mediates glucose removal, also referred to as insulin-dependent removal, which in

turn, lowers plasma glucose to normal levels and then the demand for insulin is inhibited,

i.e. negative feedback. Meanwhile, FFA production is inhibited by insulin when glucose
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supply is high (see Figure 1.4). However, prior studies suggest that insulin inhibition of

FFA is weak in individuals genetically predisposed to metabolic-related diseases; and FFA

may enhance basal and glucose-stimulated insulin secretion among diabetic individuals

(Boden & Shulman, 2002). Hence, the theoretical mechanism explored starts with the in-

ability of insulin to regulate FFA which then leads to higher plasma FFA levels. This in

turn, reduces glucose transport and leads to a “vicious cycle” promoting hyperglycemia and

onset of insulin resistance in the long-term. The proposed model is built off of previous

models, where a modified model is proposed to study the dynamics between insulin, glu-

cose, and free fatty acids. This chapter is organized as follows: in Section 2.1.1 the minimal

model of insulin, glucose, and FFA is described from the work by (Periwal et al., 2008), in

Section 2.1.2 the explicit time delay model of insulin, glucose, and FFA incorporating the

vicious cycle hypothesis with corresponding analytical results is presented, in Section 2.3

the results of the model validation and parameter estimates is shown to compare both the

minimal model and explicit time delay model, and in Section 4.4 the conclusions and future

work is described.

2.1.1 Minimal Model of Glucose, Insulin, and FFA

The “minimal model,” developed by Bergman in 1980, was the first model to define

two significant indices including the glucose effectiveness index and the insulin sensitiv-

ity index, which quantify two clinically and physiologically relevant features (Bergman

& Cobelli, 1980; Bergman et al., 1979). The system of equations (2.1), define the “min-

imal model,” where G(t) represents glucose concentration (mg/dl), I(t) denotes insulin

concentration (µU/ml), and X(t) is the remote insulin compartment accessed for insulin-

dependent glucose removal (µU/ml). Parameters Sg represent glucose effectiveness, Gb

bolus of glucose due to injection, p2 insulin production, and p3 insulin removal from the

remote compartment.
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G0(t) = SgGb �SgG(t)�XG(t)

X 0(t) = p2I(t)� p3X(t) (2.1)

Insulin kinetics (e.g., first phase and second phase insulin secretion) allow us to quan-

tify pancreatic responsiveness. Through estimation of pancreatic responsiveness, glucose

disappearance, and insulin sensitivity, this model is utilized to obtain insight into an in-

dividual’s glucose tolerance, or intolerance. Since then, the “minimal model” has been

extended and widely used in experimental settings. The software, MINMOD, is based off

of Bergman’s “minimal model” and widely used among clinicians and researchers to quan-

tify insulin sensitivity and beta-cell responsiveness for an IVGTT protocol (Boston et al.,

2003).

Few mathematical models have been proposed to link insulin, glucose, and FFA (Boston

& Moate, 2008; Chow et al., 2011; Periwal et al., 2008; Roy & Parker, 2006). The model

presented below was developed by (Chow et al., 2011) to capture the interactions between

remote insulin denoted X(t), glucose denoted G(t), and FFA denoted F(t). Glucose enters

the body intravenously and is removed by immediate use from other tissues at a constant

glucose effectiveness rate SG or through insulin-mediated removal denoted by the interac-

tion term SIXG, where SI represents the insulin sensitivity rate. A proportion of insulin is

available for use cX , while the remainder is removed either by a natural degradation rate

or by kidney and liver. The maximal lipolysis rate is given by l0 + l2. Insulin inhibition of

lipolysis is denoted X2 with the exponent A, and the clearance rate of FFA is denoted c f .

The system of equations describing these dynamics are shown below,
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G0(t) = SGGb � (SG +SIX)G (2.2)

X 0(t) = cX [I(t)�X � Ib] (2.3)

F 0(t) = l0 +
l2

1+
⇣

X
X2

⌘A � c f F, (2.4)

where I(t) represents the insulin levels in the body over time. In Bergman’s model and

several others, this physiological delay of insulin production and secretion into the body

in response to rises in glucose levels is incorporated implicitly by the compartment-split

technique in a system of ordinary differential equations (Bergman et al., 1979; Bergman &

Cobelli, 1980; De Gaetano & Arino, 2000; Mukhopadhyay, De Gaetano, & Arino, 2004;

Roy & Parker, 2007; Toffolo, Bergman, Finegood, Bowden, & Cobelli, 1980). The next

section presents a model incorporating this time delay explicitly.

2.1.2 Explicit Time Delay Model of Glucose, Insulin, and FFA

A time delay for the production, secretion, and utilization of insulin in the body is key

for physiologically assessing insulin sensitivity and glucose effectiveness. The “minimal

model” incorporates the physiological delay implicitly by the compartment-split technique

in a system of ordinary differential equations (Bergman et al., 1979; Bergman & Cobelli,

1980; De Gaetano & Arino, 2000; Mukhopadhyay et al., 2004; Roy & Parker, 2007; Tof-

folo et al., 1980). Alternatively, a delay can be incorporated explicitly in a system of delay

differential equations in order to add a more realistic interpretation of the biological process

(De Gaetano & Arino, 2000; Li et al., 2012; Smith, 2011). More recent models incorpo-

rating an explicit time delay provide more accurate quantification of insulin sensitivity and

glucose effectiveness since these models are more robust (De Gaetano & Arino, 2000; Li

et al., 2012). Mathematical analysis and numerical simulations (Li & Kuang, 2007; Li,

Kuang, & Li, 2001; Li et al., 2012) revealed comparable results to observations in clinical

28



Table 2.1: Definition of Minimal Model Parameters.

Parameter Unit Description

Gb
mg
dl Basal glucose levels

Ib
µU
ml Basal insulin levels

SG
1

min Glucose effectiveness

SI
ml

µU ·min Insulin sensitivity

cX
1

min Rate of available remote insulin

l0
µM
min Baseline nonsupressible lipolysis rate

l2
µM
min Difference between maximum and nonsuppressible lipolysis rate

X2
µU
ml Maximal inhibition rate

A unit less Hill function coefficient

c f
1

min Free fatty acid degradation rate

studies (Li, Kuang, & Mason, 2006; Pørksen et al., 2002; Sturis, Polonsky, Mosekilde, &

Van Cauter, 1991), both in the short-term and long-term dynamics (see work by (Giang,

Lenbury, De Gaetano, & Palumbo, 2008; Li & Kuang, 2007; Palumbo, Panunzi, & De Gae-

tano, 2007; Panunzi, Palumbo, & De Gaetano, 2007)). In (Li et al., 2012), insulin and

glucose regulation for an IVGTT protocol is modeled as follows,

G0(t) = b�aG(t)I(t)� eG(t)

I0(t) = d
G(t � t)g

ag +G(t � t)g � cI(t),

where g represent the Hills function coefficient, a denote the values of half-saturation, and

t is the time delay of insulin secretion stimulated by elevated glucose level. In order to

explore the theoretical hypothesis involving FFA, the model by (Li et al., 2012) is modified
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to incorporate the regulatory role of insulin on plasma FFA levels via lipolysis action and

the role of FFA on plasma insulin levels via FFA-stimulated insulin secretion. Moreover,

it is of clinical significance to study the dynamics of insulin, glucose, and FFA, and assess

the hypothesis that higher FFA may hinder insulin signaling and reduce glucose transport,

leading to onset of insulin resistance in order to elucidate the role of insulin action on

lipolysis. Through model validation, parameters are estimated utilizing two datasets: the

first, is an IVGTT obtained from a sample of nondiabetic and normal BMI adults, and the

second, in obese adults who undergo bariatric surgery and have varying levels of glucose

tolerance including, normal fasting glucose (NFG), impaired fasting glucose (IFG), or are

diagnosed with T2D.

The proposed model is an extension of the insulin and glucose model studied in (Li et

al., 2012) and the equation representing FFA was motivated by the work in (Chow et al.,

2011). Here the interplay of glucose denoted G(t), insulin denoted I(t), and FFA denoted

F(t) is studied. Glucose enters intravenously at a constant rate b and is either immediately

used from other cells at rate e or by insulin-mediated removal by the interaction term aGI,

where a represents insulin sensitivity. Both glucose-stimulated and FFA-stimulated insulin

production is represented by the Hill’s function, that is, d G(t�t)g

ag+G(t�t)g and p F(t)b

sb+F(t)b , respec-

tively. Here t represents the explicit time delay for glucose-stimulated insulin production

and secretion. Insulin has a natural degradation rate c and the definition of FFA dynamics

is identical to the minimal model shown above. Hence, this system is governed by the

following equations,
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G0(t) = b�aG(t)I(t)� eG(t) (2.5)

I0(t) = d
G(t � t)g

ag +G(t � t)g + p
F(t)b

sb +F(t)b � cI(t) (2.6)

F 0(t) = g0 +
g1

1+
⇣

I(t)
I2

⌘k �hF(t) (2.7)

where the parameters b and g represent the Hills function coefficient and s and a represent

the values of half-saturation (see Table 2.2 for a description of parameters). A schematic

diagram of the model is shown in Figure 2.1.

Figure 2.1: A schematic diagram of the proposed glucose, insulin and free fatty acids

model.

2.2 Analysis of Solutions

The solutions must be both positive and bounded in order to ensure that the model will

provide biologically relevant results. By Theorem 1, the model yields positive solutions for

any positive initial conditions. In addition, by Theorem 2, the solutions are bounded for

any positive initial conditions. Hence, by Theorem 1 and 2, the solutions of the proposed
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Table 2.2: Definition of Explicit Time Delay Model Parameters.

Parameter Unit Description

a ml
µU ·min Insulin sensitivity

b mg
dl·min Average rate of glucose input

c 1
min Insulin degradation rate

d µU
mg·min Max secretion rate stimulated by glucose with time delay t

e 1
min Glucose effectiveness rate

p 1
min Max secretion rate stimulated by insulin

g0
µM
min Baseline nonsupressible lipolysis rate

g1
µM
min Difference between max and nonsuppressible lipolysis rate

I2
µU
ml Maximal inhibition rate

h 1
min Free fatty acid degradation rate

k unit less Hill function coefficient

b unit less Hills function coefficient

g unit less Hills function coefficient

a mg
dl half-saturation

s µM half-saturation

t 1
min delay constant

system are biologically relevant. The proof for Theorem 1 is adapted from (Palumbo et al.,

2007) and the proof of Theorem 2 is shown by differential inequalities (see Appendix A

for details of these proofs).

Theorem 1. The system of equations (2.5)-(2.7) gives positive solutions for any positive

initial condition.
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Theorem 2. The solutions for the system of equations (2.5)-(2.7) are bounded.

Remark 1. In conclusion of Theorems 1 and 2, the system of equations (2.5)-(2.7) permits

positive bounded solutions for any positive initial conditions.

2.2.1 Equilibria and Local Stability

The steady state is obtained by setting equations (2.5)-(2.7) equal to 0 and performing

few algebraic steps (see Appendix C). Although the steady state is only attainable in an

implicit form, it can be shown that the system has at least one positive steady state for a set

of initial conditions. In Figure 2.2, it can be seen that y1(I⇤) and y2(I⇤) intersect once, and

thus, there is one positive equilibrium point in the system, where

y1(I⇤) = d

� b
aI⇤+e

�g

ag +
� b

aI⇤+e
�g + p

 
1
h

 
g0 +

g1

1+
⇣

I⇤
I2

⌘k

!!b

sb +

 
1
h

 
g0 +

g1

1+
⇣

I⇤
I2

⌘k

!!b

and

y2(I⇤) = cI⇤

2.2.2 Local Stability

The local stability for this steady state can be found by first obtaining the characteristic

equation. This is done by assuming that there exists a positive equilibrium point. To obtain

the characteristic equation, let us define A = ∂ (G0,I0,F 0)
∂ (G,I,F) , then,
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Figure 2.2: The two functions, y1(I⇤) and y2(I⇤), intersect at (0.253,0.253), indicating that

the system has one positive equilibrium point. Parameter values are: a = 1.060e� 7,b =

0.0005, c= 0.0355,d = 10.434,e= 0.02155,a = 250.001,g = 1.45483,t = 8.24999,g0 =

0.3,g1 = 40.85, I2 = 4.1025,k = 1.68,h = 0.08,b = 4.6,s = 150, and p = 0.009.
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and B = ∂ (G0,I0,F 0)
∂ (G(t�t),I(t�t),F(t�t)) , which yields,

B =

0

BBBB@

0 0 0
ag gdG(t�t)g�1

(ag+G(t�t)g )2 0 0

0 0 0

1

CCCCA

Now defining the characteristic equation the following is obtained,

H(l ) = l I �A�Be�lt

=

0

BBBB@

l 0 0

0 l 0

0 0 l

1

CCCCA
�

0

BBBBBB@

�aI⇤ � e �aG⇤ 0

0 �c p b (F⇤)b�1sb

(sb+(F⇤)b )2

0
�g1k

⇣
I⇤
I2

⌘k�1

I2
⇣

1+
⇣

I⇤
I2

⌘k⌘2 �h

1

CCCCCCA
�

0

BBBB@

0 0 0
ag gdG(t�t)g�1

(ag+G(t�t)g )2 0 0

0 0 0

1

CCCCA
e�lt

=

0

BBBBBB@

l +aI⇤+ e aG⇤ 0

�ag gd(G⇤)g�1

(ag+(G⇤)g )2 e�lt l + c �p b (F⇤)b�1sb

(sb+(F⇤)b )2

0
g1k

⇣
I⇤
I2

⌘k�1

I2
⇣

1+
⇣

I⇤
I2

⌘k⌘2 l +h

1

CCCCCCA

Hence, the characteristic equation is then (see Appendix D):

|H(l )| = l 3 +l 2(b1 +b2)+l (b1b2 +b3)�lb4e�lt +b1b3 �b4he�lt (2.8)

where

b1 = aI⇤+ e, b2 = c+h, b3 = ch� B̂Ĉ, b4 = aG⇤Â,
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Â =� aggd(G⇤)g�1

(ag +(G⇤)g)2 , B̂ =�p
b (F⇤)b�1sb

(sb +(F⇤)b )2 , and Ĉ =
g1k

⇣
I⇤
I2

⌘k�1

I2

⇣
1+
⇣

I⇤
I2

⌘k⌘2 .

Case with no delay. Applying Routh-Hurwitz Stability Criterion (Allen, 2007) for a cubic

polynomial (see Appendix E), the equilibrium point is asymptotically stable if

(b1 +b2)(b1b2 +b3 �b4)> b1b3 �hb4.

2.3 Numerical Results

Here the minimal model and the explicit time delay model are fit to two datasets in order

to quantitatively estimate the physiologically relevant parameters among a metabolically

heterogeneous population. Model validation and parameter estimation is completed from

two published datasets that were extracted using “Plot Digitizer.” The first dataset was

obtained from the study (A. Sumner et al., 2004), in which, an IVGTT was performed

on nineteen nondiabetic individuals (13 men and 6 women) consisting of healthy weight

(N=3), overweight (N=8), and obese (N=8) individuals. The second dataset is given by

(Soriguer et al., 2009), where an IVGTT was given to nondiabetic and non-obese (6 men

and 6 women) individuals in the control group (N=12) and a treatment (14 men and 24

women) group (N=38) who underwent bariatric surgery consisting of 3 distinct groups

who had normal fasting glucose (NFG) tolerance (N=9), impaired fasting glucose (IFG)

(N=17), and T2D (N=12). A description of the data is summarized in Table 2.3 below. In

both cases, the data points represents the average values over time for the samples. The
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corresponding variance was not attainable from the datasets, and hence, excluded from this

analysis.

Table 2.3: Description of IVGTT data used for model validation.

Sample Group Age years BMI kg/m2 IVGTT Reference

[Mean ± SD] [Mean ± SD] Duration

36 ± 6 31.4 ± 8.3 180 minutes (A. Sumner et al., 2004)

Control (No Surgery) 36.7 ± 1.9 23.1 ± 0.7 360 minutes (Soriguer et al., 2009)

NFG (Pre-Surgery) 35.9 ± 3.4 48.6 ± 1.7 360 minutes (Soriguer et al., 2009)

IFG (Pre-Surgery) 45.2 ± 2.5 58.1 ± 1.4 360 minutes (Soriguer et al., 2009)

T2D (Pre-Surgery) 44.6 ± 2.4 53.9 ± 1.7 360 minutes (Soriguer et al., 2009)

Control (No Surgery) 36.7 ± 1.9 23.1 ± 0.7 360 minutes (Soriguer et al., 2009)

NFG (Post-Surgery) 35.9 ± 3.4 34.2 ± 1.4 360 minutes (Soriguer et al., 2009)

IFG (Post-Surgery) 45.2 ± 2.5 39.6 ± 1.4 360 minutes (Soriguer et al., 2009)

T2D (Post-Surgery) 44.6 ± 2.4 36.6 ± 1.5 360 minutes (Soriguer et al., 2009)

2.3.1 Model Validation with Explicit Time Delay in Nondiabetic Individuals

The average glucose, insulin, and FFA data for an IVGTT protocol obtained from

(A. Sumner et al., 2004) was used for validating the explicit time delay model. Quali-

tatively, the model captured the overall glucose, insulin, and FFA trends for an IVGTT (see

Figure 2.3). Parameter estimates are shown in Table 2.4. The observed differences between

the data and model might be due to the size of the sample and the variance in the sample;

and hence, data of each individual test is needed in order to fully validate the model and

estimate the parameters.
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Figure 2.3: The explicit time delay model is fit to the first dataset. A detailed summary of

parameter values for this fit can be found in Table 2.4.
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Glucose Dynamics

Qualitatively, comparing the plasma glucose levels pre- and post-bariatric surgery, show a

significant improvement, where the NFG, IFG, and T2D data nearly resembles the glucose

trends of the control group. The overall glucose trends for each group pre- and post-surgery

was captured by the explicit time delay model (shown in Figure 2.4). The constant rate of

glucose effectiveness (e) and constant insulin sensitivity rate (a) had insignificant changes

in the control group but significantly improved (e.g. increased) for the NFG, IFG, and T2D

groups.

Figure 2.4: Model validation for glucose levels are shown for the explicit time delay model.

A description of parameter values can be found in Tables 2.4.
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Insulin Dynamics

The plasma insulin levels significantly improved comparing pre- and post-bariatric surgery

results, where the NFG, IFG, and T2D data closely match the overall trends of the con-

trol group. The model fitted to the data captures the overall trends for insulin (shown in

Figure 2.5). The constant insulin degradation rate (c) decreased from post- compared to

pre-surgery for all groups and remained constant for the control group. The maximum

secretion rate (d) decreased post-surgery for IFG and T2D but not for NFG nor control

groups. The constant rate of FFA-stimulated insulin secretion (p) increased for all groups

except for T2D. Finally, the time delay for insulin secretion decreased in IFG and increased

in the NFG and T2D groups post-surgery.

Figure 2.5: The explicit time delay model is fit to the second dataset. A description of

parameter values can be found in Tables 2.4.
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FFA Dynamics

The variance for plasma FFA levels significantly reduced comparing pre- and post-bariatric

surgery results, where the NFG, IFG, and T2D data nearly overlap. The model results

qualitatively match the overall trends, except for the NFG group (shown in Figure 2.6).

The maximal lipolysis rate (g0+g1) reduced significantly from pre- to post-surgery for the

IFG and T2D groups. The insulin inhibition (I2) rate also decreased post-surgery compared

to pre-surgery in the NFG, IFG, and T2D groups, whereas no changes in FFA clearance

rate (h) were observed.

Figure 2.6: The explicit time delay model is fit to the second dataset. A description of

parameter values can be found in Tables 2.4.
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2.3.2 Comparison of Minimal Model with Explicit Time Delay Model

In this section, the model validation and parameter estimation for the second dataset is

completed for both the minimal model and the explicit time delay model. The models fitted

to plasma glucose levels is shown in Figure 2.7. Here, both models qualitatively predicted

the overall trends for the control, NFG, IFG, and T2D groups. In this case, neither of the

models appeared to fit better than the other. In Figure 2.8, the models are fit to plasma

insulin levels. Overall, the explicit time delay model appeared to give a better fit compared

to the minimal model for all groups. In particular, the steady state values produced by the

minimal model estimated solutions below the actual data for the control, NFG, IFG, and

T2D groups both pre- and post-surgery. In the control, NFG, and T2D groups, the minimal

model falls below the actual data; and the explicit time delay model matches the data much

better. For the IFG group, the explicit time delay model does much better with describing

the insulin dynamics pre- and post-surgery, whereas the minimal model does not closely

match the data. Qualitatively, the trends were not closely matched by the minimal model

pre-surgery for the NFG, IFG, and T2D groups. In this case, the explicit time delay model

approximated the overall trends more accurately then the minimal model.

Model validation for plasma FFA levels are shown in Figure 2.9. The minimal model

captured the overall trends for FFA slightly better than the explicit time delay model for the

NFG group, but not for the IFG or T2D group. It also appears that, qualitatively, the FFA

dynamics vary more in the transient phase for the minimal model compared to the explicit

time delay model. For the control group, the minimal model reached the steady states better

compared to the explicit time delay model. In the NFG group, the minimal model fit the

overall trends better than the explicit time delay model. However, for the IFG group, the

explicit time delay model fit the data better compared to the minimal model. Similarly, in

the T2D group, the explicit time delay model also fit better to the minimal model.
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Glucose Dynamics

Figure 2.7: Both the minimal model and explicit time delay model is fit to the glucose

data. A description of parameter values can be found in Tables 2.4-2.5. Here both models

qualitatively predict the overall trends of glucose dynamics well.
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Insulin Dynamics

Figure 2.8: Both the minimal model and explicit time delay model is fit to the insulin data.

A description of parameter values can be found in Tables 2.4-2.5. Overall, the explicit

time delay model captures the qualitative trends more accurately compared to the minimal

model.
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FFA Dynamics

Figure 2.9: Both the minimal model and explicit time delay model is fit to the free fatty

acid data. A description of parameter values can be found in Tables 2.4-2.5. The minimal

model yields a better fit to the data for the control and NFG groups, whereas the explicit

time delay model gave a better fit for the IFG and T2D groups.
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Table 2.4: Parameter Estimates for Explicit Time Delay Model, where ⇤ is from (A. Sumner

et al., 2004) and ⇤⇤ is from (Soriguer et al., 2009).

Data⇤ Data⇤⇤

Control NFG IFG T2D

Parameter Pre Post Pre Post Pre Post Pre Post

a 1.06e�7 1.06e�7 1.06e�7 1.2e�4 1.06e�5 1.8e�4 4.06e�5 1.06e�5 4.06e�5

b 0.0005 2.16 2.16 2.16 2.16 4.16 2.16 3.15 2.16

c 0.0355 0.072 0.072 0.8 0.3 0.4 0.3 0.25 0.12

d 10.434 10.434 10.434 12.434 12.434 20.11 12.434 25.11 12.434

e 0.02155 0.04 0.04 0.013 0.1 0.01 0.0315 0.015 0.0236

a 250 250 250 150 150 119 150 220 150

g 1.45483 1.45 1.45 3.18 2.5 3.4 2.45 4.5 2.45

t 8.245 8.25 8.25 3.8 4.2 15.24 4.2 6.25 8.25

g0 0.5 2.5 1.5 0.65 0.5 1.5 0.5 1.5 0.5

g1 40.85 30.5 18.5 28.85 38.5 30.85 19.85 26.5 18.85

I2 4.1025 10.5 9.5 31.10 20.10 33.025 18.10 30.5 24.1025

k 1.68 2.68 2.68 3.2 5.5 6.2 4.5 2.8 3.68

h 0.08 5.8 5.8 0.08 0.08 0.08 0.08 0.08 0.08

b 4.6 4.6 4.6 4.6 4.6 12.6 4.6 12.6 4.6

s 150 650 650 150 150 150 150 150 150

p 0.1 0.1 0.1 0.2 0.5 0.001 0.1 1.09 0.09

2.4 Discussion

This work investigated the efficacy of insulin suppression on lipolysis and assessed the

hypothesis that FFA-stimulated insulin secretion might play a vital role on the progression

of insulin resistance. An explicit time delay model of delay differential equations was de-

veloped in order to describe the dynamic interplay between insulin, glucose, and FFA based

on prior observations reviewed from the literature. Clinical data was obtained from the lit-

erature to validate the model and estimate parameters. The two datasets used described

individuals that varied in their metabolic health, particularly, nondiabetic and nonobese to

severely obese and type 2 diabetic. One of the two datasets was obtained for individuals
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Table 2.5: Parameter Estimates for Minimal Model, where ⇤ is from (A. Sumner et al.,

2004) and ⇤⇤ is from (Soriguer et al., 2009).

Data⇤ Data⇤⇤

Control NFG IFG T2D

Parameter Pre Post Pre Post Pre Post Pre Post

SG NA 0.042 0.042 0.4 0.09 0.03 0.038 0.023 0.023

SI NA 2.07e�5 2.07e�5 0.07e�5 5.07e�5 0.07e�5 5.07e�6 5.07e�6 1.07e�7

cX NA 3.5 4.2 0.08 0.25 0.1 0.075 0.005 0.12

l0 NA 0.95 2.2 5.2 10.02 20.2 16.2 40.2 34.2

l2 NA 12.85 12.85 16.85 33.5 46.85 44.5 34.85 36.5

X2 NA 4.25 3.25 20.25 5.2 20.25 4.2 12.25 6.2

A NA 4.2 2.5 3.5 3.5 2.5 2.5 3.5 4.5

c f NA 0.0295 0.031 0.038 0.065 0.12 0.099 0.09 0.15

who underwent bariatric surgery and who significantly improved in their glucose, insulin,

and FFA regulation post-surgery. Model validation was completed for the explicit time de-

lay model and compared to the well-studied minimal model. Overall, it seems the explicit

time delay model captured the overall qualitative trends well except for the NFG group.

The results show that the explicit time delay model was able to better approximate the

qualitative behavior compared to the minimal model. However, more work is needed in

order to assess insulin suppression quantitatively. More specifically, the individual patient

data is needed to more completely assess both models. Utilizing the averages eliminates

the variance that needs to be quantified in each group for more realistic and accurate in-

terpretations. The physiological parameters adjusted to fit the data matched findings from

the literature on bariatric surgery, indicating that the model captures realistic phenomena.

Moreover, the insulin inhibition of FFA was most significant for studying the “vicious”

cycle hypothesis. The proposed model described the qualitative trends, including insulin

inhibition of FFA, revealing that the proposed model might be reasonable for studying the

“vicious” cycle hypothesis. Additionally, a local stability analysis was completed for the
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explicit time delay model assuming a positive equilibrium point and was found if certain

conditions hold. The solutions for the explicit time delay model are bounded and positive

for positive initial conditions. Hence, future work would require individual patient data and

possible modifications of the new model to better capture the impact of bariatric surgery on

insulin regulation of glucose and FFA.
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Chapter 3

TYPE 2 DIABETES AND WEIGHT MANAGEMENT STRATEGIES

3.1 Background and Literature Review

According to the CDC, the medical costs of those impacted by diabetes is double the

cost for those without diabetes, approximately 245 billion dollars; that is, 176 billion of

direct medical costs and 69 billion of indirect costs (disability, premature death, work ab-

sence). Specifically, type 2 diabetes can be managed by medicine-based, surgery-based,

and behavior-based strategies (or a combination of these methods). Physicians will often

recommend lifestyle changes, focusing on diet and physical activity, for patients who are

both obese and prediabetic, or diabetic, in order to encourage patients to achieve a healthier

weight level and in turn, restore glucose metabolism to a healthier state. Moreover, pre-

vious studies suggest that lifestyle changes can improve an individual’s metabolic health,

including cases with no weight loss (Kelly et al., 2004; Meyer, Kundt, Lenschow, Schuff-

Werner, & Kienast, 2006; Ryder, Vega-López, Ortega, Konopken, & Shaibi, 2013; Shaibi

et al., 2012; Shaibi, Ryder, Kim, & Barraza, 2015; Watts et al., 2004; Watts, Jones, Davis,

& Green, 2005). However, there are many barriers and challenges to treatment adherence

at the economical, individual, physical environmental, and social environmental levels. For

example, studies show that college students are a particularly vulnerable population for

weight gain. For example, one study found that over 25% of the participants gained weight

in their first year of college (Wengreen & Moncur, 2009). Another study found that over-

weight and obesity was only observed in 15% of the sample during freshman year, that later

increased to 23% by the end of their senior year (Racette, Deusinger, Strube, Highstein, &

Deusinger, 2008). Hence, college adults are at higher risk for weight gain for several rea-
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sons. College is a period in which students are living on their own for the first time and

hence, are developing their own habits for the first time without parental supervision. A

study found that weight gain during the first year of college was associated with less physi-

cal activity in college compared to high school (Wengreen & Moncur, 2009). Students who

gained weight were also more likely to eat breakfast and sleep more hours compared to

those who didn’t gain weight (Wengreen & Moncur, 2009). Moreover, students living on

campus face environmental and economical barriers, meaning they either have many or few

resources for healthy living because their environmental resources are constrained. Addi-

tionally, students face challenges with what is affordable in their environment, specifically,

another study showed that convenience and cost influenced perception and self-efficacy

among college students, which are important factors for determining the health decisions

individuals make (Deshpande, Basil, & Basil, 2009).

Intervention programs are developed using the health behavior model framework which

focuses on three levels of factors including the individual, physical environment, and so-

cial environment. However, challenges still remain in assessing the overall impact of these

interventions and designing targeted, or individualized-based, programs that are tailored to

individuals’ culture, norms, and values. Here a dataset is utilized for a qualitative analysis

in order to give insight into how to create an individualized and behavior-based interven-

tion program that is simple, feasible, and effective. Specifically, this study focuses on

behavior-based strategies for weight loss or management in the context of a college setting

since college students are vulnerable to weight gain, and thus have higher-risk for devel-

oping metabolic-related diseases. This statistical study is carried out in the context of a

pilot study that was implemented among college students by the Conditioned Feeding Lab,

Department of Psychology at Arizona State University (Fall 2014). The purpose of this re-

search study was to develop a custom-tailored, individualized, weight intervention program

that was catered to each students unhealthy habits, for example sleep, physical activity, diet,
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and mindless eating. Participants in the intervention group developed three healthy habits

over the 6-week period in order to focus on living a healthier lifestyle, rather than focus on

caloric intake and energy expenditure. Habits varied based on the individual, for example,

eating more fruits and vegetables or exercising a few times a week. Participants met weekly

with lifestyle coaches in order to report progress on habit changes and for weight measures.

3.2 Description of Study and Participants

An initial screening questionnaire was used to assess eligibility and then the partici-

pants were randomly assigned to the intervention and control groups. Approximately 300

ASU students were recruited and 175 participants completed the required baseline ques-

tionnaires. Baseline questionnaires included demographic information, weight and height

measures, PTC-laden strip test for taster status, Block food frequency questionnaire, sleep

and eating behavior questionnaire, caffeine consumption, and neophobia was assessed (see

Table 3.1). A total of 107 participants remained in the intervention study, where 54 partic-

ipants were in the intervention group and 53 were in the control group. The intervention

group selected three habits to change over a six week period. They attended six weekly

meetings with lifestyle coaches in order to receive peer mentoring support, obtain weight

measures, and track progress to lifestyle changes. The control group met with lifestyle

coaches three times (every 2 weeks) for weight measures and received a nutrition booklet

(see Figure 3.1).

The mean age of students was 22.66 (SD 7.3) years with a range of 17 to 55 years and

mean weight was 168.8 (SD=48.2) pounds with a range of 103.2 to 405 pounds. Approxi-

mately 27.43% of the participants were male and the remaining 72.57% of the participants

were female. Most students were in their freshman year (33.71%) followed by sopho-

more’s (20.57%), junior’s (18.86%), senior’s (12.57%), and post baccalaureate (13.14%).

Nearly 68% of students reported living off-campus. The race/ethnicity reported was mostly
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Figure 3.1: Approximately 175 participants completed baseline questionnaires and 107

participants completed the intervention study. The intervention group (N=54) worked on 3

habits over a 6-week period and the control group (N=53) received a nutrition booklet.

Caucasian (56%) followed by Hispanic (13.14%) and Asian (10.86%) participants (see Ta-

ble 3.2).

Approximately 1.14% were underweight, 44% were normal weight, 28% were over-

weight, and 26.95% were obese. Most participants did not smoke (90.28%). Sleep health

was also assessed where most participants were not at risk for sleep apnea (89.14%). How-

ever, risk for sleep insomnia was nearly identical where 40.57% were not at risk and 55.4%

were at risk. Nearly 84.57% were not at risk for emotional eating but 97.71% were at risk

for the inability to cope with stress (97.71%). Most participants agreed with the statement

“I always eat 3 meals a day,” (32.57%) which was slightly higher than those who strongly

agreed (24.57%) and slightly disagreed (28.57%), and much higher than those who strongly

disagreed (13.14%) (see Table 3.3).
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Table 3.1: Description of the questionnaires used to assess the participants at the start of

the study.

Name Description

Demographic Survey of age, gender, race/ethnicity, year in school, living arrangements,

questionnaire smoking status, eating 3 meals a day

Block food frequency Survey for measuring frequency and consumption of foods and beverages

questionnaire (Block & Subar, 1992)

Stress and eating Survey for measuring the likelihood of eating under stress

behavior questionnaire (Ozier et al., 2007) and correlating eating habits for positive and

negative emotions (Geliebter & Aversa, 2003)

Sleep behavior questionnaire Survey to assess sleep insomnia and apnea risk, and assess quality

of sleep (Bastien, Vallieres, & Morin, 2001)

Caffeine consumption Survey to assess overall caffeine consumption

Adult neophobia scale Survey to measure the likelihood of trying new foods

(Pliner & Hobden, 1992)

Participants reported their perceived availability of fruits (Mean=2.36, SD=0.0537),

vegetables (Mean=2.73, SD=0.0744), and snacks (Mean=2.47, SD=0.0562), where values

between 2 to 3 indicate rarely to sometimes on an average week. Students were also as-

sessed for neophobia, or fear of trying new things, characteristics that ranged from 5 to 38,

where the higher the score indicated greater neophobia (Mean=16.48, SD=0.5785). Physi-

cal activity (minutes/day) was assessed based on self-reports to describe moderate activity

(Mean=105.50, SD=11.77), vigorous activity (Mean=90.49, SD=8.24), and walking activ-

ity (Mean=192.08, SD=13.71). The average sleep time of participants was 7.29 hours/day

(SD=0.08) and ranged from 4.5 to 12.85 hours/day (see Figure 3.4).

Dietary factors were assessed by completion of the Block Food Frequency Question-

naire and additional survey questions on caffeine consumption. The daily average calorie

consumption was 1709.92 kcals/day (SD=55.93), where most consumption, in grams/day,
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consisted of carbohydrates (M=202.23, SD=6.74) and nearly equivalent intake for both pro-

tein (Mean=67.89, SD=2.4) and fat (Mean=68.42, SD=31.53). The average daily servings

of grains was highest (Mean=4.97, SD=0.19), followed by fat (Mean=2.77, SD=0.10), meat

(Mean=2.39, SD=0.11), vegetables (Mean=2.25, SD=0.12), dairy (Mean=1.15, SD=0.06),

and fruits (Mean=1.12, SD=0.06).

Table 3.2: Demographic characteristics of participants including gender, race/ethnicity,

marital status, living arrangements, and year in college.

All (N=175) Intervention (N=54) Control (N=53)
Subject Frequency (%) Frequency (%) Frequency (%)
Gender
Male 48/175 (27.43%) 15/54 (27.78%) 12/53 (22.64%)
Female 127/175 (72.57%) 39/54 (72.22%) 41/53 (77.36%)
Ethnicity
African-American 5/175 (2.86 %) 1/54 (1.85 %) 2/53 (3.77%)
Asian 19/175 (10.86%) 6/54 (11.11 %) 7/53 (13.21 %)
Caucasian 98/175 (56 %) 28/54 (51.85 %) 31/53 (58.49 %)
Hispanic 23/175 (13.14 %) 11/54 (20.37 %) 5/53 (9.43 %)
Middle Eastern 2/175 (1.14 %) 0/54 (0 %) 0/53 (0%)
Mixed Race 18/175 (10.29 %) 5/54 (9.26 %) 7/53 (13.21 %)
Other 6/175 (3.43 %) 3/54 (5.56 %) 0/53 (0%)
Missing 4/175 (2.28 %) 0/54 (0%) 1/53 (1.89 %)
Marital Status
Single 145/175 (82.86 %) 46/54 (85.19 %) 47/53 (88.68 %)
Married 20/175 (11.43 %) 6/54 (11.11 %) 3/53 (5.66 %)
Separated 0/175 (0%) 0/54 (0%) 0/53 (0 %)
Divorced 6/175 (3.43 %) 2/54 (3.7%) 2/53 (3.77 %)
Missing 4/175 (2.28 %) 0/54 (0%) 1/53 (1.89 %)
Living Arrangements
On-campus 54/175 (30.86%) 17/54 (31.48 %) 18/53 (33.96%)
Off-campus 119/175 (68%) 37/54 (68.52 %) 34/53 (64.15 %)
Missing 2/175 (1.14%) 0/54 (0%) 1/53 (1.89 %)
Years in College
Freshman 59/175 (33.71%) 14/54 (25.93 %) 23/53 (43.4 %)
Sophomore 36/175 (20.57%) 11/54 (20.37 %) 12/53 (22.64 %)
Junior 33/175 (18.86%) 13/54 (24.08 %) 10/53 (18.87 %)
Senior 22/175 (12.57%) 8/54 (14.81 %) 5/53 (9.43 %)
Other 23/175 (13.14%) 8/54 (14.81%) 5/53 (9.43 %)
Missing 2/175 (1.15%) 0/54 (0%) 1/53 (1.89 %)
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Table 3.3: Health characteristics of participants including BMI, smoking habits, eating

3 meals a day, taster status, sleep apnea risk, sleep insomnia risk, emotional eating, and

emotional stress.

All (N=175) Intervention (N=54) Control (N=53)
Subject Frequency (%) Frequency (%) Frequency (%)
BMI Category
Underweight (BMI  18.5) 2/175 (1.14%) 0/54 (0%) 2/53 (3.77%)
Normal (18.5 < BMI  25) 77/175 (44 %) 25/54 (46.3 %) 24/53 (45.28 %)
Overweight (25 < BMI < 30) 49/175 (28 %) 15/54 (27.8%) 13/53 (24.53%)
Obese (BMI > 30) 47/175 (26.95 %) 14/54 (25.92 %) 14/53 (26.42 %)
Smoking Status
(cigarettes/day)
Do not smoke 158/175 (90.28%) 51/54 (94.44%) 50/53 (94.33%)
5 or less 11/175 (6.28%) 3/54 (5.55%) 2/53 (3.77%)
6-10 0/175 (0%) 0/54 (0%) 0/53 (0%)
11-15 1/175 (0.57%) 0/54 (0 %) 0/53 (0%)
16-20 3/175 (1.71%) 0/54 (0 %) 0/53 (0%)
“I always eat three meals a day”
Strongly agree 43/175 (24.57%) 13/54 (24.07 %) 14/53 (26.41%)
Agree 57/175 (32.57%) 20/54 (37.03 %) 19/53 (35.84%)
Slightly disagree 50/175 (28.57%) 14/54 (25.92 %) 14/53 (26.41%)
Strongly disagree 23/175 (13.14%) 7/54 (12.96%) 5/53 (9.43%)
Taster status
Nontaster 10/175 (5.71%) 1/54 (1.85%) 7/53 (13.2%)
Moderate Taster 46/175 (26.28%) 20/54 (37.03%) 14/53 (26.41%)
Taster 119/175 (68%) 33/54 (61.11%) 32/53 (60.37%)
Sleep Apnea
Not at Risk 156/175 (89.14%) 48/54 (88.88%) 50/54 (92.59%)
At Risk 15/175 (8.57%) 4/54 (7.40%) 2/53 (3.77%)
Sleep Insomnia
Not at Risk 71/175 (40.57%) 21/54 (38.88%) 21/53 (39.62%)
At Risk 97/175 (55.4%) 29/54 (53.7%) 31/53 (58.49%)
Emotional Eating
Not at Risk 148/175 (84.57%) 46/54 (85.18%) 44/53 (83.01%)
At Risk 27/175 (15.42%) 8/54 (14.81%) 9/53 (16.98%)
Inability to Cope with Stress
Not at Risk 4/175 (2.28%) 2/54 (3.70%) 1/53 (1.88%)
At Risk 171/175 (97.71%) 52/54 (96.29%) 52/53 (98.11%)
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Table 3.4: A summary of perceived environmental factors (availability of fruits, availability

of vegetables, availability of fruits and vegetables, availability of snacks, accessibility of

fruits and vegetables), dietary behaviors, physical activity behaviors, and sleep activity.

Subject Mean Standard Error Median Range
Environmental Factors
Average Availability of fruit 2.36 0.0537 2.33 1 - 4.73
Average Availability of vegetables 2.73 0.0744 2.7 1 - 5
Average Availability of fruit and vegetables 2.51 0.0543 2.56 1 - 4.6
Average Availability of snacks 2.47 0.0562 2.5 1 - 4.78
Individual Factor
Neophobia 16.48 0.5785 16 5 - 38
Physical Activity Factors
Physical activity moderate (min/day) 105.50 11.77 32.5 0 - 630
Physical activity vigorous (min/day) 90.49 8.24 60 0 - 540
Physical activity walking (min/day) 192.08 13.71 150 0 - 720
Sleep Factor
Sleep total average (hours/day) 7.29 0.08 7.28 4.5-12.85
Dietary Factors
Calories (kcals/day) 1709.92 55.93 1565.31 421.2 - 4000.95
Protein (gms/day) 67.89 2.4 59.34 15.83 - 184.47
Total fat (gms/day) 68.42 31.53 186.82 14.86 - 163.16
Carbohydrates (gms/day) 202.23 6.74 186.82 53.97 - 489.62
Vegetable Servings (servings/day) 2.25 0.12 1.87 0.04 - .37
Fruit Servings (servings/day) 1.12 0.06 0.923 0 - 4
Grain Servings (servings/day) 4.97 0.19 4.41 0.804 - 3.71
Meat Servings (servings/day) 2.39 0.11 2.08 0.136 - 8.73
Dairy Servings (servings/day) 1.15 0.06 0.975 0 - 4.46
Fat Servings (servings/day) 2.77 0.10 2.48 0.06 - 6.81
Caffeine morning (mg/day) 128.14 37.31 45 0 - 798
Caffeine afternoon (mg/day) 98.1 28.00 30 0 - 510.5
Caffeine evening (mg/day) 85.02 26.01 19 0 - 523
Caffeine night (mg/day) 0.24 0.24 0 0 - 6
Caffeine total (mg/day) 311.505 55.85 249 0 - 968.5
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3.2.1 Description of the Control Group

The age group for the control group (N=53) ranged from 17 to 55 (Mean=21 , SD=5),

where 45 were between ages 17-24, 6 between ages 25-34, and 2 between ages 35-55 (see

Figure 3.2). Participants’ weight ranged from 103.2 to 405 lbs (Mean=21, SD=5). Based

on baseline BMI the total underweight were 2, healthy weight were 24, overweight was 13,

and obese was 14 (see Figure 3.3). The distribution of race/ethnicity had larger proportions

of Caucasian (31) followed by Asian (7), Hispanic (5), Mixed Race (7), Other (1), and

African American (1) (see Figure 3.4). Only a small number of students were seniors (2)

or were in the category “other” (5), whereas the remainder of the students were juniors

(10), sophomores (12), or freshman (23) (see Figure 3.5). The majority of students were

nonsmokers (50), however, some self-reported smoking 5 cigarettes/day or less (2) (see

Figure 3.6). Most students agreed to the statement “I eat 3 meals a day” (19) and others

strongly agreed (14), slightly disagreed (14), or strongly disagreed (5) (see Figure 3.7). The

self-reported taster status can be divided into three groups. Specifically, fewer participants

were considered non-taster (7) followed by moderate taster (14) and super tasters (32) (see

Figure 3.8).

3.2.2 Description of the Intervention Group

The age group for the intervention group (N=53) ranged from 18 to 47 (Mean=22.67,

SD=7.2), where 45 were between ages 17-24, 4 between ages 25-34, and 5 between ages

35-55 (see Figure 3.2). Measured weight ranged from 112.4 to 274 lbs (Mean=168.2,

SD=56). The distribution of baseline BMI showed that none were underweight, healthy

weight were 25, overweight was 15, and obese was 14 (see Figure 3.3). Most participants

were Caucasian (28) followed by Hispanic (11), Asian (6), Mixed Race (5), Other (3), and

African American (1) (see Figure 3.4). The year in college was distributed similarly in
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the intervention group. Specifically, freshman (14), sophomore (11), junior (13), senior

(8), or in “other” category (8) (see Figure 3.5). Similar to the control group, most of the

students self-reported no smoking activities (51) whereas few reported smoking 5 or less

cigarettes/day (3) (see Figure 3.6). Similar to the control group, most students agreed to

the statement “I eat 3 meals a day” (20) and others strongly agreed (13), slightly disagreed

(14), or strongly disagreed (7) (see Figure 3.7). Similar to the control group, most partici-

pants were categorized as a super taster (32), moderate taster (14), and non-taster (7) (see

Figure 3.8).
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Figure 3.2: Distribution of age for all participants.

Figure 3.3: Distribution of BMI for all participants.
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Figure 3.4: Distribution of race/ethnicity for all participants.

Figure 3.5: Distribution of year in college for all participants.
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Figure 3.6: Distribution of smoking habits for all participants.

Figure 3.7: Distribution of participants’ response to eating 3 meals a day for all participants.
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Figure 3.8: Distribution of taster status for all participants.

3.3 Statistical Methods

This section provides a broad overview of the statistical methods used for the cross-

sectional and longitudinal studies.

3.3.1 One-Way Analysis of Variance (ANOVA) Fixed Effects Model

A generalizable method of the t test is called the one-way ANOVA model, which allows

for the comparison of the means of an arbitrary number of groups for only one variable

(Rosner, 2010). The ANOVA model assumes that:

1. Each probability distribution is normally distributed (Kutner, Nachtsheim, Neter, &

Li, 2005)

2. Each probability distribution has the same variance (Kutner et al., 2005)
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3. The responses for each factor level are random from the corresponding probability

distributions and are independent of the responses for any other factor level (Kutner

et al., 2005)

The general definition of the model is given by,

Yi j = µ +ai + ei j, (3.1)

where Yi j represents the value of the jth observation (or person) in the ith group, µ denotes

the underlying mean of all groups taken together, ai represents the difference between the

mean of the ith group and the overall mean, and ei j denotes the error term capturing the

random error about the mean for an individual observation for group i (Rosner, 2010).

The null hypothesis (H0) is that the underlying mean values are equivalent across all

factor levels in a group. The alternative hypothesis (H1) states that at least one mean for

one factor level is different in the group. Hence, the hypothesis to test is H0: all ai = 0 vs.

H1: at least one ai 6= 0. This is tested using the overall F test which represents the ratio of

the between group variability to the within group variability. If this ratio is large, then we

reject H0; and if it is small, then we fail to reject H0. The significance of this F test statistic

is determined by the F distribution with k� 1 and n� k d f under H0, and a level used.

Thus, if F > Fk�1,n�k,1�a , then reject H0; and if F  Fk�1,n�k,1�a , then fail to reject H0.

3.3.2 Two-Way ANOVA

In some cases, the mean responses can be classified into groups based on two different

variables. The two-way ANOVA allows for the analysis of mean effects of each variable

after controlling for the effects of the other variable, where the two groups could be inde-

pendent or related (or “interact”) (Rosner, 2010). The following general model is defined

as,
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Yi jk = µ +ai +b j + gi j + ei jk, (3.2)

where Yi jk represents the value of the kth observation (or person) in the ith group of variable

1 and jth group of variable 2, µ denotes the underlying mean of all groups taken together,

ai represents the effect of the ith group of variable 1, b j denotes the effect of jth group of

variable 2, gi j represents the interaction effect between variables 1 and 2, and ei jk denotes

the error term (Rosner, 2010). Three major hypothesis tests can be investigated for the

two-factor ANOVA:

1. The presence of an effect of variable 1. The null hypothesis (H0) is that there are

no effects of ai after controlling for the effect of variable 2, whereas the alternative

hypothesis (H1) is that there is an effect. Hence, the hypothesis tested is H0 : all

ai = 0 vs. H1 : at least one ai 6= 0 (Rosner, 2010).

2. The presence of an effect of variable 2. Similarly, to the study of the effect of

variable 1, the null hypothesis (H0) is that there are no effects of b j after controlling

for the effect of variable 1, whereas the alternative hypothesis (H1) is that there is an

effect. Hence, the hypothesis tested is H0 : all b j = 0 vs. H1 : at least one b j 6= 0

(Rosner, 2010).

3. The presence of an interaction effect between variables 1 and 2. Here we assess

whether or not the effect of variable 1 between the levels of variable 2 differ. The null

hypothesis (H0) is that all interaction terms are equivalent, whereas the alternative

hypothesis (H1) is that at least one is not equal. Hence, the hypothesis tested is H0 :

all gi j = 0 vs. H1 : at least one gi j 6= 0 (Rosner, 2010).
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3.3.3 Simple Linear Regression

Although a correlation coefficient quantifies and describes the association between two

continuous variables, a simple linear regression model is a method used to assess how a

single predictor (or independent) variable (X) relates to a normally distributed outcome (or

dependent) variable (Y ). A regression line is defined as,

Y = a +bX + e, (3.3)

where a defines the intercept, b is the slope of the line, and e denotes the error term or vari-

ance of Y among all X introduced in the model. It is assumed that e is normally distributed

with mean 0 and variance s2 (Rosner, 2010). The method of least squares is used to es-

timate the regression line, in which, the least-squares line (or estimated regression line),

selected is the line that minimizes the sum of squared distances of the sample points from

the line given by: S = Sn
i=1d2

i , for observations i = 1, ...,n and sum of squared distances of

the points from the line, Sn
i=1d2

i = Sn
i=1(Yi �a�bXi)2, where a is the intercept and b is the

slope of the line.

The null hypothesis (H0) is that the slope is 0 and the alternative hypothesis (H1) is that

the slope is nonzero. Hence, we test H0 : b = 0 vs. H1 : b 6= 0 for a simple linear regression

using either an F test or t test.

1. F test. A good fit of the model to the data is demonstrated when the ratio of the

regression sum of squares to the residual sum of squares is large, whereas a small

ratio illustrates a weak fit, following an F1,n�2 distribution under H0. Hence, if F >

F1,n�2,1�a , then reject H0; whereas, if F  F1,n�2,1�a , then fail to reject H0. The

exact p-value is given by Pr(F1,n�2>F) (Rosner, 2010).
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2. t test. A good fit of the model to the data is based on the estimate of the sample

regression coefficient, or b, and the standard error, or se(b), thus, t = b/se(b) follows

a t distribution with n�2 df. Hence, if t > tn�2,1�a/2 or t < tn�2,a/2 =�tn�2,1�a/2,

then reject H0; whereas, if �tn�2,1�a/2  t  tn�2,1�a/2, then fail to reject H0. The

p-value is given by multiplying 2 by the area under a tn�2 distribution to the left of t

if t < 0 or to the right of t if t � 0 (Rosner, 2010).

3.3.4 Multiple Regression Analysis

An extension of the simple linear regression model allows for the analysis of many

independent variables, called the multiple regression analysis. For k independent vari-

ables X1,X2, ...,Xk, then a linear regression model relating to the dependent variable Y to

X1,X2, ...,Xk is given by,

Y = a +b1X1 + ...bKXK + e, (3.4)

or

Y = a +Sk
j=1b jXj + e, (3.5)

where Y is an estimate of y, a is estimated by a and b1, ...,bK is estimated by b1, ...,bK ,

using the method of least squares which minimizes the sum of
h
y �

⇣
a+Sk

j=1b jx j

⌘i2

(Rosner, 2010). The error term e is normally distributed with mean 0 and variance s2.

The null hypothesis (H0) is that all regression coefficients are equal to zero and the

alternative hypothesis (H1) states that at least one of the regression coefficients is nonzero.

Hence, the hypothesis tested is H0 : b1 = b2 = ... = bk = 0 vs. H1 : at least one of the

b j 6= 0, applying either an F test or t test.
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1. F test. The F test statistic is found by simplifying the ratio of the regression sum of

squares to the residual sum of squares, which follows an Fk,n�k�1 distribution under

H0. Hence, if F > Fk,n�k�1,1�a , then reject H0; whereas, if F  Fk,n�k�1,1�a , then

fail to reject H0. The exact p-value is given by the area to the right of F under an

Fk,n�k�1 distribution = Pr(Fk,n�k�1 > F) (Rosner, 2010).

2. t test. A t test is computed by computing the ratio of the partial regression coef-

ficient to the standard error if the partial regression coefficient,, which follows a t

distribution with n� k � 1 df under H0 for a set a level. Hence, if t < tn�k�1,a/2

or t > tn�k�1,1�a/2, then reject H0; whereas, if �tn�k�1,a/2  t  tn�k�1,1�a/2, then

fail to reject H0. The p-value is given by multiplying 2 by Pr(tn�k�1 > t) if t � 0 or

by Pr(tn�k�1  t) if t < 0 (Rosner, 2010).

3.4 Results of the Cross-Sectional Analysis Study

The aims of this cross-sectional study is to address three points. First, does the present

study capture health behaviors among college students that are similar to those reported

in the literature specifically for sleep health in Section 3.4.1, physical activity behavior in

Section 3.4.2, and diet-related behavior in Section 3.4.3. Second, does the present study

capture novel or unexpected trends related to sleep health in Section 3.4.1, physical activ-

ity behavior in Section 3.4.2, and diet-related behavior in Section 3.4.3. Third, statistical

models are used to identify factors that best predict BMI in the following sample shown

in Section 3.4.4 for dietary and environmental factors alone, and in Section 3.4.5 for the

combination of dietary, environmental, and physical activity factors.

3.4.1 Sleep Behavior

Approximately 89.1% of the sample were not at risk for sleep apnea whereas 8.57%

were at risk. The population at risk of sleep insomnia was 55.4% and not at risk was
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40.57% (see Figure 3.9-3.10). The average BMI and distribution of BMI were very similar

between those at risk and not at risk of sleep insomnia (see Figure 3.11). Although only

15 individuals were at risk for sleep insomnia, the BMI reported for those individuals were

much higher than those not at risk (see Figure 3.12). Moreover, there does not seem to be a

clear linear association between BMI and average hours of sleep per day (see Figure 3.13).

Figure 3.9: Distribution of sleep apnea for all participants.
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Figure 3.10: Distribution of sleep insomnia for all participants.

Figure 3.11: Distribution of sleep insomnia and BMI.
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Figure 3.12: Distribution of sleep apnea and BMI.
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Figure 3.13: Distribution of BMI based on average hours of sleep.

Four different models were developed to assess the impact of sleep characteristics on BMI

(dependent variable; continuous). These models are defined below:

• In Model 1, the independent variables included were age (continuous), gender (cat-

egorical), average hours of sleep (continuous), risk of sleep insomnia (categorical),

and risk of sleep apnea (categorical).

• In Model 2, the independent variables included were age (continuous), gender (cate-

gorical), average hours of sleep (continuous), and risk of sleep apnea (categorical).

• In Model 3, the independent variables included were age (continuous), gender (cat-

egorical), average hours of sleep (continuous), and risk of sleep insomnia (categori-

cal).

• In Model 4, the independent variables included were age (continuous), gender (cate-

gorical), risk of sleep apnea (categorical), and risk of sleep insomnia (categorical).
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Table 3.5: Where *** P < 0.001, ** P < 0.01, * P < 0.05. The best model for predicting

BMI when considering sleep factors included age, gender, and sleep apnea AIC = 584.89.

Age Gender Average Hours Risk of Sleep Risk of Sleep

Sleep Apnea Insomnia

Model 1 x*** x* x x** x

Model 2 x*** x* x x**

Model 3 x*** x* x x

Model 4 x*** x* x** x
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Figure 3.14: Sleep Model 1 Results.

Figure 3.15: Sleep Model 2 Results.
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Figure 3.16: Sleep Model 3 Results.

Figure 3.17: Sleep Model 4 Results.
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3.4.2 Physical Activity Behavior

The linear association between BMI and physical activity was studied. The associa-

tion between BMI and walking activity was not significant (F=3.197, p-value=0.0755) (see

Figure 3.18). No significant association was found between BMI and moderate activity

(F=0.077, p-value=0.7816) (see Figure 3.19). Also, no significant correlation was found

between BMI and vigorous activity (F=0.1541, p-value=0.6954) (see Figure 3.20). Hence,

the models fit for predicting BMI when considering physical activity factors were not sig-

nificant in this sample.

Figure 3.18: BMI and walking physical activity.

75



Figure 3.19: BMI and moderate physical activity.

Figure 3.20: BMI and vigorous physical activity.

76



3.4.3 Diet Behavior

The analysis here focuses on dietary factors as the independent variables for predict-

ing BMI. Other factors taken into account include age (continuous), gender (categorical),

average daily consumption of calories (continuous), average servings of vegetables (contin-

uous), average servings of fruits (continuous), average servings of grains (continuous), av-

erage servings of meat (continuous), average servings of fat (continuous), average servings

of dairy (continuous), average macronutrient consumption of carbohydrates (continuous),

average macronutrient consumption of protein (continuous), average macronutrient con-

sumption of total fats (continuous), neophobia (continuous), and taster status (continuous).

A marginally significant linear association was observed between BMI and taster status

(F=3.74, p-value=0.054) (see Figure 3.21). Also, the average BMI was significantly dif-

ferent when taster status was divided into the three categories (non-taster, moderate taster,

and super taster) (F=4.982, p-value=0.0078) (see Figure 3.22). No significant associa-

tions were observed between BMI and average daily servings of vegetables (F=0.3366,

p-value=0.5626; see Figure 3.23), fruit (F=0.0225, p-value=0.8809; see Figure 3.24), grain

(F=1.0134, p-value=0.3155; see Figure 3.25), fats (F=3.5687, p-value=0.0605; see Fig-

ure 3.26), and dairy (F=1.3893, p-value=0.2401; see Figure 3.27). However, a signifi-

cant linear relationship was observed between BMI and daily servings of meat (F=8.66,

p-value=0.0036; see Figure 3.28).
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Figure 3.21: BMI and taster status as continuous variables.

Figure 3.22: BMI as a continuous variable and taste preference as a category (non-taster,

moderate taster, and super taster).
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Figure 3.23: BMI and daily servings of vegetables as continuous variables.

Figure 3.24: BMI and daily servings of fruit as continuous variables.
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Figure 3.25: BMI and daily servings of grains as continuous variables.

Figure 3.26: BMI and daily servings of fats as continuous variables.
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Figure 3.27: BMI and daily servings of dairy as continuous variables.
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Figure 3.28: BMI and daily servings of meat as continuous variables.

The average daily servings were also analyzed by BMI categories (underweight/healthy,

overweight, obese). No statistical significance was found between BMI group and daily av-

erage servings of vegetables (F=0.0395, p-value=0.9612; see Figure 3.29), fruits (F=0.4515,

p-value=0.6374; see Figure 3.30), grains (F=1.6899, p-value=0.1876; see Figure 3.32),

dairy (F=0.7406, p-value=0.4784; see Figure 3.33), and fats (F=1.926, p-value=0.1489;

see Figure 3.34). However, the average daily servings of meat was significant based on the

BMI category (F=4.1039, p-value=0.018; see Figure 3.31).
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Figure 3.29: BMI group and daily servings of vegetables.

Figure 3.30: BMI group and daily servings of fruits.
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Figure 3.31: BMI group and daily servings of meats.

Figure 3.32: BMI group and daily servings of grains.
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Figure 3.33: BMI group and daily servings of dairy.

The daily macronutrient consumption by BMI group was marginally significant for

carbohydrates (F=3.047, P=0.05; see Figure 3.35), was significant for total fats (F=3.18,

P=0.04; see Figure 3.36), and was significant for proteins (F=3.829, P=0.023; see Fig-

ure 3.37).
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Figure 3.34: BMI group and daily servings of fats.

Figure 3.35: BMI group and daily consumption of carbohydrates.
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Figure 3.36: BMI group and daily consumption of total fat.
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Figure 3.37: BMI group and daily consumption of protein.

This analysis consisted of 4 different models to assess the impact of diet characteristics

on BMI (dependent variable; continuous).

• In Model 1, the independent variables included were age (continuous), gender (cat-

egorical), average hours of daily calories (continuous), neophobia (continuous), and

taster status (continuous).

• In Model 2, the independent variables included were age (continuous), gender (cate-

gorical), average servings of vegetables (continuous), average servings of fruits (con-

tinuous), average servings of grains (continuous), average servings of meat (contin-

uous), average servings of fat (continuous), average servings of dairy (continuous),

neophobia (continuous), and taster status (continuous).

• In Model 3, the independent variables included were age (continuous), gender (cate-

gorical), average carbs (continuous), average protein (continuous), average total fats

(continuous), neophobia (continuous), and taster status (continuous).
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• In Model 4, the independent variables included were age (continuous), gender (cat-

egorical), average hours of daily calories (continuous), average servings of vegeta-

bles (continuous), average servings of fruits (continuous), average servings of grains

(continuous), average servings of meat (continuous), average servings of fat (contin-

uous), average servings of dairy (continuous), average carbs (continuous), average

protein (continuous), average total fats (continuous), neophobia (continuous), and

taster status (continuous).
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Figure 3.38: Diet Model 1 Results.

Figure 3.39: Diet Model 2 Results.
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Figure 3.40: Diet Model 3 Results.

Figure 3.41: Diet Model 4 Results.
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3.4.4 Diet and Environment

This analysis consisted of 3 different models to assess the impact of diet and environ-

mental (availability and accessibility) characteristics on BMI (dependent variable; contin-

uous).

• In Model 1, the independent variables included were age (continuous), gender (cate-

gorical), average hours of daily calories (continuous), neophobia (continuous), taster

status (continuous), availability of fruits and vegetables (continuous), and accessibil-

ity of fruits and vegetables (continuous).

• In Model 2, the independent variables included were age (continuous), gender (cate-

gorical), average servings of vegetables (continuous), average servings of fruits (con-

tinuous), average servings of grains (continuous), average servings of meat (contin-

uous), average servings of fat (continuous), average servings of dairy (continuous),

neophobia (continuous), taster status (continuous), availability of fruits and vegeta-

bles (continuous), and accessibility of fruits and vegetables (continuous).

• In Model 3, the independent variables included were age (continuous), gender (cate-

gorical), average carbs (continuous), average protein (continuous), average total fats

(continuous), neophobia (continuous), taster status (continuous), availability of fruits

and vegetables (continuous), and accessibility of fruits and vegetables (continuous).
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Figure 3.42: Diet and Environment Model 1 Results.

Figure 3.43: Diet and Environment Model 2 Results.
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Figure 3.44: Diet and Environment Model 3 Results.
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3.4.5 Diet, Environment, and Physical Activity

The analysis here consists of 3 different models to assess the impact of diet, envi-

ronmental (availability and accessibility) and physical activity (moderate, vigorous, and

walking) characteristics on BMI (dependent variable; continuous).

• In Model 1, the independent variables included were age (continuous), gender (cate-

gorical), average hours of daily calories (continuous), neophobia (continuous), taster

status (continuous), availability of fruits and vegetables (continuous), accessibility

of fruits and vegetables (continuous), average physical activity - moderate (continu-

ous), average physical activity - vigorous (continuous), and average physical activity

- walking (continuous).

• In Model 2, the independent variables included were age (continuous), gender (cate-

gorical), average servings of vegetables (continuous), average servings of fruits (con-

tinuous), average servings of grains (continuous), average servings of meat (contin-

uous), average servings of fat (continuous), average servings of dairy (continuous),

neophobia (continuous), taster status (continuous), availability of fruits and vegeta-

bles (continuous), accessibility of fruits and vegetables (continuous), average phys-

ical activity - moderate (continuous), average physical activity - vigorous (continu-

ous), and average physical activity - walking (continuous).

• In Model 3, the independent variables included were age (continuous), gender (cate-

gorical), average carbs (continuous), average protein (continuous), average total fats

(continuous), neophobia (continuous), taster status (continuous), availability of fruits

and vegetables (continuous), accessibility of fruits and vegetables (continuous), av-

erage physical activity - moderate (continuous), average physical activity - vigorous

(continuous), and average physical activity - walking (continuous).
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Figure 3.45: Diet, Environment, and Physical Activity Model 1 Results.

Figure 3.46: Diet, Environment, and Physical Activity Model 2 Results.
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Figure 3.47: Diet, Environment ,and Physical Activity Model 3 Results.
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3.5 Results of the Longitudinal Analysis Study

In this section, the data is analyzed as a longitudinal study. Participants in the inter-

vention group selected 3 habits progressively every 2 weeks over a 6 week period. Most

students selected a diet-related habit (73.58%) at the start of the study. Caffeine-related

(15.09%) and exercise-related (7.54%) habits were the next most selected categories at this

time. At week 2, most students added a second habit in the diet-related category (45.28%)

followed by exercise-related (33.96%) and sleep-related (7.54%) categories. The third habit

was chosen at week 4, where most students selected a diet-related behavior (41.50%) fol-

lowed by exercise-related (18.86%) and sleep-related (13.20%) behaviors (see Table 3.9

and Figure 3.48). Furthermore, the habits are described as diet versus non-diet related cat-

egories (see Figure 3.48). No statistically significant weight loss was found between the

control and intervention group over the 6-week intervention period.

Table 3.9: Choice of Habits over the Intervention Period (N=53).

Diet Exercise Sleep Water Behavior Caffeine Total

(%) (%) (%) (%) (%) (%)

Habit 1 39 4 1 0 0 8 52

(73.58) (7.54) (1.88) (0) (0) (15.09) (98.11)

Habit 2 24 18 4 2 2 0 50

(45.28) (33.96) (7.54) (3.77) (3.77) (0) (94.33)

Habit 3 22 10 7 1 0 5 45

(41.50) (18.86) (13.20) (1.88) (0) (9.43) (84.90)

101



Figure 3.48: Distribution of Habits chosen by participants for all categories.

102



Figure 3.49: Distribution of Habits chosen by participants for diet- versus non-diet-related

categories.

3.6 Conclusions

This work aimed to give insight into potential strategies for developing feasible, sim-

ple, and effective treatment and weight management programs among patients who are

impacted by obesity and diabetes. This analysis utilized a dataset obtained from a pilot

study that assessed the impact of an individualized-based intervention program for weight

loss that focused on building healthy habits that were tailored to college students. A cross-

sectional study was conducted in order to address three points: first, whether the present

study captured health behaviors among college students that are similar to those reported

in the literature. The factors in this intervention study that best predicted BMI agreed with

prior field studies, specifically, age, gender, sleep apnea risk (Patel et al., 2008; Vorona

et al., 2005; Magee, Iverson, Huang, & Caputi, 2008; Beccuti & Pannain, 2011), diet

(Huang et al., 2003; Racette, Deusinger, Strube, Highstein, & Deusinger, 2005; Racette et

al., 2008; Kasparek, Corwin, Valois, Sargent, & Morris, 2008), and environment (Small,

Bailey-Davis, Morgan, & Maggs, 2012; Racette et al., 2008). While other studies have
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shown that physical activity was a significant factor for predicting BMI, physical activity

factors in this study did not seem to be statistically significant (Lowry et al., 2000; Huang

et al., 2003; Racette et al., 2005, 2008; Behrens & Dinger, 2003; McArthur & Raedeke,

2009; Kasparek et al., 2008). This finding may be largely due to the self-reporting methods

used since students may have overestimated or falsely reported their actual physical activ-

ity behavior; it may also be due to the small sample size of the study. The second aim of

the analysis was to identify factors that could predict BMI that may not be well-studied.

Taste preferences appear to be a statistically significant factor. Although many experimen-

tal studies have shown that taste preferences are important for predicting BMI, the link

between taste preferences and obesity is not well-studied in intervention studies. The third

aim focused on concluding which factors best predicted BMI in this study, which included:

taste preferences, age, gender, risk for sleep apnea, diet, and environment. However, since

this was a cross-sectional study, causal relationships could not be concluded. Moreover, the

intervention did not yield statistically significant changes in weight loss for the intervention

group.
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Chapter 4

MODELING EATING BEHAVIORS: THE ROLE OF ENVIRONMENT AND

POSITIVE FOOD ASSOCIATION LEARNING VIA A RATATOUILLE EFFECT

Anarina L. Murillo1,4, Muntaser Safan1,2,3, Carlos Castillo-Chavez1, Elizabeth D.

Capaldi-Phillips4, and Devina Wadhera4

1 Simon A Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University,

Tempe, AZ, USA,

2 Mathematics Department, Faculty of Science, Mansoura University, Mansoura, Egypt,

3 Department of Mathematical Sciences, Faculty of Applied Science, Umm Al-Qura University, 21955

Makkah, Saudi Arabia,

4 Conditioned Feeding Lab, Behavioral Neuroscience, Department of Psychology, Arizona State University,

Tempe, AZ, USA

ABSTRACT

Eating behaviors among a large population of children are studied as a dynamic process

driven by nonlinear interactions in the sociocultural school environment. The impact of

food association learning on diet dynamics, inspired by a pilot study conducted among

Arizona children in Pre-Kindergarten to 8th grades, is used to build simple population-

level learning models. Qualitatively, mathematical studies are used to highlight the possible

ramifications of instruction, learning in nutrition, and health at the community level. Model

results suggest that nutrition education programs at the population-level have minimal im-

pact on improving eating behaviors, findings that agree with prior field studies. Hence, the

incorporation of food association learning may be a better strategy for creating resilient

communities of healthy and non-healthy eaters. A Ratatouille effect can be observed when
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food association learners become food preference learners, a potential sustainable behav-

ioral change, which in turn, may impact the overall distribution of healthy eaters. In short,

this work evaluates the effectiveness of population-level intervention strategies and the im-

portance of institutionalizing nutrition programs that factor in economical, social, cultural,

and environmental elements that mesh well with the norms and values in the community.
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4.1 Background and Literature Review

The prevalence of childhood obesity has doubled among 2-to-5-year-olds (5-7% to

10.4%) and tripled for both 6-to-11-year-olds (6.5% to 19.6%) and 12-to-19-year-olds (5%

to 18.1%) from 1971� 1974 to 2007� 2008 (Ogden & Carroll, 2010a). Childhood obe-

sity can increase risk of cardiovascular disease (Ammerman, Lindquist, Lohr, & Hersey,

2002; Boeing et al., 2012; Ness & Powles, 1997) and cancer (Ammerman et al., 2002;

Block, Patterson, & Subar, 1992; Lipkin, Reddy, Newmark, & Lamprecht, 1999), two

leading causes of premature mortality and physical morbidity in adulthood (J. Reilly &

Kelly, 2011). Many national efforts, such as the United States Department of Agricul-

ture’s (USDA) implementation of the “My Plate” guidelines (United States Department of

Agriculture (USDA), 2015a) in schools, aim to alter the eating dynamics of young individ-

uals (Ammerman et al., 2002). These state-mandated guidelines impact the diets of those

who eat lunch (60%) and breakfast (37%) at their schools (United States Department of

Agriculture Food and Nutrition Service (USDA FNS), 2014), or 99% and 78% of public

schools who participate in the National School Lunch and Breakfast Programs, respectively

(Fox, Hamilton, & Lin, 2004; Kaphingst & French, 2006). In short, children, in the early

stages of developing their eating habits, consume most of their daily food (19 to 50% or

more) in schools (Gleason, Suitor, Food, & Service, 2001; Kaphingst & French, 2006), and

are members of a captive audience (10 years, 9 months, and 5 days per week) (American

Diabetes Association (ADA), 1999; Pérez-Rodrigo & Aranceta, 2001). Hence, a better

understanding of the overall effectiveness of these programs and the access to a captive

audience is necessary for improving the overall health of children.

In this paper, we aim at shedding some light on the connections between key identified

factors (Ammerman et al., 2002; Blanchette & Brug, 2005; Katz, 2009; Lytle & Achter-

berg, 1995) that shape eating behaviors at the population-level via contagion mathemat-
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ical models, within a social-ecological framework (McLeroy, Bibeau, Steckler, & Glanz,

1988). Although schools are ideal for institutionalizing nutrition programs, a huge step in

the fight against obesity-related illness, childhood obesity is still an issue and consumption

of fruits and vegetables among children is low (see Figure 4.1). Using the film Ratatouille

as a metaphor and the study by (Wadhera, Phillips, Wilkie, & Boggess, 2015), we investi-

gate the significance of the “Ratatouille” effect, that is the impact of recreating ‘positive’

childhood eating experiences, memories, and their connection with the process of building

healthy eating habits. Food preference learning has been identified as a possible influential

method for developing healthier eating habits by modifying taste, the strongest predictor

of children’s food consumption (L. L. Birch, 1979; Domel et al., 1993; Perry et al., 2004;

Story, Neumark-Sztainer, & French, 2002). Although well-studied in experimental set-

tings, its impact is not well-understood at the population-level, and hence, we investigate

this phenomenon on the diet dynamics of young individuals in this work.

4.2 Eating Behaviors in School Settings

The study of the diet dynamics of individuals at the population-level have been rarely

addressed in the literature (but see (Evangelista, Ortiz, Rios-Soto, & Urdapilleta, 2004;

Frerichs, Araz, & Huang, 2013; Gonzalez-Parra, Jodar, Santonja, & Villanueva, 2010;

Jódar, Santonja, & González-Parra, 2008)). Building a population-level model from the

knowledge that we have gathered on the daily decisions of individuals is rather challenging

just as it is the construction of an epidemiological model from the study of an individuals

immunological (level of the cell) response to a disease invasion. Our eating behaviors, that

is, why we eat certain foods, how much to eat, when to eat, and how to eat these foods, are

governed by biological, sociocultural, and psychosocial factors that are learned in a vari-

ety of settings. In this work, we assume that there are three population-level components

involved on the diet-dynamics of individuals within a community. The first involves the im-
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Figure 4.1: Prevalence of childhood obesity (top left). Fruit (top right) and vegetable (bot-

tom middle) consumption in U.S. children (Centers for Disease Control and Prevention

(CDC), 2014; Ogden & Carroll, 2010a).
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pact of dietary programs (health awareness, communication, and skill-building) that tend

to be temporary and often associated with high levels of recidivism (Cullen, Bartholomew,

Parcel, & Koehly, 1998; Domel et al., 1993; Pyle et al., 2006). The second would be the

social environment, here modeled simply via the day-to-day interactions among individuals

with different diets. The unpalatability of healthy foods make their systematic consumption

difficult, however, social and behavior-based elements have been shown effective; such as,

hands-on curriculum activities (classroom lessons, taste-testing, cooking lessons), parental

involvement, school gardening, peer modeling, or rewards (Ammerman et al., 2002; Birn-

baum, Lytle, Story, Perry, & Murray, 2002; Lowe, Horne, Tapper, Bowdery, & Egerton,

2004; Lytle & Achterberg, 1995; Perry et al., 2004; Story et al., 2002). The third includes

the physical environment, here availability and accessibility of healthier foods changes due

to the nutrition programs implemented in the schools (Cullen et al., 2003; Perez-Rodrigo &

Aranceta, 2003; Story et al., 2008; Van Der Horst et al., 2007). Despite our understanding

of these factors, the efficacy of these interventions vary and so, more work is needed in

order to fully assess their impact on the diet dynamics of young individuals.

Building ‘positive’ childhood memories has been identified as a possibly influential

force on the long-term eating behaviors of adults based on the study in (Wadhera, Phillips,

et al., 2015). Food preferences has been shown to increase with exposure, tasting (not

just smelling or seeing), and a positive social experience (L. Birch, 1987; L. L. Birch,

Zimmerman, & Hind, 1980). However, the unpalatability of healthier foods and the onset

of neophobia, or the fear of trying something new, influences childrens food choices and

can ultimately lower both dietary variety (Dovey, Staples, Gibson, & Halford, 2008; Fal-

ciglia, Couch, Gribble, Pabst, & Frank, 2000) and the consumption of fruits, vegetables,

and meats (Cooke, 2007; Howard, Mallan, Byrne, Magarey, & Daniels, 2012). These is-

sues have been addressed via exposure techniques (Wadhera, Capaldi-Phillips, & Wilkie,

2015), where familiarizing children with these foods (six to ten exposures) can improve
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the liking for and intake of novel foods among preschool and school-aged children (Liem

& De Graaf, 2004; Sullivan & Birch, 1990). An alternative approach for increasing liking

for and consumption of vegetables is food association learning (Capaldi-Phillips & Wad-

hera, 2014; Fisher et al., 2012), in which, a classical conditioning paradigm is applied and

considered successful when liking for a novel flavor occurs due to its pleasurable associ-

ation with the calories or the liked flavor (flavor-flavor learning) it was paired repeatedly

with (Capaldi, 1996). Although a few studies have shown that associative conditioning

more effectively increases liking and consumption of vegetables, compared to exposure

(see (Wadhera, Capaldi-Phillips, & Wilkie, 2015) for a review); its impact has been min-

imally studied at the population-level. In our pilot study (Wadhera, Capaldi-Phillips, &

Murillo, n.d.), we studied the effect of associative conditioning among Arizona students.

Among the Pre-Kindergarten to 8th grade participants, we found that our method of food

association learning acted as a positive reinforcement for children who may be more likely

to eat vegetables but did not improve selection or consumption for those who may be more

reluctant to eat vegetables (see Figure 4.2). These results are utilized as an initial explo-

ration of food association and food preference learning in schools.

The prevalence of childhood (10.4%) and adult (25.9%) obesity in Arizona is only

slightly lower than national estimates (Arizona Department of Health Services (ADHS),

2012c; Ogden et al., 2014). Among Arizona residents, the 2012 Behavior Risk Factor

Surveillance Survey (BRFSS) estimated 60% overweight or obese adults, 37.5% of obese

adults living in households with food assistance (WIC, SNAP, and/or Free and Reduced

Lunch), and increased adult obesity risk among non-daily consumers of fruits and veg-

etables (30.3% and 31.7%) compared to daily consumers (24.6% and 25.6%) (Arizona

Department of Health Services (ADHS), 2012c). Although these health disparities are

not studied here explicitly, the study of nutrition programs is essential for improving the

overall health of Arizona residents. In U.S. children, obesity was higher among Mexican-
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American (28.8% boys and 17.4% girls) and non-Hispanic black (19.8% boys and 29.2%

girls) than non-Hispanic white (16.7% boys and 14.5% girls) (Ogden & Carroll, 2010a).

Arizona residents comprises demographic characteristics (age, gender, income, education,

and employment status) generalizable to the nation (United States Census Bureau (USCB),

2015b). However, the presence of food deserts and the economical and environmental bar-

riers puts vulnerable population, or 14.3% of low-income children, Hispanic (29.9% in

A.Z. and 16.6% in the U.S.), and American Indian or Alaska Native (4.0% in A.Z. and

0.7% in the U.S.) (United States Census Bureau (USCB), 2015b) residents, at increased

risk for insufficient consumption of essential nutrients or overconsumption of unhealthier

foods high in saturated and trans fats.

Though multiple levels of detail and heterogeneity can be incorporated, such an ap-

proach could invariably lead to highly complex nonlinear models that would be difficult

to analyze. In this first effort, we proceed to study the impact of the three stated factors:

dietary programs, social environment, and the physical environment on the distribution of

eating patterns. This effort by no means attempts to minimize or underpinned the com-

plexities and challenges associated with understanding the forces behind the dynamics of

obesity. What we are trying to do is to introduce a framework for the study of the impact

of these three components on the dynamics of obesity under highly simplified conditions

at the population-level. We don’t expect the results of these caricature models to offer so-

lutions. Our hope is that the population-level framework introduced, its analysis, and the

interpretation of the model results would inspire others to expand and improve on this work

so that a solid and tested framework would be eventually developed.

4.3 The Mathematical Modeling Framework

We develop two models to shed some light on how the interactions among individual

factors, the sociocultural environment, and nutrition programs impact the dynamics of eat-
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Figure 4.2: Pilot study results showing: baseline measures of participants (top left), and

vegetable selection (top right) and vegetable consumption (bottom middle) where days 1

and 2 represent baseline, days 3 to 6 are the intervention period, and days 7 to 8 represent

the testing period (Wadhera et al., n.d.).

ing behaviors and distribution of eaters in school settings. A typical school population can

be considered to be composed of two types of students: moderately healthy individuals,

denoted M(t), or those who eat a ‘moderate’ amount of fruits, 100% fruit juice, or vegeta-

bles (FJV) (25–50% of “My Plate” guidelines) and the ‘less’ healthy individuals, denoted

L(t), or those who eat a ‘low’ amount of FJV (less than 25% of “My Plate” guidelines).

The first model considers the simplest scenario, where school nutrition programs influence

some L-eaters to modify their diets to become M-eaters but remain in the same environ-

ment. However, prior field studies suggest the impact of nutrition education is low and
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hence this recovery is temporary, suggesting that M-eaters can break their ‘good’ diet, a

form of recidivism. The second model, incorporates the impact of ‘positive’ food associa-

tion learning via a Ratatouille effect. Both M- and L-eaters can enter a program, in which,

some students learn food association techniques, denoted A(t), where eventually some pro-

portion will develop sustainable food preferences, denoted P(t). In these next subsections,

we describe each model, corresponding results, and the conditions under which the diet

dynamics are altered.

4.3.1 Absence of Food Association, Brief Recovery, and Recidivism

The total population of students, denoted N, is made up of M- and L-eaters. The average

time that a student spends in Pre-Kindergarten to 8th grades (10 years) is denoted 1/µ . A

proportion of L-eaters can shift to M-eaters after exposure to a nutrition program, denoted

f , which means that L-eaters shift to M-eaters but do not change eating environments. The

average time that an individual spends in the L-eater state before returning to the M-eater

state is 1/f . However, the diet changes are temporary due to recidivism since M-eaters can

shift back to L-eaters (see Figure 4.3 for a schematic diagram and Table 4.1 for variable

and parameter definitions). This system is governed by the following equations,

M0 = L� (l +µ)M+fL,

L0 = lM� (f +µ)L, (4.1)

where l = bL/N, represents the fraction of L-eaters in the population that interact with

M-eaters, which in turn, lead to the conversion of M- into L-eaters at the rate b , via a social

‘contagion’ process. The contagion process would be considered successful as long as the

interactions between M and L lead to an increase in the number of L’s. The number of new

students entering the school per year is denoted by L = µN.
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Figure 4.3: A schematic diagram of Model 1 with ‘moderately’ healthy eaters M and ‘less’

healthy eaters L.

Table 4.1: Definition of Model 1 Parameters.

Parameter Value Unit Description

M/N 0.9 dimensionless Proportion of ‘moderately’ healthy individuals

L/N 0.1 dimensionless Proportion of ‘less’ healthy individuals

b 1.8 1
year Peer influence rate shifting a M- to an L-eater

f varies 1
year Exposure to nutrition programs

µ 0.10 1
year Per-capita student entry and removal rate

The control reproduction number, Rc,1, is a threshold value permitting the assessment of

true success of a nutrition education program. Here, it is defined as a function of the

nutrition education program rate f ,

Rc,1(f) =
b

µ +f
,

where 1/(µ +f) represents the total average time spent in the district as an L-eater before

shifting to an M-eater following a nutrition education program. When there is no nutrition

116



education program, that is f = 0, then Rc,1(f) becomes,

Rc,1(0) =
b
µ
,

that is, the threshold becomes the product of b , the effective conversion rate per L, and 1/µ ,

the average time a student remains in the education system. The above simplistic model

will not be used to highlight the effectiveness or lack thereof of nutrition education on al-

tering the prevalence of L-eaters. However, this model assumes that the educational effort

(per person) modelled by f remains part of the culture and it is continuously implemented.

Our pilot data (Wadhera et al., n.d.) suggested that L/N = 0.7 (i.e., 70%), hence at equilib-

rium L/N = 1� 1/Rc,1(0) and M/N = 1/Rc,1(0). With 1/Rc,1(0) = 0.3 and 1/µ = 10

years, we can estimate b/µ = 1/0.3, or b = (1/0.3) · (1/10) = 1/3 ' 0.33. However,

this only captures observations during school lunch periods and does not consider other

daily diet activities. Using slightly modified initial values, our model simulations show

that increasing the nutrition programs, f , will decrease the proportion of L/N eaters (see

Figure 4.4). A sociocultural environment with mostly M-eaters is achieved for large val-

ues of f . If Rc,1(f) > 1, then the amount of L-eaters would increase with the proportion

of non-converts decreasing. In the long-term, the model would achieve a steady state,

that is, the student population will settle into a ‘fixed’ proportion of L-eaters (L/N) and

M-eaters (M/N). If Rc,1(f) < 1, then the population would consist of mostly M-eaters

instead of L-eaters in the long-run. The system is rescaled such that X = M/N, Y = L/N,

and N/N = X +Y = 1. There are two equilibrium points (in proportions) are: the diet-

problem-free state

E0,1 = (X0,1,Y0,1)
0 = (1,0)0

and the diet-problem-endemic state

E1,1 = (X1,1,Y1,1)
0 =

✓
1

Rc,1
,1� 1

Rc,1

◆0
.
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The prime 0 here denotes vector transpose. We claim that E1,0 is globally asymptotically

stable if and only if Rc,1  1 while E1,1 is globally asymptotically stable whenever it exists

(i.e., if and only if Rc,1 > 1). Hence, the inequality Rc,1  1 is equivalent to

1
f
 1/µ

Rc,1(0)�1
.

This means that the shorter the average time spent in the L-eater state is, the better chance

we have to eliminate the diet problem at the population-level.
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Figure 4.4: The rate of conversion from L- to M-eaters (f ) are varied. There is a minimal

impact on the proportion of L-eaters compared to no education program (solid), where

increasing the implementation yields mostly M-eaters (dashed dotted).

4.3.2 Ratatouille Effect

A slightly modified version of Model (4.1) permits the study of food association learn-

ing with varying levels of effectiveness. Here, M-eaters will enter the food association

learning program at the per-capita rate g1. After association learning, a portion p will be-

come food preference learners (P-eaters) at the combined rate pa , in which, we consider

the food association learning program successful. Recidivism of A-eaters, where they re-

turn to old ways of eating, as M-eaters occurs at the rate (1� p)a , or as L-eaters after
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social interactions with L-eating peers occurs at rate rl , where l = bL/N. The M-eaters

who do not enter the food association program would either maintain current eating habits

or by social interactions with peers, l , they would become L-eaters. Finally, L-eaters can

shift to M-eaters at rate f or they join the food association program and therefore transit to

A-eaters at rate g2 (see Table 4.2 for variable and parameter definitions and Figure 4.5 for a

schematic diagram). This new model is governed by the following equations,

M0 = L� (µ +l + g1)M+fL+(1� p)aA,

A0 = g1M+ g2L� (rl +µ +a)A, (4.2)

L0 = lM� (f + g2 +µ)L+ rlA,

P0 = paA�µP,

where the total population is N = M+L+A+P and student school entry rate is L = µN.

Model (4.2) is rescaled in terms of sub-population proportions: X = M/N,W = A/N,Y =

L/N, and Z = P/N. The diet-problem-free equilibrium is E0,2 = (X0,2,W0,2,0,Z0,2)0, where

X0,2 =
µ(a +µ)

(a +µ)(g1 +µ)� (1� p)ag1
,

W0,2 =
µg1

(a +µ)(g1 +µ)� (1� p)ag1
,

Z0,2 = 1�X0,2 �W0,2.

It is locally asymptotically stable if and only if

Rc,2 = (1�q)Rc,1, (4.3)

where Rc,2 is the control reproduction number for the model with the ratatouille effect.

The proportion, q = (pa+(1�r)µ)g1
µ(a+µ+g1)+pag1

, represents the reduction in the control reproduction

number Rc,1 due to the application of the education association program. The analysis

reveals further that the rescaled model shows the existence of subcritical endemic states

(backward bifurcation phenomenon) if and only if the following set of inequalities is held
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Figure 4.5: A schematic diagram of Model 2 with ‘moderately’ healthy eaters M, ‘less’

healthy eaters L, food association learners A, and food preference learners P.

f > f c, r1 < r < r2, p > pc, (4.4)

that is, if 1
f is small enough, the susceptibility is within some pre-specified range, and the

proportion of preference learners is high enough where

f c =
µ(g2 + g1 +2µ)+2(g1 +µ)

p
µ(g2 +µ)

g1
,

r1 =
a +µ

2(f +µ + g1)

2

4g2

g1
+

f
µ
�1�

s✓
g2

g1
+

f
µ
�1
◆2

�4
✓

g2 +µ
g1

◆✓
1+

g1 +f
µ

◆3

5 ,

r2 =
a +µ

2(f +µ + g1)

2

4g2

g1
+

f
µ
�1+

s✓
g2

g1
+

f
µ
�1
◆2

�4
✓

g2 +µ
g1

◆✓
1+

g1 +f
µ

◆3

5 ,

pc =
µ
⇥
(rg1 +a +µ)2 +(r�1)[rg1(f +µ)� g2(a +µ)]

⇤

a[rg1(f +µ)� g2(a +µ)]
.
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Table 4.2: Definition of Model 2 Parameters.

Parameter Value Unit Description

M/N 0.4 dimensionless Proportion of ‘moderately’ healthy individuals

L/N 0.1 dimensionless Proportion of ‘less’ healthy individuals

A/N 0.2 dimensionless Proportion of food association learners

P/N 0.3 dimensionless Proportion of food preference learners

b 1.8 1
year Peer influence rate shifting a M- to an L-eater

g1 0.35 1
year Entry rate into food association program as an M-eater

g2 0.06 1
year Entry rate into food association program as an L-eater

p varies dimensionless Proportion of those who become “preference learners”

a 0.4 1
year Effectiveness rate of food association learning

f 0.6 1
year Recidivism rate from a L- to an M-eater

r 0.1 dimensionless Denotes the relative susceptibility of A-eaters with respect

to M-eaters who shift to an L-eater

µ 0.10 1
year Per-capita student entry and removal rate

Thus, if Condition (4.4) holds, then the model has two diet-problem-endemic equilibria for

Rc,2 < 1. Figure 4.6 shows the bifurcation diagram for the ratatouille model in the plane

(Rc,2,Y ), where the solid curve corresponds to a diet-problem-endemic equilibrium with

higher level of the endemic prevalence of L-eaters and the dotted curve corresponds to a

diet-problem-endemic equilibrium with lower level of L-eaters’ endemic prevalence, and

both exist when Rc,2 < 1. Further, as Rc,2 decreases, both curves approach each other

until reaching the turning point (Safan, Heesterbeek, & Dietz, 2006) at which both of them

coalesce. The value of the control reproduction number at this turning point is given by

R?1
c,2, where

R?1
c,2 =

(a +µ + rg1)[g2(pa +µ)+µ(r(f +µ � g1)� (a +µ))+2
p

DRc,2 ]

r(f + g2 +µ)[(a +µ)(g1 +µ)� (1� p)ag1]
(4.5)
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and

DRc,2 = rg1g2µ2 +µ[pa +(1� r)µ][rg1(f +µ)� g2(a +µ)].
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Figure 4.6: The proportion of unhealthy-eaters, or L-eaters, at equilibrium as a function of

the control reproduction number Rc,2. Simulations are done for µ = 0.1,g1 = 0.35,g2 =

0.06,a = 0.4,f = 0.06,r = 0.8258 and p = 0.9298.

In fact, the value Rc,2 = R?1
c,2 is, a threshold value, that determines the nonexistence and

existence of diet-problem-endemic states. If at least one of the conditions (4.4) is not

satisfied, then the model shows the existence of forward bifurcation (supercritical endemic

state), in which, a unique diet-problem-endemic equilibrium exists and is stable for Rc,2 >

1, while no endemic state exists for Rc,2 < 1. Hence, Rc,2 = 1 is the threshold level

that indicate the nonexistence and existence of diet-problem-endemic states. Thus, we

summarize the above results as follows: the critical control reproduction number below

which diet-problem-endemic equilibria do not exist is given by
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R?
c,2 =

8
>><

>>:

R?1
c,2 if the bifurcation is backward,

1 if the bifurcation is forward.
(4.6)

Diet-problem containment possibility

Addressing the possibility of containing (getting rid of) the diet problem is certainly of

utmost importance. Here, we discuss the existence of necessary and sufficient conditions

required to eliminate the diet-endemic problem based on the implementation of a food as-

sociation program with effectiveness p2 [0,1]. In the literature of mathematical epidemiol-

ogy, the basic reproduction number R0 is a key concept, the public health cornerstone used

to determine the minimum effort required to eliminate an infection when the model doesn’t

exhibit the existence of multiple endemic equilibria. However, in the last two decades sev-

eral models exhibited bistable endemic states, where backward bifurcation and hysteresis

phenomena are shown to exist. In such cases, R0 < 1 is a necessary but not sufficient

condition for eliminating the infection. For a model with backward bifurcation, it has been

shown in (Safan et al., 2006) that the ratio R0/R?
0 could be interpreted as a reproduction

number and so, reducing this ratio to below one ensures an effective control of the infection.

Thus, if we solve the inequality Rc,2/R?
c,2 < 1 in terms of the probability p, we get

p > p? =

8
>><

>>:

p?1 if the bifurcation is backward,

p?2 if the bifurcation is forward
(4.7)

where

p?1 = 1� 1
ag2

2


Q1 +

q
Q2

1 � g2
2 Q2

�
,

p?2 = 1� 1
ag1


(a +µ)(g1 +µ)� µb (a +µ + rg1)

f +µ

�
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and

Q1 = g2[(a +µ)(g2 +µ)+ rµ(f + g1 +µ �b )]�2rµg1(f + g2 +µ),

Q2 = [(a +µ)(g2 +µ)+ rµ(f + g1 +µ �b )]2 �

4rµ[(f + g2 +µ)(a +µ)(g1 +µ)�µb (a +µ + rg1)].

Formula (4.7) determines the critical probability (p?) of effectiveness of a food associa-

tion program above which the diet-problem-endemic state(s) disappear. Figure 4.7 shows

the critical level of the food association effectiveness p? as a function of the contact rate

b . The vertical line b = b� separates between nonexistence and existence of a back-

ward bifurcation. Therefore, for b  b�, the curve p = p?2 separates between existence

and nonexistence of diet-problem-endemic equilibria. Thus, a probability of effectiveness

slightly above p?2 ensures an effective control of the diet-endemic problem. However, if

b� < b < b+, then backward bifurcation exists and p = p?1 is the threshold above which

diet-problem-endemic equilibria do not exist. Thus, a food association program with prob-

ability of effectiveness slightly higher than p?1 exhibits a die-out of the diet-endemic prob-

lem, where

b� = f +µ � g1 �
a +µ

r
+

g2

r

✓
1+

a
µ

pc
◆
,

b+ = f +µ � g1 �
a +µ

r

✓
1� g2

µ

◆
+

2

s
g1g2

r
+

a +(1� r)µ
rµ

✓
g1(f +µ)� g2(a +µ)

r

◆
.

Here, the level b = b+ represents the value at which p?1 hits the upper bound p = 1. Thus,

for b > b+, there is no feasible value of p that ensures a wash out of the diet-endemic

problem and we may seek another control strategy to first reduce the contact rate b to

below b+ and then apply a food association program with high enough probability of

effectiveness. This ensures an effective control of the diet-problem.
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Figure 4.7: The critical probability of effectiveness p? subdivides the (b , p) plane into re-

gions (denoted by 0,1, and 2) according to the number of diet-problem-endemic equilibria.
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Figure 4.8 shows a time series analysis for the model for a fixed b and four different

levels of p. The proportion of L-eaters approaches zero when p = 0.5 and p = 1, while

when p = 0 and p = 0.25, it approaches a constant value. This implies that if the efficacy

of the program is 50% or greater, then the M- and A-eaters are reduced, while L-eaters

approach zero, and P-eaters are largest, compared to a program with lower efficacy (p <

0.5). Hence, a food association program that leads to food preference learning can be an

effective nutrition intervention strategy. However, this would require knowledge on the

culture, norms, and values of the community to create and implement such a program.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

 Time

 P
ro

p
o
rt

io
n
 o

f 
th

e
 P

o
p
u
la

tio
n

 Moderately Healthy

 

 

p = 0, R
c,4

 =1.6185

p = 0.25, R
c,4

 =1.1464

p = 0.5, R
c,4

 =0.88756

p = 1, R
c,4

 =0.61143

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

 Time

 P
ro

p
o
rt

io
n
 o

f 
th

e
 P

o
p
u
la

tio
n

 Less Healthy

 

 

p = 0, R
c,4

 =1.6185

p = 0.25, R
c,4

 =1.1464

p = 0.5, R
c,4

 =0.88756

p = 1, R
c,4

 =0.61143

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

 Time

 P
ro

p
o
rt

io
n
 o

f 
th

e
 P

o
p
u
la

tio
n

 Food Association Learners

 

 

p = 0, R
c,4

 =1.6185

p = 0.25, R
c,4

 =1.1464

p = 0.5, R
c,4

 =0.88756

p = 1, R
c,4

 =0.61143

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

 Time

 P
ro

p
o
rt

io
n
 o

f 
th

e
 P

o
p
u
la

tio
n

 Food Preference Learners

 

 

p = 0, R
c,4

 =1.6185

p = 0.25, R
c,4

 =1.1464

p = 0.5, R
c,4

 =0.88756

p = 1, R
c,4

 =0.61143

Figure 4.8: Time series analysis for the subpopulation proportions for different values of

the food association efficacy probability p and the control reproduction number Rc,2.

4.4 Discussion

The goals of many nutrition programs are to instill healthy and sustainable eating habits

among young individuals. Since food association learning has been identified as a more

effective approach, we study its potential impact at the population-level through use of

mathematical models. Two models were developed in order to study eating behavior learn-
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ing and the resulting diet dynamics of young individuals. The first model considered the

case when there is no food association learning program and the second incorporated food

association and food preference learning. Results of Model (1) indicate that some nutrition

program at schools are better than none at all. If effective, or p large enough, then the food

association learning program is a potential impactful strategy at reducing the proportion

of L-eaters shown by the results of Model (2). These results demonstrate the importance

of nutrition education curriculum, learning, and socialization in schools. However, more

work is needed to understand how to create and implement an effective program so that it

incorporates the culture, norms, and values of the community, supporting the conclusions

of other studies (American Diabetes Association (ADA), 1999; Pérez-Rodrigo & Aranceta,

2001; Perez-Rodrigo & Aranceta, 2003; Story et al., 2008). Future work would more effec-

tively incorporate data from the literature. The parameter values we chose (see Tables 4.1

and 4.2) were qualitatively estimated based on observations from our pilot study (Wadhera

et al., n.d.) and the literature, but more work is needed to quantify these values.
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Chapter 5

EPILOGUE

The aim of this dissertation research was to address three issues related to type 2 dia-

betes and obesity utilizing quantitative and qualitative methods. Specifically, the progres-

sion, treatment, management, and prevention of type 2 diabetes and obesity. First, a theoret-

ical model was developed to describe the dynamics between insulin, glucose, and free fatty

acids. The explicit time delay model fitted to data and comparison with the minimal model

showed that the proposed model could predict the qualitative trends of insulin, glucose,

and free fatty acids relatively well. Second, statistical analyses of an individualized-based

intervention program revealed that diet and environment are important factors for weight

management. Third, contagion models were developed to assess the impact of food associ-

ation learning on eating behaviors in school settings, where results demonstrated that this

approach can be an impactful strategy. In conclusion, the value of this dissertation research

is in integrating multiple disciplines and methods bridging physiological, individual, and

population level approaches to address type 2 diabetes and obesity from a holistic perspec-

tive. These approaches can be extended to study chronic diseases and for the development

of sustainable healthy behaviors.
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Proof. Let G(t)> 0. The continuity of the solution of a differential equation indicate that
G(t) would be non-positive if there existed a t0 > 0 such that G(t0) = 0 and G(t) > 0 for
any 0  t < t0. Moreover, then dG

dt |t=t0  0, which is a contradiction since,

dG
dt

|t=t0 = b�aG(t0)I(t0)� eG(t0)

= b > 0 (A.1)

This proves that, if G(0)> 0, then G(t) will not disappear and is always positive. Similarly,
we can show that if I(0) > 0, then I(t) will also not vanish and that it is always positive.
Therefore, let I(0) > 0 and assume that 9 t0 > 0 such that I(t0) = 0 and I(t) > 0 for any
0  t < t0. Moreover, then, dI

dt |t=t0  0, which is a contradiction because,

dI
dt

|t=t0 = d f1(G(t0))+ p f2((F0))� cI(t0) = d f1(G(t0))+ p f2((F0))> 0 (A.2)

This proves that, if I(0) > 0, then I(t) will not disappear and is always positive. Finally,
taking a similar approach, we can show that if F(0) > 0, then F(t) will also not vanish
and that it is always positive. Therefore, let F(0) > 0 and assume that 9 t0 > 0 such
that F(t0) = 0 and F(t) > 0 for any 0  t < t0. Moreover, then, dF

dt |t=t0  0, which is a
contradiction because,

dF
dt

|t=t0 = g0 +
g1

1+
⇣

I(t0)
I2

⌘k �hF(t0) = g0 +
g1

1+
⇣

I(t0)
I2

⌘k > 0 (A.3)

In conclusion, this proves that if F(0) > 0, then F(t) will not disappear and is always
positive.
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Proof. It can be shown that for G0(t) b�eG, then G is bounded by 0  G  b
e if G0 <

b
e .

Similarly, it can be shown that F 0(t)  g0 +g1 �hF then F is bounded by 0  F  g0+g1
h

if F0  g0+g1
h .

Lastly, it can be shown that since both G and I are bounded then when I0(t) L�CI, I is

bounded by 0  I  L
c if I0 <

L
c where L = d ( b

e)
g

ag+( b
e)

g + p

⇣
g0+g1

h

⌘b

sb+
⇣

g0+g1
h

⌘b .
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The steady state is obtained by setting equations (2.5)-(2.7) equal to 0,

0 = b�aG⇤I⇤ � eG⇤ (C.1)

0 = d
(G⇤)g

ag +(G⇤)g + p
(F⇤)b

sb +(F⇤)b � cI⇤ (C.2)

0 = g0 +
g1

1+
⇣

I⇤
I2

⌘k �hF(t) (C.3)

Rearranging terms, we can express G⇤ (from equation C.1) and F⇤ (from equation C.3) as
follows:

G⇤ =
b

aI⇤+ e
,

and

F⇤ =
1
h

0

B@g0 +
g1

1+
⇣

I⇤
I2

⌘k

1

CA

Substituting G⇤ and F⇤ into equation (C.2), yields the equilibrium point implicitly in terms
of I⇤:

0 = d

� b
aI⇤+e

�g

ag +
� b

aI⇤+e
�g + p

 
1
h

 
g0 +

g1

1+
⇣

I⇤
I2

⌘k

!!b

sb +

 
1
h

 
g0 +

g1

1+
⇣

I⇤
I2

⌘k

!!b � cI⇤ (C.4)

In order to determine the number of roots in the system, we plot the two functions:

y1(I⇤) = d

� b
aI⇤+e

�g

ag +
� b

aI⇤+e
�g + p

 
1
h

 
g0 +

g1

1+
⇣

I⇤
I2

⌘k

!!b

sb +

 
1
h

 
g0 +

g1

1+
⇣

I⇤
I2

⌘k

!!b

y2(I⇤) = cI⇤

In Figure 2.2, we see that y1(I⇤) and y2(I⇤) intersect once, and thus, there is one positive
equilibrium point in the system.
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We analyze the stability here by first obtaining the characteristic equation. Let us define
A = ∂ (G0,I0,F 0)

∂ (G,I,F) , then,

A =

0

B@

∂G0

∂G
∂G0

∂ I
∂G0

∂F
∂ I0
∂G

∂ I0
∂ I

∂F 0

∂F
∂F 0

∂G
∂F 0

∂ I
∂F 0

∂F

1

CA

=

0

BBBB@

�aI⇤ � e �aG⇤ 0
0 �c p b (F⇤)b�1sb

(sb+(F⇤)b )2

0
�g1k

⇣
I⇤
I2

⌘k�1

I2

⇣
1+
⇣

I⇤
I2

⌘k⌘2 �h

1

CCCCA

and B = ∂ (G0,I0,F 0)
∂ (G(t�t),I(t�t),F(t�t)) , which yields,

B =

0

@
0 0 0

ag gdG(t�t)g�1

(ag+G(t�t)g )2 0 0
0 0 0

1

A

Now defining the characteristic equation we obtain the following,

H(l ) = l I �A�Be�lt

=

 l 0 0
0 l 0
0 0 l

!
�

0

BBBB@

�aI⇤ � e �aG⇤ 0
0 �c p b (F⇤)b�1sb

(sb+(F⇤)b )2

0
�g1k

⇣
I⇤
I2

⌘k�1

I2
⇣

1+
⇣

I⇤
I2

⌘k⌘2 �h

1

CCCCA
�

0

@
0 0 0

ag gdG(t�t)g�1

(ag+G(t�t)g )2 0 0
0 0 0

1

Ae�lt

=

0

BBBB@

l +aI⇤+ e aG⇤ 0
�ag gd(G⇤)g�1

(ag+(G⇤)g )2 e�lt l + c �p b (F⇤)b�1sb

(sb+(F⇤)b )2

0
g1k

⇣
I⇤
I2

⌘k�1

I2
⇣

1+
⇣

I⇤
I2

⌘k⌘2 l +h

1

CCCCA

To simplify the calculation, let

Â =�ag gd(G⇤)g�1

(ag+(G⇤)g )2 , B̂ =�p b (F⇤)b�1sb

(sb+(F⇤)b )2 , and Ĉ =
g1k
⇣

I⇤
I2

⌘k�1

I2

⇣
1+
⇣

I⇤
I2

⌘k⌘2 .

Now we have:

|H(l )|=

������

l +aI⇤+ e aG⇤ 0
Âe�lt l + c B̂

0 Ĉ l +h

������
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Evaluating the determinant gives:

= (l +aI⇤+ e)
����
l + c B̂

Ĉ l +h

�����aG⇤
����
Âe�lt B̂

0 l +h

����+0
����
Âe�lt l + c

0 Ĉ

����

After few algebraic steps, we can expand the equation,

= (l +aI⇤+ e)
⇥
(l + c)(l +h)� B̂Ĉ

⇤
�aG⇤⇥Âe�lt(l +h)� B̂ ·0

⇤
+0

= (l +aI⇤+ e)
⇥
l 2 +(c+h)l + ch� B̂Ĉ

⇤
�aG⇤(l +h)Âe�lt

Then, we can combine like terms and simplify to obtain the following,

= l 3 +l 2aI⇤+l 2e+l 2(c+h)+laI⇤(c+h)+le(c+h)+lch+ chaI⇤+ che�l B̂Ĉ
�B̂ĈaI⇤ � B̂Ĉe�laG⇤Âe�lt �aG⇤hÂe�lt

= l 3 +l 2⇥aI⇤+ e+ c+h
⇤
+l

⇥
aI⇤(c+h)+ e(c+h)+ ch� B̂Ĉ

⇤
�laG⇤Âe�lt

+chaI⇤+ che� B̂ĈaI⇤ � B̂Ĉe�aG⇤hÂe�lt

Now, let us define b1 = aI⇤ + e, b2 = c+ h, b3 = ch� B̂Ĉ, b4 = aG⇤Â which gives the
following characteristic equation:

|H(l )| = l 3 +l 2(b1 +b2)+l (b1b2 +b3)�lb4e�lt +b1b3 �b4he�lt (D.1)
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In order to look at the local stability of some positive equilibrium point (G⇤, I⇤,F⇤) for
our system, let us consider first the case when there is no delay and thus, assume t = 0.
Evaluating equation (D.1) at l = 0 gives,

|H(l )|= l 3 +l 2(b1 +b2)+l (b1b2 +b3 �b4)+b1b3 �hb4 (E.1)

Applying Routh-Hurwitz Stability Criterion (Allen, 2007) for a cubic polynomial, that is,
for the cubic polynomial:

a0s3 +a1s2 +a2s+a3 = 0,

where all the ai are positive. The Routh array is
2

664

s3 a0 a2
s2 a1 a3
s1 a1a2�a0a3

a1
s0 a3

3

775

so the condition that all roots have negative real parts is a1a2 > a0a3. Therefore, in this
case, the equilibrium point is asymptotically stable if

(b1 +b2)(b1b2 +b3 �b4)> b1b3 �hb4.
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