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ABSTRACT 

Missing data are common in psychology research and can lead to bias and 

reduced power if not properly handled. Multiple imputation is a state-of-the-art missing 

data method recommended by methodologists. Multiple imputation methods can 

generally be divided into two broad categories: joint model (JM) imputation and fully 

conditional specification (FCS) imputation. JM draws missing values simultaneously for 

all incomplete variables using a multivariate distribution (e.g., multivariate normal). FCS, 

on the other hand, imputes variables one at a time, drawing missing values from a series 

of univariate distributions. In the single-level context, these two approaches have been 

shown to be equivalent with multivariate normal data. However, less is known about the 

similarities and differences of these two approaches with multilevel data, and the 

methodological literature provides no insight into the situations under which the 

approaches would produce identical results. This document examined five multilevel 

multiple imputation approaches (three JM methods and two FCS methods) that have been 

proposed in the literature. An analytic section shows that only two of the methods (one 

JM method and one FCS method) used imputation models equivalent to a two-level joint 

population model that contained random intercepts and different associations across 

levels. The other three methods employed imputation models that differed from the 

population model primarily in their ability to preserve distinct level-1 and level-2 

covariances. I verified the analytic work with computer simulations, and the simulation 

results also showed that imputation models that failed to preserve level-specific 

covariances produced biased estimates. The studies also highlighted conditions that 

exacerbated the amount of bias produced (e.g., bias was greater for conditions with small 
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cluster sizes). The analytic work and simulations lead to a number of practical 

recommendations for researchers. 
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Chapter 1. Introduction 

Missing data are common in psychology research and can lead to reduced power 

and bias if not properly handled. Multiple imputation is a state-of-the-art missing data 

method recommended by methodologists (Schafer & Graham, 2002). Although multiple 

imputation has advanced greatly in recent years, methods for handling missingness in 

multilevel data have received less attention. For example, implementations of multilevel 

imputation may assume multivariate normality, may not impute at level two, may not 

model random slopes between incomplete variables, etc. Each current implementation of 

multilevel imputation suffers from one or more of these deficiencies, though the exact 

constellation of deficiencies differs across implementations of multilevel imputation.  

Multiple imputation methods can generally be divided into two broad categories: 

joint model (JM) imputation (Rubin & Schafer, 1990; Schafer, 1997) and fully 

conditional specification (FCS) imputation (Raghunathan, Lepkowski, Van Hoewyk, & 

Solenberger, 2001; van Buuren, Brand, Groothuis-Oudshoorn, & Rubin, 2006). JM draws 

missing values simultaneously for all incomplete variables using a multivariate 

distribution (e.g., multivariate normal). FCS, on the other hand, imputes variables one at 

a time, drawing missing values from a series of univariate distributions. In the single-

level context, these two approaches have been shown to be equivalent with multivariate 

normal (MVN) data (Hughes et al., 2014). However, less is known about the similarities 

and differences of these two approaches with multilevel data, and the methodological 

literature provides no insight into the situations under which the approaches would 

produce identical results.  
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Historically, the JM approach became the predominant method for single-level 

imputation of multivariate normal data beginning with Schafer's (1997) seminal book. 

FCS was developed later as a tool for dealing with mixtures of categorical and continuous 

variables (Raghunathan et al., 2001; van Buuren et al., 2006) – a situation that JM could 

not accommodate at the time (JM can now handle mixtures of categorical and continuous 

variables through the use of latent variables, e.g., Goldstein, 2011). Because the single-

level JM approach usually (but not necessarily) implements a saturated model, it is able 

to preserve associations for a wide range of additive models. In the context of single-level 

MVN data, FCS possesses the same qualities, as it yields the same expectations as JM 

(Hughes et al., 2014). However, the same is not necessarily true of multilevel imputation 

methods. 

Three variations of JM imputation have been proposed for multilevel data 

(Asparouhov & Muthén, 2010a, 2010f; Schafer, 2001; Schafer & Yucel, 2002). Although 

these methods share much in common, they possess subtle differences. To date, no 

methodological research has investigated the differences among the JM models, in 

particular their ability to produce imputations that preserve characteristics of the 

population distribution. Thus, one of the overarching goals for this project was to 

examine the situations under which the three JM methods reproduce (or preserve) the 

mean and covariance structure of a population random intercept model with multivariate 

normal data. To my knowledge, two FCS models have been proposed in the literature to 

date, only one of which is currently implemented in publicly available statistical software 

(Carpenter & Kenward, 2012, p. 221; van Buuren & Groothuis-Oudshoorn, 2011). Like 

JM, no methodological research has investigated the differences between the FCS models 
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or their ability to preserve a multilevel data structure. Thus, the second overarching goal 

for this project was to examine the situations under which FCS imputation reproduces the 

mean and covariance structure of a population random intercept model with multivariate 

normal data. The analytic work for these two goals also provided insight into the 

situations where the three JM and two FCS methods are equivalent.  

The organization of the document is as follows. Chapter 1 provides background 

on missing data mechanisms, multilevel modeling, single-level imputation, and 

multilevel multiple imputation. Chapter 2 reviews the literature on multilevel imputation. 

Chapter 3 discusses the methods used in the dissertation studies. Chapter 4 presents the 

results from the dissertation studies. Finally, Chapter 5 discusses the findings and 

presents practical recommendations. 

Missing Data Mechanisms 

To demonstrate the advantages and limitations of modern methods for handling 

missing data, it is necessary to first explain the concept of missing data mechanisms. 

Missing data mechanisms describe the probability of missing data on a variable as a 

function of the missing (unobserved) values on the variable, the values of other measured 

variables, and the values of unknown (unmeasured) variables. The concept of missing 

data mechanisms is important in missing data research, as approaches to handling 

missing data assume a particular missing data mechanism. Rubin (1976) formalized the 

concept of missing data mechanisms by treating missing data indicators as variables and 

assigning distributions to these variables. Given a set of data, Y, one can form a new 

variable, M, that equals one whenever a value is missing and zero whenever the value is 

observed. Because M is a variable, it has a distribution that may or may not be related to 
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other variables. Below I define the missing data mechanisms based on descriptions of the 

distribution of M as a function of the observed data, Yobs, and the unobserved or would-

be values, Ymis. The notation and terminology have changed since the seminal article by 

Rubin (1976). As such, I employ terminology and notation that are commonly used in 

missing data literature today (e.g., Little & Rubin, 2002; Schafer & Graham, 2002). I 

focus on the three most commonly used mechanisms: missing not at random (MNAR), 

missing at random (MAR), and missing completely at random (MCAR). 

Data are missing not at random (MNAR) if the propensity for missingness is 

related to the unobserved or would-be values, Ymis, and the observed data, Yobs. 

Mathematically, this conditional probability is expressed by the following equation: 

 

  Pr( | ) Pr( | , )mis obsM Y M Y Y=   (1.1) 

   

Equation 1.1 indicates that missingness is related to the missing values, and this 

relationship remains after conditioning on the observed variables included in the model. 

For example, in survey applications NMAR missingness could occur if questions about 

income go unanswered by those with very large or very small incomes. 

Data are missing at random (MAR) if the propensity for missingness is related to 

observed data, but is not related to the unobserved data after conditioning on the observed 

data. Mathematically, this conditional probability is expressed by the following equation: 

 

 Pr( | ) Pr( | )obsM Y M Y=   (1.2) 
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Any relationship between missingness and the unobserved values disappears after 

conditioning on the observed data. Returning to the income example from the previous 

paragraph, those with very large or very small incomes may not answer questions about 

their incomes. If this relationship disappears after conditioning on another variable, such 

as education level, the mechanism is MAR. 

Data are missing completely at random (MCAR) if the propensity for missingness 

is not related to the data. Mathematically, this conditional probability is expressed by the 

following equation: 

 

 ( )Pr( | ) PrM Y M=   (1.3) 

 

There is no relationship between the data (either observed or unobserved) and 

missingness. For example, a research assistant accidentally losing a few questionnaires 

would result in an MCAR mechanism, as would planned missing data designs. 

Missing data mechanisms are important because older missing data techniques 

(e.g., listwise deletion) assume MCAR missingness and are biased for both MAR and 

MNAR mechanisms. Modern missing data handling techniques (i.e., multiple imputation, 

maximum likelihood analysis, and Bayesian simulation) are consistent for MCAR and 

MAR data. Analysis methods have been developed for MNAR data (e.g., adaptations of 

the aforementioned methods that explicitly model missingness under a set of strict, 

untestable assumptions), but these approaches are limited in their utility and are not 

discussed here. The multilevel imputation methods investigated in this document require 

an MAR (or MCAR) mechanism. The consistency property should hold, provided that 
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the imputation model adequately preserves the population data structure. As stated 

previously, the goal of this study is to investigate the situations in which existing 

imputation approaches achieve this goal. 

Introduction to Multilevel Modeling 

For the sake of clarity, it is necessary to review single-level univariate regression 

notation before proceeding to multilevel model notation. Equation 1.4 shows a single-

level univariate multiple regression model predicting y from two predictors, x1 and x2.  

 

 ( ) ( )0 1 21 2i i i iy x xβ β β ε= + + +   (1.4) 

 

β0 is the intercept term, β1 and β2 are the slope terms and εi is the residual term. Notice 

that 1ix , 2ix , iε  and iy  all have the same i subscript, meaning that they are specific to 

observation i. This subscript is normally not included for single-level regression models, 

but I include it here for comparison against multilevel models presented later. The 

regression coefficients do not have a subscript to denote the observation number, as they 

are the same for all observations in the dataset. 

Multilevel or hierarchical data consist of one set of units (level one) nested within 

another set of units (level two). Examples of multilevel data include: students nested 

within schools; children nested within families; and observations nested within 

individuals. Level-2 units are also referred to as clusters. In contrast to the univariate 

single-level model, the univariate multilevel model allows for between-cluster variation 

in the intercept and slope coefficients. This is important because the cluster-level 

intercept of the criterion and the regression coefficients may differ between clusters.  



 

7 

As an example of cluster-level variation in coefficients, consider a study of the 

relationship between daily stressors and daily affect. In this hypothetical study, daily 

measures of stressors and affect are both nested within people. People may differ greatly 

in terms of their average levels of affect. As such, one might find that the person-level 

(cluster-level) intercepts for affect may differ among people. This would correspond to a 

random intercept term in a multilevel model. At the observation level (daily), one might 

examine the relationship between daily stressors and daily affect. For example, some 

people may be relatively immune to daily stressors, and the regression of daily affect on 

daily stressors would have a coefficient of zero for these people. That is, an increase in 

daily stressors would not be associated with a change in affect for these people. Other 

people may be greatly affected by daily stressors, and may exhibit increased levels of 

negative affect as a result of increased daily stressors. A level-1 slope coefficient that 

varies across people corresponds to a random slope in a multilevel model. Thus, in such a 

study, one would expect to see cluster-level variation in both the intercept term (the 

person-level intercept for affect) and the slope term (the relationship between daily 

stressors and daily affect). 

Multilevel models are often described using a separate model for each level 

(Raudenbush & Bryk, 2002). A two-level multilevel model would be described as the 

combination of a level-1 model and a level-2 model. Multilevel models can be applied to 

data with more than two levels, but such models are beyond the scope of this paper. The 

level-1 model describes differences between level-1 units. The level-2 model describes 

differences between clusters. Consider a multilevel model where the criterion, y, is 



 

8 

predicted by two level-1 variables, x1 and x2. The level-1 model consists of a single 

equation:  

 

 ( ) ( )0 1 21 2ij j j ij j ij ijy x x rβ β β= + + +   (1.5) 

 

The subscripts i and j for each variable indicate that the value of the variable is for level-1 

unit i in cluster j. 0 jβ  is cluster j’s intercept. 1 jβ  is the cluster’s slope on 1ijx . 2 jβ  is 

the cluster’s slope on 2ijx . ijr  is the level-1 residual, and is the difference between the 

predicted and observed scores on the criterion. The distribution of the level-1 residuals is 

assumed to be normal, centered at zero, and with spread equal to the pooled within-

cluster residual variance, 2
rσ . 

  

 ( )2~ 0,ij rr N σ   (1.6) 

 

The level-2 model consists of a set of equations, one for each of the level-1 

coefficients. Because this example has three level-1 parameters ( 0 jβ , 1 jβ , and 2 jβ ), the 

level-2 model consists of three equations: 

 

 0 00 0j juβ γ= +   (1.7) 

 1 10 1j juβ γ= +   (1.8) 

 2 20 2j juβ γ= +   (1.9) 



 

9 

 

00γ  is the average intercept of the dependent variable. 0 ju  is the difference between the 

intercept of the dependent variable in cluster j and the grand mean of the dependent 

variable. 10γ  is the weighted average across clusters of the slope of ijy  on 1ijx . 1 ju  is 

the difference between the average slope of ijy  on 1ijx  and the cluster-specific slope of 

ijy  on 1ijx  in cluster j. 20γ  is the weighted average across clusters of the slope of ijy  on 

2ijx . 2 ju  is the difference between the average slope of ijy  on 2ijx  and the cluster-

specific slope of ijy  on 2ijx  in cluster j. To summarize, 00γ , 10γ , and γ20 are 

coefficients that describe the average regression plane across all of the clusters. 

Collectively, the γ  coefficients are referred to as level-2 coefficients, or fixed effects. 

0 ju , 1 ju , and 2 ju  describe how the cluster-specific regression coefficients differ from 

the fixed effects. Collectively, the u coefficients are referred to as level-2 residuals or 

random effects. The distribution of the level-2 residuals is assumed to be multivariate 

normal, centered at zero, and with spread equal to the level-2 covariance matrix, T.  

 

 
0

1

2

0
E 0

0

j

j

j

u

u

u

   
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  (1.10) 
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j
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u

τ τ τ
τ τ τ
τ τ τ

   
   = =   
     

T   (1.11)1 

 

Random effects do not have to be included for all of the level-1 predictors. The random 

effect for the intercept, 0 ju , should always be included, but the random slopes, 1 ju  and 

2 ju , are optional terms. 

In addition to level-1 variables (the values of which differ between level-1 units), 

multilevel models allow the inclusion of level-2 (i.e., cluster-level) variables. The values 

of the level-2 variables differ across clusters but not across level-1 units within a cluster. 

The following equations describe a model that is identical to the model presented above, 

but with the addition of a level-2 predictor ( jw ). 

 

 ( ) ( )0 1 21 2ij j j ij j ij ijy x x rβ β β= + + +   (1.12) 

 ( )0 00 01 0j j jw uβ γ γ= + +   (1.13) 

 ( )1 10 11 1j j jw uβ γ γ= + +   (1.14) 

 2 20 2j juβ γ= +   (1.15) 

 

Note that jw  has a j subscript but not an i subscript. This indicates that it is a level-2 

predictor and its values are allowed to vary across clusters but not across level-1 units 

                                                      
1 The use of “Var” in Equation 1.11 refers to the variance of the vector. The variance of a vector is a 
matrix, which is the variance-covariance matrix of the elements in the vector. 
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within a cluster. jw  is included as both a main effect and an interaction term. The 

inclusion of jw  in the level-2 equation for 0 jβ  allows jw  to change the cluster intercept, 

0 jβ . Thus, 10γ  quantifies the change in the cluster intercept, 0 jβ , that results from a 

one-unit change in jw . This is the main effect of jw . The inclusion of jw  in the level-2 

equation for 1 jβ  allows jw  to change β1j, the average slope of ijy  on 1ijx . 11γ  

quantifies the change in 1 jβ , the average slope of ijy  on 1ijx , for a one-unit change in 

jw . Although the level-1 and level-2 notational system does not include a product term, 

the 11γ  coefficient represents the interaction between 1ijx  and jw . The notational system 

that I describe below clarifies this point.  

As the numbers of level-1 and level-2 predictors increase, the level-1/level-2 

notation can become tedious to write and to interpret. As such, reduced form notation is 

often used instead. Level-1/level-2 equations can be written in reduced form notation by 

substituting the right side of each of the level-2 equations into the level-1 equation 

wherever a level-1 coefficient appears (e.g., replacing the β0j coefficient in Equation 1.12 

with the right side of Equation 1.13). Doing so with Equations 1.13 through 1.15 yields 

the following result: 

 

 
( ) ( ) ( )

( )( ) ( ) ( )
00 01 10 20

11 0 1 2

1 2

1 1 2

ij j ij ij

ij j j j ij j ij ij

y w x x

x u u x u x rw

γ γ γ γ

γ

= + + +

+ + + + +
  (1.16) 
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In reduced form notation, 11γ  is multiplied by ( 1ijx )( jw ), showing that the coefficient 

11γ  quantifies the interaction between 1ijx  and jw . 

Multilevel models are a subclass of models called mixed models, which are 

models that account for both fixed and random effects (Eisenhart, 1947). Mixed model 

theory was developed primarily in the area of genetics research, and was formalized by 

Goldberger (1962), Harville (1976a, 1976c), and Henderson (1950, 1963). I employ both 

mixed model theory and mixed model notation for the remainder of this document. 

Mixed model notation, as developed by Henderson, is as follows: 

 

 j j j j j= + +y X β Z u e   (1.17) 

 

jy  is the jn  x 1 dependent variable vector for cluster j, where jn  is the number of level-

1 units in cluster j. jX  is the jn  by p fixed effect covariate matrix for cluster j, where p 

is the number of fixed effects. Note that jX  contains all of the level-1 and level-2 

predictor variables, as well as product terms for the interactions and a unit vector for the 

intercept. β is the p x 1 vector of fixed effects (level-2 coefficients) that are common to 

all clusters. Note that β contains the γ’s from the Raudenbush and Bryk notation. Zj is the 

jn  by q random effect covariate matrix for cluster j, where q is the number of random 

effects. jZ  contains the subset of complete level-1 variables that are allowed to have 

random effects on the dependent variable, and also includes a unit vector for the 

intercept. So, jZ  contains a subset of the X’s from Raudenbush and Bryk notation, plus 
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an intercept vector. ju  is the q x 1 vector of level-2 residuals (i.e., residual intercepts and 

slopes) for cluster j. ju  contains the u’s from Raudenbush and Bryk notation. je  is the 

jn  x 1 vector of level-1 residuals for cluster j. It contains the r’s from Raudenbush and 

Bryk notation.  

To link the mixed model notation to the previous notational system, consider a 

cluster of jn  = 3 cases. In mixed model notation, the model from Equation 1.16 would be 

as follows: 

 

 

00

1 1 1 1 1 1 0 101

2 2 2 2 2 2 1 210

203 3 3 3 3 3 2 3

11

1 1 2 1 1 1 2

1 1 2 1 1 1 2

1 1 2 1 1 1 2

j j j j j j j j j j

j j j j j j j j j j

j j j j j j j j j j

y w x x x x x u r

y w x x

w

wx x x u r

y w x x x x x uw r

γ
γ
γ
γ
γ

 
          
          

= + +          
          
          
  

 (1.18) 

 

Notice that the jX  and jZ  matrices are made up of column vectors. Each column vector 

represents the values of one of the variables in cluster j. The number of rows in the jX  

matrix, the jZ  matrix, and the je  vector equals the number of observations in the 

cluster, which in this case is three. 

 Equations 1.16 and 1.17 contain the same terms and thus are two equivalent ways 

to express the same model.  The mixed model notational system similarly offers an 

alternate way to express the covariance structure. Specifically, the T matrix from 

Equation 1.11 is equivalent to the Ψ matrix in the mixed model notation, as follows. 
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 ( )~ N 0,ju Ψ    (1.19) 

 

That is, the distribution of the level-2 residuals is multivariate normal, is centered at zero, 

and has spread equal to the level-2 residual covariance matrix, Ψ (this matrix was 

referred to as T in the Raudenbush and Bryk notation). The use of Ψ for the level-2 

residual covariance matrix is common in multilevel imputation literature (e.g., Schafer, 

2001; Schafer & Yucel, 2002), but traditional mixed model notation would refer to this 

matrix as G. Equation 1.19 is equivalent to Equations 1.10 and 1.11. The level-1 

residuals for the linear mixed model are distributed as 

 

 ( )~ N 0,je Σ   (1.20) 

 

That is, the distribution of the level-1 residuals is multivariate normal, is centered at zero, 

and has spread equal to the level-1 residual covariance matrix, Σ. The use of Σ for the 

level-2 residual covariance matrix is common in multilevel imputation literature (e.g., 

Schafer, 2001; Schafer & Yucel, 2002), but traditional mixed model notation would refer 

to this matrix as R. For this particular application of the mixed linear model, the level-1 

residual covariance matrix reduces to a scalar, 2
rσ , which is the level-1 residual variance 

term. So, the previous equation becomes 

 

 ( )2~ N 0,j rσe   (1.21) 
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Equation 1.21 is equivalent to Equation 1.6. 

Single-Level Multiple Imputation 

Multiple imputation (MI) analysis consists of two distinct phases: the imputation 

phase and the analysis/pooling phase. In the imputation phase, the algorithm draws 

parameters for the imputation model from their respective distributions and then uses 

these parameter estimates to fill in the missing data. This process is repeated for a very 

large number of iterations. Whenever a pre-determined number of iterations has passed, 

the algorithm outputs an imputed data set. The algorithm continues in this vein until m 

distinct data sets have been generated, where m is a number chosen by the analyst (e.g., a 

minimum of 20 is a rule of thumb; Graham, Olchowski, & Gilreath, 2007).The multiple 

imputation algorithm amounts to sampling missing values from a posterior predictive 

distribution. In the analysis/pooling phase, the data analyst runs an identical analysis on 

each of the m data sets. The point estimates and standard errors from these analyses are 

then pooled using methods described later in this section. The analysis/pooling phase can 

be repeated for multiple analyses without repeating the imputation phase, provided that 

all of the necessary variables/effects are included in the imputation model. 

Joint Modeling vs. Fully Conditional Specification. The methods used in the 

imputation phase of multiple imputation can be divided into two categories: joint 

modeling (JM) and fully conditional specification (FCS) (van Buuren, 2007). In the JM 

approach, the observations are partitioned into groups of identical missing data patterns. 

Within each group, the missing values are imputed using a joint model (e.g., a 

multivariate normal model). In contrast, the FCS method (also referred to as variable-by-

variable imputation, imputation by chained equations, etc.) imputes one variable at a 
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time. A separate imputation model is specified for each variable. After a variable is 

imputed in FCS, it is then treated as a complete-data predictor in the next imputation 

model. Within each iteration, the algorithm cycles through all of the incomplete 

variables.  

 JM tends to be computationally more efficient due to shortcuts such as the sweep 

operator (van Buuren, 2007). However, FCS tends to be more flexible. FCS allows the 

data analyst to incorporate unique features in the data (e.g., bounds and skip patterns; van 

Buuren, 2007). The flexibility of FCS can also be problematic, as it is easy for an analyst 

to specify a set of distributions that do not correspond to a multivariate density (van 

Buuren, 2007). This is referred to as incompatibility of conditionals. Incompatibility of 

conditionals can lead to convergence problems. The effect of incompatibility of 

conditionals on the quality of imputations is not well known, and requires further study. 

Both the JM and FCS approaches are described in greater detail below. 

Single-Level Multiple Imputation with Joint Modeling. This section outlines 

the computational steps for single-level multiple imputation using joint modeling (JM) as 

outlined by Schafer (1997). The Markov Chain Monte Carlo (MCMC) algorithm begins 

by generating initial parameter estimates (e.g., the mean vector and covariance matrix) 

and placeholder values for the missing data. In subsequent iterations, draws from a 

posterior distribution provide the necessary parameter values and imputations replace the 

placeholder values. The following steps summarize the algorithmic details for single-

level JM imputation. 

1. Draw a new covariance matrix from an inverse Wishart distribution, based on 

assumed values for the missing data: 
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 ( )( )( ) ( -1) 1| , ~ W ˆ1, 1t t n n- - -Σ Y Σµ   (1.22) 

 

where n is the number of observations in the data set, and Σ̂  is the estimated 

covariance matrix from the filled-in data. It is worth noting that in cases where 

software cannot produce samples from an inverse Wishart distribution, the inverse 

of the covariance matrix can be drawn from a Wishart distribution: 

 

 ( )( )( )11( ) ( 1)| , ~ W 1, 1 ˆt t n n
−−−  − −Σ Y Σµ   (1.23) 

 

2. Draw a new mean vector based on assumed values for the missing data and the 

covariance matrix drawn in step 1. 

 

 ( )( ) ( ) 1 ( )| , ~ ,ˆNt t tn−μ Σ Y μ Σ   (1.24) 

 

where µ� is the mean vector estimated from the filled-in data and ( )tΣ  is the 

covariance matrix drawn in the current iteration. 

3. Draw new values for the missing data based on the parameters drawn in steps 1 

and 2. This is done separately for each missing data pattern. For each missing data 

pattern, we use the covariance matrix and mean vector drawn in the current step 

to calculate the regression parameters for the incomplete variables regressed on 
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the complete variables. This transformation is often carried out using an algorithm 

called the sweep operator (Goodnight, 1979; Little & Rubin, 2002). After we have 

obtained the matrix of regression coefficients and residual covariance matrix for a 

pattern, k, we draw new values for the missing variables for each observation i in 

each pattern k from the following distribution: 

 

 ( )TT( ) ( ) ( )
, , , ,| , , ~ MV N ˆ ,t t t

miss ik obs ik obs ik k res k
 
 
 

y μ Σ y y β Σ   (1.25) 

 

where ,miss iky  is the vector of missing variables for observation i in pattern k, 

,obs iky  is the vector of observed variables for observation i in pattern k, ˆ
kβ  is the 

estimated matrix of regression coefficients for pattern k, and ( )
,

t
res kΣ  is the residual 

covariance matrix for pattern k.    

After completing an iteration, the MCMC algorithm returns to step 1 and repeats 

the computational steps at the next iteration. All of the steps above assume a joint model 

(i.e., a multivariate normal model). The JM approach can be adapted to handle 

categorical variables by treating the categorical variables as having underlying latent 

normal variables. The JM approach assumes that these latent variables have a joint 

multivariate normal distribution. Multiple imputation with latent variables is not 

discussed further in this document. 

Single-Level Multiple Imputation with Fully Conditional Specification. This 

section outlines the computational steps for single-level multiple imputation using fully 
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conditional specification (FCS) as described by van Buuren (2007). To be consistent with 

the previous section, I examine FCS imputation in the context of multivariate normal 

data. Before beginning the MCMC algorithm, the analyst must specify an imputation 

model for each of the incomplete variables in the data set. For example, suppose that we 

have two incomplete variables, y1 and y2, as well as a complete variable, x. We need to 

specify distributions for y1 and y2. For simplicity, we might specify the following 

distribution for y1: 

 

 ( ) ( ) ( )( )1 1 1 2
1| 2,0 211 | 2 , ~ N 2 ,y y y

i i i i i y y xy y x x yβ β β σ+ +   (1.26) 

 

where ( )1
0

yβ  is the intercept for the regression predicting the mean of the conditional 

distribution of y1, ( )1
1

yβ  and ( )1
2

yβ  are coefficients for the regression predicting the mean 

of the conditional distribution of y1, and 2
1| 2,y y xσ  is the residual variance for y1. We 

might specify the following distribution for y2: 

 

 ( ) ( ) ( )( )2 2 2 2
2| 1,0 212 | 1 , ~ N 1 ,y y y

i i i i i y y xy y x x yβ β β σ+ +   (1.27) 

 

where ( )2
0

yβ  is the intercept for the regression predicting the mean of the conditional 

distribution of y2, ( )2
1

yβ  and ( )2
2

yβ  are coefficients for the regression predicting the 

mean of the conditional distribution of y2, and 2
2| 1,y y xσ  is the residual variance for y2. 
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Before beginning the MCMC algorithm, we obtain initial estimates of each of the 

regression parameters in the above equations, as well as placeholder values for the 

missing data. 

The MCMC algorithm for single-level FCS imputation consists of two nested 

loops: an incomplete variable loop within an iteration loop. That is, for a given iteration 

the algorithm cycles through the incomplete variables, performing the same steps for 

each of the incomplete variables. The algorithm then begins the next iteration, and once 

again cycles through the incomplete variables. This continues until a pre-specified 

number of iterations is complete. For the three-variable example outlined in the previous 

paragraph, a single iteration would consist of the following steps: 

1a.  First, we draw a new residual variance for y1 from its posterior distribution, 

conditional on the other variables and the regression coefficients drawn in the 

previous iteration of the algorithm: 

 

 ( )2( ) ( 1, 1) ( 1) ( 1) 2 2
1| 2,1| 2, ˆ| , , ~ Inv 1,t y t t t

y y xy y x n pσ χ σ−−−   −− β y1 y2   (1.28) 

 

where ( 1, 1)y t−β  contains the regression parameters for y1 drawn in the previous 

iteration, n is the number of observations, p is the number of predictors, and 

2
1| 2,ˆ y y xσ  is the residual variance for y1 estimated from the filled-in data at the 

previous step. As an alternative, the inverse of the residual variance can be drawn 

from a chi-square distribution rather than an inverse chi-square distribution: 
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 ( )2( ) ( 1, 1) ( 1) ( 1) 2 2
1| 2,1| 2, ˆ| , , ~ 1,t y t t t

y y xy y x n pσ χ σ−−−−−    −− β y1 y2   (1.29) 

 

1b. Next, we draw a new vector of regression coefficients for y1 from its posterior 

distribution, conditional on the other variables and the residual variance for y1 

drawn in the current iteration. The vector of regression coefficients for predicting 

y1, ( 1, )y tβ , is drawn from a multivariate normal distribution: 

 

 

1( 1, ) 2( ) ( 1) ( 1) ( 1) 2( )
1| 2, 1| 2 , 2,| , , ~ MVN ,ˆy t t t t y t

y y x y y x x yσ σ
−−−   

 ∗ 
 

β y1 y2 β SS   (1.30) 

 

where ( 1)ˆ yβ  is the vector of regression coefficients estimated from the filled in 

data at the previous step and  2
1
,x y
−

SS  is the inverse sum of squares matrix for the 

predictors (x and y2) estimated from the filled-in data at the previous step.  

1c. Next, we draw new values for the missing values of y1. So, as a third step in the 

MCMC algorithm we draw new values of the criterion variable conditioned on the 

current draws of the regression parameters and the other variables: 

 

 ( ) ( ) ( )( )1, 1, 1,( ) ( 1) ( 1, ) 2( ) 2( )
0 11| 2, 1| 2

( 1)
2 ,1 | 2 , , ~ N 2 ,y t y t y tt t y t t t

ii i y y x y y x
t

ix yy y σ β β β σ− −+ +β  (1.31) 

 

2a. Having completed the imputation steps for y1, the algorithm repeats the steps for 

y2. As before, we draw a new residual covariance for y2 from its posterior 
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distribution, conditional on the other variables and the regression coefficients 

drawn in the previous iteration of the algorithm: 

 

 ( )2( ) ( 2, 1) ( ) ( 1) 2 2
2| 1,2| 1, ˆ| , , ~ Inv 1,t y t t t

y y xy y x n pσ χ σ−−  −− β y1 y2   (1.32) 

 

where ( 2, 1)y t−β  contains the regression parameters for y2 drawn in the previous 

iteration, n is the number of observations, p is the number of predictors, and 

2
2| 1,ˆ y y xσ  is the residual variance for y2 estimated from the filled-in data at the end 

of Step 1c.  

2b. Next, we draw a new vector of regression coefficients for y2 from its posterior 

distribution, conditional on the other variables and the residual variance for y2 

drawn in the current iteration: 

 

 

1( 2, ) 2( ) ( ) ( 1) ( 2) 2( )
2| 1, 2| 1, , 1| , , ~ MV ,ˆNy t t t t y t

y y x xy yy xσ σ
−− ∗ 

 
 

β y1 y2 β SS   (1.33) 

 

( 2)ˆ yβ  is the vector of regression coefficients estimated from the filled in data at 

the previous step and  1
1
,x y
−

SS  is the inverse sum of squares matrix for the 

predictors (x and y1) estimated from the filled-in data at the previous step.  

2c. Next, we draw new values for the missing values of y2, conditional on the current 

draws of the regression parameters and the other variables: 
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 ( ) ( ) ( )( )2, 2, 2,( ) ( ) ( 2, ) 2( ) 2( )
0 12| 1,

)
2 | 1

(
2 ,2 | 1 , , ~ N 1 ,y t

i
t y t y tt t y t t t

ii i y y x y y xy y x yσ β β β σ+ +β   (1.34) 

 

The above six steps form a single iteration of the MCMC algorithm. The process repeats 

until a pre-specified number of iterations is reached. 

Multiple Imputation Analysis and Pooling. The analysis and pooling phase of 

multiple imputation is identical for both the joint modeling and fully conditional 

specification approaches for both single-level and multilevel imputation. The analysis 

phase involves performing the same analysis once for each of the m datasets generated by 

the imputation procedure. The pooling of estimates is the same for both multilevel data 

and single-level data. A more thorough discussion of the topic is available in Rubin 

(1987). Because the analysis yields m estimates of each parameter, it is necessary to pool 

them into a single point estimate. This is done by averaging the parameter estimates 

across the m datasets  

 

 
1

ˆ1 m

l
lm

θ θ
=

= ∑   (1.35) 

 

where θ�l is a parameter estimate (e.g., regression coefficient, variance estimate) from 

data set l.   

Standard errors are slightly more difficult to combine, as the pooled standard error 

is the combination of the sampling error that would be present if the data were complete 

(within-imputation variance) and the sampling error resulting from missing data 
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(between-imputation variance). The within-imputation variance is merely the average of 

the sampling variances, as follows 

 

 

 2

1

1 m

W l
l

V E
m

S
=

= ∑   (1.36) 

 

where SEl2 is the squared standard error from data set l.  The between-imputation 

variance is calculated as the variance of a parameter across the imputations. 

 

 ( )2
1

1
1

ˆ
m

B l
l

V
m

θ θ
=

= −
− ∑   (1.37) 

 

The total variance is calculated as the combination of the within-imputation and between-

imputation variances.  

 

 B
T W B

VV V V
m

= + +   (1.38) 

 

Finally, the standard error of the parameter is the square root of the parameter variance. 

 

 TSE V=   (1.39) 

Multilevel Multiple Imputation 
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Single-level imputation methods do not incorporate the effects of clustering into 

the imputation process. To correctly handle clustering in the data, it is necessary to use an 

imputation model that accounts for random effects. Such models are referred to as 

multilevel imputation models. Note that the modeling of categorical data is not discussed 

in this document, as the focus of this dissertation is on multilevel imputation of normal 

variables. Multilevel multiple imputation procedures use imputation models based on the 

linear mixed-effects model for clustered data. Recall from earlier that the linear mixed 

model is: 

 

 j j j j j= + +X β Z B ey   (1.40) 

 

jy  is the jn  x 1 dependent variable vector for cluster j, where jn  is the number of level-

1 units in cluster j. jX  is the jn  by p fixed effect covariate matrix for cluster j, where p 

is the number of fixed effects. Note that jX  contains all of the level-1 and level-2 

predictor variables, as well as product terms for any interactions and a unit vector for the 

intercept. β is the p x 1 vector of fixed effects (level-2 coefficients) that are common to 

all clusters. Note that β contains the γ’s from the Raudenbush and Bryk notation. jZ  is 

the jn  by q random effect covariate matrix for cluster j, where q is the number of random 

effects. jZ  contains the subset of complete and variables that are allowed to have 

random effects on the dependent variable and includes a unit vector for the intercept. jB  

is the q x 1 vector of level-2 residuals (i.e., residual intercepts and slopes) for cluster j. It 
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contains the u’s from Raudenbush and Bryk notation. je  is the jn  x 1 vector of level-1 

residuals for cluster j. It contains the r’s from Raudenbush and Bryk notation. Equation 

1.40 corresponds to an imputation model for a single incomplete variable (with the 

notable exception of the Mplus JM imputation model, as will be explained later). This 

imputation model can be adapted to handle multivariate missingness using the JM or FCS 

approaches, as described below. 

An imputation model can be very different from the analysis model. The 

imputation model predicts one or more incomplete variables from the complete variables, 

regardless of the role of the variables in the analysis model. As with single-level 

imputation, there are both joint model (JM) and fully conditional specification (FCS) 

approaches to multilevel imputation, and both employ a variant of Equation 1.40 to 

generate imputations. The form of Equation 1.40 and the contents of the matrices differ 

between the two approaches, as discussed below. The remainder of this chapter describes 

both the JM and FCS multilevel imputation approaches, followed by a discussion of the 

relative merits of each. 

JM for Multilevel Imputation. This document previously described the use of 

joint imputation models for single-level data. Single-level JM imputation models draw 

imputations from a multivariate normal distribution. Distributions other than normal can 

be used, but these distributions are beyond the scope of this document. Researchers 

extended the logic of single-level joint imputation to multilevel models. One of the most 

widely used JM multilevel imputation methods, PAN (Schafer, 2001; Schafer & Yucel, 

2002; Yucel, 2008), begins with the specification of a multivariate mixed model 
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predicting the incomplete level-1 variables from the complete level-1 and level-2 

variables: 

 

 j j j j j= + +Y X β Z B Ε   (1.41) 

 

where jY  is the jn  by r matrix of incomplete level-1 variables for cluster j and r is the 

number of incomplete level-1 variables. Note that jY  contains all of the incomplete 

level-1 variables, regardless of their role in the analysis model. jX  is the jn  by f fixed 

effect covariate matrix for cluster j, where f is the number of fixed effect covariates. jX  

contains all of the complete level-1 and level-2 variables (including imputed level-2 

variables from the previous iteration), as well as a unit vector for the intercept. β  is the f  

by r matrix of fixed effects that are common for all clusters. jZ  is the jn  by q random 

effect covariate matrix for cluster j, where q is the number of random effects. jZ  

contains the subset of complete level-1 variables that are allowed to have random effects 

with the variables in jY , as well as a vector of ones for the random intercepts. jB  is the 

q by r matrix of level-2 residuals (i.e., residual intercepts and slopes) for cluster j. jΕ  is 

the jn  by r matrix of level-1 residuals for cluster j. 

 Given the imputation model in Equation 1.41, multilevel joint imputation draws 

new values from a conditional multivariate normal distribution: 

 

 ( )| ~ MVN ,j j j j j+Y X X β Z B Σ   (1.42) 
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That is, the missing values are drawn from a conditional multivariate normal distribution, 

centered at the predicted value from the imputation model ( j j j+X β Z B ), with spread 

equal to the level-1 residual covariance matrix (Σ). The parameter values and the level-2 

residuals are obtained from a previous MCMC step. The parameters in Equation 1.42 are 

generated from a Markov Chain Monte Carlo algorithm similar to that described in the 

single-level imputation section. Because these sampling steps are described throughout 

the literature (Browne & Draper, 2000; Goldstein, 2011; Goldstein, Carpenter, Kenward, 

& Levin, 2009; Kasim & Raudenbush, 1998; Schafer, 2001; Schafer & Yucel, 2002; 

Yucel, 2008), I do not detail them here. 

 At this point, I switch to scalar notation for the sake of clarity. To illustrate the 

points presented earlier in this section, consider the following multilevel analysis model: 

 

 0 1 2 0 1 2ij ij ij j j ij j ij ijy x w b b x b w ebbb  = + + + + + +   (1.43) 

 

yij is the value of the dependent variable for observation i in cluster j. xij and wij are the 

values of the two level-1 predictor variables for observation i in cluster j. 0β  is the 

intercept and 1β  and 2β are the regression coefficients. b0j is the random intercept term. 

b1j and b2j are the random slope terms. eij is the level-1 residual term. In this model, y is 

modeled on two predictors, x and w. The intercept and both slopes are allowed to vary 

across clusters.  
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Suppose that y and w are both incomplete, whereas x is complete. The PAN 

method (the first of the multilevel JM imputation methods; Schafer, 2001; Schafer & 

Yucel, 2002) would generate imputations based on the following conditional multivariate 

normal distribution: 

 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0 1 0 1

0 1 0 1

|
~ MVN ,

|

y y y y
ij ijij ij j j

ij ij ij ijj
w

j
w w w

x b b xy x

w x x b b x

bb

bb

 + + +
 
  + + + 

Σ   (1.44) 

 

where β0
(y) and β1

(y) are the fixed effects for the imputation model predicting y from x, 

b0j
(y) and b1j

(y) are the random effects in the imputation model predicting y from x, β0
(w) and 

β1
(w) are the fixed effects in the imputation model predicting w from x, and b0j

(w) and b1j
(w) 

are the random effects in the imputation model predicting w from x. Equation 1.44 

illustrates two important points about the PAN method. First, the imputation model 

allows the regression of w on x to vary across clusters (capturing a random effect of x on 

w, or vice versa). This effect was not specified in the analysis model in Equation 1.43, but 

it may lead to better imputations if the regression of w on x varies across clusters in the 

population. If the regression of w on x does not vary across clusters, the inclusion of this 

random effect may result in computational issues for the MCMC algorithm (inverting 

matrices that may not be positive definite, trying to draw matrices where the sum of 

squares and cross products matrix is not positive definite, etc.). Second, though the 

analysis model contains the random effect of w on y, this effect is not included in the 

imputation model in Equation 1.44. Rather, the level-1 regression of y on w (conditional 
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on x) is captured entirely by the level-1 residual covariance matrix, Σ , the elements of 

which do not vary (i.e., the association is assumed to be fixed across clusters). Due to this 

mismatch, the imputation model is said to be uncongenial with the analysis model (an 

analysis model and an imputation model are said to be uncongenial if the analysis model 

cannot be derived from the imputation model, or vice versa; Meng, 1994; Schafer, 1997, 

2003). The mismatch between the random effects in the analysis and imputation models 

would negatively bias the estimate of the slope variance of w, and could potentially affect 

other estimates as well (Enders, Mistler, & Keller, 2014). 

To reiterate an earlier point, the level-1 covariances between pairs of incomplete 

variables, conditioned on the complete variables, are captured solely by the level-1 

residual covariance matrix, Σ . This is important because the residual covariance between 

a pair of incomplete variables is not allowed to vary between clusters. As a remedy for 

this problem, Yucel (2011) proposed a modification to the PAN method in which the 

level-1 residual covariance matrix is allowed to vary across clusters. This modified PAN 

method could be used to model random effects between the incomplete level-1 variables. 

Unfortunately, allowing the level-1 residual covariance matrix to vary across clusters 

may result in greatly increased computational complexity. As such, the method may not 

be practical in realistic data sets. The article in which the method was published included 

an application of the method to an example data set, rather than a simulation study. 

Further research is needed to determine whether the method is practical for general use 

(e.g., when cluster sizes are very small relative to the number of incomplete variables). 

So far I have provided a general description of the PAN method. It should be 

noted, however, that Schafer suggested two different implementations of PAN (Schafer, 
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2001; Schafer & Yucel, 2002). Though not shown previously, one must draw new 

random effects for each cluster at each iteration: 

 

 jvec( ) ~ N(0, )b Ψ   (1.45) 

 

where jvec( )b  refers to stacking all of the random effects for cluster j in a column vector 

and Ψ  is the covariance matrix of the random effects for all of the incomplete variables. 

Schafer proposed two options for Ψ : (1) an unstructured covariance matrix or (2) a 

block-diagonal covariance matrix. I refer to the first method as JM-UN and the second 

method as JM-BD. The unstructured level-2 covariance matrix used in the JM-UN 

method allows the random effects for any two incomplete variables to be correlated. The 

practical implication of an unstructured level-2 covariance matrix is that the level-2 

residual covariances among the incomplete variables need not be of the same sign or 

magnitude as the level-1 residual covariances among those variables, which are captured 

in Σ. This means that if the level-1 and level-2 residual covariances between pairs of 

incomplete variables differ in the data (referred to as a contextual effect in some 

disciplines; Firebaugh, 1978; Kreft, De Leeuw, & Aiken, 1995; Raudenbush & Bryk, 

2002), these covariances will be allowed to differ in the imputation model. However, the 

number of parameters to be estimated in the unstructured level-2 covariance matrix may 

be large with many incomplete variables.  

If the number of clusters in a data set is small, it may not be possible to estimate 

covariances among all of the random effects for all of the incomplete variables (Schafer 

& Yucel, 2002). In such cases, it may be advantageous to model Ψ  as a block-diagonal 
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matrix in which the covariances between random effects for different incomplete 

variables are constrained to zero (JM-BD): 

 

 

1

2

0 0
0 0

0 0 r

 
 
 =
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 

Ψ
Ψ

Ψ

Ψ





   



  (1.46) 

 

where r is the number of incomplete variables.  

 To clarify the differences between the two PAN methods, consider the analysis 

model in Equation 1.43 and the JM model in Equation 1.44. The JM-UN method would 

estimate covariances between all of the random effects in the imputation model ( ( )
0

y
jb , 

( )
1

y
jb , ( )

0
w
jb , and ( )

1
w
jb ). The covariance between the two random intercepts ( )( 0

y
jb  and 

( ) )0
w
jb  would preserve the level-2 covariance between y and w, conditional on x. This does 

not correspond to any term in the analysis model, as Equation 1.44 did not include the 

cluster means for w. The JM-BD method would estimate covariances between random 

effects for the same incomplete variable, but would constrain covariances between 

random effects for different variables to zero. So, the covariance between the random 

intercept and random slope for y ( ( )
0

y
jb and ( )

1
y
jb ) would be estimated, as would the 

covariance between the random intercept and random slope for w ( ( )
0

w
jb , and ( )

1
w
jb ). 

However, the covariances between the random effects for y ( ( )
0

y
jb and ( )

1
y
jb ) and the 
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random effects for w ( ( )
0

w
jb , and ( )

1
w
jb ) would be constrained to zero. Because the 

covariance between the two random intercepts ( ( )
0

y
jb  and ( )

0
w
jb ) would be constrained to 

zero, JM-BD would not preserve the level-2 covariance between y and w, conditional on 

x. JM-BD and JM-UN are available for R and S-Plus in packages called PAN (Schafer, 

2001; Schafer & Yucel, 2002). JM-BD is available in SAS as a macro called 

MMI_IMPUTE (Mistler, 2013). JM-BD and JM-UN imputation can also be performed in  

a standalone software package called REALCOM-IMPUTE (Carpenter, Goldstein, & 

Kenward, 2011) or the latent variable modeling package Mplus (Asparouhov & Muthén, 

2010f).  

 The two JM methods just described (which differ only in the structure of Ψ ) both 

modeled the incomplete variables as a function of the complete variables. In contrast, the 

JM imputation method implemented in Mplus (referred to as H1 imputation in the Mplus 

documentation, but which I call JM-Mplus) treats all variables, both incomplete and 

complete, as response variables and includes no predictors in the model (Asparouhov & 

Muthén, 2010a, 2010f): 

 

 jij ij= + +β b ey   (1.47) 

 

where ijy  is a vector of level-1 variables for level-1 unit i in cluster j. ijy  contains all of 

the level-1 variables, both complete and incomplete. β  is a vector containing the grand 

mean for each of the variables. jb  contains the random intercept for each variable for 
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cluster j. ije  contains the discrepancies between the cluster intercepts for cluster j and the 

values (observed or imputed) for observation i in cluster j. Note that all of the objects in 

Equation 3.5 are vectors, as the equation describes only a single observation, i. Matrices 

jX  and jZ  from Equation 3.1 are not shown in Equation 3.5, as the two matrices reduce 

to scalars equal to 1. Vectors ije  and jb  are distributed as: 

 

 ~ N(0, )ije Σ   (1.48) 

 ~ N(0, )jb Ψ   (1.49) 

 

where Σ  is the unstructured level-1 covariance matrix of the variables and Ψ  is the 

unstructured level-2 covariance matrix of the residuals. JM-Mplus does not allow for the 

inclusion of random slopes among ANY variables. This is in contrast to the PAN 

methods (JM-BD and JM-UN), which allow complete variables to exert random 

influences on the incomplete variables.  

 In the context of the analysis model in Equation 1.43, JM-Mplus would treat all 

three variables, w, x, and y, as having the following multivariate normal distribution: 
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where ( )
0

wβ , ( )
0

xβ , and ( )
0

yβ  are the grand means of the variables, ( )
0

w
jb , ( )

0
x
jb , and ( )

0
y
jb  

are the differences between the grand means and the means of cluster j, and Σ  is the 

unstructured level-1 covariance matrix for the three variables. The random intercepts for 

the three variables are distributed as: 

 

 ~ N(0, )jb Ψ   (1.51) 

 

where Ψ  is the unstructured level-2 covariance matrix for the three variables. Because 

covariances between all three variables are captured at level one by Σ  and at level two 

by Ψ , the covariances between the variables are allowed to differ across levels. 

However, the random effects of x on w and y in the analysis model are not captured by 

this imputation method. JM-Mplus can be implemented in the latent variable modeling 

package Mplus (Asparouhov & Muthén, 2010f). 

FCS for Multilevel Imputation. In contrast to the JM approach, which uses a 

multivariate mixed model, the FCS approach employs a series of univariate mixed 

models, one for each incomplete variable. The FCS approach requires that a separate 

univariate imputation model be specified for each of the incomplete level-1 variables. 

FCS imputation predicts each incomplete variable as a function of all the other (filled-in) 

incomplete variables and all of the complete variables in a univariate mixed model: 

 

 jk jk k jk jk jk= + +y X β Z eb   (1.52) 
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In the above equation, jky is the jn  by 1 vector of values for incomplete level-1 variable 

k in cluster j. jky  is used to represent each incomplete variable once. jkX  is the fixed 

effect covariate matrix predicting incomplete variable k for cluster j. jkX  contains all of 

the complete and imputed level-1 and level-2 variables specified as predictors for 

incomplete variable k, as well as a unit vector for the intercept. Note that in each 

imputation, jkX  is normally specified to include all of the (filled-in) incomplete 

variables except for the incomplete variable currently being imputed. Xjk makes no 

distinction between the independent variables and the dependent variable from the 

analysis model. kβ  is the vector of fixed effects for variable k that are common for all 

clusters. jkZ  is the jn  by kq  random effect covariate matrix for cluster j for variable k. 

jkZ  contains the subset of level-1 variables (complete and imputed) that are allowed to 

have random effects on variable k. jkb  is the vector of level-2 residuals (i.e., residual 

intercepts and slopes) for cluster j for variable k. jke  is the vector of level-1 residuals for 

cluster j for variable k. 

 Multilevel FCS imputation draws new values from a separate conditional normal 

distribution for each incomplete variable: 

 

 ( )2| ~ N ,jk jk jk k jk jk kσ+y X X β bZ   (1.53) 

 

That is, the missing values for incomplete variable k are drawn from a conditional 

univariate normal distribution, centered at the predicted value from the model for variable 
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k (i.e., jk k jk jk+X β Z b ), with spread equal to the level-1 residual variance of variable k 

(i.e., 2
kσ ). Notice that, in contrast to the JM imputation model, the random coefficient 

matrix for the FCS imputation model, jkZ , has an additional subscript, k. This means 

that a different set of random effects may be specified for each incomplete variable. This 

allows random effects to be included where they are needed and to be excluded when 

they would result in computational problems. Also worth noting is that, because each 

incomplete variable is predicted by all of the other incomplete variables, the regression of 

each incomplete variable on all other variables can be allowed to vary across clusters. If 

the analysis model uses the random effect of one incomplete variable to predict a second 

incomplete variable, this effect can be included in the imputation model, making it 

congenial. Remember, non-congenial imputation models lead to biased results. The 

issues described here are demonstrated in subsequent paragraphs. As an aside, van 

Buuren (2011, 2012) recommends the use of cluster-specific level-one residual variances 

in FCS imputation. This would entail replacing 2
kσ  with 2

jkσ . The use of cluster-specific 

level-1 residual variances is not a requirement of FCS imputation, but may increase the 

flexibility of the method with random slopes. The parameters in Equation 1.53 are 

generated from a Markov Chain Monte Carlo algorithm similar to that described in the 

single-level imputation section. Because these sampling steps are described throughout 

the literature (Browne & Draper, 2000; Goldstein, 2011; Goldstein et al., 2009; Kasim & 

Raudenbush, 1998; Schafer, 2001; Schafer & Yucel, 2002; Yucel, 2008), I do not detail 

them here. 
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 Returning to the example used for JM multilevel imputation, recall that we wish 

to analyze the following model: 

 

 0 1 2 0 1 2ij ij ij j j ij j ij ijy x w b b x b w ebbb  = + + + + + +   (1.54) 

 

Variables y and w are incomplete, whereas variable x is complete. The multilevel FCS 

algorithm would draw new values for one incomplete variable at a time. First, we start 

with y. A series of MCMC steps provides the parameter values and residuals. Then the 

algorithm draws y values from the following distribution:  

 

 ( ) ( ) ( ) ( ) ( ) ( )( )( ) ( 1) ( 1) ( 1) 2
| ,0 1 2 0 1 2| , ~ N ,y y y y y yt t t t

ij ij ij y x wij ij ij ijj j jy x w x w b b x b wbbb   σ−−−  + + + + +  (1.55) 

 

( )
0

yβ  is the intercept for the imputation model predicting y. ( )
1

yβ  and ( )
2

yβ  are the fixed 

effects for predicting y from x and w. ( )
0

y
jb  is the random intercept for the imputation 

model predicting y. ( )
1

y
jb  and ( )

2
y
jb  are the random slopes for predicting y from x and w. 

2
| ,y x wσ  is the residual variance for y. Because FCS imputation uses multiple univariate 

imputation models, it is necessary to specify which model is referred to when describing 

model terms. The parameters in the imputation model each include a superscript to 

indicate which incomplete variable is being predicted. So, (y) indicates that ( )
0

yβ  is the 

intercept for the imputation model predicting y. Importantly, the w values on the right 

side of the equation are imputed from a previous step.  



 

39 

Once imputed, y becomes a predictor in the w imputation model. Again, a series 

of MCMC steps provide parameter values, and w values are drawn from the following 

distribution: 

 

 ( ) ( ) ( ) ( ) ( )( )( ) ( ) ( ) ( ) 2
w| ,y0 1 2 0 1| , ~ N ,w w wt t t t

ij ij xij ij i ij j
w

j
w

jw x y x y b b ybbb   σ+ + + +   (1.56)  

 

( )
0

wβ  is the intercept for the imputation model predicting w. ( )
1

wβ  and ( )
2

wβ  are the fixed 

effects for predicting w from x and y. ( )
0

w
jb  is the random intercept for the imputation 

model predicting w. ( )
1

w
jb  is the random slope for predicting w from y. 2

| ,yw xσ  is the 

residual variance for w. As mentioned previously, the y values on the right side of the 

equation are imputed from a previous step. The FCS method described above is 

implemented in the MICE package in R (van Buuren & Groothuis-Oudshoorn, 2011) and 

also in a standalone software package called BLImP (Keller & Enders, 2014). As of the 

writing of this dissertation, BLImP is not yet available to the public. FCS-VB is currently 

the only FCS multilevel imputation method implemented in publicly available software. I 

refer to this implementation of FCS as FCS-VB.  

 Carpenter and Kenward (2012, p. 221) state that the cluster means of the level-1 

variables (complete or imputed incomplete) should be included as predictors in each of 

the univariate FCS imputation models. This approach, which I refer to as FCS-CK, is 

straightforward and very similar to FCS-VB imputation. However, users cannot add 

incomplete variable cluster means as predictors in MICE, the software implementation of 
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the FCS-VB method, because incomplete variables need to be recalculated at each 

MCMC iteration. The recalculation of incomplete variables cluster means at each MCMC 

iteration is not supported in MICE, so FCS-CK imputation cannot be performed in the 

MICE software package. Adding cluster means to Equations 1.55 and 1.56 would result 

in the following univariate imputation distributions: 
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  (1.57) 
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  (1.58)  

 

where jx  is the mean of x in cluster j, jw  is the mean of w in cluster j, and jy  is the 

mean of y in cluster j. After the addition of the cluster means, each univariate distribution 

includes two parameters to represent the regression of an incomplete variable on a 

predictor. For example, the regression of y on x in Equation 1.57 is captured by ( )
1

yβ  and 

( )
3

yβ . ( )
1

yβ  captures the within-cluster regression of y on x and ( )
3

yβ  captures the 

difference between the between-cluster and within-cluster regressions of y on x. The 

inclusion of these two parameters allows the level-1 and level-2 coefficients for the 

regression of y on x to both freely vary. That is, the level-1 and level-2 regression 

coefficients can both be non-zero and can differ from one another. Similarly, the 

regressions of y on w and x on w can be different between levels one and two. FCS-CK is 
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implemented in a standalone software package called BLImP (Enders et al., 2014). As of 

the writing of this dissertation, BLImP is not yet available to the public. 

 The previous equations illustrate an important point about FCS imputation. In 

contrast to JM imputation, FCS imputation allows for the inclusion of random slopes 

between incomplete variables. For example, notice that w serves as a random slope 

predictor of y in Equations 1.55 and 1.57. The filled-in y values, in turn, serve as a 

random slope predictor of w in Equations 1.56 and 1.58. Additionally, imputing a single 

variable at a time allows the analyst to add additional features to the imputation process, 

such as skip logic. For example, it is desirable to avoid impossible combinations of 

responses such as pregnant and male. Due to these differences in the imputation models 

of JM and FCS imputation methods, FCS is more flexible than is the JM method.  

Fully Conditional Specification vs. Joint Modeling. The FCS and JM 

approaches to multilevel imputation each have advantages and disadvantages. The bullets 

below highlight the advantages and disadvantages of the two approaches to multilevel 

imputation.  

Benefits of JM: 

• The JM approach is computationally more efficient for multiple incomplete 

variables because it requires fewer parameter draws (e.g., the level-2 covariance 

matrix is drawn once per iteration rather than once per incomplete variable per 

iteration). 

• JM is usually easier to use, as the analyst need only specify a single imputation 

model (though some software packages allows the user to specify different 

random effects for each missing variable, at the cost of greater effort).  
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Disadvantages of JM: 

• JM (as currently implemented in publicly available software) cannot be used to 

model the random effects of incomplete variables on other incomplete variables. 

This may be very problematic if such random effects are of interest in the analysis 

model. Though Yucel (2011) suggested a modified multilevel JM imputation 

method that may solve this problem, it has not yet been thoroughly tested and is 

not included in any publicly available software. 

• Complex features of survey data, such as skip logic, are difficult to include in the 

imputation process. 

Advantages of FCS: 

• FCS can be used to model random effects of incomplete variables on other 

incomplete variables.  

• FCS allows complex features of survey data, such as skip logic, to be 

incorporated in the imputation process.  

Disadvantages of FCS 

• FCS is harder to use, as the user must specify a distinct imputation model for each 

incomplete variable. 

• As with single-level FCS, multilevel FCS can have convergence problems if the 

user specifies a set of distributions that do not correspond to a multivariate 

density.  

• FCS is much less computationally efficient, and can take a long time to run. 

Table 1 lists the software packages able to implement each of the five imputation 

methods examined in this dissertation. 
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Goals 

A common approach to handling missing data is to perform multiple imputation 

once and later perform many analyses on the imputed data sets. If a multiply imputed 

data set is to be used in multiple analyses, the imputation model must be congenial with 

all of the analysis models to be used. This has led researchers to recommend a “kitchen-

sink” approach to multiple imputation in which all variables and effects that may later be 

of interest are included in the imputation process. For example, Schafer and Olsen (1998) 

stated that “a rich imputation model that preserves a large number of associations is 

desirable because it may be used for a variety of post-imputation analyses.” Rubin (1996) 

stated that “the press to include all possibly relevant predictors is demanding in practice, 

but it is generally a worthy goal.” This issue has received little attention in the multilevel 

imputation literature, and researchers currently have few (if any) recommendations for 

choosing among competing multilevel imputation methods.  The results from this study 

have practical implications for substantive research. 

In the context of traditional multilevel models, there is a literature on contextual 

effects, whereby a predictor’s influence differs between level-1 and level-2 (e.g., the 

influence of school-average SES on achievement differs from the influence of individual 

SES on achievement; the influence of daily pain fluctuations on positive affect differs 

from the influence of average or chronic pain on positive affect). “For theoretically 

important variables in multilevel studies, it is the rule rather than the exception that 

within-group regression coefficients differ from between-group regression coefficients” 

(Snijders & Bosker, 2012). Another situation where associations can differ across levels 

is multilevel structural equation modeling. For example, in a multilevel confirmatory 
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factor analysis model, the loadings and other estimates (even the structure itself) can 

differ between level-1 and level-2.  

Given the fact that level-1 and level-2 correlations between variables can, and 

often do, differ from one another, attempting to include all possible relationships between 

variables in a multilevel data set in an imputation model requires using an imputation 

method that allows level-1 and level-2 correlations to differ. Researchers have several 

choices of imputation method (JM-BD, JM-UN, JM-Mplus, FCS-VB, and FCS-CK), and 

the ability of these methods to separately model level-1 and level-2 correlations between 

variables has not yet been examined.  

In this chapter, I described the three JM imputation methods and the two FCS 

imputation methods that have been proposed for multilevel data. Although the previous 

illustrations demonstrated JM and FCS in the context of a random slope analysis model, 

my study examines JM and FCS for a population model consisting of a multivariate 

normal joint distribution containing only random intercepts. Because there is no literature 

examining the ability of either JM or FCS multilevel imputation models to preserve both 

level-1 and level-2 covariances between variables, as well as differences between these 

covariances across levels, this is a logical starting point. 

Three variations of JM imputation have been proposed for multilevel data 

(Asparouhov & Muthén, 2010a, 2010f; Schafer, 2001; Schafer & Yucel, 2002). Although 

these methods share much in common, they possess subtle differences. To date, no 

methodological research has investigated the differences among the JM models, in 

particular their ability to produce imputations that preserve characteristics of the 

population distribution. Thus, one of the overarching goals for this project was to 
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examine the situations under which the three JM methods reproduce (or preserve) the 

mean and covariance structure of a population random intercept model with multivariate 

normal data. To date, two multilevel FCS methods have been proposed in the literature, 

only one of which is currently implemented in statistical software (Carpenter & Kenward, 

2012, p. 221; van Buuren & Groothuis-Oudshoorn, 2011). Like JM, no methodological 

research has investigated the differences between the FCS methods or their ability to 

preserve a multilevel data structure. Thus, the second overarching goal for this project 

was to examine the situations under which FCS imputation reproduces the mean and 

covariance structure of a population random intercept model with multivariate normal 

data. The analytic work for these two goals also provided insight into the situations where 

JM and FCS methods are equivalent.  
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Chapter 2. Literature Review 

Multilevel Imputation of Continuous Variables – Literature Review 

This chapter provides an overview of the literature on multilevel multiple 

imputation. Specifically, this chapter describes published simulation studies that examine 

multilevel multiple imputation for continuous variables. Any article that does not include 

a simulation study is not included in this chapter. In describing multilevel multiple 

imputation in Chapter 1, I referenced multiple published works that proposed the 

methods examined in this document or which proposed modifications to the methods 

examined in this document (e.g., Asparouhov & Muthén, 2010f; Carpenter & Kenward, 

2012; Schafer, 2001; Schafer & Yucel, 2002; van Buuren & Groothuis-Oudshoorn, 2011; 

Yucel, 2008, 2011; Yucel, Schenker, & Raghunathan, 2006). Though some of these 

publications included an illustrative analysis to demonstrate a proposed method, none of 

the publications included a simulation study and as such they are not reviewed in this 

chapter. The brevity of this chapter shows the dearth of simulation studies examining 

multilevel imputation methods in the literature and in doing so emphasizes the need for 

such simulation studies. 

Taljaard, Donner, and Klar (2008) performed a simulation study to examine the 

usefulness of JM imputation for analyzing data from cluster randomized trials (CRTs). 

To mimic CRT data, the authors specified a population model containing a dichotomous 

level-2 predictor and a random intercept. No other predictors were included. The effect 

size was set to zero to measure type-1 error rate. The authors varied cluster size between 

30 and 500. The authors varied the number of clusters between 6 and 30. They also 

varied the intraclass correlation between .001 and .10. The dependent variable was 



 

47 

specified to have a 30% chance of missingness under an MCAR mechanism. The authors 

also varied cluster imbalance in missingness, ranging from low imbalance where all 

clusters had equal rates of missingness and high imbalance where entire clusters were 

missing. The authors generated 10 imputed data sets using the PAN library in SPlus. The 

description of the imputation method did not mention which implementation of PAN was 

used (JM-BD or JM-UN). The authors specified 2000 burn-in iterations and 199 

between-imputation iterations. The analysis model consisted of a two-sample t-test to 

compare the treatment groups. Note that this analysis model is not consistent with the 

data. If the clusters had equal sizes, then MLM would give identical results to a t-test. 

However, when the clusters have unequal sizes the two methods are not identical. As 

such, the results of this study should be interpreted with caution.  

For conditions with a small intraclass correlation (i.e., ρ = .001), multilevel 

imputation resulted in type-1 errors that tended to be below nominal (ranging from .004 

to .062). The range of type-1 error rates comes from the authors varying the sample size 

at both level 1 and level 2. Because the authors varied the sample size at both levels 

simultaneously, it was not possible to detect whether the type-1 error rate varied 

systematically cross sample size conditions. For conditions with a higher intraclass 

correlation (i.e., ρ = .10), the type-1 error rate stayed closer to the nominal value (ranging 

from .035 to .052). The authors did not report other outcome measures. 

A simulation study by Andridge (2011) examined JM imputation for two-level 

data. The number of level-2 units was held constant at 50, and the number of level-1 units 

per cluster was held constant at 20. The population model consisted of a single level-1 

predictor and a random intercept. ICC values varied between 0.001 and 0.5. The 



 

48 

correlation between the outcome and the level-1 predictor varied between 0 and 0.9. The 

dependent variable was made missing at a rate of .3 for MCAR. For the MAR condition, 

the missingness rate depended on the level-1 predictor. Multiple imputation was 

performed using the PAN package in R. The description of the imputation method did not 

mention which implementation of PAN was used (JM-BD or JM-UN). Note that the 

imputation model contained the level-1 predictor from the population model, but this 

predictor was not included in the analysis model. The authors generated 10 imputed data 

sets using 1000 burn-in iterations and 99 between-imputation iterations. 

 The analysis goal was to examine the variance of the unconditional mean of the 

dependent variable. To rephrase, the analysis model contained only the intercept as a 

predictor, and the intercept was allowed to vary across clusters. The variance of the 

intercept across clusters was the parameter of interest in the simulation. The authors 

assessed the performance of the method by examining the coverage rate of the 

bootstrapped 95% confidence interval. Across all simulation conditions, the 95% 

confidence interval coverage rate was close to nominal (ranging between 94.3 and 97.7). 

A simulation study by van Buuren (2011) examined the performance of FCS-VB 

imputation for multilevel data under the assumption of MAR missingness. The author 

simulated data based on a population model containing a level-1 predictor and a random 

intercept, but without a random slope. The study contained three missingness conditions: 

1) incomplete dependent variable; 2) incomplete level-1 predictor; and 3) incomplete 

dependent variable and incomplete predictor. Intraclass correlations ranged from 0.0 to 

0.67. The total number of observations was set to 1,200. The number of level-2 units and 

the number of level-1 units per cluster were varied simultaneously. That is, the following 
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conditions were included: 12 clusters with 100 units each; 24 clusters with 50 units each, 

and 60 clusters with 20 units each. Probability of nonresponse ranged from 10% to 90%. 

The authors carried out the imputation procedure using the R package, MICE. The 

authors generated 5 imputed datasets. Each imputation was generated using a separate 

imputation chain with 20 burn-in iterations. The author repeatedly found 95% confidence 

interval coverage rates below nominal (discussed in greater depth below). It is possible 

that the use of only 20 burn-in iterations resulted in these poor coverage rates, as the 

MCMC algorithm can take a long time to become stable. Though the author made claims 

regarding whether estimates were biased or unbiased, the statistics necessary for 

computing bias were not reported in the publication. As such, this article summary 

merely copies the author’s claims regarding bias. 

When only the dependent variable was missing, FCS-VB imputation produced 

unbiased estimates of both the fixed and random effects. The 95% confidence interval 

coverage rate for the fixed intercept term was below nominal, ranging from .84 to .97. 

The 95% confidence interval coverage rate for the fixed slope term was slightly below 

nominal, ranging from .86 to .94. This coverage did not appear to change across ICC 

conditions or cluster size conditions. That is, though the coverage rates differed across 

experimental conditions they did not do so in any systematic way. The author did not 

explain this phenomenon. 

When only a level-1 predictor was incomplete, FCS-VB imputation resulted in 

unbiased estimates for both the fixed and random effects. The 95% confidence interval 

coverage rate for the fixed intercept term was very poor, ranging from .87 to .95. This 

coverage did not appear to change across ICC conditions or cluster size conditions. That 
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is, though the coverage rates differed across sampling conditions they did not do so in 

any systematic way. The author did not explain this phenomenon. The 95% confidence 

interval coverage rate for the fixed slope term was close to nominal for the large sample 

size condition (100 level-1 units per cluster), ranging from .93 to .95, but was below 

nominal for the small sample size condition (20 level-1 units per cluster), ranging from 

.79 to .85.  

When both the dependent variable and the level-1 predictor were incomplete, 

FCS-VB imputation produced positively biased estimates of the fixed intercept term 

(estimates around .08 compared to the complete data estimate of 0). The procedure also 

produced negatively biased estimates of the fixed slope term (estimates around .44 

compared to the complete data estimate of .5). The confidence interval coverage rate for 

the fixed slope parameter was atrocious when the ICC was equal to zero (ranging from 

.34 to .37). For the large ICC condition, however, the coverage rates were much better 

(.90 for the large sample size condition and .82 for the small sample size condition). The 

confidence interval coverage rates for the fixed slope parameter appeared to be affected 

by the sample size but not by the ICC. For the small sample size condition the coverage 

rate ranged from .42 to .57. For the large sample size condition the coverage rate ranged 

from .76 to .85. Though the coverage rates varied across ICC conditions within a 

particular sample size, they did not do so in any systematic fashion. 

Conclusions from the Multilevel Imputation Literature 

The simulation studies by Taljaard et al. (2008) and Andridge (2011) both 

examine JM multilevel imputation using the PAN method, though neither paper specified 

which version of PAN (JM-BD or JM-UN) was used. Both studies used a random 
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intercept model as their population model. One of the two studies included a level-2 

predictor, but neither study included a level-1 predictor. As such, neither study provides 

information about whether JM imputation preserves the covariances between pairs of 

level-1 variables. Related to my proposed work, the studies do provide information about 

whether JM imputation preserves other aspects of the joint distribution. The study by 

Taljaard et al. (2008) showed that JM imputation can preserve the regression of a level-1 

variable on a level-2 predictor. In terms of the current study, this indicates that the 

covariances between the cluster means (which are level-2 variables) and the level-1 

variables should be correctly preserved. The study by Andridge (2011) also indicated that 

JM imputation can preserve the variance of cluster means. 

The simulation study by van Buuren (2011) generated the data under a random 

intercept model with a single level-1 predictor. The regression of the dependent variable 

on the level-1 predictor was modeled by a single variable, constraining the level-1 and 

level-2 regression coefficients to be equal. Recall from Chapter 1 that the FCS-VB 

method (which was used for the imputation in this study) assumes that the coefficients for 

the regression of each incomplete variable on all other variables are constant across 

levels. Because the population model was constrained to match the assumptions of the 

imputation model, the simulation study does not address potential problems that might 

arise from applying FCS-VB imputation to population data where regression coefficients 

differ between level 1 and level 2. Though the study by van Buuren (2011) did not 

address the ability of FCS-VB imputation to preserve contextual effects (when regression 

coefficients differ between level-1 and level-2) the study did show that FCS-VB 

imputation can preserve the covariance between pairs of level-1 variables when no 
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contextual effect is present. The study also indicated that the level-1 residual variances 

are correctly preserved. 

In summary, the current literature does not examine whether any of the three JM 

imputation methods (JM-BD, JM-UN, or JM-Mplus) preserve the covariances among 

pairs of level-1 variables. The simulation study by van Buuren (2011) examined FCS-VB 

imputation under the strict assumption that the level-1 and level-2 coefficients for 

regressions of level-1 variables on other level-1 variables are equal in the population. JM 

and FCS imputation methods both need to be evaluated for their ability to preserve 

relationships between variables when level-1 and level-2 regression coefficients differ 

from one another and from zero. 

Multilevel Models and the Population Joint Distribution 

As discussed in Chapter 1, no publications have shown the theoretical equivalence 

of the multilevel imputation methods examined in this document and the population 

random intercept distribution. However, Shin and Raudenbush (2007) showed the 

equivalence between the model-implied moments of a univariate multilevel model and 

the moments of a population random intercept distribution. Specifically, the authors 

showed that the parameters of a univariate multilevel model can be directly calculated 

from the parameters of the joint distribution. Their approach provides the basis for the 

analytic examination of the multilevel imputation methods proposed in this document. I 

review Shin and Raudenbush (2007) here to provide background on the method I used to 

evaluate the multilevel imputation methods. For pedagogical reasons, I limit the review to 

the case of two level-1 variables with random intercepts. For consistency, I replace the 

notation used in Shin and Raudenbush (2007) with the notation that used in Chapter 3. 
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Consider the following random intercept model predicting level-1 variable Y from 

level-1 variable X: 
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  (2.1) 

 

0γ  is the intercept, 1γ  is the fixed effect of ijX  on ijY , ju  is the random intercept, and 

ije  is the level-1 residual. 2τ  is the level-2 variance of the random intercept, and 2σ  is 

the level-1 residual variance. For the sake of completeness, we should also describe the 

distribution of the predictor variable, X: 

 

 ~ N( , )xx xx xijX β ψ σ+  (2.2) 

 

where xβ  is the mean of X, xxψ  is the level-2 variance of X, and xxσ  is the level-1 

variance of X. Though a multilevel modeling analysis typically does not report the 

distribution of the predictors in the results, the information contained in the distribution 

of the predictors is used to calculate the parameters in the analysis model. As such, the 

parameters describing the distribution of the predictors can be thought of as implicit 

parameters in the analysis model. 

The random intercept population model for the two variables would be:  
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  (2.3) 

 

where xβ  and yβ  are the means of X and Y, xjb  and yjb  are the level-2 error terms for X 

and Y, and xijε  and yijε  are the level-1 residuals for X and Y. The Ψ and Σ matrices are 

the level-2 and level-1 covariance matrices for X and Y. 

 Comparing the analysis model and the population model, we see that they differ 

in the number of parameters. Specifically, the analysis model contains seven parameters (

0γ , 1γ , 2τ , 2σ , xβ , xxψ , and xxσ ) including the parameters describing the distribution 

of the predictors, and the population model contains eight parameters ( xβ , yβ , xxψ , 

xyy , yyy , xxσ , xyσ , and yyσ ). As will be shown below, the analysis model describes 

the regression of Y on X at both level-1 and level-2 using a single parameter, 1γ , whereas 

the population model uses two parameters, xyy  and xyσ , to capture the covariances 

between the two varables. As such, the analysis model is underparameterized in 

representing the population model. This also means that the parameters of the population 

model cannot be obtained from the parameters of the analysis model. The parameters in 

the analysis model, Equations 2.1 and 2.2, can be calculated directly from the multilevel 

joint distribution, as shown below. The parameters from the analysis model are listed on 
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the left side of each equation and the parameters from the population model are listed on 

the right side of each equation. 

 

 x xβ β=  (2.4) 

 xx xxσ σ=  (2.5) 
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Because the cluster means for Y were not included in the analysis model, a single 

parameter, 1γ , was used to represent the regression of Y on X at both level one and level 

two. Because of this, the slope coefficient for the regression of Y on X is a combination of 

the level-1 and level-2 covariances between the variables (equivalently, a combination of 

the level-1 and level-2 regression coefficients) as shown in Equation 2.10. This 

estimation of level-1 and level-2 regression coefficients as a single parameter is also 

required by some of the multilevel imputation methods (i.e., FCS-VB, as well as JM-BD 

and JM-UN when cluster means are not included). Because this method of equating a 
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joint distribution with an analysis (or imputation) model makes the links between joint 

distribution parameters and analysis/imputation model parameters explicit, it highlights 

areas of the joint distribution that may not be preserved by the analysis/imputation model 

(e.g., the aliasing of level-1 and level-2 covariances in Equation 2.10 indicates that the 

level-1 and level-2 covariances may not be fully preserved by the analysis model). As 

such, the method is useful for evaluating each of the multilevel imputation methods. 

If an analysis model is underparameterized in representing the population joint 

distribution, the parameters of the analysis model can be obtained from the parameters of 

the population model but it is not possible to obtain the parameters of the population 

model from the parameters of the analysis model when the analysis model is 

underparameterized in representing the population model. This concept is important for 

the analytic work in this study, described in Chapter 3. That is, the analytic piece of the 

dissertation study shows the calculation of the parameters in each imputation model from 

the population joint model. However, because some of the imputation models are 

underparameterized in representing the population model, the population model 

parameters cannot be calculated from the imputation model parameters, indicating that 

those imputation models are incapable of fully preserving all of the information contained 

in the population model. For imputation models that are not underparameterized in 

representing the population joint distribution, I show the calculation of the population 

parameters from the imputation model parameters to demonstrate the ability of these 

models to preserve the information in the population model. 

Although JM and FCS imputation methods for single-level data have been studied 

with analytic methods (Hughes et al., 2014), no studies have examined JM and FCS for 
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multilevel data. Also, the simulation studies of multilevel imputation (described in the 

previous section) provide limited evidence of the capability of multilevel imputation 

methods to preserve population covariances between level-1 variables. Thus, the goal of 

this dissertation was to examine the situations under which the three JM methods and the 

two FCS imputation methods reproduce (or preserve) the mean and covariance structure 

of a population random intercept model with multivariate normal data. The analytic work 

was based on the article by Shin and Raudenbush (2007). The next chapter describes the 

methods that I used to investigate this issue. 
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Chapter 3. Methods 

Imputation Methods 

Chapter 1 categorized multiple imputation methods into two categories: JM and 

FCS. Recall that Chapter 1 described three JM multilevel imputation methods and two 

FCS multilevel imputation methods: JM-BD (the PAN method with a block-diagonal 

level-2 residual covariance matrix), JM-UN (the PAN method with an unstructured level-

2 residual covariance matrix), JM-Mplus (JM imputation treating all variables as 

responses and using an unstructured level-2 covariance matrix), FCS-VB (van Buuren’s 

FCS method implemented in MICE), and FCS-CK (FCS imputation with added cluster 

means for all level-1 variables). I briefly recap the five multilevel imputation methods 

here with an emphasis on their differences, as these methods were be the focus of this 

study. Two of the JM methods are variants of the PAN method (Schafer, 2001; Schafer & 

Yucel, 2002). In the PAN method, the incomplete variables are modeled conditional upon 

the complete variables: 

 

 j j j j j= + +Y X β Z B Ε   (3.1) 

 

where jY  is the jn  by r matrix of incomplete level-1 variables for cluster j and r is the 

number of incomplete level-1 variables. Note that jY  contains all of the incomplete 

level-1 variables, regardless of their role in the analysis model. jX  is the jn  by f fixed 

effect covariate matrix for cluster j, where f is the number of fixed effect covariates. jX  

contains all of the complete level-1 and level-2 variables, as well as a unit vector for the 
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intercept. β  is the f  by r matrix of fixed effects that are common for all clusters. jZ  is 

the jn  by q random effect covariate matrix for cluster j, where q is the number of random 

effects. jZ  contains the subset of complete level-1 variables that are allowed to have 

random effects with the variables in jY , as well as a vector of ones for the random 

intercepts. jB  is the q by r matrix of level-2 residuals for cluster j. Although jB  can 

contain both random intercepts and random slopes, this study focuses solely on random 

intercepts. jΕ  is the jn  by r matrix of level-1 residuals for cluster j. 

The parameter values and residual terms in Equation 3.1 are obtained from an 

iterative MCMC algorithm that draws the necessary terms from their theoretical 

probability distributions. The parameters in Equations 3.1, 3.2, and 3.3 are generated 

from a Markov Chain Monte Carlo algorithm similar to that described in the single-level 

imputation section. Because these sampling steps are described throughout the literature 

(Browne & Draper, 2000; Goldstein, 2011; Goldstein et al., 2009; Kasim & Raudenbush, 

1998; Schafer, 2001; Schafer & Yucel, 2002; Yucel, 2008), I do not detail them here. 

Rather, I focus on the structure of the residual covariance matrices, as these play an 

important role in imputation. For each MCMC iteration, one must draw new residuals for 

each observation and new random effects for each cluster: 

 

 ~ N(0, )ije Σ   (3.2) 

 jvec( ) ~ N(0, )b Ψ   (3.3) 
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where ije  is the vector of residuals for observation i in cluster j, Σ  is the level-1 residual 

covariance matrix, jvec( )b  refers to stacking all of the random effects for cluster j in a 

column vector, and Ψ  is the level-2 random effects covariance matrix. Σ  preserves the 

residual level-1 associations among the incomplete variables and Ψ  preserves the 

residual level-2 associations among the incomplete variables. Schafer proposed two 

options for Ψ : an unstructured covariance matrix or a block-diagonal covariance matrix. 

The unstructured level-2 covariance matrix allows the random effects for any two 

incomplete variables to be correlated. The unstructured level-2 matrix allows the residual 

cluster-level associations to freely vary in ways that may or may not be the same as the 

residual level-1 associations between the variables, which are captured in the level-1 

residual covariance matrix, Σ . To illustrate, consider a scenario with two incomplete 

variables, both of which are imputed under a random intercepts model. The unstructured 

covariance matrix allows the intercepts to covary, such that the association between the 

cluster means at level-2 can differ from the level-1 association, which is captured by the 

covariance between the level-1 error terms. As a reminder, I refer to the PAN method 

with an unstructured random-effect covariance matrix as the JM-UN method.  

In some cases, the number of parameters to be estimated in the unstructured level-

2 covariance matrix may be large with many incomplete variables. If the number of 

clusters in a data set is small, it may not be possible to estimate covariances among all of 

the random effects for all of the incomplete variables (Schafer & Yucel, 2002). In such 

cases, Schafer suggests that it may be advantageous to model Ψ  as a block-diagonal 

matrix in which the covariances between random effects for different incomplete 

variables are constrained to zero: 
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where r is the number of incomplete variables. In contrast to the unstructured covariance 

matrix, the block diagonal structure presumes that the intercepts are uncorrelated. Under 

this specification the residual level-1 association is still captured by the residual 

covariance between the level-1 error terms. However, the residual covariances between 

the cluster means at level-2 are assumed to be nonexistent. If the data contains any 

residual level-2 covariances between pairs of incomplete variables, the imputation model 

constrains the sizes of these covariances to zero. To clarify, this is not the same as 

constraining the level-1 and level-2 residual covariances to be equal. In a situation where 

all of the variables are incomplete, the block-diagonal structure assumes that the level-2 

cluster means are uncorrelated. If some of the variables are complete (and thus serve as 

predictors of the incomplete variables), the block-diagonal structure assumes conditional 

independence of the incomplete variable cluster means. That is, the cluster means are 

uncorrelated apart from their mutual dependence on the X variables. Constraining the 

level-1 and level-2 residual covariances to be equal would allow both the level-1 and 

level-2 residual covariances to be non-zero as long as they are equal. The block diagonal 

psi matrix, on the other hand, places no constraints on the residual level-1 covariances 

between the variables but constrains the covariances between the random intercepts (and 

thus the residual level-2 covariances between the variables) to be zero. As a reminder, I 
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refer to the PAN method with a block-diagonal random-effect covariance matrix as the 

JM-BD method. 

 We turn now to the associations between the complete and incomplete variables 

(i.e., between the variables in matrix X and the variables in matrix Y in Equation 3.1). 

For the two PAN imputation methods (JM-UN and JM-BD), a single parameter is used to 

estimate the regression of an incomplete variable on a complete variable in the 

imputation model by default. This means that the level-2 regression coefficients and the 

level-1 regression coefficients predicting the incomplete variables from the complete 

variables are not allowed to differ from one another. As such, level-1 and level-2 

regression coefficients predicting incomplete variables from complete variables will be 

constrained to equality in the imputation model. Note that the analyst can attempt to 

remedy this by adding the cluster-means of the complete variables to the data set, and 

including these calculated variables as predictors. This would result in the estimation of 

two parameters for each incomplete-complete variable pair, one measuring the within-

cluster regression and the other measuring the difference between the within-cluster and 

between-cluster regression coefficients. However, it is likely that the majority of users of 

multilevel imputation software are unaware of the need to include complete variable 

cluster means as predictors in their imputation models. As such, this document focuses on 

the default models used for each of the methods, and does not examine modifications to 

the JM methods.  

 The two PAN methods just described (which differ only in the structure of Ψ ) 

both modeled the incomplete variables as a function of the complete variables. In 

contrast, the third JM imputation method, the so-called H1 imputation approach in Mplus 
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(which I refer to as JM-Mplus), treats all variables, both incomplete and complete, as 

dependent variables and includes no predictors in the model (Asparouhov & Muthén, 

2010a, 2010f): 

 

 jij ij= + +β b ey   (3.5) 

 

where ijy  is a vector of level-1 variables for level-1 unit i in cluster j. ijy  contains all of 

the level-1 variables, both complete and incomplete. β  is a vector containing the grand 

mean for each of the variables. jb  contains the random intercepts for cluster j. ije  

contains the discrepancies between the cluster intercepts for cluster j and the values 

(observed or imputed) for observation i in cluster j. Note that all of the objects in 

Equation 3.5 are vectors, as the equation describes a single observation, i, and multiple 

variables. Matrices jX  and jZ  from Equation 3.1 are not shown in Equation 3.5, as the 

two matrices reduce to scalars equal to 1. Vectors ije  and jb  are distributed as: 

 

 ~ N(0, )ije Σ   (3.6) 

 ~ N(0, )jb Ψ   (3.7) 

 

where Σ  is the unstructured level-1 covariance matrix and Ψ  is the unstructured level-2 

covariance matrix. Although it is not relevant to this study, notice that the method does 

not allow for the inclusion of random slopes among ANY variables. This is in contrast to 

the PAN JM methods, which allow complete variables to exert random influences on the 
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incomplete variables. Because JM-Mplus models the entire level-1 covariance matrix and 

the entire level-2 covariance matrix, the within-cluster associations and the between-

cluster associations are freely estimated for all variables in the model. This means that the 

within-cluster and between-cluster associations between a pair of variables can both be 

non-zero and can differ in their magnitude and sign. JM-Mplus allows level-1 

covariances and level-2 covariances between pairs of complete and incomplete variables 

to differ, which PAN methods do not allow (though PAN can do this for pairs of 

complete/incomplete variables if the complete variable cluster means are added as 

predictors). 

 To recap, this section described three JM multilevel imputation methods: the JM-

BD method, the JM-UN method, and JM-Mplus. The two PAN methods both predict the 

incomplete variables from the complete variables. Unless the analyst calculates the 

complete variable cluster means and includes these cluster means as predictors in the 

imputation model as level-2 predictors, both PAN methods constrain the level-1 and 

level-2 coefficients for the regression of the incomplete variables on the complete 

variables to be equal,. The JM-BD method constrains the residual covariances between 

the incomplete variable intercepts to be zero, whereas the JM-UN method does not. This 

implies that the level-2 covariances between pairs of incomplete variables above and 

beyond what is accounted for by regression on the complete variables is constrained to be 

zero. Unlike the PAN methods, JM-Mplus treats all level-1 variables (complete and 

incomplete) as response variables in the imputation model. JM-Mplus freely estimates the 

level-1 and level-2 covariances between all of the parameters without constraining any 

parameters to equality or to zero. 
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In Chapter 1, I presented two FCS multilevel imputation methods. Both FCS 

methods impute variables one at a time, drawing missing values from a series of 

univariate distributions. Each univariate distribution is used to draw a single incomplete 

variable conditional on the complete variables and all other incomplete, imputed 

variables.  

 

 jk jk k jk jk jk= + +y X β Z eb   (3.8) 

 

In the above equation, jky  is the jn  by 1 vector of values for incomplete level-1 variable 

k in cluster j. jky  is used to represent each incomplete variable once. jkX  is the fixed 

effect covariate matrix predicting incomplete variable k for cluster j. jkX  contains all of 

the complete and imputed level-1 and level-2 variables specified as predictors for 

incomplete variable k, as well as a unit vector for the intercept. Note that in each 

imputation jkX  is normally specified to include all of the (filled-in) incomplete variables 

except for the incomplete variable currently being imputed. jkX  makes no distinction 

between the independent variables and the dependent variable from the analysis model. 

kβ  is the vector of fixed effects for variable k that are common for all clusters. jkZ  is the 

jn  by kq  random effect covariate matrix for cluster j for variable k. jkZ  contains the 

subset of level-1 variables (complete and imputed) that are allowed to have random 

effects on variable k. jkb  is the vector of level-2 residuals (i.e., residual intercepts and 

slopes) for cluster j for variable k. jke  is the vector of level-1 residuals for cluster j for 
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variable k. The parameters in Equation 3.8 are generated from a Markov Chain Monte 

Carlo algorithm similar to that described in the single-level imputation section. Because 

these sampling steps are described throughout the literature (Browne & Draper, 2000; 

Goldstein, 2011; Goldstein et al., 2009; Kasim & Raudenbush, 1998; Schafer, 2001; 

Schafer & Yucel, 2002; Yucel, 2008), I do not detail them here. 

Of the two FCS methods presented in Chapter 1, the FCS-VB method is the only 

FCS multilevel imputation method implemented in publicly available software (van 

Buuren & Groothuis-Oudshoorn, 2011). Chapter 1 contained an example of the FCS-VB 

imputation method in which two variables, y and w, were imputed using two conditional 

imputation models. For the sake of clarity, I will now use the variable names y1 and y2 

for the incomplete variables, and x for the complete variable. Because this document 

focuses on random intercept imputation models for simplicity, we can exclude random 

slopes. In the FCS-VB method, the univariate distributions for y1 and y2 are: 
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( )1
0

yβ  is the intercept for the imputation model predicting y1. ( )1
1

yβ  and ( )1
2

yβ  are the 

fixed effects for predicting y1 from x and y2. ( )1
0

y
jb  is the random intercept for y1. 

2
1| 2,y y xσ  is the residual variance for y1. ( )2

0
yβ  is the intercept for the imputation model 
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predicting y2. ( )2
1

yβ  and ( )2
2

yβ  are the fixed effects for predicting y2 from x and y1. 

( )2
0

y
jb  is the random intercept for y2. 2

2| 1,y y xσ  is the residual variance for y2.  

 The FCS-VB method uses a single parameter to capture the regression of each 

incomplete variable on each other variable. That is, the level-1 and level-2 coefficients 

for the regression of an incomplete variable on a complete variable are represented a 

single regression coefficient, constraining the level-1 and level-2 regression coefficients 

to be equal. In Equation 3.9 the entire regression of y1 on x is captured by ( )1
1

yβ . In 

Equation 3.10 the entire regression of y2 on x is captured by ( )2
1

yβ . Similarly, the level-1 

and level-2 coefficients for the regression of one incomplete variable on another 

incomplete variable are represented with a single parameter, constraining the two level-1 

and level-2 coefficients to be equal. In Equation 3.9 the entire regression of y1 on y2 is 

captured by ( )1
2

yβ . In Equation 3.10 the entire regression of y2 on y1 is captured by 

( )2
2

yβ . Because of this, the level-1 and level-2 coefficients for the regression of each 

dependent variable on each predictor variable are constrained to be equal. The FCS-VB 

method makes the same assumption about the regression of each variable on each other 

variable that the PAN methods make about the regression of each incomplete variable on 

each incomplete variable: the level-1 and level-2 regression coefficients are equal. 

 Although the approach has not been implemented in publicly available software, 

Carpenter and Kenward (2012, p. 221) state that the cluster means of each level-1 

variable (complete or imputed incomplete) should be included as predictors in each of the 

univariate imputation models used for FCS. This method, which I refer to as FCS-CK, is 
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straightforward and very similar to the FCS-VB imputation method. However, users 

cannot add incomplete variable cluster means as predictors in MICE because incomplete 

variables need to be recalculated at each MCMC iteration. The recalculation of 

incomplete variables cluster means at each MCMC iteration is not supported in MICE, so 

FCS-CK imputation cannot be performed in the MICE software package. Adding cluster 

means to Equations 3.9 and 3.10 would result in the following univariate imputation 

distributions: 
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where jx  is the mean of x in cluster j, 2 jy  is the mean of y2 in cluster j, and 1 jy  is the 

mean of y1 in cluster j. With the addition of the cluster means, each univariate 

distribution now includes two parameters to represent the regression of an incomplete 

variable on a predictor. For example, the regression of y1 on x in Equation 3.11 is 

captured by ( )1
1

yβ  and ( )1
3

yβ . ( )1
1

yβ  captures the within-cluster regression of y1 on x and 

( )1
3

yβ  captures the difference between the between-cluster and within-cluster coefficients 

for the regression of y1 on x. The inclusion of these two parameters allow the level-1 and 

level-2 coefficients for the regression of y1 on x to both freely vary. That is, the level-1 
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and level-2 regression coefficients can both be non-zero and not constrained to equality. 

Similarly, the coefficients for the regressions of y2 on y1, y2 on x, and y1 on y2 can be 

different between levels 1 and 2. 

 In summary, this document examines the following five multilevel imputation 

methods: 

1) JM imputation predicting the incomplete variables from the complete 

variables using a block-diagonal level-2 covariance matrix (JM-BD) 

2) JM imputation predicting the incomplete variables from the complete 

variables using an unstructured level-2 covariance matrix (JM-UN) 

3) JM imputation treating all variables as response variables and using an 

unstructured level-2 covariance matrix (JM-Mplus) 

4) FCS imputation without cluster means (FCS-VB) 

5) FCS imputation including cluster means for both incomplete and complete 

variables (FCS-CK imputation) 

Research Questions and Hypotheses 

 As stated in Chapter 1, the first overarching goal for this project was to examine 

the situations under which the three JM imputation methods reproduced (or preserved) 

the mean and e structure of a population random intercept model with multivariate 

normal data. The second overarching goal for this project was to examine the situations 

under which FCS imputation reproduced the mean and covariance structure of a 

population random intercept model with multivariate normal data. These overarching 

goals corresponded to the five following research questions: 
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1) Does JM-BD produce expectations that are equivalent to the joint distribution 

of the data? 

2) Does JM-UN produce expectations that are equivalent to the joint distribution 

of the data? 

3) Does JM-Mplus produce expectations that are equivalent to the joint 

distribution of the data? 

4) Does FCS-VB produce expectations that are equivalent to the joint 

distribution of the data? 

5) Does FCS-CK produce expectations that are equivalent to the joint 

distribution of the data? 

Answering the above questions also provided insight into the following question: 

6) Do any of the five imputation methods examined in this document produce 

equivalent expectations? If so, which? 

 I expected that two of the three JM methods would produce expectations that 

were not equivalent to the joint distribution containing only random intercepts. I 

hypothesized that method one, JM-BD imputation, would not produce expectations 

equivalent to the joint distribution containing only random intercepts. This is because 

JM-BD imputation uses a single parameter to represent the regression of an incomplete 

variable on a complete variable by default, and because JM-BD imputation assumes no 

covariance between the random intercepts of the incomplete variables. I hypothesized 

that method two, JM-UN imputation, would not produce expectations equivalent to the 

joint distribution containing only random intercepts. This is because JM-UN imputation 

uses a single parameter to represent the regression of an incomplete variable on a 
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complete variable by default. I hypothesized that method three, JM-Mplus, would 

produce expectations that were equivalent to the joint distribution containing only 

random intercepts. This is because JM-Mplus imputation uses two parameters to 

represent the covariances between each pair of variables in the model and makes no 

assumptions about level-2 covariances being equal to level-1 covariances or to zero. 

 I expected that, of the two FCS methods, only FCS-CK imputation would produce 

expectations that were equivalent to the joint distribution containing only random 

intercepts. I hypothesized that method 4, FCS-VB imputation, would not produce 

expectations equivalent to the joint distribution containing only random intercepts. This is 

because FCS-VB imputation uses a single parameter to represent level-1 and level-2 

regressions of each incomplete variable on each complete variable by default, and always 

uses a single parameter to represent level-1 and level-2 regressions of each incomplete 

variable on every other incomplete variable. I hypothesized that method five, FCS-CK 

imputation, would produce expectations equivalent to the joint distribution containing 

only random intercepts. Because FCS-CK imputation uses two parameters to represent 

the regression of each incomplete level-1 variable on every other level-1 variable, the 

level-1 and level-2 regression coefficients should not be constrained to be equal or to be 

zero. 

 The primary hypotheses just listed also implied a set of secondary hypotheses. 

JM-Mplus and FCS-CK were predicted to both produce expectations equivalent to those 

produced by the population joint model. As such, JM-Mplus and FCS-CK were predicted 

to be equivalent to one another, but not to any of the other methods. JM-BD is the only 

imputation method that assumes no covariance between the random intercepts of the 
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incomplete variables. As such, JM-BD was predicted to not be equivalent to any of the 

other methods. FCS-VB imputation uses a single parameter to represent the regression of 

an incomplete variable on any other variable. JM-UN imputation uses a single parameter 

to represent the regression of an incomplete variable on any complete variable, but uses 

two parameters to represent the covariance between any pair of incomplete variables. As 

such, the expectations produced by JM-UN were predicted to differ from the expectations 

produced by FCS-VB. 

 In summary, I hypothesized that: 

1) JM-BD, JM-UN, and FCS-VB produce expectations that are not equivalent to 

the joint distribution of the data. 

2) JM-Mplus and FCS-CK imputation produce expectations that are equivalent 

to the joint distribution of the data. 

3) JM-BD, JM-UN, and FCS-VB do not produce expectations that are equivalent 

to one another or to JM-Mplus and FCS-CK imputation. 

4) JM-Mplus and FCS-CK imputation produce equivalent expectations. 

Analytic Examination of JM and FCS Expectations 

In order to describe the exact differences between JM and FCS imputation 

methods, it is helpful to first specify a population model. The analytic work assumed the 

following population model: 
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  (3.13) 

 

The model in Equation 3.13 is simply the joint multilevel distribution of variables W, X, 

and Y for two-level multivariate normal data. The exact values of the parameters are not 

of importance for the theoretical examination of the imputation models and are not stated 

here. It is important that any imputation model (FCS or JM) be able to correctly represent 

the joint distribution in Equation 3.13.  

I began by examining the joint multilevel distribution for W, X, and Y, and 

compared it to the model-implied moments for the three multilevel JM methods and the 

two FCS methods for incomplete X and incomplete Y. Specifying a population model 

with three variables and treating two of the three variables as incomplete allows for the 

examination of the covariances between a complete variable and an incomplete variable, 

as well as the covariances between a pair of incomplete variables. I showed that each 

parameter in the imputation models can be calculated from the parameters in the joint 

multilevel distribution. This was done in a method similar to the one described for Shin 

and Raudenbush (2007) in Chapter 2. Calculating the parameters of each imputation 
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model from the parameters of the joint population model highlighted areas of the 

population model that are not fully preserved by the imputation model. 

For the methods which I hypothesized to produce expectations equivalent to those 

produced by the joint model, I proved the hypothesis by showing that the parameters of 

the population joint model can be calculated from the parameters of the imputation 

model. Note that it would not possible to calculate the parameters in the joint multilevel 

distribution from the parameters in the imputation model for the imputation models that 

do not produce expectations equivalent to those of the joint model. That is, the 

parameters of the joint population model could not be calculated from the parameters of 

the imputation model if the imputation model has fewer parameters than does the joint 

model. So, calculating the parameters of the joint distribution from the parameters of the 

imputation model demonstrate that they should produce equivalent expectations. 

Simulation Studies 

Overview of simulations. Following the theoretical examination of the FCS and 

JM imputation methods, I conducted two simulation studies. The first study generated the 

data under a population model where the level-2 correlations among variables differed 

from the level-1 correlations among the variables. The results of study 1 reflect how well 

the imputation methods preserved the level-1 and level-2 covariances from the general 

distribution in Equation 3.13. The second study generated the data under a population 

model where the correlations between variables are identical across levels. The results of 

the second study enabled me to determine whether the more general multilevel 

imputation methods (JM-Mplus and FCS-CK imputation) perform well even when the 

models are overparameterized. Note that it was not my goal to provide a comprehensive 



 

75 

simulation that investigates the performance of multilevel imputation techniques. Rather, 

the goal was to perform a focused set of simulations that illustrated and tested the 

propositions derived from the analytic work. 

The following four factors were manipulated in the two studies: the imputation 

method, the number of clusters, the number of observations per cluster, and the intraclass 

correlation (ICC). The imputation method factor incorporated the five approaches 

described at the beginning of this chapter (JM-BD, JM-UN, JM-Mplus, FCS-VB, and 

FCS-CK). The number of clusters took on values of 30 and 100. The number of 

observations per cluster took on values of 5 and 30. The ICC took on values of 0.1 and 

0.5. The rationale for these choices is provided later in this section. 

Population models. The multiple imputation methods examined in this document 

differ in how well they preserve covariances between complete and incomplete variables, 

as well as how well they preserve covariances between pairs of incomplete variables. So 

that the methods may be compared in terms of how they handle both types of 

covariances, all of the population models included two incomplete variables and one 

complete. 

 As described in the above paragraph, the data generation models for both 

simulation studies included three variables, which I label W, X, and Y. The joint 

distribution for the three variables with random intercepts but no random slopes can be 

written as: 
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  (3.14) 

 

The values of the fixed intercept terms ( ( )wβ , (x)β , and (y)β ) are arbitrary, so, for 

convenience, I set them to zero across all simulation conditions. Because the sizes of the 

correlations between the variables at level-2 differed between study one and study two 

(i.e., the magnitude of the contextual effect differed), and because I also manipulated the 

variances of the variables at level-2 (to manipulate the ICCs), it is useful to rewrite the 

level-1 and level-2 covariance matrices as functions of the standard deviation vectors and 

correlation matrices at each level. Making these changes to the joint distribution yields 

the following population model: 

 



 

77 

 

(w) ( )

(x) ( )

( ) (y)

(w)

(x)

(

2

2

2

)

2

1 00 0

0 00, * 0 1

0 0 1
~ MVN

0 0

0 0*

0 0

w
j ij

x
j ij
y

j ij

j

j
y

j

ij

ij

ij

L
wyww
L

xx xy
L Lyy wy xy

ww

xx

yy

bW

X b
Y b

b

b

r

r

r

b

r

y

y

y

y

y

y

ε

ε

ε

             = +               

  
  
  

    
        
   
   



 

( )

( )

(y)

9 0 0 9 0 01 0 .4
~ MVN 0, 0 1 .50 18 0 0 18 0

.4 .5 10 0 27 0 0 27

w
ij

x
ij

ij

ε

ε

ε

 
 
 
 
 
 
 
 
 
   

                                     
  (3.15) 

 

where the two outer matrices for each of the covariance matrix calculations are diagonal 

matrices containing the standard deviation of each variable on the main diagonal and the 

inner matrix is the correlation matrix. Note that the correlations between the W and X at 

each level were fixed at zero. This was done to isolate potential sources of bias. The non-

zero level-1 correlations were not manipulated. Rather, the level-1 correlation between W 

and Y is fixed at .4 and the level-1 correlation between X and Y were fixed at .5 across all 

study conditions. A correlation of .5 corresponds to Cohen’s benchmark for a large effect 

size. The level-1 variance of X was set equal to 9, the level-1 variance of W was set equal 

to 18, and the level-1 variance of Y was set equal to 27. The size of the variances was 

arbitrary. The level-2 variance changed across conditions to achieve the two ICC 
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conditions under investigation (ICC = .1 and ICC = .5). The expressions in Equation 3.15 

produced the following level-1 and level-2 covariance matrices: 
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The goal of study one was to investigate the case where the level-1 and level-2 

associations differ. In order to produce a non-zero difference between the level-1 and 

level-2 correlations as well as a non-zero level-2 correlations between Y and the other two 

variables, the level-2 correlation between W and Y ( 2L
wyr  in Equations 3.15 and 3.16) was 

set to -.4 and the level-2 correlation between X and Y ( 2L
xyr  in Equations 3.15 and 3.16) 

was set to -.5. These two correlations are equal in magnitude to the level-1 correlations, 

but opposite in sign. I chose rather large correlations of -.4 and -.5 because the large 

effect size would allow me to clearly demonstrate the implications of the analytic work. 

To achieve an ICC of 0.5 for all of the variables, the level-2 variance terms were set 

equal to the level-1 variance terms. That is, the level-2 variance of X was set equal to 9, 

the level-2 variance of W was set equal to 18, and the level-2 variance of Y was set equal 

to 27. So, the population model for study one in the ICC = .5 condition was: 
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The expressions in Equation 3.17 produce the following level-1 and level-2 covariance 

matrices: 
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For the ICC=.1 condition of study one, the level-2 variance of X was set equal to 

1, the level-2 variance of W was set equal to 2, and the level-2 variance of Y was set equal 

to 3: 
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Other than using different level-2 variances, Equation 3.19 is identical to Equation 3.17. 

The expressions in Equation 3.19 produce the following level-1 and level-2 covariance 

matrices: 
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The goal of study two was to investigate the case where the level-1 and level-2 

associations were equal. To achieve this, the level-2 correlation between W and Y ( 2L
wyr  in 

Equations 3.15 and 3.16) was set to .4 and the level-2 correlation between X and Y ( 2L
xyr  

in Equations 3.15 and 3.16) was set to .5. The other parameters in the two population 
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models (one for ICC=.5 and one for ICC=.1) used for study two were identical to the 

parameters in the two population models used for study one. So, the population model for 

study two in the ICC=.5 condition was: 
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The expressions in Equation 3.21 produce the following level-1 and level-2 covariance 

matrices: 
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The population model for study two in the ICC=.1 condition was: 
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  (3.23) 

 

The expressions in Equation 3.23 produce the following level-1 and level-2 covariance 

matrices: 

 

 

1 0 .69
0 2 1.22

.69 1.22 3

9 0 6.24
0 18 11.02

6.24 11.02 27

 
 =  
  

 
 =  
  

Ψ
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  (3.24) 

 

Though the two covariance matrices in Equation 3.24 are different, the multiple 

regression of Y on X and W would yield the same estimates for level-1 and level-2. That 

is, the partial regression coefficient predicting Y from W would be 0.69 at both levels and 

the partial regression coefficient predicting Y from X would be 0.61 at both levels. 
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Data generation. The population models just described were used to generate the 

data using the SAS Interactive Matrix Language, Version 13.2 (SAS Institute Inc., 2014). 

Recall from previous equations that, regardless of the population model, the vector of 

values for the three variables for person i in cluster j can be written as the sum of the 

vector of random intercepts for cluster j and the vector of residuals for person i in cluster 

j: 
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  (3.25) 

 

Note that a vector of means is not included because the mean of each variable is fixed to 

zero in all of the population models. To generate the vector of values for simulated 

observation 1 in simulated cluster 1, one would simply draw the level-1 and level-2 

vectors and calculate their sum. Note that one would use the same level-2 vector for all 

observations in the same cluster. SAS/IML can be used to directly sample a vector from a 

multivariate normal distribution specified using a mean vector and covariance matrix 

(SAS Institute Inc., 2014; Wicklin, 2013). So, for the ICC=0.5 condition of study one, 

one could draw the vector of random intercepts for cluster one from the following 

distribution: 
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For person one in cluster one, one would draw the level-1 residuals from the following 

distribution: 
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The covariance matrices in the previous two equations came from Equation 3.17. The 

values for observation 1 in cluster 1 are the result of summing the two vectors that were 

just drawn: 
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  (3.28) 

 

As previously mentioned, the vector of random intercepts was drawn once for each 

cluster, and the vector of level-1 residuals was drawn once for each observation in the 

cluster. 
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Consistent with Enders et al. (2014), I did not vary the missing data rate, as this 

factor has a predictable and uninteresting effect on the outcomes (e.g., as the missing data 

rate increases, nonresponse bias increases and efficiency decreases). Rather than varying 

the missing data rate, I fixed probability of missingness at .2 for X and Y. This means that 

each value of X and Y had a probability of being deleted equal to .2. However, the exact 

percentage of missing observations was allowed to vary across sample data sets. This 

missingness probability was sufficient to highlight differences between the imputation 

methods. The missing data were generated under an MCAR mechanism. Though MCAR 

may not be a realistic assumption, it is useful to first examine whether the imputation 

methods under a benign mechanism. If a missing data handling method produces bias for 

MCAR, one can conclude that using such a method is worse than simply ignoring the 

missing data and using listwise deletion (which is unbiased for MCAR). As such, it is 

standard practice to test missing data handling methods under an MCAR mechanism 

prior to testing these methods under an MAR.  

 The deletion of values to simulate MCAR missingness was performed in 

SAS/IML. After a complete data set was generated and saved, a copy of the data set 

needed to be created but with values of the variables deleted at random. An indicator 

variable was created for each of the two variables to be made incomplete (X and Y). 

Values for the indicator variables were drawn from a Bernoulli(.2) distribution. That is, 

for each observation, each indicator took a value of 1 with probability of .2, and a value 

of 0 with probability of .8. If the indicator for X was equal to one for an observation, X 

was deleted for that observation. The same was be done for Y. This resulted in roughly 

20% of values being deleted from the data set for both X and Y. Because the distribution 
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of each indicator is the same for all values in the data set, the missing data mechanism 

was MCAR.  

Manipulated factors. This subsection describes the rationale for the manipulated 

factors and their values. As previously mentioned, the studies manipulated the following 

factors: imputation method, number of clusters, number of observations per cluster, and 

ICC. The imputation method factor incorporated the five approaches described at the 

beginning of this chapter (JM-BD, JM-UN, JM-Mplus, FCS-VB, and FCS-CK) for the 

reasons described at the beginning of the chapter. JM-BD imputation, JM-UN imputation, 

and JM-Mplus imputation were performed in Mplus. FCS-VB imputation and FCS-CK 

imputation were performed using custom software, BLImP, written by Keller and Enders 

(2014). Each imputation method was applied to the same data set, making imputation 

method a within-subjects factor. 

Two conditions were used for both the number of clusters (30 and 100) and the 

number of observations per clusters (5 and 30). I chose these conditions to represent two 

extremes in psychological research: cross-sectional studies where participants are nested 

in groups (e.g., children nested within schools) and longitudinal research where repeated 

observations are nested within participants. Kreft and de Leeuw (1998) and Hox (2010) 

suggest that 30 clusters is the minimum acceptable number for a multilevel model. 

Consistent with Maas and Hox (2005), 100 clusters were used for the upper extreme. Five 

level-1 observations per cluster is typical for longitudinal studies and for family research, 

whereas 30 observations per cluster is typical in education studies  (Maas & Hox, 2005).  

Differences among the imputation methods may be highlighted by varying the 

intraclass correlations (ICCs). The size of the ICC may also affect the accuracy of the 
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estimates (Goldstein, 2011). ICCs typically range from 0 to 0.3 in cross-sectional studies, 

with smaller values tending to be more prevalent (Gulliford, Ukoumunne, & Chinn, 

1999). Other authors have suggested ICCs between 0.05 and 0.15 for cross-sectional 

studies (e.g., Hedges & Hedberg, 2007; Spybrook, Raudenbush, Liu, Congdon, & 

Martínez, 2006). As such, I examined an ICC of 0.1 to determine how well the 

imputation methods are likely to fare in cross-sectional studies. In keeping with Enders et 

al. (2014), I used an ICC of 0.5 to mimic within-subjects data (e.g., data from a 

longitudinal study or diary data). Though the high ICC condition was intended to mimic 

within-subjects data, the structure of the level-1 residual covariance matrix was left 

unchanged (the level-1 residuals were not allowed to covary). The random intercept 

model used to generate the data could have equivalently been generated using a repeated 

measures model with a compound symmetric structure. That is, the data for the high ICC 

condition could be thought of as repeated measurements performed on the same level-2 

units without any autoregressive effects. The same ICC was used for all variables in the 

model.  

Non-manipulated aspects of the study. Each of the methods examined in the 

two simulation studies were used to produce 20 imputations. A simulation study by 

Graham et al. (2007) showed that 20 imputations produced power similar to that 

produced by 100 imputations for small fractions of missing information. As such, 

increasing the number of imputations past 20 would greatly increase the computational 

demand (and therefore computing time) of the simulations in exchange for only a small 

increase in power. Consistent with Enders et al. (2014), the imputations were produced 

using 1,000 burn-in iterations and 500 between-imputation iterations. The 1,000 burn-in 
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iterations were expected to result in stability for the MCMC algorithm prior to any 

imputations being produced. The 200 between-imputation iterations were expected to be 

sufficient to avoid correlations between imputed values across imputations. 

Multilevel multiple imputation simulations take far more time per iteration than 

average studies due to multilevel imputation methods being time-consuming. As such, 

multilevel imputation simulation studies tend to use 1000 or fewer iterations per 

simulation condition. For example, van Buuren (2011) used only 100 iterations per 

condition, but Andridge (2011) and Taljaard et al. (2008) both used 1000 iterations per 

condition. I performed 1000 iterations per study condition. Each of the two studies 

contained five imputation methods, two level-2 sample size conditions, two level-1 

sample size conditions, and two ICC conditions. Running the two studies with the 

aforementioned factor values required 40 conditions and 40,000 total replications for 

each of the two simulation studies. 

 Analysis model. The analysis model for both simulation studies was a 

multivariate unconditional model that estimated the grand means and the unstructured 

covariance matrices at both levels (i.e., the parameters of the joint distribution): 
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  (3.29) 

 

This model was chosen because it matches the form of the population distributions used 

to generate the data. As such, differences between the population distribution and the 

analysis results highlighted biases resulting from the imputation method employed. The 

analysis of each imputed data set was performed using Mplus 7. Mplus 7 was chosen 

because it includes functionality for estimating multivariate two-level models. Though 

Mplus 7 is capable of pooling multiple imputation results and displaying these results in 

the output, Mplus 7 is not capable of exporting the pooled multiple imputation analysis 

results to a data set. As such, the pooling of the results was performed in SAS/IML 13.2. 

 Replicate failures. For any multiple imputation simulation study, it is important 

to assess whether the imputation step and the analysis/pooling step both complete 

successfully for each imputation method for each replicate. In addition to recording the 

parameters estimated for each method for each replicate, I recorded the failure rate for the 

method, where a failure of the imputation step or the analysis/pooling step for a method 

counts as a failure for that method. When such a failure occurred, I generated additional 
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data sets to ensure that estimates were successfully obtained for 1000 replicates in each of 

the simulation conditions. This allowed me to compare the five imputation methods for 

the same set of replicates while at the same time ensuring that if a method tended to fail 

this tendency would be reported. 

Outcomes. After the analysis results were pooled, SAS was used to organize the 

results and to analyze the pooled results in each simulation condition for bias. SAS was 

chosen for this task because it performs very well for handling and organizing large 

amounts of data. For each of the simulation conditions, raw bias, corrected bias, and 

standardized corrected bias were calculated for all of the parameters. I estimated the raw 

bias for a parameter as the imputed-data estimate of the parameter minus the true 

population parameter, averaged across all of the replicates in the condition. I calculated 

corrected bias as the imputed-data estimate of the parameter minus complete-data 

estimate of the parameter, averaged across all of the replicates in the condition. 

Consistent with Enders et al. (2014), I calculated the empirical standard error of each 

parameter as the standard deviation of the parameter estimate from the complete data sets 

generated in the 1000 replicates within each design cell. I then calculated the 

standardized corrected bias for the parameter by dividing the corrected bias by the 

empirical standard error. Standardized corrected bias values greater than 0.4 or less than -

0.4 were pointed out, as such extreme values tend to negatively affect statistical inference 

(Collins, Schafer, & Kam, 2001).  

Chapter 4. Results 

As stated in the previous chapter, this document aimed to answer the following 

research questions: 
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1) Does JM-BD produce expectations that are equivalent to the joint distribution 

of the data? 

2) Does JM-UN produce expectations that are equivalent to the joint distribution 

of the data? 

3) Does JM-Mplus produce expectations that are equivalent to the joint 

distribution of the data? 

4) Does FCS-VB produce expectations that are equivalent to the joint 

distribution of the data? 

5) Does FCS-CK produce expectations that are equivalent to the joint 

distribution of the data? 

6) Do any of the five imputation methods examined in this document produce 

equivalent expectations? If so, which? 

In response to these research questions, I hypothesized that: 

1) JM-BD, JM-UN, and FCS-VB produce expectations that are not equivalent to 

the joint distribution of the data. 

2) JM-Mplus and FCS-CK imputation produce expectations that are equivalent 

to the joint distribution of the data. 

3) JM-BD, JM-UN, and FCS-VB do not produce expectations that are equivalent 

to one another or to JM-Mplus and FCS-CK imputation. 

4) JM-Mplus and FCS-CK imputation produce equivalent expectations. 

I the following sections, I present the results of the analytic examination of the methods 

and the simulation studies with the aim of addressing the above research questions and 

hypotheses. 
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Analytic Examination Results 

This section shows analytically which imputation methods produce expectations 

that are equivalent to the population model. For methods that are not equivalent to the 

population model, this section details the conditions (constraints on the population 

model) necessary for equivalence. This section also shows which methods are equivalent 

to one another. As a reminder, the analytic work assumes the following population 

model: 
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  (4.1) 

 

The population model contains 15 parameters including three means ( ( )wβ , ( )xβ , ( )yβ ), 

six level-2 covariance parameters ( wwψ , wxψ , xxψ , wyy , xyy , and yyy ), and six level-1 

covariance parameters ( wwσ , wxσ , xxσ , wyσ , xyσ , and yyσ ). 

Variables X, and Y were both be treated as incomplete and W was treated as 

complete. Specifying a population model with three variables and treating two of the 
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three variables as incomplete allows for the examination of the covariances between a 

complete variable and an incomplete variable, as well as the covariances between a pair 

of incomplete variables. This allows the analytic work to generalize to a wide range of 

scenarios, as the conclusions derived here apply equally well to models with more 

variables. The approach to the analytic work in this section is based on the approach used 

by Shin and Raudenbush (2007) for equating a two-level population model with a 

univariate multilevel model, described in Chapter 2. The imputation model for each of 

the imputation methods is in the form of a multilevel model. In order to compare the 

population model with the imputation model, it is necessary to transform the 

unconditional population model in Equation 4.1 above to a conditional distribution in the 

form of a multilevel model. In the steps below, the terms independent and dependent 

refer to the roles of the variables in the imputation model.  

 

1. Restate the population joint distribution of the variables with the independent 

variables (i.e., the variables that are independent in the imputation model) 

separated into between-cluster and within-cluster components. 

2. Determine the distribution of the dependent variables conditional upon the 

independent variables separated into their within-cluster and between-cluster 

components. 

3. Rewrite the conditional population distribution from step 2 in the form of a 

multilevel model. 
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4. Compare the transformed population model from step 3 with the imputation 

model and state the constraints necessary for equating the imputation model and 

the population model. 

 

If it is determined in step 4 that the imputation model and the population model do not 

require constraints to be added to the population model to achieve equivalence, then one 

can conclude that the imputation model and the population model are equivalent. In this 

case, I simply equate the parameters from the imputation and population models. If, on 

the other hand, constraints must be added to the population model to achieve equivalence, 

I added an extra step: 

 

5. Rewrite the transformed population model from step 3 under the constraints from 

step 4. That is, show what the population model looks like after applying the 

constraints from step 4. 

 

The parameters in the constrained population model derived in step 5 can then be equated 

to the parameters rom the imputation model. Some of the conditions used to equate the 

population models to the imputation models in this section are based on population 

constraints suggested by Shin and Raudenbush (2007) for equating a joint multilevel 

distribution with a univariate multilevel model. 

 JM-BD. The JM-BD imputation model (joint model with block diagonal level-2 

covariance matrix) predicting incomplete variables X and Y from complete variable W is: 
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  (4.2) 

 

Notice that the covariance between the level-2 residuals is zero in the psi matrix. The 

predictor variable is usually treated as fixed when describing an imputation model. To 

facilitate the comparison between the population and imputation models, however, I treat 

the predictor variable as random. Because the variables (complete and incomplete) are 

assumed to be distributed as multivariate normal, the fixed vs. random distinction for the 

predictor variable has no impact on the imputation procedure. The predictor variable has 

the following marginal distribution: 

 

 ( )~ N( , )w
wwj wwiW β ψ σ+  (4.3) 

 

The parameters in Equation 4.3 are the same for the imputation model and the population 

model. Equations 4.2 and 4.3 show that the JM-BD imputation model (including the 

marginal distribution of the complete variable) contains a total of 12 parameters ( ( )
0

xγ , 

( )
0

yγ , ( )
1

xγ , ( )
1

xγ , xxτ , yyτ , xxς , xyς , yyς , ( )wβ , wwψ , and wwσ ).  

To transform the unconditional population model in Equation 4.1 to a conditional 

distribution in the form of a multilevel model, we begin by specifying the joint 

distribution of the variables: 
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  (4.4) 

 

Equation 4.4 is equivalent to Equation 4.1, but Equation 4.4 directly describes the 

distribution of the variables whereas Equation 4.1 described the distributions of the level-

1 residuals and level-2 random effects of the variables. Because multilevel models 

assume that the level-2 random effects of the variables ( (w)
jb , ( )x

jb , and ( )y
jb ) are 

uncorrelated with the level-1 residuals ( ( )w
ijε , ( )x

ijε , and ( )y
ijε ), the covariance matrix of 

the variables in Equation 4.4 is simply the sum of the level-1 and level-2 covariance 

matrices in Equation 4.1. 

The multivariate distribution in Equation 4.4 does not recognize the between-

cluster portion of the predictor variable, W. This is problematic, because obtaining the 

distribution of X and Y conditional on W would yield the single-level regression 

coefficients predicting X and Y from W. In order to explicitly recognize the between-

cluster portion of the predictor variable, W, we can add the cluster mean of the predictor, 

jW , as a variable in the distribution. Note that the cluster mean of W is equal to the 

random effect of W plus the mean of W, (w) ( )w
jb b+ . I will refer to the cluster mean of W 

as the between-cluster portion of W. Including the between-cluster portion of the 

predictor variable in the distribution allows us to calculate the conditional distribution 

, | , ,ij ij ij jX Y W W  which, as is shown later, yields parameters equivalent to those of a 
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multivariate multilevel model. In order to simplify the math in this section, it is useful to 

center W at its cluster mean, jijW W− . The two predictors, jijW W−  and jW , now 

correspond to the within-cluster and between-cluster components of W and are 

orthogonal to one another. Because each source of variability in the predictor is 

orthogonal to the other, the regression coefficients for the within- and between-cluster 

influence of W are very easy to calculate from the covariance matrix. Note that I center W 

purely as a means for simplifying the calculations below. The final results are not 

changed as a result of having centered W. The findings of this analytic work are equally 

valid for centered and uncentered predictors. Software that incorporates cluster means as 

predictors in the imputation model (i.e., BLImP) does not center the level-1 predictors, 

but this does not affect the generalizability of the analytic results. However, W needs to 

be returned to its raw metric in a later step in order to match the JM-BD imputation 

model (which uses W in its raw metric). The dependent variable cluster means are not 

added to the model, and the dependent variables are not centered2. Equation 4.4 then 

becomes: 

 

                                                      
2 Centering the dependent variables and including their cluster means would result in 

calculating the conditional distribution , , , | ,ij j j ij j j ij j jX X X Y Y Y W W W−−−   , which 

would be theoretically equivalent to performing separate regressions at level one and 

level two. Because such a conditional distribution would not be comparable to any of the 

imputation models, the cluster means of the dependent variables are not included in the 

distribution and the dependent variables are left in their raw metrics. 
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  (4.5) 

 

The level-1 and level-2 covariances between W and the two dependent variables, X and Y, 

are now represented by different cells in the covariance matrix.  

 Equation 4.5 can be used to calculate the distribution of X and Y conditional upon 

the within-cluster portion W and the between-cluster portion of W. The regression 

coefficients are calculated as the inverse of the covariance matrix of the predictors post-

multiplied by the matrix of covariances between the independent variables and the 

dependent variables: 
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  (4.6) 

 

. ,1x wα  is the within-cluster effect of W on X. . ,2x wα  is the between-cluster effect of W on 

X. . ,1y wα  is the within-cluster effect of W on Y. . ,2y wα  is the between-cluster effect of W 

on Y. The residual covariance matrix is calculated as the covariance matrix of the 

dependent variables minus the transposed matrix of regression coefficients multiplied by 

the covariance matrix of the predictors multiplied by the matrix of regression coefficients 

(i.e., the total variance minus the variance explained by W): 
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Note that Equation 4.7 displays the result of a matrix operation as two 2 x 1 vectors 

horizontally concatenated (horizontal concatenation is indicated by ||), rather than as a 2 x 

2 matrix. This was done because the 2 x 2 matrix was too large to be placed on a single 

line. The intercepts are calculated as the means of the dependent variables minus the 

means of the independent variables post-multiplied by the matrix of regression 

coefficients: 
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Combining the information in Equations 4.6-4.8, the distribution of X and Y conditional 

upon jijW W−  and jW  is: 
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  (4.9) 

 

Note that the covariance term of the distribution in Equation 4.9 was written as two 2 x 1 

vectors horizontally concatenated, rather than as a 2 x 2 matrix. The terms in Equation 

4.9 correspond to the terms in a multilevel model predicting X and Y from jijW W−  and 

jW . I centered W at its cluster mean in the transformed population model to simplify the 

calculation of the regression coefficients. However, W is not centered in the JM-BD 

imputation model. In order to equate the transformed population model to the imputation 

model, it is necessary to return W to its raw metric in the transformed population model. 

This can be done by rearranging terms in Equation 4.9, yielding: 
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Note that the covariance term of the distribution in Equation 4.10 was written as two 2 x 

1 vectors horizontally concatenated, rather than as a 2 x 2 matrix. Equation 4.10 can now 

be written as a multilevel model. X and Y are each equal to their conditional means from 

Equation 4.10 plus their level-2 and level-1 residuals. 
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  (4.11) 

 

The conditional covariance matrix elements in Equation 4.10 contain additive 

terms involving level-1 and level-2 covariance matrix elements, specifically the total 

(co)variance at a particular level minus the explained (co)variance, i.e., the residual 

(co)variance at level-1 and level-2. The additive nature of the covariance matrix elements 

allows the residual covariance matrix in Equation 4.10 to be separated into the level-1 

and level-2 residual covariance matrices obtained in a multilevel model. 
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 The transformed population model in Equation 4.12 cannot be equated to the JM-

BD imputation model without adding constraints because it includes a term that captures 

the unique prediction of the between-cluster portion of the predictor, whereas the 

imputation model in Equation 4.2 does not. The transformed population model contains 

distinct estimates of the within- and between-cluster regression coefficients predicting X 

and Y from W. That is, it contains two coefficients predicting X from W ( . ,1x wα  and 

. ,2x wα ) and two coefficients predicting Y from W ( . ,1y wα  and . ,2y wα ). In contrast, the 

JM-BD imputation model quantifies the regression of X on W with a single parameter, 

( )
1

xγ . Similarly, the regression of Y on W is also quantified with a single parameter, ( )
1

yγ . 

Using a single parameter to represent two distinct regression coefficients implicitly 

constrains the coefficients to be equal.  

In order to equate the transformed population model and the JM-BD imputation 

model, we must add constraints to the transformed population model. So, we constrain 

the level-1 and level-2 coefficients for the regression of each dependent variable on W to 

be equal across levels in the population model.  

 

 . . ,1 . ,2x w x w x wα α α= =  (4.13) 

 . . ,1 . ,2y w y w y wα α α= =  (4.14) 

 

In the above two equations, .x wα  and .y wα  are labels for the constrained regression 

parameters. The transformed population distribution in Equation 4.12 also contained a 
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term representing the level-2 residual covariance, wywx
xy ww

ww ww

yyyy
yy

− . JM-BD 

constrains the level-2 residual covariance to be equal to zero.  

 

 0wywx
xy ww

ww ww

yyyy
yy

− =  (4.15) 

 

Under the constraints in Equations 4.13-4.15, the transformed population model 

in Equations 4.11 and 4.12 reduces to: 
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  (4.16) 

 

Notice that the constrained population model has only 12 parameters: three means ( ( )wβ , 

( )xβ , ( )yβ ), three level-2 covariance parameters ( wwψ , xxψ , and yyy ), four level-1 

covariance parameters ( wwσ , xxσ , xyσ , and yyσ ), and two parameters quantifying the 

regression of X and Y on W ( .x wα  and .y wα ). Now that the constrained imputation and 

population models have the same numbers of parameters, the parameters can be equated 

as follows: 
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.x wwwxxx xτ αψ ψ= −  (4.20) 

 2
.y wwwyyy yτ αyy −=  (4.21) 
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In summary, the answer to the research question “Does JM-BD produce 

expectations that are equivalent to the joint distribution of the data?” is: no. The JM-BD 

imputation model forces the level-1 and level-2 regression coefficients to be equal and 

constrains the level-2 residual covariance to be zero. This finding supports the hypothesis 

that JM-BD imputation produces expectations that are not equivalent to the joint 

distribution of the data. 

 JM-UN. The JM-UN imputation model (joint model with unstructured level-2 

covariance matrix) predicting incomplete variables X and Y from complete variable W is: 
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  (4.23) 

 

The JM-UN imputation model in Equation 4.23 is the same as the JM-BD imputation 

model in Equation 4.2, but with the addition of the level-2 residual covariance parameter, 

xyτ . The predictor variable is usually treated as fixed when describing an imputation 

model. To facilitate the comparison between the population and imputation models, 

however, I treated the predictor variable as random. Because the variables (complete and 

incomplete) are assumed to be distributed as multivariate normal, the fixed vs. random 

distinction for the predictor variable has no impact on the imputation procedure. The 

predictor variable has the following marginal distribution: 

 

 ( )~ N( , )w
wwj wwiW β ψ σ+  (4.24) 

 

The parameters in Equation 4.24 are the same for the imputation model and the 

population model. Equations 4.23 and 4.24 show that the JM-UN imputation model 

(including the distribution of the complete variable) contains a total of 13 parameters 

( ( )
0

xγ , ( )
0

yγ , ( )
1

xγ , ( )
1

yγ , xxτ , xyτ , yyτ , xxς , xyς , yyς , ( )wβ , wwψ , and )wwσ .  
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The transformation of the unconditional population model in Equation 4.1 to a 

conditional distribution in the form of a multilevel model is the same for JM-BD and JM-

UN. Readers wishing to avoid repetition are advised to skip ahead to the paragraph 

containing Equations 4.34 and 4.35, which describes the population constraints required 

by JM-BD. Repeating the information presented for JM-BD, transforming the 

unconditional population model in Equation 4.1 to a conditional distribution in the form 

of a multilevel model begins by specifying the joint distribution of the variables: 
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  (4.25) 

 

Equation 4.25 is equivalent to Equation 4.1, but Equation 4.25 directly describes the 

distribution of the variables whereas Equation 4.1 described the distributions of the level-

1 residuals and level-2 random effects of the variables. Because multilevel models 

assume that the level-2 random effects of the variables ( (w)
jb , ( )x

jb , and ( )y
jb ) are 

uncorrelated with the level-1 residuals ( ( )w
ijε , ( )x

ijε , and ( )y
ijε ), the covariance matrix of 

the variables in Equation 4.25 is simply the sum of the level-1 and level-2 covariance 

matrices in Equation 4.1. 

The multivariate distribution in Equation 4.25 does not recognize the between-

cluster portion of the predictor variable, W. In the subsection for the JM-BD imputation 

model I added the cluster mean of W, jW , to the joint population distribution to account 
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for the between-cluster portion of W. I then centered W at its cluster mean, jijW W− . 

Applying the same steps to Equation 4.25 yields: 
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  (4.26) 

 

The level-1 and level-2 covariances between W and the two dependent variables, X and Y, 

are now represented by different cells in the covariance matrix.  

 Equation 4.26 can be used to calculate the distribution of X and Y conditional 

upon the within-cluster portion W and the between-cluster portion of W. The regression 

coefficients are calculated as the inverse of the covariance matrix of the predictors post-

multiplied by the matrix of covariances between the independent variables and the 

dependent variables: 
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  (4.27) 

 

. ,1x wα  is the within-cluster regression of X on W. . ,2x wα  is the between-cluster regression 

of X on W. . ,1y wα  is the within-cluster regression of Y on W. . ,2y wα  is the between-

cluster regression of Y on W. The residual covariance matrix is calculated as the 



 

108 

covariance matrix of the dependent variables minus the transposed matrix of regression 

coefficients multiplied by the covariance matrix of the predictors multiplied by the matrix 

of regression coefficients (i.e., the total variance minus the variance explained by W): 
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  (4.28) 

 

Note that Equation 4.28 displays the result of a matrix operation as two 2 x 1 vectors 

horizontally concatenated (horizontal concatenation is indicated by ||), rather than as a 2 x 

2 matrix. The intercepts are calculated as the means of the dependent variables minus the 

means of the independent variables post-multiplied by the matrix of regression 

coefficients: 
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  (4.29) 

 

Combining the information in Equations 4.27-4.29, the distribution of X and Y 

conditional upon jijW W−  and jW  is: 
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  (4.30) 

  

Note that Equation 4.30 displays the a covariance matrix as two 2 x 1 vectors horizontally 

concatenated (horizontal concatenation is indicated by ||), rather than as a 2 x 2 matrix. 

The terms in Equation 4.30 correspond to the terms in a multilevel model predicting X 

and Y from jijW W−  and jW . I centered W at its cluster mean in the transformed 

population model to simplify the calculation of the regression coefficients. However, W is 

not centered in the JM-UN imputation model. In order to equate the transformed 

population model to the imputation model, it is necessary to return W to its raw metric in 

the transformed population model. This can be done by rearranging terms in Equation 

4.30, yielding: 
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 (4.31) 

 

Note that Equation 4.31 displays the a covariance matrix as two 2 x 1 vectors horizontally 

concatenated (horizontal concatenation is indicated by ||), rather than as a 2 x 2 matrix. 

Equation 4.31 can now be written as a multilevel model. X and Y are each equal to their 

conditional means from Equation 4.31 plus their level-2 and level-1 residuals. 
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  (4.32) 

 

The conditional covariance matrix elements in Equation 4.31 contain additive 

terms involving level-1 and level-2 covariance matrix elements, specifically the total 

(co)variance at a particular level minus the explained (co)variance, i.e., the residual 

(co)variance at level-1 and level-2. The additive nature of the covariance matrix elements 

allows the residual covariance matrix in Equation 4.31 to be separated into the level-1 

and level-2 residual covariance matrices obtained in a multilevel model. 
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  (4.33) 

 

 The transformed population model in Equation 4.33 cannot be equated to the JM-

UN imputation model without adding constraints because it includes a term that captures 

the unique prediction of the between-cluster portion of the predictor, whereas the 

imputation model in Equation 4.23 does not. The transformed population model contains 

distinct estimates of the within- and between-cluster regression coefficients predicting X 

and Y from W. That is, it contains two coefficients predicting X from W ( . ,1x wα  and 

. ,2x wα ) and two coefficients predicting Y from W ( . ,1y wα  and . ,2y wα ). In contrast, the 

JM-UN imputation model quantifies the regression of X on W with a single parameter, 

( )
1

xγ . Similarly, the regression of Y on W is also quantified with a single parameter, ( )
1

yγ . 

Using a single parameter to represent two distinct regression coefficients implicitly 

constrains the coefficients to be equal.  

In order to equate the transformed population model and the JM-UN imputation 

model, we must add constraints to the transformed population model. So, we constrain 

the level-1 and level-2 coefficients for the regressions of the dependent variables on W to 

be equal across levels in the population model.  

 

 . . ,1 . ,2x w x w x wα α α= =  (4.34) 



 

112 

 . . ,1 . ,2y w y w y wα α α= =  (4.35) 

 

In the above two equations, .x wα  and .y wα  are labels for the constrained regression 

parameters.  

Under the constraints in Equations 4.34 and 4.35, the transformed population 

model in Equations 4.32 and 4.33 reduces to: 
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  (4.36) 

 

Notice that the constrained population model has only 13 parameters: three means ( ( )wβ , 

( )xβ , ( )yβ ), four level-2 covariance parameters ( wwψ , xxψ , xyy , and yyy ), four level-

1 covariance parameters ( wwσ , xxσ , xyσ , and yyσ ), and two parameters quantifying the 

regressions of X and Y on W ( .x wα  and .y wα ). Now that the constrained imputation and 

population models have the same numbers of parameters, the parameters can be equated 

as follows: 
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In summary, the answer to the research question “Does JM-UN produce 

expectations that are equivalent to the joint distribution of the data?” is: no. The JM-UN 

imputation model forces the level-1 and level-2 regression coefficients to be equal. This 

finding supports the hypothesis that JM-UN imputation produces expectations that are 

not equivalent to the joint distribution of the data. As a reminder, including the complete-

variable cluster means in the imputation model would result in JM-UN being equivalent 

to the joint distribution of the data. This was not done here, however, because the 

complete-variable cluster means are not included in JM-UN by default and the majority 

of analysts tend to use the default options for analysis procedures. 

 JM-Mplus. The JM-Mplus imputation model treating W, X, and Y as response 

variables is: 
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  (4.42) 

 

Notice that JM-Mplus imputation model in Equation 4.42 is identical to the population 

model in Equation 4.1. There is a one-to-one correspondence between the imputation 

model parameters and the population model parameters. As such, the JM-Mplus 

imputation model produces expectations that are equivalent to the joint distribution of the 

data. In summary, the answer to the research question “Does JM-Mplus produce 

expectations that are equivalent to the joint distribution of the data?” is: yes. This finding 

supports the hypothesis that JM-Mplus imputation produces expectations that are 

equivalent to the joint distribution of the data. 

FCS-VB. The FCS-VB imputation method uses a separate univariate imputation 

model for each incomplete variable. The imputation model predicting X from W and Y is: 
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The predictor variables are usually treated as fixed when describing an imputation model. 

To facilitate the comparison between the population and imputation models, however, I 

treated the predictor variables as random. Because the variables (complete and 

incomplete) are assumed to be distributed as multivariate normal, the fixed vs. random 

distinction for the predictor variables has no impact on the imputation procedure. The 

predictor variables have the following marginal distribution: 
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 (4.44) 

 

The parameters in Equation 4.44 are the same for the imputation model and the 

population model. Equations 4.43 and 4.44 show that the FCS-VB imputation model 

(including the distribution of the predictors, W and Y) contains a total of 13 parameters 
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xγ , ( )
2

xγ , xxτ , xxς , ( )wβ , ( )yβ , wwψ , wyy , yyy , wwσ , wyσ , and )yyσ .  

The imputation model predicting Y from W and X is: 
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The predictor variables are usually treated as fixed when describing an imputation model. 

To facilitate the comparison between the population and imputation models, however, I 

treated the predictor variables as random. Because the variables (complete and 

incomplete) are assumed to be distributed as multivariate normal, the fixed vs. random 

distinction for the predictor variables has no impact on the imputation procedure. The 

predictor variables have the following marginal distribution: 
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 (4.46) 

 

Equations 4.45 and 4.46 show that the FCS-VB imputation model (including the 

distribution of the predictors, W and X) contains a total of 13 parameters ( ( )
0

yγ , ( )
1

yγ , 

( )
2

yγ , xxτ , xxς , ( )wβ , ( )xβ , wwψ , wxψ , xxψ , wwσ , wxσ , and )xxσ .  

 Equations 4.43-4.46 show that the number of parameters is the same for each of 

the univariate imputation models employed by FCS-VB. Further, the structure of each 

imputation model is the same (one incomplete variable predicted from all other 

variables). As such, equivalence (or lack thereof) between the FCS-VB imputation model 

for Y and the population model would also imply the same between the FCS-VB 

imputation model for X and the population model. Because the findings for one 

imputation model should be generalizable to the other, I examined only the FCS-VB 

imputation model for Y in this section. This serves to streamline the section and avoid 
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confusion that might arise from providing two sets of similar but slightly different 

equations. 

To transform the unconditional population model in Equation 4.1 to a conditional 

distribution in the form of a multilevel model, we begin by specifying the joint 

distribution of the variables: 
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  (4.47) 

 

Equation 4.47 is equivalent to Equation 4.1, but Equation 4.47 directly describes the 

distribution of the variables whereas Equation 4.1 described the distributions of the level-

1 residuals and level-2 random effects of the variables. Because multilevel models 

assume that the level-2 random effects of the variables ( (w)
jb , ( )x

jb , and ( )y
jb ) are 

uncorrelated with the level-1 residuals ( ( )w
ijε , ( )x

ijε , and ( )y
ijε ), the covariance matrix of 

the variables in Equation 4.47 is simply the sum of the level-1 and level-2 covariance 

matrices in Equation 4.1. 

The multivariate distribution in Equation 4.47 does not recognize the between-

cluster portions of the predictor variables, W and X. In the subsection for the JM-BD 

imputation model I added the cluster mean of W, jW , to the joint population distribution 

to account for the between-cluster portion of W. I then centered W at its cluster mean, 

jijW W− . Applying the same steps to Equation 4.47 for both predictors, W and X, yields: 
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  (4.48) 

 

The level-1 and level-2 covariances between the two predictors, W and X, and the 

dependent variable, Y, are now represented by different cells in the covariance matrix.  

 Equation 4.48 can be used to calculate the distribution of Y conditional upon the 

within-cluster portions of W and X and the between-cluster portions of W and X. The 

regression coefficients are calculated as the inverse of the covariance matrix of the 

predictors post-multiplied by the vector of covariances between the independent variables 

and the dependent variables: 
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. ,1y wα  is the within-cluster regression of Y on W. . ,2y wα  is the between-cluster regression 

of Y on W. . ,1y xα  is the within-cluster regression of Y on X. . ,2y xα  is the between-cluster 
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regression of Y on X. The residual variance of Y is calculated as the variance of Y minus 

the transposed matrix of regression coefficients multiplied by the covariance matrix of 

the predictors multiplied by the matrix of regression coefficients (i.e., the total variance 

minus the variance explained by W and X): 
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  (4.50) 

 

The intercepts are calculated as the mean of the dependent variable minus the means of 

the independent variables post-multiplied by the matrix of regression coefficients: 
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Combining the information in Equations 4.49-4.51, the distribution of Y conditional on 

jijW W− , jW , jijX X− , and jX  is: 
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  (4.52) 

 

The terms in Equation 4.52 correspond to the terms in a multilevel model predicting Y 

from jijW W− , jW , jijX X− , and jX . I centered W and X at their cluster means in the 

transformed population model to simplify the calculation of the regression coefficients. 

However, W and X are not centered in the FCS-VB imputation model. In order to equate 

the transformed population model to the imputation model, it is necessary to return W and 

X to their raw metrics in the transformed population model. This can be done by 

rearranging terms in Equation 4.52, yielding: 
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Equation 4.53 can now be written as a multilevel model. Y is equal to its conditional 

mean from Equation 4.53 plus its level-2 and level-1 residuals. 
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The conditional variance in Equation 4.53 contains additive terms involving level-

1 and level-2 variance elements, specifically the total variance at a particular level minus 

the explained variance, i.e., the residual variance at level-1 and level-2. The additive 

nature of the covariance matrix elements allows the residual variance in Equation 4.53 to 

be separated into the level-1 and level-2 residual covariance matrices obtained in a 

multilevel model. 
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  (4.55) 

 

 The transformed population model in Equations 4.54 and 4.55 cannot be equated 

to the FCS-VB imputation model without adding constraints because they include a term 

that captures the unique prediction of the between-cluster portion of the predictor, 

whereas the imputation model in Equation 4.45 does not. The transformed population 
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model contains distinct estimates of the within- and between-cluster regression 

coefficients predicting Y from W and X. That is, it contains two coefficients predicting Y 

from W ( . ,1y wα  and ). ,2y wα  and two coefficients predicting Y from X ( . ,1y xα  and 

). ,2 .y xα  In contrast, the FCS-VB imputation predicting Y from W and X model quantifies 

the regression of Y on W with a single parameter, ( )
1

yγ . Similarly, the regression of Y on 

X is also quantified with a single parameter, ( )
2

yγ . Using a single parameter to represent 

two distinct regression coefficients implicitly constrains the coefficients to be equal.  

In order to equate the transformed population model and the FCS-VB imputation 

model, we must add constraints to the transformed population model. So, we constrain 

the level-1 and level-2 regressions of Y on the independent variables to be equal across 

levels in the population model.  

 

 . . ,1 . ,2y w y w y wα α α= =  (4.56) 

 . . ,1 . ,2y x y x y xα α α= =  (4.57) 

 

In the above two equations, .y wα  and .y xα  are labels for the constrained regression 

parameters. 

Under the constraints in Equations 4.56 and 4.57, the transformed population 

model in Equations 4.54 and 4.55 reduces to: 
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Notice that the constrained population model has only 13 parameters: three means ( ( )wβ , 

( )xβ , ( )yβ ), four level-2 covariance parameters ( wwψ , xxψ , xyy , and yyy ), four level-

1 covariance parameters ( wwσ , xxσ , xyσ , and yyσ ), and two parameters quantifying the 

slopes coefficients for the regression  of Y on W and X ( .y wα  and .y xα ). Now that the 

imputation and constrained population models have the same numbers of parameters, the 

parameters can be equated as follows: 
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In summary, the answer to the research question “Does FCS-VB produce 

expectations that are equivalent to the joint distribution of the data?” is: no. The FCS-VB 

imputation model forces the level-1 and level-2 regression coefficients to be equal. This 

finding supports the hypothesis that FCS-VB imputation produces expectations that are 

not equivalent to the joint distribution of the data. 

FCS-CK. The FCS-CK imputation method uses a separate univariate imputation 

model for each incomplete variable. The imputation model predicting X from W and Y is: 
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  (4.64) 

 

The predictor variables are usually treated as fixed when describing an imputation model. 

To facilitate the comparison between the population and imputation models, however, I 

treated the predictor variables as random. Because the variables (complete and 

incomplete) are assumed to be distributed as multivariate normal, the fixed vs. random 

distinction for the predictor variables has no impact on the imputation procedure. The 

predictor variables have the following marginal distribution: 
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The parameters in Equation 4.65 are the same for the imputation model and the 

population model. Equations 4.64 and 4.65 show that the FCS-CK imputation model 

(including the distribution of the predictors, W and Y) contains a total of 15 parameters 
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The imputation model predicting Y from W and X is: 
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The predictor variables are usually treated as fixed when describing an imputation model. 

To facilitate the comparison between the population and imputation models, however, I 

treated the predictor variables as random. Because the variables (complete and 

incomplete) are assumed to be distributed as multivariate normal, the fixed vs. random 

distinction for the predictor variables has no impact on the imputation procedure. The 

predictor variables have the following marginal distribution: 
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 (4.67) 

 

Equations 4.66 and 4.67 show that the FCS-CK imputation model (including the 

distribution of the predictors, W and X) contains a total of 15 parameters ( ( )
0

yγ , ( )
1

yγ , 

( )
2

yγ , ( )
3

yγ , ( )
4

yγ , xxτ , xxς , ( )wβ , ( )xβ , wwψ , wxψ , xxψ , wwσ , wxσ , and )xxσ .  

 Equations 4.64-4.67 show that the number of parameters is the same for each of 

the univariate imputation models employed by FCS-CK. Further, the structure of each 

imputation model is the same (one incomplete variable predicted from all other 

variables). As such, equivalence (or lack thereof) between the FCS-CK imputation model 

for Y and the population model would also imply the same between the FCS-CK 

imputation model for X and the population model. Because the findings for one 

imputation model should be generalizable to the other, I examine only the FCS-CK 

imputation model for Y in this section. This serves to streamline the section and avoid 

confusion that might arise from providing two sets of similar but slightly different 

equations. 

 The process of transforming the joint distribution of the variables into a univariate 

multilevel model predicting Y from W and X was already shown in the subsection 

describing FCS-VB. To avoid repetition, the process is not described here. The 

transformed population model (already shown in Equations 4.54 and 4.55) is:  
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 Both the population model and the FCS-CK imputation model have 15 

parameters. Because the two models have the same numbers of parameters, the 

population model and the FCS-CK imputation model for Y are equivalent. The 

parameters describing the distribution of the predictors for the imputation model 

predicting Y have a one to one correspondence with parameters in the population 

distribution. The remaining seven parameters from the imputation model for Y ( ( )
0

xγ , 
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xγ , ( )
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xγ , xxτ , yyς ) can be calculated from the population parameters: 
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 The ability of the FCS-CK method to preserve the covariances in the population 

model without constraints can be shown by demonstrating that the parameters of the 

population model can be calculated from the FCS-CK univariate imputation model 

predicting Y from W and X (or from the imputation model predicting X from W and Y, not 

shown). Using the distribution of the predictors from Equation 4.67 and the equivalencies 

laid out in Equations 4.69 through 4.73, the population parameters can be calculated from 

the parameters in the imputation model for Y as follows:  
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In summary, the answer to the research question “Does FCS-CK produce 

expectations that are equivalent to the joint distribution of the data?” is: yes. This finding 

supports the hypothesis that FCS-CK imputation produces expectations that are 

equivalent to the joint distribution of the data. 

 Equivalence of imputation methods. The previous subsections compared each 

of the five imputation methods to the population distribution to determine the conditions 

under which each method would produce expectations that are equivalent to the 

population distribution. This subsection examines whether the five imputation methods 

are equivalent to one another. Imputation methods JM-Mplus and FCS-CK produce 

expectations that are equivalent to the joint distribution. Because JM-Mplus and FCS-CK 

both produce expectations that are equivalent to the joint distribution, their expectations 

must also be equivalent to one another. This supports the hypothesis that JM-Mplus and 

FCS-CK imputation methods produce equivalent expectations. 

 Imputation methods JM-BD, JM-UN, and FCS-VB produce expectations that are 

equivalent to the joint model only under specific conditions. JM-BD, JM-UN, and FCS-

VB should produce expectations equivalent to JM-Mplus and FCS-CK only under 

conditions where JM-BD, JM-UN, and FCS-VB are equivalent to the population 

distribution. These conditions were stated previously. This supports the hypothesis that 

JM-BD, JM-UN, and FCS-VB do not produce expectations that are equivalent to JM-

Mplus and FCS-CK imputation. 
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 Imputation methods JM-BD, JM-UN, and FCS-VB differ from one another in the 

conditions required to produce expectations that are equivalent to the joint model. The 

three methods differ in the assumptions that they make regarding covariances between 

incomplete variables. FCS-VB makes the assumption that the regression of an incomplete 

variable on any other incomplete variable is the same at level-1 and level-2. JM-BD 

makes the assumption that the level-2 relationship between a pair of incomplete variables 

must be completely explained by the regression of the incomplete variables on the set of 

complete variables (i.e., the residual level-2 covariance between the variables is assumed 

to be zero). If the imputation model contains no complete variables, JM-BD assumes that 

the incomplete variables have zero covariances at level 2. JM-UN does not make any 

assumptions about the relationships between pairs of incomplete variables, conditional 

upon the complete variables, and uses separate parameters to represent the residual level-

1 and level-2 covariances. The fact that FCS-VB, JM-BD, and JM-UN differ in their 

assumptions about incomplete variables supports the hypothesis that FCS-VB, JM-BD, 

and JM-UN do not produce equivalent expectations. 

 Summary of analytic results. The analytic examination of the five imputation 

methods showed that JM-Mplus and FCS-CK were the only methods whose expectations 

were equivalent to the population model. JM-BD, JM-UN, and FCS-VB produce 

expectations that are not equivalent to the population model, generally. JM-BD, JM-UN, 

and FCS-VB are equivalent to the population model under certain conditions, however. 

JM-Mplus and FCS-CK are equivalent to one another. JM-BD, JM-UN, and FCS-VB are 

not equivalent to one another or to JM-Mplus and FCS-CK. 

Simulation Results 
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The simulation portion of this document consisted of two simulation studies. The 

first study generated data under a population model where the level-2 correlations 

between variables differed from the level-1 correlations between the variables. Study 1 

was intended to examine how well the imputation methods preserve the level-1 and level-

2 covariances from the population distribution. The second study generated data under a 

population model where the correlations between variables were identical across levels. 

Study 2 was intended to determine whether the more general multilevel imputation 

methods (JM-Mplus and FCS-CK imputation) perform well even when the models are 

overparameterized in representing the population model. Note that it was not my goal to 

provide a comprehensive simulation that investigates the performance of multilevel 

imputation techniques. Rather, the goal was to perform a focused set of simulations that 

illustrated and tested the propositions derived from the analytic work. 

Complete data analyses. Multilevel modeling can sometimes produce biased 

estimates, even for complete data. Given these findings, it is helpful to examine the bias 

of the complete-data estimates in each of the study conditions prior to examining the 

findings from the imputed-data analyses. Figures 1 and 2 show the standardized bias for 

the level-1 covariance parameters in each condition in studies 1 and 2. Figures 3 and 4 

show the standardized bias for the mean parameters in each condition in studies 1 and 2. 

Figures 5 and 6 show the standardized bias for the level-2 covariance parameters in each 

condition in studies 1 and 2. 

 The absolute values of the level-1 covariance parameter standardized biases were 

less than .2. This means that the complete data estimates were within .2 standard errors of 

the population parameters. The absolute values of the mean parameter standardized 



 

132 

biases were less than .05. The level-2 covariance parameters showed the greatest bias, 

with the absolute value exceeding .2 for multiple conditions. The level-2 variance of W 

had a standardized bias of -0.22 for study 2 in the condition containing an ICC of .5, 30 

clusters, and 5 observations per cluster. The level-2 covariance between W and Y had a 

standardized bias of 0.33 for study 1 in the condition containing an ICC of .1, 30 clusters, 

and 5 observations per cluster. The level-2 covariance between X and Y had large 

standardized biases for two conditions in study 1. The condition containing an ICC of .1, 

30 clusters, and 5 observations per cluster had a standardized bias of 0.41. The condition 

containing an ICC of .1, 100 clusters, and 5 observations per cluster had a standardized 

bias of 0.23. Finally, the level-2 variance of Y for study 1 in the condition containing an 

ICC of .1, 30 clusters and 5 observations per cluster had a standardized bias of 0.22. In 

summary, the condition containing an ICC of .1, 30 clusters and 5 observations per 

cluster in study 1 produced the two largest standardized bias values (for the level-2 

covariance between W and Y and the level-2 covariance between X and Y), making it the 

most problematic condition for the complete data. 

 Convergence failures. In order for an imputation method’s bias to be evaluated, 

the method must first produce a data set that can be analyzed. Table 2 shows, for each 

method and condition, the number of iterations (out of 1000) that produced imputed data 

sets that could not be analyzed. If any of the 20 imputed data sets in an iteration could not 

be analyzed (i.e., the analysis failed to converge), then that iteration was counted as a 

failed iteration. Table 2 shows the number of failed iterations for each combination of 

imputation method and condition. 
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Iteration failures for JM-BD, JM-UN, JM-Mplus, and FCS-VB occurred 

exclusively for the conditions with ICC values of .1. In contrast, FCS-CK had iteration 

failures for an ICC = .5 condition (in study 1 with 5 observations per cluster and 30 

clusters). Iteration failures appeared to be more common for conditions with 5 

observations per cluster than for conditions with 30 observations per cluster. Very few 

iteration failures occurred overall. Even in the worst condition, few iteration failures 

occurred (11 out of 1000). The majority of conditions had no iteration failures. 

The highest failure rates occurred for the ICC = .1, observations per cluster = 5, 

number of clusters = 100 condition. This is counterintuitive, as one would expect the 

failure rate to be higher in the ICC = .1, observations per cluster = 5, number of clusters = 

30 condition. That is, estimation problems are typically expected to decrease as the 

number of clusters increases, rather than the reverse. Re-running the high failure rate 

condition with new sample data produced similar failure rates. Further investigation 

revealed that each failed iteration occurred due to a convergence failure in the analysis 

phase rather than in the imputation phase. In each case, Mplus reported that the estimated 

between-cluster covariance matrix was not positive definite. I is important to note that the 

analysis model used in this study is rather complex. Mplus treats all three variables as 

endogenous two-level variables that are allowed to have different covariances across 

levels. However, in each failed analysis at least one of the three variables did not have 

significant level-2 variance. In each case, treating any variables with nonsignificant level-

2 variance as within-cluster variables (variables that have variance only at level-1) 

allowed the analysis model to successfully converge. Switching to a contextual analysis 

model in which one variable (Y) was treated a dependent variable and the other two 
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variables (W and X) were treated as fixed predictors also resolved the non-convergence 

problem. This information indicates that the convergence failures are not very 

problematic, as they can be avoided by using a simpler analysis model or by treating 

variables without significant level-2 variance as within-cluster variables. I do not have an 

explanation for why the failure rate was higher for 100 clusters than for 30 clusters,  

Largest biases. Recall that standardized corrected bias (SCB) is calculated as the 

imputed-data estimate minus the complete-data estimate, divided by the standard 

deviation of the complete-data estimates across all iterations. Tables 3 through 17 show 

the SCB values produced by each method for each parameter and condition. SCB values 

greater than 0.4 or less than -0.4 were be pointed out, as such extreme values tend to 

negatively affect statistical inference (Collins et al., 2001). This subsection does not 

directly address the study hypotheses. Rather, it points out which combinations of 

methods and conditions may cause the largest problems for statistical inference and 

which parameters are most affected. Method/condition combinations that are not listed 

here as generating a large amount of bias do not necessarily provide unbiased parameter 

estimates. Rather, they were simply not found to produce bias exceeding the 

aforementioned cutoff at the missing data rate of 20%. These method/condition 

combinations may produce very biased estimates for larger missing data rates. 

Of the five imputation methods, FCS-VB was the only method to produce 

absolute SCB values exceeding .4 (Tables 12 and 13). These biases occurred only for the 

level-1 and level-2 covariances between X and Y, the two incomplete variables, and only 

in study 1 (in which the level-1 and level-2 covariances had opposite signs). In conditions 

where bias was found, the level-2 covariance between X and Y was positively biased and 
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the level-1 covariance between X and Y was negatively biased. These biases support this 

document’s hypotheses. However, these biases did not occur for every condition. The 

two conditions that displayed high SCB for the level-1 covariance both had ICC values of 

.5 and both used 5 observations per cluster, but the conditions differed in the number of 

clusters. As such, it appears that the combination of a high ICC and low number of 

observations per cluster tends to result in high degrees of bias for FCS-VB. For the level-

2 covariance between X and Y, no clear pattern emerged for the high levels of SCB, 

which appeared for both levels of ICC, both levels of number of clusters, and both levels 

of observations per cluster. 

Evaluating hypotheses. The imputation methods were hypothesized to differ on 

four parameters (the level-1 and level-2 covariances between W and Y and between X and 

Y). The analytic work at the beginning of this chapter indicated that these parameters 

should be biased for some methods but not others. I used a series of between-subjects 

ANOVAs to determine whether corrected bias (imputed data estimate minus complete 

data estimate) varied substantively across imputation methods and to determine whether 

differences were affected by study conditions. Note that imputation method was treated 

as a between-group effect despite the fact that imputation method was a within-subjects 

factor to simplify the analyses. The factors of interest were imputation method (JM-BD, 

JM-UN, JM-Mplus, FCS-VB, and FCS-CK), ICC (.5 and .1), number of clusters (30 and 

100), and observations per cluster (5 and 30).  

Methodologists recommend using generalized eta-squared rather than eta-squared 

(Bakeman, 2005; Olejnik & Algina, 2003). Unfortunately, major software packages (e.g., 

SAS and SPSS) do not output all of the components required for computing generalized 
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eta-squared. I also attempted to use a macro for calculating generalized eta-squared (de 

Gil et al., 2013), but the macro failed due to the sample size being too large. Because the 

estimation of generalized eta-squared would be impractical for my data, I used eta-

squared values to judge whether interactions and main effects were worth discussing in 

this document. I treated method as a between-subjects factor in order to facilitate 

computation of eta-squared. Effects with eta square values equal to or greater than .01 

(corresponding to Cohen’s cutoff for a small effect size) were judged to be large enough 

for discussion.  

Level-1 covariance between W and Y in study 1. Tables 3, 6, 9, 12, and 15 show 

the mean standardized corrected bias values for the level-1 covariance between W and Y 

for all cells in the design. The analytic work indicates that the estimated level-1 

covariance between W and Y should be biased toward the population level-2 covariance 

between W and Y for JM-BD, JM-UN, and FCS-VB in study one. This bias was theorized 

to occur because the aforementioned methods constrain the level-1 and level-2 

coefficients for the regression of Y on W to be equal. Because the level-1 covariance 

parameter is positive in the population and the level-2 covariance parameter is negative in 

the population, constraining the regression coefficients to be equal across levels in the 

imputation model should bias the level-1 covariance estimate toward the level-2 

covariance parameter in the analysis, resulting in negative bias for JM-BD, JM-UN, and 

FCS-VB in study one. 

The eta-squared values for the 4-way, 3-way, and 2-way interactions between 

factors were all below .01. As such, only main effects are discussed here. The main 

effects with eta-squared values exceeding the cutoff were: observations per cluster = 
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.021, and method = .021. Larger biases (more negative) were found with 5 observations 

per cluster than with 30 observations per cluster. This effect does not warrant further 

discussion because it is not central to my hypotheses. As the eta-squared values indicated 

differences across observations per cluster conditions and across methods, the mean 

standardized corrected bias values were examined to compare the conditions further. 

Averaging across the other factors, the mean standardized corrected bias values for the 

methods were as follows: JM-BD = -0.142, JM-UN = -0.15, JM-Mplus = -0.007, FCS-

VB = -0.125, FCS-CK = -0.008. These results can be interpreted as Cohen’s d values that 

compare the mean parameter values to the average complete-data estimate. Comparison 

across methods can be obtained by subtraction. For example, on average, the bias of the 

JM-BD, JM-UN, and FCS-VB methods was about 0.132 more negative than the bias of 

the JM-Mplus and FCS-CK methods. These findings support the analytic work. 

Level-1 covariance between W and Y in study 2. Tables 3, 6, 9, 12, and 15 show 

the mean standardized corrected bias values for the level-1 covariance between W and Y 

for all cells in the design. The analytic work does not imply any bias for the imputation 

methods for the level-1 covariance between W and Y in study two. The eta-squared values 

for the 4-way, 3-way, and 2-way interactions between factors as well as for the main 

effects were all below .01. These results match expectations. 

Level-2 covariance between W and Y in study 1. Tables 4, 7, 10, 13, and 16 show 

the mean standardized corrected bias values for the level-2 covariance between W and Y 

for all cells in the design. The analytic work indicates that the estimated level-2 

covariance between W and Y should be biased toward the population level-1 covariance 

between W and Y for JM-BD, JM-UN, and FCS-VB in study one. This bias was theorized 
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to occur because the aforementioned methods constrain the level-1 and level-2 

coefficients for the regression of Y on W to be equal. Because the level-2 covariance 

parameter is negative in the population and the level-1 covariance parameter is positive in 

the population, constraining the regression coefficients to be equal across levels in the 

imputation model should bias the level-2 covariance estimate toward the level-1 

covariance parameter in the analysis, resulting in positive bias for JM-BD, JM-UN, and 

FCS-VB in study one. 

The eta-squared values for the 4-way and 3-way interactions between factors were 

all below .01. Of the two-way interactions, only the interaction between method and 

number of observations per cluster had an eta-squared above .01 (𝜂2 = 0.016). Figure 7 

shows this interaction. The lines in Figure 7 are included only as visual aids (this use of 

lines in graphing an ANOVA interaction is consistent with Seltman, 2014). Because the 

factor on the horizontal axis (imputation method) is categorical, the lines should not be 

used to interpolate between levels of the variable. From the figure we see that, in both the 

5 observations per cluster and 30 observations per cluster conditions, the magnitude of 

bias is greater for JM-BD, JM-UN, and FCS-VB than for JM-Mplus and FCS-CK. 

Further, the magnitude of bias for JM-BD, JM-UN, and FCS-VB is greater in the 5 

observations per cluster condition than in the 30 observations per cluster condition. These 

findings support the analytic work. 

Level-2 covariance between W and Y in study 2. Tables 4, 7, 10, 13, and 16 show 

the mean standardized corrected bias values for the level-2 covariance between W and Y 

for all cells in the design. The analytic work does not imply any bias for the imputation 

methods for the level-2 covariance between W and Y in study two. The eta-squared values 
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for the 4-way, 3-way, and 2-way interactions between factors as well as for the main 

effects were all below .01. These results match expectations. 

Level-1 covariance between X and Y in study 1. Tables 3, 6, 9, 12, and 15 show 

the mean standardized corrected bias values for the level-1 covariance between X and Y 

for all cells in the design. The analytic work indicates that the estimated level-1 

covariance between X and Y should be biased toward the population level-2 covariance 

between X and Y for FCS-VB in study one. This bias was theorized to occur because 

FCS-VB constrains the level-1 and level-2 coefficients for the regression of Y on X to be 

equal. Because the level-1 covariance parameter is positive in the population and the 

level-2 covariance parameter is negative in the population, constraining the regression 

coefficients to be equal across levels in the imputation model should bias the level-1 

covariance estimate toward the level-2 covariance parameter in the analysis, resulting in 

negative bias for FCS-VB in study one. 

The eta-squared values for the four-way and three-way interactions between 

factors were less than .01. Of the two-way interactions, only the interaction between 

method and number of observations per cluster had an eta-squared above .01 (𝜂2 =

0.029). Figure 8 shows this interaction. From the figure we see that for both observations 

per cluster conditions, FCS-VB was more negatively biased than all of the other 

imputation methods. The magnitude of the negative bias for FCS-VB was largest for the 

observations per cluster = 5 condition. These findings support the analytic work. 

Level-1 covariance between X and Y in study 2. Tables 3, 6, 9, 12, and 15  show 

the mean standardized corrected bias values for the level-1 covariance between X and Y 

for all cells in the design. The analytic work does not imply any bias for the imputation 
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methods for the level-2 covariance between X and Y in study two. The eta-squared values 

for the 4-way, 3-way, and 2-way interactions between factors as well as for the main 

effects were all below .01. These results match expectations. 

Level-2 covariance between X and Y in study 1. Tables 4, 7, 10, 13, and 16 show 

the mean standardized corrected bias values for the level-2 covariance between X and Y 

for all cells in the design. The analytic work indicates that the estimated level-2 

covariance between X and Y should be biased toward the population level-1 covariance 

between X and Y for FCS-VB in study one and should be biased toward zero for JM-BD 

in study 1. The bias for FCS-VB was theorized to occur because FCS-VB constrains the 

level-1 and level-2 slope coefficients for the regression of Y on X to be equal. Because the 

level-2 covariance parameter is negative in the population and the level-1 covariance 

parameter is positive in the population, constraining the slope coefficients to be equal 

across levels in the imputation model should bias the level-2 covariance estimate toward 

the level-1 covariance parameter in the analysis, resulting in positive bias for FCS-VB in 

study one. The bias for JM-BD was theorized to occur because JM-BD constrains the 

level-2 residual covariance between X and Y to be zero. Because the level-2 covariance 

parameter is negative in the population, constraining the level-2 residual covariance 

between the variables to be zero should bias the level-2 covariance estimate toward zero, 

resulting in positive bias for JM-BD in study one. In summary, the analytic work implies 

that the estimated level-2 covariance between X and Y should be positively biased for 

both FCS-VB and JM-BD in study one. 

The eta-squared values for the four-way and most of the three-way interactions 

between factors were less than .01. The eta-squared value of the three-way interaction 
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between method, ICC, and observations per cluster was .016. This interaction is shown in 

Figure 9. For ICC equal to .5 (the right panel of Figure 9), JM-BD produced a large 

amount of bias for the 5 observations per cluster condition but not for the 30 observations 

per cluster condition. For ICC equal to .1, JM-BD a large amount of bias in both the 5 

observations per cluster and 30 observations per cluster conditions. The bias was larger in 

the 30 observations per cluster condition than in the 5 observations per cluster condition. 

These findings support the analytic work. 

Level-2 covariance between X and Y in study 2. Tables 4, 7, 10, 13, and 16 show 

the mean standardized corrected bias values for the level-2 covariance between X and Y 

for all cells in the design. The analytic work indicates that the estimated level-2 

covariance between X and Y should be biased toward zero for JM-BD in study 2. The bias 

for JM-BD was theorized to occur because JM-BD constrains the level-2 residual 

covariance between X and Y to be zero. Because the level-2 covariance parameter is 

positive in the population, constraining the level-2 residual covariance between the 

variables to be zero should bias the level-2 covariance estimate toward zero, resulting in 

negative bias for JM-BD in study two. In summary, the analytic work implies that the 

estimated level-2 covariance between X and Y should be negatively biased for JM-BD in 

study two. 

The eta-squared values for the 4-way and 3-way interactions between factors were 

all below .01. The two-way interaction between method and ICC (𝜂2 = 0.01) and the 

two-way interaction between method and number of observations per cluster (𝜂2 =

0.021) were the only two-way interactions whose eta-squared values exceeded the cutoff. 

Figure 10 shows the interaction between method and ICC. Figure 11 shows the 
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interaction between method and number of observations per cluster. Figure 10 shows us 

that JM-BD displays more negative bias than the other methods. The magnitude of the 

negative bias for JM-BD is greater for the ICC = .1 condition than the ICC = .5 condition. 

Figure 11 shows a very similar pattern for the interaction between method and number of 

observations per cluster. Again, JM-BD displays more negative bias than the other 

methods. The magnitude of the negative bias for JM-BD is greater for the 5 observations 

per cluster condition than for the 30 observations per cluster condition. These findings 

support the analytic work. 

Summary of simulation results. The simulation findings solidly support the 

analytic work. Every bias implied by the analytic work was found, and the direction of 

bias was as expected. The magnitude of bias was affected by the number of observations 

per cluster and the ICC for some of the parameters. In general, biases tended to be more 

extreme for five observations per cluster than for thirty observations per cluster. Biases 

were also more extreme for the ICC = .1 condition than for the ICC = .5 condition. The 

number of clusters did not substantially affect bias for any of the parameters. 

In study one, where correlations differed across levels, JM-Mplus and FCS-CK 

did not produce biased estimates. JM-BD, JM-UN, and FCS-VB all produced biased 

estimates for multiple parameters. FCS-VB was the only method to produce large 

standardized corrected biases (greater than .4 or less than -.4). In study two, JM-UN, JM-

Mplus, FCS-VB, and FCS-CK produced unbiased estimates for all parameters. JM-BD 

produced biased estimates, but only for the level-2 covariance between X and Y. 
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Chapter 5. Discussion 

Multiple imputation methods can generally be divided into two broad categories: 

joint model (JM) imputation (Rubin & Schafer, 1990; Schafer, 1997) and fully 

conditional specification (FCS) imputation (Raghunathan et al., 2001; van Buuren et al., 

2006). JM draws missing values simultaneously for all incomplete variables using a 

multivariate distribution (e.g., multivariate normal). FCS, on the other hand, imputes 

variables one at a time, drawing missing values from a series of univariate distributions. 

In the single-level context, these two approaches have been shown to be equivalent with 

multivariate normal data (Hughes et al., 2014). However, less is known about the 

similarities and differences of these two approaches with multilevel data, and the 

methodological literature provides no insight into the situations under which the 

approaches would produce identical results.  

Three variations of JM imputation have been proposed for multilevel data 

(Asparouhov & Muthén, 2010a, 2010f; Schafer, 2001; Schafer & Yucel, 2002). Although 

these methods share much in common, they possess subtle differences. No previous 

methodological research has investigated the differences among the JM models, in 

particular their ability to produce imputations that preserve characteristics of the 

population distribution. Thus, one of the overarching goals for this project was to 

examine the situations under which the three JM methods reproduced (or preserved) the 

mean and covariance structure of a population random intercept model with multivariate 

normal data. To date, two FCS models have been proposed in the literature, only one of 

which is currently implemented in statistical software (Carpenter & Kenward, 2012, p. 

221; van Buuren & Groothuis-Oudshoorn, 2011). Like JM, no previous methodological 
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research investigated the differences between the FCS models or their ability to preserve 

a multilevel data structure. Thus, the second overarching goal for this project was to 

examine the situations under which FCS imputation reproduced the mean and covariance 

structure of a population random intercept model with multivariate normal data. The 

analytic work for these two goals also provided insight into the situations where JM and 

FCS were equivalent. 

Summary of Findings 

As a reminder, all of the analytic and simulation work in this document assumed a 

two-level population model that contained random intercepts but no random slopes. The 

population model used for the analytic work allowed the correlations among variables to 

differ between level one and level two. For the simulation work, study one used a 

population model in which the correlations among the variables differed between level 

one and level two and study two used a population model in which the correlations 

among the variables did not differ between levels. 

The analytic examination of the five imputation methods showed that JM-Mplus 

and FCS-CK were the only methods whose expectations were equivalent to the particular 

population model that I examined. JM-BD, JM-UN, and FCS-VB produced expectations 

that were not equivalent to the population model, generally. JM-BD was equivalent to the 

population model only when the regression of each incomplete variable on each complete 

variable was the same across levels and the residual level-2 covariances between the 

incomplete variables after controlling for the complete variables were equal to zero. JM-

UN was equivalent to the population model only when the regressions of the incomplete 

variables on the complete variable were the same at both level one and level two. FCS-
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VB was equivalent to the population model only when the regression of each incomplete 

variable on every other variable was the same at level one and level two. JM-Mplus and 

FCS-CK were equivalent to one another. JM-BD, JM-UN, and FCS-VB were not 

equivalent to one another or to JM-Mplus and FCS-CK. 

The simulation findings solidly supported the analytic work. Every bias implied 

by the analytic work was found, and the direction of bias was as expected. The magnitude 

of bias was affected by the number of observations per cluster and the ICC for some of 

the parameters. In general, biases tended to be more extreme for five observations per 

cluster than for thirty observations per cluster and were more extreme for the ICC = .1 

condition than for the ICC = .5 condition. This pattern was likely due to the fact that 

cluster size and ICC both affect the reliability of cluster means. Specifically, the 

reliability of the mean of a variable in group j can be calculated from the ICC for that 

variable and the size of the group (Snijders & Bosker, 2012): 
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Because all three variables had the same ICC in each condition, their group means were 

equally reliable. The condition with the worst reliability (ICC = .1, observations per 

cluster = 5) tended to have the largest bias, and the condition with the best reliability 

(ICC = .5, observations per cluster = 30) tended to have the lowest bias. This 

combination of conditions is known to be problematic for level-2 estimation in the 

complete-data context (Lüdtke, Marsh, Robitzsch, & Trautwein, 2011; Lüdtke et al., 
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2008). Thus, it is not a complete surprise that imputation might make the problem worse. 

The number of clusters did not substantially affect bias for any of the parameters. 

In study one, where correlations differed across levels, JM-Mplus and FCS-CK 

did not produce biased estimates. This was expected because, as shown in the analytic 

work, JM-Mplus and FCS-CK were both congenial with an analysis model identical to 

the random intercept population model (as a reminder, an analysis model and an 

imputation model are said to be uncongenial if the analysis model cannot be derived from 

the imputation model, or vice versa; Meng, 1994; Schafer, 1997, 2003). JM-BD, JM-UN, 

and FCS-VB all produced biased estimates for multiple parameters. This was expected 

because, as shown in the analytic work, JM-BD, JM-UN, and FCS-VB were not 

congenial with an analysis model identical to the random intercept population model. 

FCS-VB was the only method to produce large standardized corrected biases (greater 

than .4 or less than -.4). This was likely due to the fact that FCS-VB misspecified the 

most parameters in the model. That is, FCS-VB misspecified the level-1 and level-2 

covariances between W and Y, the level-1 and level-2 covariances between W and X, and 

the level-1 and level-2 covariances between X and Y (6 parameters total). In contrast, JM-

BD misspecified the level-1 and level-2 covariances between W and Y, the level-1 and 

level-2 covariances between W and X, and the level-2 covariances between X and Y (5 

parameters total). JM-UN misspecified the level-1 and level-2 covariances between W 

and Y and the level-1 and level-2 covariances between W and X, (4 parameters total). In 

study two, JM-UN, JM-Mplus, FCS-VB, and FCS-CK produced unbiased estimates for 

all parameters. JM-BD produced biased estimates, but only for the level-2 covariance 

between X and Y. 
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Integration with Existing Literature 

As this document has mentioned previously, an analysis model and an imputation 

model are said to be uncongenial if the analysis model cannot be derived from the 

imputation model, or vice versa (Meng, 1994; Schafer, 1997, 2003). The analytic work in 

this document examined whether each imputation model could be derived from a random 

intercept population model where associations differed between level one and level two. 

The analytic work can be thought of as checking whether each imputation model is 

congenial with an analysis model that is equivalent to the random intercept population 

model. If an effect that is present in the analysis model is left out of (or constrained to 

zero in) the imputation model, the estimate of the effect is expected to be biased toward 

zero. If two parameters are constrained to equality, the estimate of each parameter is 

biased toward the other parameter. Consistent with the literature on congeniality, effects 

that were constrained to equality in the imputation models were biased toward one 

another in the analysis models. This finding matches a fact that is well established in the 

single-level imputation literature. 

JM-BD was suggested by Joseph Schafer in order to obtain a stable estimate for 

the level-2 residual covariance matrix when the number of random effects is large (a 

situation that is problematic for JM-UN; Schafer, 2001). Schafer wrote that JM-BD 

“assumes that the random effects for each response are independent of those for any other 

response.” He then stated that “unless the correlations among the random effects for some 

pairs of responses are unusually strong, the potential biases incurred by using a block-

diagonal Ψ rather than an unstructured Ψ tend to be minor.” The findings in the current 

document do not contradict Schafer, as his statement allowed for the possibility that large 
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correlations between random effects would generate problematic levels of bias. However, 

I suggest that it is not actually unusual for correlations among random effects to be strong 

enough to produce problematic levels of bias. For example, if all variables in a data set 

are incomplete, the level-2 covariance matrix for the random effects in a JM-UN 

imputation model is equal to the population level-2 covariance matrix for the variables 

(except for differences due to missing values). If the level-2 covariance for any pair of 

variables differs much from zero in the population, use of a block diagonal level-2 

residual covariance matrix in the imputation model (i.e., using JM-BD) would produce 

problematic levels of bias. 

The analytic work showed that the default imputation model used by JM-UN is 

not equivalent to the joint distribution and can produce biased results. That is, the JM-UN 

imputation model is not congenial with an analysis model that allows covariances 

between complete and incomplete variables to differ between level one and level two. 

Carpenter and Kenward (2012) wrote that complete-variable cluster means should be 

included in JM imputation to match the multilevel joint distribution. Though this 

dissertation did not evaluate JM-UN imputation with complete-variable cluster means, it 

does agree with the assessment that the default form of JM-UN does not match the 

multilevel joint distribution. 

The analytic and simulation work indicated that JM-Mplus is congenial with an 

analysis model that allows covariances between complete and incomplete variables to 

differ between level one and level two. This makes logical sense, as the JM-Mplus 

imputation model is identical to the joint distribution without performing any 

transformations on the parameters. A simulation study conducted by Enders et al. (2014) 
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examined the ability of JM-Mplus to preserve regression coefficients in a population 

model that allowed level-1 and level-2 regression coefficients to differ. Specifically, the 

level-1 slope was positive (𝛽1 = .34), whereas the level-2 slope was negative (𝛽2 = −.4). 

The probability of missingness was set to .4, the missing data mechanism was MCAR, 

and the ICCs were set to .5. Consistent with this dissertation, the authors found that the 

level-1 and level-2 regression coefficients were both unbiased. 

The analytic and simulation work in this document indicated that FCS-VB is not 

equivalent to a random intercept population model when the level-1 and level-2 

correlations differ. This means that FCS-VB is not congenial with a random intercept 

analysis model containing different parameters for level one and level two correlations. 

Carpenter and Kenward (2012) wrote that cluster means should be included in FCS 

imputation to match the multilevel joint distribution. When cluster means are added to the 

FCS imputation model (FCS-CK), the imputation model is equivalent to a random 

intercept population model when the level-1 and level-2 correlations differ. That is, FCS-

CK is congenial with a random intercept population model containing different 

parameters for level one and level two correlations. 

A simulation study conducted by Enders et al. (2014) examined the ability of 

FCS-VB to preserve regression coefficients in a population model that allowed level-1 

and level-2 slope coefficients to differ. Specifically, the level-1 slope was positive 

(𝛽1 = .34), whereas the level-2 slope was negative (𝛽2 = −.4). The probability of 

missingness was set to .4, the missing data mechanism was MCAR, and the ICCs were 

set to .5. Consistent with this dissertation, the authors found that the level-1 and level-2 

regression coefficients were both pulled toward a common value. The authors also ran the 
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same simulation with probability of missingness set to .2. FCS-VB was also biased for 

this condition, but the bias was not as extreme as the high rate of missingness condition. 

The biases found by Enders et al. (2014) for FCS-VB were not as extreme as those found 

in this dissertation. This difference can be attributed to the authors’ of an ICC of .5 (this 

dissertation found greater bias for an ICC of .1 than for an ICC of .5) and a cluster size of 

20 (this dissertation found bias to be exacerbated by small cluster sizes). The fact that the 

authors found FCS-VB to produce less extreme levels of bias under these conditions is 

consistent with this dissertation. 

Practical Recommendations 

A common approach to handling missing data is to perform multiple imputation 

once and later perform many analyses on the imputed data sets. If a multiply imputed 

data set is to be used in multiple analyses, the imputation model must be congenial with 

all of the analysis models to be used. This has led researchers to recommend a “kitchen-

sink” approach to multiple imputation in which all variables and effects that may later be 

of interest are included in the imputation process. For example, Schafer and Olsen (1998) 

stated that “a rich imputation model that preserves a large number of associations is 

desirable because it may be used for a variety of post-imputation analyses.” Rubin (1996) 

stated that “the press to include all possibly relevant predictors is demanding in practice, 

but it is generally a worthy goal.” This issue has received little attention in the multilevel 

imputation literature, and researchers currently have few (if any) recommendations for 

choosing among competing multilevel imputation methods.  The results from this study 

have practical implications for substantive research. 
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In the context of traditional multilevel models, there is a literature on contextual 

effects, whereby a predictor’s influence differs between level-1 and level-2 (e.g., the 

influence of school-average SES on achievement differs from the influence of individual 

SES on achievement; the influence of daily pain fluctuations on positive affect differs 

from the influence of average or chronic pain on positive affect). “For theoretically 

important variables in multilevel studies, it is the rule rather than the exception that 

within-group regression coefficients differ from between-group regression coefficients” 

(Snijders & Bosker, 2012). Another situation where associations can differ across levels 

is multilevel structural equation modeling. For example, in a multilevel confirmatory 

factor analysis model, the loadings and other estimates (even the structure itself) can 

differ between level-1 and level-2.  

Given the fact that level-1 and level-2 correlations between variables can, and 

often do, differ from one another, attempting to include all possible relationships between 

variables in a multilevel data set in an imputation model requires using an imputation 

method that allows level-1 and level-2 correlations to differ. Researchers have several 

choices of imputation method (JM-BD, JM-UN, JM-Mplus, FCS-VB, and FCS-CK), and 

these methods differ in their ability to separately model level-1 and level-2 correlations 

between variables. The analytic work and simulations clearly show that JM-Mplus and 

FCS-CK are the methods of choice for research questions involving differential 

correlations at level one and level two (for analysis models that contain random intercepts 

but no random slopes). 

The previous paragraph’s recommendation to use an imputation method that 

allows level-1 and level-2 correlations to differ (e.g., JM-Mplus or FCS-CK) could 
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theoretically be disregarded if an analyst knew that the level-1 and level-2 correlations 

between variables were identical in the population. This is an unlikely situation, as an 

analyst typically is not collecting and analyzing a data set if she already knows the 

population model. A second situation in which the recommendation to use an imputation 

method that allows level-1 and level-2 correlations to differ could be disregarded is 

where the analyst knows that all subsequent analysis models will constrain the level-1 

and level-2 correlations (or regression coefficients, etc.) to be equal. For example, an 

analyst may not care about the distinct within- and between-cluster regression 

coefficients and may instead want to obtain only overall regression coefficients. In such a 

case, the imputation and analysis models would be congenial. Though a final analysis 

model may constrain level-1 and level-2 regression coefficients to be equal, it is 

recommended that an analyst test for whether level-1 and level-2 regression coefficients 

are equal instead of assuming them to be equal (at least for predictors central to one’s 

research question). In order to test for equality of level-1 and level-2 regression 

coefficients, the analyst should use an imputation model that allows regression 

coefficients to differ between level one and level two. 

As a third example, an analyst may be interested in only the within-cluster 

regression of one variable on another. That is, the analyst may group-mean-center all of 

the variables to be used as predictors in a multilevel model. The output from the model 

will consist of only within-cluster regression coefficients. Because the analyst is not 

simultaneously estimating within-cluster and between-cluster regression coefficients, the 

analyst might think that it is not necessary to employ a rich imputation model and may 

choose to instead use a model with fewer parameters, such as FCS-VB. Contrary to the 
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analyst’s expectations, using an imputation method that constrains the level-1 and level-2 

regression coefficients to be equal in the imputation model could still bias the within-

cluster regression coefficients in the analysis toward the population parameters for the 

between-cluster regression coefficients if the within-cluster and between-cluster 

regression coefficients differ in the population model. Although I did not examine this 

possibility in this dissertation, it is worthy of future investigation. 

 Given the above considerations, the findings in this document lead me to make 

the following recommendations (for analysis models that contain random intercepts but 

no random slopes): 

1. Avoid JM-BD. If the level-1 and level-2 coefficients for regressions of the 

complete variables on the incomplete variables differ, JM-BD produces biased 

estimates. Though not examined in this document, the aforementioned bias for 

slope coefficients between complete and incomplete variables should be 

alleviated if the user adds complete-variable cluster means. However, JM-BD also 

produces biased estimates for the level-2 residual covariances between incomplete 

variables. Though not tested in this document, the bias for level-2 residual 

covariances between incomplete variables should persist even if complete-

variable cluster means are added as predictors. 

2. Avoid FCS-VB if the intended analyses will allow regression coefficients to differ 

across levels or the intended analyses will examine within-cluster regression 

coefficients only or between-cluster regression coefficients only. If regression 

coefficients differ between levels, FCS-VB produces biased estimates of the 

regression coefficients (though the amount of bias depends on multiple factors, 
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including the population model, the missing data rate, and the number of 

observations per cluster). Adding complete-variable cluster means fixes this 

problem for regressions of incomplete variables on complete variables, but not for 

regressions of incomplete variables on other incomplete variables. Though FCS-

VB works well if level-1 and level-2 slope coefficients are equal (demonstrated in 

Study 2), it may be difficult or even impossible to determine whether the level-1 

and level-2 slope coefficients differ prior to handling missing data. FCS-VB 

would also work well if all subsequent analysis models constrain the level-1 and 

level-2 slope coefficients to be equal. This means that the analyst would not be 

able to analyze a model containing only level-1 regression coefficients or a model 

containing only level-2 regression coefficients. In each case, the analysis model 

would not constrain the level-1 and level-2 regression coefficients to be equal, so 

the imputation and analysis models would not be congenial. Additionally, the 

analyst would not be able to test whether the regression coefficients are equal 

across levels because FCS-VB would bias the estimates of the level-1 and level-2 

regression coefficients toward one another. This would artificially improve the fit 

of an analysis model that constrains the level-1 and level-2 regression coefficients 

to be equal. It is recommended that an analyst test whether level-1 and level-2 

regression coefficients are equal rather than assuming that they are equal. In 

summary, FCS-VB can be used without biasing one’s results if the analyst knows 

the population prior to analysis or if the analyst restricts her analysis models to a 

subset of all possible analysis models. Because of this, I recommend avoiding 

FCS-VB. 
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3. Use JM-UN with caution. JM-UN produces biased estimates if slope coefficients 

for a regression of the incomplete variables on the complete variables differ 

between level-1 and level-2. As with FCS-VB, this is not a problem if the analyst 

knows that the slope coefficients are the same across levels in the population or if 

the analyst uses only analysis models in which the slope coefficients are 

constrained to be equal across levels. As explained for FCS-VB, the analyst is 

unlikely to know the population and restricting one’s analyses can be problematic. 

Adding complete-variable cluster means to the JM-UN imputation model should 

remove the bias produced by JM-UN, but this claim was not examined in this 

document.  

4. JM-Mplus and FCS-CK are recommended. JM-Mplus and FCS-CK produce 

unbiased estimates regardless of whether level-1 and level-2 slope coefficients (or 

covariances) are equal in the population. Because of this, an analyst can safely use 

JM-Mplus or FCS-CK without prior knowledge about the population and without 

restricting her analysis models. Neither method requires additional work or 

knowledge on the part of the user. 

Limitations 

This document compared the five multilevel imputation methods under 

circumstances that do not represent all possible circumstances in which users might 

employ these methods. The remainder of this section addresses six limitations of the 

studies in this document. First, the studies did not examine the performance of the 

methods for three-level data. Second, the smallest cluster size examined was five 

observations per cluster (in contrast, dyadic data have two observations per cluster). 
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Third, study 1 of the simulation work assumed a very large difference between the level-

1 and level-2 correlations among variables. Fourth, JM-UN was examined without cluster 

means incorporated as predictors. Fifth, the population and analysis models included 

random intercepts but not random slopes. Sixth, FCS-CK includes observed cluster 

means as predictors in the imputation model, ignoring the possibility that the observed 

cluster means may be unreliable measures of the unobserved group means (this is 

explained in greater detail later in this section). Finally, the analytic and simulation 

results reported in this dissertation apply only to current software implementations of 

multilevel imputation. Changing these aspects analytic and/or simulation work would 

likely change the relative performance of the imputation methods. 

The studies in this document focused exclusively on two-level data. No attempt 

was made to address how the five imputation methods would perform for data with three 

or more levels. Data with three or more levels are fairly common (e.g., many longitudinal 

studies examine repeated measures nested within people nested within groups). As such, 

it would be useful to determine how well the imputation methods perform for data with 

three or more levels. However, it seems likely that the main findings/patterns found in 

this dissertation would also apply to three-level models. 

The simulation studies in this dissertation employed two cluster size conditions: 5 

observations per cluster and 30 observations per cluster. Biases produced by the 

imputation methods appeared to be exacerbated by the small cluster size condition. This 

begs the question: how much worse will be bias be for even smaller cluster sizes? It is not 

uncommon for studies in the social sciences to examine small groups, which may contain 

fewer than five participants per group. Dyadic studies, for example, have only two level-1 
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units per cluster. Given that this study found much larger bias for the 5 observations per 

cluster condition than for the 30 observations per cluster condition, it seems likely that 

bias may greatly increase for studies with fewer than five level-1 units per cluster. 

The difference between the level-1 and level-2 correlations in study 1 of the 

simulation was rather extreme. Specifically, the level-1 and level-2 correlations were 

equal in magnitude but opposite in sign. The large difference between level one and level 

two correlations highlighted the ability (or lack thereof) of the imputation methods to 

handle such differences (which was the purpose of this document). Such a large 

difference between levels is unlikely to be found in real data. It is possible that the 

imputation methods examined in this document would produce little/no bias for small 

differences between level-1 and level-2 correlations. It would be useful to conduct a 

follow-up simulation study with small differences between level-1 and level-2 

correlations to determine whether each method is useful (produces little/no bias) for 

realistic data. 

Implementations of JM-UN (e.g., PAN in R and Splus) do not automatically add 

complete variable cluster means as predictors in an imputation model. Because analysts 

tend to accept software defaults, this document evaluated JM-UN without complete 

variable cluster means included as predictors. An analyst well-versed in multiple 

imputation theory, however, might calculate the complete variable cluster means prior to 

imputation and then add these means to the imputation model. Doing this would likely 

remove any biases produced by JM-UN. As such, JM-UN should be re-evaluated with 

complete-variable cluster means included as predictors in the imputation model. 
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The simulations and analytic work in this document (and hence the 

recommendations in this chapter) focused exclusively on population and imputation 

models that contained random intercepts but no random slopes. Some of the imputation 

models are very limited in their ability to include random slopes. The JM-Mplus 

imputation model does not allow random slopes to be included. That is, JM-Mplus 

models all level-1 covariances using a level-1 covariance matrix that is not allowed to 

differ across clusters. JM-BD and JM-UN allow random slopes to be added between 

complete variables and incomplete variables, but not between pairs of incomplete 

variables. That is, the level-1 covariance between incomplete variables, after controlling 

for complete variables, is determined by the level-1 residual covariance matrix. Because 

this matrix is the same for all clusters, the level-1 covariances between incomplete 

variables must be the same for all clusters and the imputation model cannot be congenial 

with an analysis model containing random slopes between incomplete variables. Recai 

Yucel proposed an adaptation of JM-UN which uses heterogeneous level-1 residual 

covariance matrices (Yucel, 2011). This adaptation of JM-UN has yet to be implemented 

in publicly available software. Of the five methods examined in this document, FCS-VB 

is the only publicly available method able to incorporate random slopes between all 

variables. FCS-CK is also able to handle random slopes between all variables, but the 

software implementation of FCS-CK, BLImP, is not yet publicly available. To my 

knowledge, FCS-CK is not implemented in any other software package. 

Much of the justification for incorporating random slopes into FCS multilevel 

imputation relies on what works in practice, rather than analytical justification. For 

example, van Buuren (2011) noted that simply adding random slopes to the FCS model 
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does not generate good imputations if predictors in the analysis model are incomplete. 

van Buuren suggests that the FCS imputation model should be adjusted to incorporate 

heterogeneous level-1 residual variances, stating that this leads to a “considerable 

advance in imputation quality.” However, van Buuren did not provide analytical evidence 

that heterogeneous level-1 residual variances are needed to replicate the joint distribution. 

Further, the method proposed by van Buuren should be compared against competing 

methods, such as Recai Yucel’s adaptation of JM-UN. 

Level-2 variables that are cluster aggregates of level-1 variables are called 

contextual variables. The FCS-CK imputation model predicting Y from W and X also 

includes the cluster means of W and X as predictors. The cluster means ( jW  and jX ) are 

contextual variables. That is, jW  is calculated as the average of W for cluster j and jX  is 

calculated as the average of X for cluster j. A model that includes the same variable at 

both levels is called a contextual analysis model (Firebaugh, 1978; Raudenbush & Bryk, 

2002). So, the FCS-CK imputation model is a contextual model. Lüdtke et al. (2008) 

labeled contextual analysis models that use only the observed clusters means (such as the 

FCS-CK imputation model) as multilevel manifest covariate (MMC) models. MMC 

models assume that the contextual variables are measured without error. If this 

assumption is violated, the contextual model may produce biased estimates of the 

difference between the level-1 and level-2 regression coeficients (Lüdtke et al., 2008). 

In some cases, contextual variables may be unreliable measures of the unobserved 

group averages (O'Brien, 1990; Raudenbush, Rowan, & Kang, 1991), thus violating the 

assumption of an error-free contextual variable. The error in a contextual variable may 



 

160 

stem from measurement error in assessing a latent construct. For example, consider 

student ratings of an instructor’s teaching ability. Each student rating consists of the true 

score for instructor’s teaching ability plus some measurement error. Error in a contextual 

variable may also stem from taking a finite sample from a large or potentially infinite 

population. Consider a sample of 20 high school students from a school containing 2,000 

students. The average height of the 20 students can be used as an estimate of the average 

height of students in the school. Though height might be assessed with almost no 

measurement error, an average based on 20 students will provide a poor measure of the 

average height of the 2,000 students due to sampling error. 

Lüdtke et al. (2008) suggested that if contextual variables are unreliable measures 

of the unobserved group variable, they should be treated as latent rather than observed. 

The authors referred to this approach as the multilevel latent covariate (MLC) approach. 

Treating the contextual variables as latent allows the model to incorporate contextual 

variable error into the model, producing unbiased coefficients and standard errors. The 

MLC approach is not always necessary, however, and may introduce error where there 

should be none. Consider small-group research where each group consists of five 

participants. A researcher might be interested in the proportion of each group that is 

female. The average of a binary variable representing gender (1=female, 0=male) can be 

used as an estimate of the proportion of students in the group that are female. Because the 

size of the group sample (n=5) equals the size of the group, the contextual variable does 

not suffer from sampling error. Gender should be measured with little/no error, so the 

contextual variable does not suffer from measurement error. Because the contextual 

variable should be error free (or very close to it), the MMC approach could be used 
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without violating the error-free contextual variable assumption. On the other hand, the 

MLC approach would inappropriately treat the contextual variable as being unreliable. 

The JM-Mplus imputation method employs an MLC approach. That is, JM-Mplus treats 

complete-variable group means as latent, rather than observed. It bears mentioning that 

analysis of multilevel models with the MLC approach tends to yield standard errors that 

are too large when the number of level-1 units within each level-2 unit is small and the 

ICC is low (Lüdtke et al., 2011). 

As previously mentioned, FCS-CK employs an MMC approach to handling 

complete-variable group means whereas JM-Mplus employs an MLC approach to 

handling complete-variable group means. It is possible that, in situations where the 

contextual variables are unreliable measures of the unobserved group variables, FCS-CK 

may run into problems due to unreliable group means whereas JM-Mplus may work quite 

well. In contrast, in situations where the contextual variables are reliable measures of the 

group variables, FCS-CK may perform well whereas JM-Mplus may perform poorly. To 

my knowledge, no published research has explored the impact of the reliability of 

contextual variables as measures of group variables on the efficacy of multilevel 

imputation methods. 

The analytic and simulation results reported in this dissertation apply only to 

current software implementations of multilevel imputation. JM-BD and JM-UN are 

available for R and S-Plus in packages called PAN (Schafer, 2001; Schafer & Yucel, 

2002). JM-BD is available in SAS as a macro called MMI_IMPUTE (Mistler, 2013). JM-

BD and JM-UN imputation can also be performed in  a standalone software package 

called REALCOM-IMPUTE (Carpenter et al., 2011) or the latent variable modeling 
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package Mplus (Asparouhov & Muthén, 2010f). JM-Mplus is available in Mplus 

(Asparouhov & Muthén, 2010f). FCS-VB is implemented in the MICE package in R (van 

Buuren & Groothuis-Oudshoorn, 2011) and also in a standalone software package called 

BLImP (Keller & Enders, 2014). As of the writing of this dissertation, BLImP is not yet 

available to the public. FCS-CK is implemented in BLImP (Enders et al., 2014). This 

dissertation should not be assumed to apply to future versions of the aforementioned 

software, as their implementations of multilevel imputation may change.  

Summary 

This document examined the equivalence of five multilevel imputation methods 

(JM-BD, JM-UN, JM-Mplus, FCS-VB, and FCS-CK) to one another and to the joint 

distribution for a random intercept population model. JM-Mplus and FCS-CK were found 

to be equivalent to the joint distribution and to one another. JM-BD, JM-UN, and FCS-

VB were found to be different from the joint distribution and from one another. Due to 

the mismatch between these three methods and the joint distribution, JM-BD, JM-UN, 

and FCS-VB were each found to produce biased parameter estimates for some parameters 

in some situations. Biases tended to be greater for smaller numbers of observations per 

cluster and for smaller ICCs. In contrast, JM-Mplus and FCS-CK produced unbiased 

estimates for all of the parameters in all situations.  
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Method Software Categorical Description

Splus and R No
Available as package "PAN." Imputes level-1 
variables only.

SAS No Available in SAS macro "MMI_IMPUTE."

Mplus Yes
Can be specified by user as an imputation 
model.

Splus and R No
Available as package "PAN." Imputes level-1 
variables only.

Mplus Yes
Can be specified by user as an imputation 
model.

REALCOM-IMPUTE Yes
Standalone software; designed to interface with 
Stata and MLwiN.

JM-Mplus Mplus Yes Default imputation model.
R No Available as package "MICE."

BLImP Yes Standalone software.
FCS-CK BLImP Yes Standalone software.

Table 1

Software Implementations of Multilevel Imputaion Methods

Note: The "Categorical" column refers to whether the software is able to handle discrete variables (e.g., 
nominal). All software in the table can perform imputation at both level one and level two unless 
otherwise stated.

JM-BD

JM-UN

FCS-VB
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Table 5

ICC Clusters
Observations 

per Cluster BETA_W BETA_X BETA_Y

0.5 30 5 0.00 0.00 0.00
0.5 30 30 0.00 0.00 0.00
0.5 100 5 0.00 -0.01 0.00
0.5 100 30 0.00 0.00 0.00
0.1 30 5 0.00 0.00 -0.01
0.1 30 30 0.00 0.00 0.00
0.1 100 5 0.00 0.00 0.02
0.1 100 30 0.00 -0.01 0.01

0.5 30 5 0.00 0.00 0.01
0.5 30 30 0.00 0.00 0.00
0.5 100 5 0.00 -0.01 0.01
0.5 100 30 0.00 0.00 0.00
0.1 30 5 0.00 0.02 0.03
0.1 30 30 0.00 0.01 0.00
0.1 100 5 0.00 0.00 0.02
0.1 100 30 0.00 -0.01 0.01

Study 1

Study 2

Study 1: Level-specific associations
Study 2: Common associations.  

Standardized corrected bias for mean parameters for JM-BD, by 
study and by condition
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Table 8

ICC Clusters
Observations 

per Cluster BETA_W BETA_X BETA_Y

0.5 30 5 0.00 -0.01 0.00
0.5 30 30 0.00 0.00 0.00
0.5 100 5 0.00 0.00 0.01
0.5 100 30 0.00 0.00 0.00
0.1 30 5 0.00 -0.01 -0.01
0.1 30 30 0.00 0.00 0.00
0.1 100 5 0.00 0.01 0.02
0.1 100 30 0.00 -0.01 0.00

0.5 30 5 0.00 -0.01 0.01
0.5 30 30 0.00 0.00 0.00
0.5 100 5 0.00 0.00 0.00
0.5 100 30 0.00 0.00 0.00
0.1 30 5 0.00 0.00 0.02
0.1 30 30 0.00 0.02 0.00
0.1 100 5 0.00 0.00 0.01
0.1 100 30 0.00 -0.01 0.01

Study 1

Study 2

Study 1: Level-specific associations
Study 2: Common associations.  

Standardized corrected bias for mean parameters for JM-UN, by 
study and by condition
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Table 11

ICC Clusters
Observations 

per Cluster BETA_W BETA_X BETA_Y

0.5 30 5 0.00 0.01 0.00
0.5 30 30 0.00 0.00 0.00
0.5 100 5 0.00 0.01 -0.01
0.5 100 30 0.00 0.00 0.00
0.1 30 5 0.00 0.01 -0.02
0.1 30 30 0.00 0.00 -0.01
0.1 100 5 0.00 0.01 -0.01
0.1 100 30 0.00 -0.01 0.00

0.5 30 5 0.00 0.00 0.01
0.5 30 30 0.00 0.00 0.00
0.5 100 5 0.00 0.01 -0.01
0.5 100 30 0.00 0.00 0.00
0.1 30 5 0.00 0.02 0.01
0.1 30 30 0.00 0.01 -0.01
0.1 100 5 0.00 0.01 -0.01
0.1 100 30 0.00 -0.01 0.01

Study 1

Study 2

Study 1: Level-specific associations
Study 2: Common associations.  

Standardized corrected bias for mean parameters for JM-Mplus, by 
study and by condition
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Table 14

ICC Clusters
Observations 

per Cluster BETA_W BETA_X BETA_Y

0.5 30 5 0.00 0.00 0.00
0.5 30 30 0.00 0.00 0.00
0.5 100 5 0.00 0.00 0.00
0.5 100 30 0.00 0.00 0.00
0.1 30 5 0.00 0.00 -0.02
0.1 30 30 0.00 0.00 0.00
0.1 100 5 0.00 0.01 0.00
0.1 100 30 0.00 -0.01 0.00

0.5 30 5 0.00 -0.01 0.01
0.5 30 30 0.00 0.00 0.00
0.5 100 5 0.00 -0.01 0.00
0.5 100 30 0.00 0.00 0.00
0.1 30 5 0.00 0.01 0.00
0.1 30 30 0.00 0.01 0.00
0.1 100 5 0.00 0.00 0.00
0.1 100 30 0.00 -0.01 0.01

Study 1

Study 2

Study 1: Level-specific associations
Study 2: Common associations.  

Standardized corrected bias for mean parameters for FCS-VB, by 
study and by condition
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Table 17

ICC Clusters
Observations 

per Cluster BETA_W BETA_X BETA_Y

0.5 30 5 0.00 0.00 0.00
0.5 30 30 0.00 0.00 0.00
0.5 100 5 0.00 0.00 -0.01
0.5 100 30 0.00 0.00 0.00
0.1 30 5 0.00 -0.01 -0.02
0.1 30 30 0.00 -0.01 0.00
0.1 100 5 0.00 0.00 0.00
0.1 100 30 0.00 -0.01 0.01

0.5 30 5 0.00 0.00 0.00
0.5 30 30 0.00 0.00 0.00
0.5 100 5 0.00 -0.01 0.00
0.5 100 30 0.00 0.00 0.00
0.1 30 5 0.00 0.01 0.00
0.1 30 30 0.00 0.02 0.00
0.1 100 5 0.00 0.00 0.00
0.1 100 30 0.00 -0.01 0.01

Study 1

Study 2

Study 1: Level-specific associations
Study 2: Common associations.  

Standardized corrected bias for mean parameters for FCS-CK, by 
study and by condition
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Figure 1. Standardized bias for level-1 covariance terms in study 1. The graph displays 
the mean standardized bias (the difference between the average complete-data estimate 
versus the population parameter expressed as a z-score) for the level-1 covariance 
parameters in study 1 (level-1 specific associations), broken down by condition. The 
figure shows that the complete-data estimates displayed some bias, and that this bias 
tended to be greatest for condition 5. 
Condition 1: ICC = .5; nclusters = 30; nobs per cluster = 5.  
Condition 2: ICC = .5; nclusters = 30; nobs per cluster = 30.  
Condition 3: ICC = .5; nclusters = 100; nobs per cluster = 5. 
Condition 4: ICC = .5; nclusters = 100; nobs per cluster = 30. 
Condition 5: ICC = .1; nclusters = 30; nobs per cluster = 5. 
Condition 6: ICC = .1; nclusters = 30; nobs per cluster = 30. 
Condition 7: ICC = .1; nclusters = 100; nobs per cluster = 5. 
Condition 8: ICC = .1; nclusters = 100; nobs per cluster = 30.  
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Figure 2. Standardized bias for level-1 covariance terms in study 2. The graph displays 
the mean standardized bias (the difference between the average complete-data estimate 
versus the population parameter expressed as a z-score) for the level-1 covariance 
parameters in study 2 (equal associations), broken down by condition. The figure shows 
that the complete-data estimates displayed some bias, and that this bias tended to be 
greatest for condition 5. 
Condition 1: ICC = .5; nclusters = 30; nobs per cluster = 5.  
Condition 2: ICC = .5; nclusters = 30; nobs per cluster = 30.  
Condition 3: ICC = .5; nclusters = 100; nobs per cluster = 5. 
Condition 4: ICC = .5; nclusters = 100; nobs per cluster = 30. 
Condition 5: ICC = .1; nclusters = 30; nobs per cluster = 5. 
Condition 6: ICC = .1; nclusters = 30; nobs per cluster = 30. 
Condition 7: ICC = .1; nclusters = 100; nobs per cluster = 5. 
Condition 8: ICC = .1; nclusters = 100; nobs per cluster = 30.  
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Figure 3. Standardized bias for mean terms in study 1. The graph displays the mean 
standardized bias (the difference between the average complete-data estimate versus the 
population parameter expressed as a z-score) for the mean parameters in study 1 (level-1 
specific associations), broken down by condition. The figure shows that the complete-
data estimates displayed no apparent bias. 
Condition 1: ICC = .5; nclusters = 30; nobs per cluster = 5.  
Condition 2: ICC = .5; nclusters = 30; nobs per cluster = 30.  
Condition 3: ICC = .5; nclusters = 100; nobs per cluster = 5. 
Condition 4: ICC = .5; nclusters = 100; nobs per cluster = 30. 
Condition 5: ICC = .1; nclusters = 30; nobs per cluster = 5. 
Condition 6: ICC = .1; nclusters = 30; nobs per cluster = 30. 
Condition 7: ICC = .1; nclusters = 100; nobs per cluster = 5. 
Condition 8: ICC = .1; nclusters = 100; nobs per cluster = 30.  
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Figure 4. Standardized bias for mean terms in study 2. The graph displays the mean 
standardized bias (the difference between the average complete-data estimate versus the 
population parameter expressed as a z-score) for the mean parameters in study 2 (equal 
associations), broken down by condition. The figure shows that the complete-data 
estimates displayed no apparent bias. 
Condition 1: ICC = .5; nclusters = 30; nobs per cluster = 5.  
Condition 2: ICC = .5; nclusters = 30; nobs per cluster = 30.  
Condition 3: ICC = .5; nclusters = 100; nobs per cluster = 5. 
Condition 4: ICC = .5; nclusters = 100; nobs per cluster = 30. 
Condition 5: ICC = .1; nclusters = 30; nobs per cluster = 5. 
Condition 6: ICC = .1; nclusters = 30; nobs per cluster = 30. 
Condition 7: ICC = .1; nclusters = 100; nobs per cluster = 5. 
Condition 8: ICC = .1; nclusters = 100; nobs per cluster = 30.  
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Figure 5. Standardized bias for level-2 covariance terms in study 1. The graph displays 
the mean standardized bias (the difference between the average complete-data estimate 
versus the population parameter expressed as a z-score) for the level-2 covariance 
parameters in study 1 (level-1 specific associations), broken down by condition. The 
figure shows that the complete-data estimates displayed some bias, and that this bias 
tended to be greatest for condition 5. 
Condition 1: ICC = .5; nclusters = 30; nobs per cluster = 5.  
Condition 2: ICC = .5; nclusters = 30; nobs per cluster = 30.  
Condition 3: ICC = .5; nclusters = 100; nobs per cluster = 5. 
Condition 4: ICC = .5; nclusters = 100; nobs per cluster = 30. 
Condition 5: ICC = .1; nclusters = 30; nobs per cluster = 5. 
Condition 6: ICC = .1; nclusters = 30; nobs per cluster = 30. 
Condition 7: ICC = .1; nclusters = 100; nobs per cluster = 5. 
Condition 8: ICC = .1; nclusters = 100; nobs per cluster = 30.  
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Figure 6. Standardized bias for level-2 covariance terms in study 2. The graph displays 
the mean standardized  bias (the difference between the average complete-data 
estimate versus the population parameter expressed as a z-score) for the level-2 
covariance parameters in study 2 (equal associations), broken down by condition. The 
figure shows that the complete-data estimates displayed some bias, and that this bias 
tended to be greatest for condition 5. 
Condition 1: ICC = .5; nclusters = 30; nobs per cluster = 5.  
Condition 2: ICC = .5; nclusters = 30; nobs per cluster = 30.  
Condition 3: ICC = .5; nclusters = 100; nobs per cluster = 5. 
Condition 4: ICC = .5; nclusters = 100; nobs per cluster = 30. 
Condition 5: ICC = .1; nclusters = 30; nobs per cluster = 5. 
Condition 6: ICC = .1; nclusters = 30; nobs per cluster = 30. 
Condition 7: ICC = .1; nclusters = 100; nobs per cluster = 5. 
Condition 8: ICC = .1; nclusters = 100; nobs per cluster = 30.  
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Figure 7. Standardized corrected bias least squared means for level-2 covariance between 
W and Y in study 1, by method and number of observations per cluster. The graph 
displays the mean standardized corrected bias (the difference between the average 
imputation estimate versus the average complete-data estimate expressed as a z-score) for 
the level-1 covariance between W and Y for the five imputation methods examined in 
study 1 (level-1 specific associations), broken down by number of observations per 
cluster.  The figure shows that JM-Mplus and FCS-CK estimates were relatively free of 
bias, whereas the remaining three methods produced biased estimates of the level-1 
covariance.  Additionally, the graph shows that bias was greater in conditions with 5 
observations per cluster.  Note that the symbols on the graph are connected by lines to 
enhance readability, but these lines should not be interpreted as continuous trends 
because the horizontal axis depicts nominal categories. 
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Figure 8. Standardized corrected bias least squared means for the level-1 covariance 
between X and Y in study 1, by method and number of observations per cluster. The 
graph displays the mean standardized corrected bias (the difference between the average 
imputation estimate versus the average complete-data estimate expressed as a z-score) for 
the level-1 covariance between X and Y for the five imputation methods examined in 
study 1 (level-1 specific associations), broken down by number of observations per 
cluster.  The figure shows that JM-BD, JM-UN, JM-Mplus, and FCS-CK estimates were 
relatively free of bias, whereas FCS-VB produced biased estimates of the level-1 
covariance.  Additionally, the graph shows that bias was greater in conditions with 5 
observations per cluster.  Note that the symbols on the graph are connected by lines to 
enhance readability, but these lines should not be interpreted as continuous trends 
because the horizontal axis depicts nominal categories. 
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Figure 9. Standardized corrected bias least squared means for the level-2 covariance 
between X and Y in study 1, by method, ICC, and number of observations per cluster. 
The graph displays the mean standardized corrected bias (the difference between the 
average imputation estimate versus the average complete-data estimate expressed as a z-
score) for the level-2 covariance between X and Y for the five imputation methods 
examined in study 2 (equal associations), broken down by number of observations per 
cluster. The figure shows that JM-UN, JM-Mplus, and FCS-CK estimates were relatively 
free of bias, whereas JM-BD and FCS-VB produced biased estimates of the level-2 
covariance.  Additionally, the graph shows that bias was greater in conditions with 5 
observations per cluster and that this effect was magnified in the ICC=.1 condition. Note 
that the symbols on the graph are connected by lines to enhance readability, but these 
lines should not be interpreted as continuous trends because the horizontal axis depicts 
nominal categories. 
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Figure 10. Standardized corrected bias least squared means for the level-2 covariance 
between X and Y in study 2, by method and ICC. The graph displays the mean 
standardized corrected bias (the difference between the average imputation estimate 
versus the average complete-data estimate expressed as a z-score) for the level-2 
covariance between X and Y for the five imputation methods examined in study 2 (equal 
associations), broken down by ICC. The figure shows that JM-UN, JM-Mplus, FCS-VB, 
and FCS-CK estimates were relatively free of bias, whereas JM-BD produced biased 
estimates of the level-2 covariance. Additionally, the graph shows that bias was greater in 
conditions with ICC=.1. Note that the symbols on the graph are connected by lines to 
enhance readability, but these lines should not be interpreted as continuous trends 
because the horizontal axis depicts nominal categories. 
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Figure 11. Standardized corrected bias least squared means for the level-2 covariance 
between X and Y in study 2, by method and number of observations per cluster. The 
graph displays the mean standardized corrected bias (the difference between the average 
imputation estimate versus the average complete-data estimate expressed as a z-score) for 
the level-2 covariance between X and Y for the five imputation methods examined in 
study 2 (equal associations), broken down by number of observations per cluster. The 
figure shows that JM-UN, JM-Mplus, FCS-VB, and FCS-CK estimates were relatively 
free of bias, whereas JM-BD produced biased estimates of the level-2 covariance. 
Additionally, the graph shows that bias was greater in conditions with 5 observations per 
cluster. Note that the symbols on the graph are connected by lines to enhance readability, 
but these lines should not be interpreted as continuous trends because the horizontal axis 
depicts nominal categories. 
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