
Impact of Violations of Longitudinal Measurement Invariance  

in Latent Growth Models and Autoregressive Quasi-simplex Models  

by 

Margarita Olivera-Aguilar 

 

 

 

 

 

A Dissertation Presented in Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

 

Approved July 2013 by the 

Graduate Supervisory Committee:  

 

Roger Millsap, Chair 

Roy Levy 

David Mackinnon 

Stephen G. West 

 

 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY 

August 2013  



i 

ABSTRACT 

  

In order to analyze data from an instrument administered at multiple time points it 

is a common practice to form composites of the items at each wave and to fit a 

longitudinal model to the composites. The advantage of using composites of items is that 

smaller sample sizes are required in contrast to second order models that include the 

measurement and the structural relationships among the variables. However, the use of 

composites assumes that longitudinal measurement invariance holds; that is, it is assumed 

that that the relationships among the items and the latent variables remain constant over 

time. Previous studies conducted on latent growth models (LGM) have shown that when 

longitudinal metric invariance is violated, the parameter estimates are biased and that 

mistaken conclusions about growth can be made. The purpose of the current study was to 

examine the impact of non-invariant loadings and non-invariant intercepts on two 

longitudinal models: the LGM and the autoregressive quasi-simplex model (AR quasi-

simplex). A second purpose was to determine if there are conditions in which researchers 

can reach adequate conclusions about stability and growth even in the presence of 

violations of invariance. A Monte Carlo simulation study was conducted to achieve the 

purposes. The method consisted of generating items under a linear curve of factors model 

(COFM) or under the AR quasi-simplex. Composites of the items were formed at each 

time point and analyzed with a linear LGM or an AR quasi-simplex model. The results 

showed that AR quasi-simplex model yielded biased path coefficients only in the 

conditions with large violations of invariance. The fit of the AR quasi-simplex was not 

affected by violations of invariance. In general, the growth parameter estimates of the 

LGM were biased under violations of invariance. Further, in the presence of non-
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invariant loadings the rejection rates of the hypothesis of linear growth increased as the 

proportion of non-invariant items and as the magnitude of violations of invariance 

increased. A discussion of the results and limitations of the study are provided as well as 

general recommendations. 
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Chapter 1 

INTRODUCTION 

Common longitudinal models for studying stability and change, such as latent 

growth models (LGM) and autoregressive models (AR) frequently use composites of 

items of a single instrument administered in repeated measurement occasions. One 

assumption made when using the same instrument in different time points, is that the 

meaning of the instrument used does not change over time. In other words, it is assumed 

that longitudinal measurement invariance holds. However, using the same instrument 

repeatedly does not guarantee that the relation between the instrument and the underlying 

latent variable remains the same over time. This relation might change if there has been 

an intervention between occasions or if the examinees have changed across time 

(McArdle, 2007). Longitudinal measurement invariance is fundamental to conclude that 

observed changes over time are due to changes in the target latent variable and not a 

consequence of the characteristics of the instruments (Chan, 1998; Khoo, West, Wu, & 

Kwok, 2005; Widaman, Ferrer, & Conger, 2010). Unfortunately, this assumption cannot 

be tested when using composites of items.  

 Measurement invariance across groups has been extensively studied (Borsboom, 

2006; Byrne, Shavelson & Muthén, 1989; Cheung & Rensvold, 1999; Horn & McArdle, 

1992; Johnson, Meade & DuVernet, 2009; Meade & Bauer, 2007; Meade & 

Lautenschlager, 2004; Meredith, 1993; Millsap, 2011; Schmitt & Kuljanin, 2008; 

Vandenberg & Lance, 2000; Widaman & Reise, 1997; Yoon & Millsap, 2007). In 

contrast, the research on measurement invariance over time has received less attention 

(Chan, 1998; Millsap & Cham, 2012; Tisak & Meredith, 1989; Widaman, Ferrer, & 
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Conger, 2010). Some studies have examined the impact of violations of longitudinal 

measurement invariance on the parameter estimates and model fit of the univariate LGM 

(Leite, 2007; Wirth, 2008). However, these studies did not systematically manipulate 

variables that have been shown to be relevant in the multiple group case. Further, the 

consequences of violations of invariance for other longitudinal models, such as AR 

models, are largely unknown.  

 The purpose of the present study was to examine the consequences of violations 

of longitudinal measurement invariance on the parameter estimates and model fit of the 

univariate LGM and the univariate AR quasi-simplex model when the analyses are 

conducted on composites of items. The univariate LGM and the univariate AR quasi-

simplex model represent two of the most widely used models to analyze longitudinal 

data. While AR models have been one of the historically dominant approaches (Biesanz, 

2012), the interest in LGM has increased during the past two decades (Ferrer, Balluerka, 

& Widaman, 2008; Leite, 2007). Since the use of composites in these models is a 

common practice, it is important to examine how the results from the univariate LGM 

and AR quasi-simplex model might change in the presence of violations of longitudinal 

measurement invariance.  

The simulation study consisted of generating data for multiple indicators per 

measurement occasion with different levels of violations of invariance, forming 

composites of the items and analyzing the composites using a LGM or an AR quasi-

simplex model. For the LGM, data were generated under a curve of factors model 

(COFM). Since the COFM can be considered an extension of the LGM that includes 

multiple indicators of the latent variable at each measurement occasion, it was a natural 
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choice for generating data at the item level. For the AR quasi-simplex, the data were 

generated under an AR quasi-simplex model with multiple indicators. The AR quasi-

simplex model is an extension of the AR simplex model that includes multiple indicators; 

hence, the AR quasi-simplex model was a natural choice to generate data.  

After generating data for multiple indicators composites were formed and 

analyzed under a univariate LGM or an AR quasi-simplex model. The degree to which 

the parameter estimates recover the generating parameter values was examined by 

looking at the bias and relative bias of the parameter estimates, their stability across 

replications, and the root mean square error (RMSE). The fit of the models was examined 

by looking at the number of replications in which the χ
2 

rejected the null hypothesis.  

 The document is organized as follows. First, the problem of measurement 

invariance in the multiple group case and in the longitudinal case are defined in a general 

way and discussed under the common factor model approach. Then, four longitudinal 

methods are described: the autoregressive simplex model, the autoregressive quasi-

simplex model, the latent growth model and the curve of factors model. A description of 

previous studies that examined the impact of violations of longitudinal measurement 

invariance in latent growth models along with the general findings is provided. The 

simulation study is described along with the findings. Finally, the discussion of the 

results and the conclusions are presented. 

 

1.1 Measurement invariance 

Psychological tests are often used to compare groups with respect to some latent 

variable of interest. An important prerequisite for such comparisons is that the same 
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construct is being measured across groups. When the measurement properties of the 

observed variables in relation to the target latent variable are the same across populations, 

we can say that measurement invariance holds.  In other words, the knowledge about the 

group membership of the examinees should not alter the relationship between the 

observed and the latent variables (Millsap, 2011). As expressed by Horn and McArdle 

(1992), 

 

The general question of invariance of measurement is one of whether or not, 

under different conditions of observing and studying phenomena, measurement 

operations yield measures of the same attribute. If there is no evidence indicating 

presence or absence of measurement invariance –the usual case- or there is 

evidence that such invariance does not obtain, then the basis for drawing scientific 

inferences is severely lacking: findings of differences between individuals and 

groups cannot be unambiguously interpreted. (pp. 117) 

 

Mellenbergh (1989) provided a formal definition of an unbiased item as 

conditional independence, 

 

                 (1) 

 

where   is a vector of observed variables,   is the vector of the target latent variables, 

and   contains indicators defining the groups assessed. Equation (1) indicates that the 

probability of the observed variables   given the latent variables   does not depend on 
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V. If measurement invariance holds, group membership should not affect the probability 

of the observed variables once the latent variables are taken into account. Another way of 

explaining Equation (1) is that under measurement invariance, two persons with the same 

values in   have the same probability of achieving a particular score on   regardless of 

their group membership. 

 It is important to note that the definition of measurement invariance does not 

require that the groups compared have the same distribution in the latent variables  . 

There could be population differences regarding   and measurement invariance can still 

hold. The key idea is that measurement invariance is studied in groups in which the 

values of   are matched. If individuals from different groups are matched in the latent 

variable of interest, there should no longer be differences in the probabilities of the 

observed values.  

If Equation (1) does not hold, measurement bias is said to exist. Under 

measurement bias the scores in the observed variables   of two persons with the same 

values in   will depend on the groups they belong to. Measurement bias can be 

expressed as: 

 

                 (2) 

 

 Measurement bias implies that the distribution of the observed variables   

conditional on the values of   will be different for at least one of the groups measured.  

The conditions required by Equation (1) are stringent and often do not hold in 

practice. Weaker forms of measurement invariance are considered such as first-order and 
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second-order measurement invariance (Millsap, 2011). First-order measurement 

invariance is defined as: 

 

                 (3) 

 

Equation (3) indicates that the conditional mean of the observed variables   is 

invariant across groups.  In other words, two groups that are matched in the target latent 

variables   will have the same conditional expected value for the observed variables 

under first order measurement invariance. First-order measurement invariance is the 

minimum level of invariance that leads to meaningful comparisons across groups. 

 A stronger form of measurement invariance is second-order measurement 

invariance. In addition to the condition expressed in Equation (3), second-order 

measurement invariance requires that the conditional covariance structure is invariant 

across groups, as expressed in Equation (4), 

 

                 (4) 

  

Under the second order measurement invariance the covariance structure of   

once the target latent variables   are taken into account, should be independent of group 

membership. This form of measurement invariance is also known as weak measurement 

invariance (Meredith, 1993; Meredith & Teresi, 2006). 

 

  



7 

1.2 Longitudinal measurement invariance 

The above definition of measurement invariance specifies invariance in relation to 

group membership. Invariance can also be studied in relation to constructs measured in 

multiple occasions. In this case, the meaning of a construct measured with the same 

instrument over time, should be invariant regardless of the measurement occasion.  

Millsap and Cham (2012) define longitudinal invariance in occasions t=1, 2,…T, 

if and only if for         it is true that: 

 

                       (5) 

 

Equation (5) is defined for all t such that      . Equation (5) states that under 

longitudinal invariance, given the same values in a latent variable   measured in two or 

more occasions, the probability of getting some particular score in the measured variables 

  should be the same across occasions. In other words, if an instrument that exhibits 

longitudinal measurement invariance is used to measure a person that has the same value 

on a latent variable as another person measured at a subsequent point in time, both 

examinees will have the same probability of getting a particular score in the instrument 

regardless of the measurement occasion.  

One assumption made to simplify the study of longitudinal measurement 

invariance is that once the latent variables at measurement occasion t are taken into 

account, the observed variables     and earlier latent variables are no longer related. In 

other words, the effect of latent variables at previous occasions on the observed variables 
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    is completely mediated through the latent variables at occasion t (Millsap & Cham, 

2012). 

 

1.3 The longitudinal common factor model 

Longitudinal measurement invariance can be studied under the common factor 

model, which is a widely used model to describe the relationship between the latent 

variables and the observed measures. The common factor model assumes that the 

measured variables are a linear combination of the underlying latent variables, or 

common factors, that influence the set of observed variables and the unique factors that 

are specific to each variable (MacCallum, 2009). It is expected that a number of common 

factors smaller than the number of variables will explain the associations between the 

observed variables.  

The common factor model can be defined for occasion t as, 

 

               (6) 

 

where    is a p x 1 vector of latent measurement intercepts at time t,    is a p x r matrix 

of factor loadings at time t,    is a vector of r x 1 common factor scores at time t, and    is 

the p x 1 vector of unique factor scores at time t. The common factors   are the common 

dimensions that explain the correlations among the observed variables. It is important to 

mention that the unique factor scores δ not only represent measurement error, they also 

contain reliable variance that is specific to an observed variable (Meredith & Horn, 2001; 

Meredith & Teresi, 2006; Millsap 2011).  
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In the longitudinal factor model, each of the elements of the common factor 

model expressed in Equation (6) are sub-matrices and sub-vectors contained in the super-

matrices and super-vectors defined in this section (Corballis & Traub, 1970; MacCallum, 

2009; McArdle, 2007; Millsap & Cham, 2012; Tisak & Meredith, 1989).  

The measured variables, the measurement intercepts and the unique factor scores 

can be defined as a q x 1 super-vectors where q=pT, as 

 

 

   

  

  

 
  

     

  

  

 
  

     

  

  

 
  

  (7) 

 

The loadings are defined as a q x s super-matrix, where s=rT. This super loading 

matrix contains the loadings of each variable in each factor at each measurement 

occasion, 

 

 

   

     
     

    
     

 . (8) 

 

The common factors are defined as a s x 1 super-vector,  

 

 

 
   

  

  

 
  

  (9) 
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In Equation (6) it is assumed that the expected values of the common factor scores 

and the unique factor scores are, 

 

                  (10) 

 

where    represent the meansfor the common factors at time t. The factor means are 

expressed in a s x 1 super-vector,  

 

 

   

  

  

 
  

  (11) 

 

 The covariance matrix of the common factors and the unique factor scores are 

assumed to be,  

 

                       (12) 

 

where Θt is a p x p diagonal matrix. It is assumed that the common factor scores and the 

unique factor scores at time t are uncorrelated             . Lagged covariances over 

time between unique factor scores of the same variable are permitted, but not between 

different variables. The lagged covariances of the unique factor scores are expressed in 

Equation (13), where       and         is a diagonal covariance matrix,  
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                     (13) 

 

Each of the covariance matrices        are included as sub-matrices of the q x q 

super matrix  . The super matrix   is defined as a band diagonal matrix, since each sub-

matrix        is a diagonal matrix, 

 

 

   

          

          

    
          

   (14) 

 

Factor scores can freely correlate across time as indicated by Equation (15), 

where        is an r x r covariance matrix. 

 

                     (15) 

 

where each of the lagged covariance matrices        are assembled in a s x s super-matrix 

 , 

 

 

   

          

          

    
          

  (16) 

 

Under the common factor model, the first and second unconditional moments for 

the observed variables   at time tare expressed as: 
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     (17) 

 

where all the elements are defined as before, and the means of the observed variables can 

be expressed in a  q x 1 super-vector,  

 

 

   

  

  

 
  

   (18) 

 

1.3.1 Longitudinal factorial invariance 

Invariance within a factor model is denoted factorial invariance. An instrument 

exhibits longitudinal factorial invariance if the same factor structure relating the observed 

variables and the latent variables holds across measurement occasions. In other words, 

the factor structure expressed in Equation (6) should be invariant across measurement 

occasions for longitudinal factorial invariance to exist. It should be noted that 

longitudinal factorial invariance is concerned with second order measurement invariance 

expressed in Equations (3) and (4).  

Different levels of factorial invariance can be defined by sequentially constraining 

parameters of the common factor model. Jöreskog (1971) initially proposed the 

sequential testing of models considering only the covariance structure. Sörbom (1974) 

extended the method proposed by Jöreskog (1971) to multiple group analysis with mean 

structures. The series of nested models used for testing invariance in multiple groups can 

also be used in the longitudinal case. The levels of factorial invariance are described next.  
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Configural invariance. This is the most basic form of factorial invariance. In the 

multiple group case this model holds when the number of factors and the pattern of zero 

and nonzero loadings is the same across groups (Horn & McArdle, 1992; Thurston, 

1947). In the longitudinal case this baseline model holds when the same number of 

factors and the same pattern of zero and non-zero loadings are established across 

measurement occasions. If configural invariance holds, it can be concluded that each 

group has the same number of factors and that each factor is defined by the same 

variables (Millsap & Olivera-Aguilar, 2012). If the configural model shows a poor fit to 

the data because of a different number of factors across measurement occasions, no 

further invariance constraints should be imposed since the meaning of the target latent 

variables is changing across time. In this case, it would be reasonable to conduct further 

studies to clarify the nature of the target latent variable. In contrast, if the configural 

model does not fit the data because the pattern of loadings is changing for a fixed number 

of factors, further analysis should be undertaken to investigate these changes.  

Metric invariance. Metric invariance (Horn & McArdle, 1992) is also called 

pattern invariance and weak measurement invariance (Widaman & Reise, 1997). If the 

configural model fits the data, the loadings can be evaluated for invariance over time. The 

Λt super-matrix is constrained such that each item has the same loading value in a factor 

across measurement occasions, 

 

            (19) 
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If metric invariance holds in the data, it can be concluded that the differences in 

the covariances between variables are due to the common factors. If metric invariance is 

rejected, one or more items have different loadings in one or more measurement 

occasions. In this case, the meaning of the latent factor may be changing across time. An 

important step if metric invariance is rejected is to find which items are violating 

invariance in the loadings.  

Strong factorial invariance. If the hypothesis of pattern invariance is not rejected, 

invariance constraints in the latent intercepts are tested. Meredith (1993) named this form 

of invariance strong factorial invariance. It is also known as scalar invariance 

(Steenkamp & Baumgartner, 1998) The    super vector is constrained so that the items 

have the same measurement intercepts across time as 

 

            (20) 

 

If strong factorial invariance holds in the data, systematic changes in the observed 

means are due to changes in the latent variables. On the other hand, if the hypothesis of 

strong factorial invariance is rejected, changes in the mean structure of the observed 

measures might just be reflecting differences in the measurement intercepts across time. 

Strong factorial invariance needs to be established in order to make clear interpretations 

of the change scores. Notice that the invariance constraints in the factor loadings and the 

latent intercepts ensure first-order measurement invariance as stated in Equation (3). 

Strict factorial invariance. Strict factorial invariance holds when the unique factor 

variances are invariant across time,  
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                (21) 

 

Under strict factorial invariance changes in the mean and covariance structures of 

the observed variables across time can be interpreted as changes in the latent variables. 

Second-order measurement invariance as defined in Equation (4) is accomplished when 

strong and strict factorial invariance hold. As mentioned previously, lagged covariances 

between unique factor scores of the same variable over time are allowed. Invariance in 

the lagged covariances is not a requirement for strict factorial invariance.  

Strict factorial invariance is rarely studied in practice (Vandenberg & Lance, 

2000; Schmitt & Kuljanin, 2008). However, it has been argued that strict factorial 

invariance is essential for group comparisons and should be investigated (Meredith, 1993; 

Meredith & Teresi, 2006; DeShon, 2004). DeShon (2004) argues that violations of strict 

factorial invariance may be due to unmodeled sources of systematic variances. 

Unmodeled variables affecting only one of the groups assessed might change the 

measurement process in that group, and these changes are only detected when examining 

strict factorial invariance.  

 

1.3.2 Partial measurement invariance 

If invariance cannot be established in the evaluation of metric, strong and strict 

factorial invariance, an alternative is to test a model in which some of the observed 

measures are constrained to invariance while others are allowed to vary between groups. 

Partial invariance is the term used to denote invariance in only a subset of parameters 

(Byrne, Shavelson & Muthén, 1989). Partial invariance can be found at different levels of 
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factorial invariance; partial metric invariance denotes invariance in only some of the 

loadings, partial strong factorial invariance denotes invariance in some of the 

measurement intercepts, and partial strict factorial invariance refers to invariance in some 

of the unique variances. Models with partial invariance are found to fit the data more 

often than invariance in the entire matrices evaluated. However, there are important 

unsolved issues in partial invariance: the specification and the meaningfulness problems 

(Millsap & Meredith, 2007). The specification problem deals with modifying an initial 

model with lack of fit to the data, until a good fitting model is found. The problem is that 

model re-specifications frequently do not lead to the true model, are data driven and often 

do not generalize to other samples (MacCallum, 1986; MacCallum, Roznowski & 

Necowitz, 1992). In the context of measurement invariance model modifications involve 

allowing the non-invariant observed measures to have different loadings, intercepts or 

unique variances across groups until a partial invariant model provides a good fit to the 

data. The issue to solve is how to locate the items that should have different parameters 

across time. Several methods have been proposed to locate the items that violate 

invariance (Byrne et al., 1989; Cheung & Rensvold, 1999, Yoon & Millsap, 2007; 

Woods, 2009). 

Once non-invariant items are detected, a second issue to consider is the 

meaningfulness problem or the impact that partial invariance has on the practical 

conclusions made from the instrument. Unfortunately, there are no clear guidelines that 

indicate how large the violation of invariance must be to be meaningful for practical 

decisions. Further, non-invariance at the item level does not necessarily mean violations 

of invariance at the scale level (Stark, Chernyshenko & Drasgow, 2004) which makes it 
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difficult to judge the impact of partial invariance. In the context of selecting individuals 

from their results in an instrument, Millsap and Kwok (2004) proposed a method to 

evaluate the consequences of partial invariance by looking at the decisions made about 

the examinees in the minority or low scoring group (focal group) in comparison to the 

majority or high scoring group (reference group). Measures such as sensitivity and 

specificity for the focal and reference groups are evaluated to determine the impact of 

partial invariance in selecting individuals from both groups.  

The consequences of partial invariance in longitudinal studies have also been 

studied. For example, a study conducted by Ferrer, Balluerka and Widaman (2008) and 

the study by Wirth (2008) show that the conclusions about the growth trajectory in LGM 

change when longitudinal measurement invariance fails to hold. However, the question 

about how large the violation of invariance must be to change the conclusions of 

longitudinal studies has not been answered. 

 

1.3.3 The common factor model and factorial invariance using composites 

Frequently, composites of items or indicators are formed and analyzed instead of 

the individual items or indicators. For example, it is a common practice to fit latent 

growth models and autoregressive models to composites of items formed at each 

measurement occasion. The characteristics of the items will be reflected in the 

composites, such that if the items can be modeled by a common factor model, the 

composite can also be expressed as following a common factor model. The relationship 

between the common factor model at the item level and at the composite level is relevant 

for the purposes of the present document in which the consequences of violations of 
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longitudinal invariance at the item level are examined on longitudinal models fitted to 

item composites.  In this section, the common factor model and factorial invariance at the 

item level are explained in relation to the composites.   

For a longitudinal common factor model with one factor per measurement 

occasion, composites of the sums of the items at time t can be formed for each individual 

as,  

 

         (22) 

 

where 1 is a p x 1 unit vector. If a single factor model fits the items, there is a relationship 

between the common factor model at the item level and at the composite level as can be 

observed in, 

 

  
  

   
    

 
      

    
  
 

 
   

 
 (23) 

 

where  
  

 is the mean over individuals of the composite Y at time t,    

  is the variance of 

composite Y at time t,   
  is the sum of the measurement intercepts of all the observed 

items at time point t,   
 
 is the sum of the factor loadings of all the items at time point t,   

 
 

is the sum of the unique variances of all the items at time point t;    and  
 
 correspond to 

the factor mean and variance respectively, at time point t. In other words, the mean of the 

composite at time t is a function of the sum of the item intercepts, the sum of the item 
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loadings and the latent mean, while its variance is a function of the sum of the item 

loadings, the sum of the item unique variances and the factor variance.  

 Strong factorial invariance at the item level   , implies strong invariance in the 

composite   . However, it should be noted that strong invariance in    does not imply 

strong invariance in   . It could be the case that differences in    and    across items 

cancel out when forming the sums of the loadings   
 
 and the sums of the intercepts   

 . In 

other words, if strong factorial invariance holds at the item level, strong factorial 

invariance will hold in the composites formed with those items, but the reverse need not 

be true. This relationship between invariance at the item and at the composite level exists 

for metric, strong and strict factorial invariance.  

 

1.3.4 Identification 

 There are an infinite number of values that the   ,    and    matrices, and the    

and    vectors can adopt that will reproduce the same mean and covariance structures of 

the measured variables at each time point. In order to obtain a unique solution for the 

factor model described in Equation (6) identification constraints are required.  

Two requisites that will be assumed and that greatly simplify the identification of 

the longitudinal common factor model is to have each factor defined by at least three 

measured variables and that each measured variable loads on only one factor. Other 

models are possible but a set of identification constraints different from the ones to be 

presented are needed.   

In order to identify the covariance structure it is necessary to constrain some 

factor loadings and/or the factor variances to nonzero values. One option is to fix the 
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loading of one chosen measured variable per factor to one at each measurement occasion. 

The chosen variables are known as referent indicators.  Another option to identify the 

covariance structure relies on loadings that are invariant across time. If the loadings are 

invariant, the variances of all factors at one measurement occasion can be fixed to one. 

That is, if metric invariance holds the loadings and the covariance structure can be 

identified by fixing the factors variances to one in a single measurement occasion and 

freely estimating the factor variances at other measurement occasions. These 

identification constraints are useful since it is not necessary to select an item as a referent 

indicator.  

To identify the mean structure, the measurement intercepts and/or the factor 

means must be constrained. One option is to constrain the measurement intercepts of one 

measured variable per factor to zero in each measurement occasion. Usually, this 

constraint is imposed in the referent indicator. If the intercepts are found to be invariant 

across time another option for identifying the mean structure is to fix the factor means to 

zero at one measurement occasion. 

Special attention is needed when choosing the referent indicator. There is 

evidence that choosing a non-invariant item as a referent item leads to a distorted factor 

solution (Johnson, Meade & DuVernet, 2009; Yoon & Millsap, 2007).  

 

1.3.5 Estimation 

 The most common estimation technique used for continuous observed measures is 

maximum likelihood. Maximum likelihood estimates have characteristics that make them 

desirable. At large sample sizes the estimates are consistent, normally distributed, and 
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efficient. Maximum likelihood estimation across measurement occasions typically makes 

the assumption that the measured variables X at each time point have a multivariate 

normal distribution. Under MVN the discrepancy function to be minimized that includes 

the mean and the covariance structure is: 

 

 
                

              
   

  
        

        (24) 

 

where     and     are the population values for the means and the covariance matrix, 

while     and    are the sample estimators of    and    calculated as, 

 

 

         

 

   

          

 

   

             (25) 

  

 The fitted mean and covariance structures are expressed as    and    and are 

defined as a function of the parameters             as shown in Equation (17). 

Maximum likelihood estimation looks for the set of parameters that will minimize the 

discrepancy function in Equation (24) after the proper constraints for identification and 

for invariance are imposed.  

It is important to mention that the discrepancy function expressed in Equation 

(24) assumes complete data. Although missing data and attrition are common problems in 

longitudinal studies, complete data is assumed in the study proposed in the present 

document.  
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1.3.5 Model fit 

 In order to test the fit of invariance constraints, global fit indices such as the chi-

square fit statistic, the root mean square error of approximation (RMSEA) and the 

standardized root mean square residual (SRMR) are used (Bollen, 1989). A brief 

description of the three global fit indices considered is provided next.  

Chi-square fit statistic. The chi-square goodness-of-fit statistic is used as a global 

measure of exact fit. The null hypothesis that is tested is, 

 

                   (26) 

 

The chi-square goodness-of-fit statistic is defined as, 

 

 χ            (27) 

 

where      is the sample discrepancy function value, with    
      

 
   where p is the 

number of measured variables and   is the number of independent parameters to be 

estimated. 

The difference-in-chi-square test can be used to compare nested models, such as 

the models for the different levels of factorial invariance. This test is used to determine 

the fit of the more constrained model in comparison with the less restricted one, assuming 

the latter fits well. Suppose that model B is nested in model A. The difference in chi-

square can be calculated as: 
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  with             (28) 

 

where χ
 
       and χ

B
       are the chi-square values and the degrees of freedom for 

models A and B respectively. The difference in the chi-square values is compared to the 

chi-square distribution with degrees of freedom equal to the difference in degrees of 

freedom in the two models. In order to conduct this difference-in-chi-square test model A 

must fit the data as indicated by the chi-square goodness-of-fit statistic in Equation (26). 

When testing the levels of factorial invariance this means that the configural invariance, 

model which is the less restrictive model, must hold in order to test for metric factorial 

invariance. Another assumption made is that the data are normally distributed.  

Root mean square error of approximation (RMSEA). The root mean square error 

of approximation is a summary index indicates the model lack of fit per degree of 

freedom (Browne & Cudeck, 1993; Steiger, 1990). The RMSEA can be expressed in 

terms of the discrepancy function as,  

 

 
           

    

  
 

 

   
    

   

 (29) 

 

where df is the degrees of freedom in the specified model and      is the discrepancy 

function in the sample. As long as the discrepancy function incorporates the mean and the 

covariance structure as specified in Equation (24), RMSEA will evaluate the error in 

using           as an approximation of       .  RMSEA introduces a penalty for 

model complexity by dividing the discrepancy function by the degrees of freedom.  
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 RMSEA indicates how bad the fit of the model is; smaller values are better. The 

minimum value is bounded at zero and there is no theoretical maximum. Values below 

.05 are considered to indicate “good fit” while values between .05 and .08 indicate “fair 

fit” (Browne & Cudeck, 1993).  

 RMSEA makes the assumption that the discrepancy function is adequate for the 

data, and that the error of approximation is not too large. It should also be considered that 

RMSEA is a large sample index in the sense that it has large standard errors at small 

sample sizes.   

Standardized root mean square residual (SRMR). Another fit index frequently 

used is the SRMR that is calculated as the square root of the average squared 

standardized residual. The values of SRMR are non-negative, and lower values indicate 

better fit. Values below .05 are considered good fit. One problem with the SRMR is that 

it only considers the covariance structure, so it does not provide any direct information 

regarding the misfit of the means. The SMSR is calculated as, 

 

 
      

     

        
 
   

 (30) 

 

where    is a vector of  standardized residuals of the covariance matrix computed as the 

difference between the sample covariance matrix and the model implied covariance 

matrix (Hu & Bentler, 1999; West, Taylor & Wu, 2012).  
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1.4 Longitudinal models 

 Two of the most common statistical approaches for studying longitudinal data are 

the univariate AR simplex models and univariate LGM (Khoo, et al. 2006). In these 

models, the analyzed variables are observed measured variables and frequently 

correspond to composites of items. The use of composites of items assumes that 

longitudinal measurement invariance holds. However, this assumption cannot be tested at 

the composite level.  

In the present section a description of the univariate AR simplex model and 

univariate LGM used to analyze composites is provided. Extensions of the univariate AR 

simplex models and univariate LGM that include multiple indicators per measurement 

occasion are also described, such as the AR quasi-simplex model and the curve of factors 

model (COFM). The advantage of these models is that longitudinal measurement 

invariance can be tested and not only assumed.  In a subsequent section, studies 

conducted to assess the impact of violations of longitudinal measurement invariance are 

described in detail. 

 The standard notation of these models is slightly modified for ease of presentation 

and to avoid defining matrices with changing meaning across models. Although the AR 

model and LGM are described as different methods, it should be noted that recent 

research has shown that they can be considered special cases of a more general model, 

the AR latent trajectory (ALT) model (Bollen & Curran, 2004).  
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1.4.1 Autoregressive simplex model (AR) 

 In AR models, variables measured across time are modeled as a direct function of 

the same variable observed at an earlier measurement occasion (Heise, 1969; Jöreskog, 

1970a, 1979a; Werts, Jöreskog & Linn, 1971; Wiley & Wiley, 1970). 

 Jöreskog (1970b) distinguished the simplex and the quasi-simplex models. While 

a perfect simplex assumes that measurement errors are negligible, quasi-simplex models 

allow for measurement error. The univariate AR simplex model is shown in Figure 1.1 

and is formally expressed as,  

 

                     (31) 

 

where Y are observed measures here defined as composites of items,    is a fixed 

intercept for time t;        represents the autoregressive parameter and indicates the 

impact of Y in the time point t-1 on the value of Y at the current measurement occasion t. 

The value of        is frequently constrained to be the same from one measurement 

occasion to the next for ease of interpretation (Biesanz, 2012). It is important to note that 

AR models assume that all individuals can be represented by the autoregressive 

parameter       . In other words, individual differences in trajectories across time are not 

modeled. The variable    is the time specific error. It is assumed that the time specific 

errors are distributed as      0   
  . Further assumptions made in this model are that the 

residuals    are uncorrelated with  t 1, and that the residuals are uncorrelated across 

individuals and across measurement occasions. The first measurement of Y is treated as 

predetermined such that, 
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          (32) 

 

 In the basic AR model it is also assumed that the observed measure Y at time 

point t is only affected by Y at a previous time point; this model is denoted as AR(1). 

This assumption is relaxed in other auto-regressive models it which earlier lagged values 

of Y affect its current value. 

 

Figure 1.1 Path diagram of an autoregressive simplex model with mean structure for 

composites Y measured at four time points. 

  

 The main focus of AR models is to determine the stability of the relative standing 

of individuals over measurement occasions (Khoo, et al. 2006). Perfect stability is 

expressed by a correlation of 1.0 in the Y measures across time points, and it indicates 

stability in the rank order of individuals from one time period to the next.  

  The AR simplex model stated in Equation (31) can be modified so that latent 

variables are the focus of analysis. The AR model with latent variables is called 

autoregressive quasi-simplex model. The advantage of the AR quasi-simplex model is 

that the observed variance can be partitioned into variance due to the latent variable of 

interest and residual variance. By removing the influence of measurement error it is 
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possible to obtain stability coefficients that are not attenuated (Khoo, et al. 2006; 

Jöreskog, 1979b). 

 The AR quasi-simplex model is expressed as, 

  

                   ξ  (33) 

 

where    are the latent variables formed by multiple indicators X at time t, and  ξ  is the 

time specific error for the latent variables   at time point t. The parameters    and        

are defined in the same way as in Equation (31). The measurement part of the model is 

defined as in Equation (6). The AR model with latent variables is shown in Figure 1.2.  

 

 

Figure 1.2 Path diagram of an autoregressive quasi-simplex model with mean structure 

for latent variables ξ defined by multiple indicators X measured at four time points 
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The autoregressive quasi-simplex model can also be expressed for the case in 

which composites are formed from the multiple indicators X, as shown in Figure 1.3. The 

equations that define the model are,  

 

       ε               for t=1, 2, ..., T (34) 

                   ξ                  for t=2, ..., T (35) 

 

The model in Figure 1.3 is not identified and the source of the indeterminacy is in 

the outer variables, that is, in Y1 and Y4. Therefore, in order to identify the model  
1
,  11 

or ρ
2 1

 must be specified, and  
 
 or     must also be specified (Jöreskog, 1979b).  

 

 

Figure 1.3 Path diagram of an autoregressive quasi-simplex model with mean structure 

for composites Y measured at four time points. 
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1.4.2 Latent growth models  

 A second common set of models used for analyzing repeated measures with three 

or more measurement waves are latent growth models (LGM), often also called latent 

curve analysis (Meredith & Tisak, 1990) or growth curve models. In contrast to AR 

models, in LGM it is stated that latent trajectories that are directly unobservable and that 

underlie the repeated measures govern the observed changes across time (Bollen & 

Curran, 2006; Muthén & Curran, 1997). The focus of analysis in LGM is the implications 

of the latent trajectories for the measured variables.  

 Univariate LGMs are appropriate models to study repeated measures of one target 

latent variable when it is believed that change is related to the passage of time (Duncan, 

Duncan, Strycker, Li & Alpert, 1999). One of the advantages of LGM is that it models 

group trajectories over time but also models individual differences in growth trajectories. 

In other words, LGMs incorporate information of the groups but also model individual 

differences. Other advantages of LGM are that it is possible to test for linear and 

quadratic growth curve trajectories, and that predictors of growth could be included in the 

model (Duncan, et al. 1999; Bollen & Curran, 2006). For the purposes of the present 

study the description of LGM will be restricted to the basic model without predictors. 

 LGM can be viewed as a common factor model defined as (Meredith & Tisak, 

1990; Bollen & Curran, 2006),  

 

        (36) 

 



31 

where   is the t x 1 vector of observed variables here defined as composites of items;   is 

a t x m matrix of factor loadings;   is an m x 1 vector of m latent factors; and   is t x 1 

vector of individual time specific residuals distributed as     0  t
2  in which the 

variance of the residuals may vary over t. It is also assumed that the covariance between 

the individual time specific residuals across individuals is zero.  

 In a linear LGM there are two latent factors which correspond to an intercept 

factor η
1
 and a slope factorη

2
 as shown in Figure 1.4. The intercept factor η

1
 refers the 

level of the composite at the measurement occasion defined as 0, and the slope factor η
2
 

represents the linear rate at which the Y measures change (Muthén & Khoo, 1998; 

Preacher, Wichman, MacCallum, Briggs, 2008). In quadratic models an additional latent 

variable η
 
 representing a quadratic slope trajectory is included.  

The η
1
 and η

2
 variables are random coefficients in the sense that they can be 

modeled as deviations from the population model as shown in, 

 

 
 
  

  
   

   

   
   

   

   

  (37) 

 

where  
η1

 represent the population mean for the intercept and  
η2

 the population mean for 

the slope factor, and the   residuals represent individual's deviations from the population 

means. It is assumed that the residual terms   have zero means,          and that 

              . 
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 The residual terms   in Equation (37) are called random effects, and are assumed 

to have mean 0 and a covariance matrix among the latent intercept and slope factors 

expressed as,  

 

 
   

      

      
  (38) 

 

 The elements of the   matrix in Equation (36) are called basis functions (Meredith 

& Tisak, 1990), basic curves or latent growth vectors (Singer & Willet, 2003). In contrast 

to the traditional CFA, the loadings in the   matrix are not estimated but instead are fixed 

values. Loadings relating the intercept factor to the Y repeated measures are fixed to 1.0 

indicating that the intercept factor equally influences all the Y repeated measures. The 

slope loadings are chosen as fixed values that adequately represent the scaling of time. 

Depending on the research question of interest the origin of the time scale can be defined 

at different measurement occasions, usually at the first time point, in which the intercept 

is interpreted as the initial status, or at the last time point in which the intercept is then 

interpreted as the final status. The origin of the scale is defined by setting the loading of 

the slope factor of a specific measurement occasion at 0.   
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Figure 1.4 Latent growth model with a linear trajectory over four waves measured with 

composites Y. 

 

 It should be noted that models in which loadings are freely estimated have been 

proposed (Meredith & Tisak, 1990; McArdle, 1988; Preacher et al. 2008). In these 

models, the shape of the growth function is unknown and must be estimated from the 

data. The specific form of growth is not tested. These models are exploratory in the sense 

that their purpose is to gain insight about the appropriate form of the growth trajectory.  

These models are not further described since they are not the main focus of the present 

research.   

 Latent variables measured by multiple indicators can also be modeled across time 

with latent variables as in the univariate LGM. Curve of factors model consist of second-

order latent growth model that includes the measurement model relating the individual 

items with the underlying latent construct (first-order factors) and the growth model in 
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which the intercept and slope latent variables correspond to the second-order factors 

(McArdle, 1988). The curve of factors model is shown in Figure 1.5 

 

 

Figure 1.5 Curve of factors model with a linear trajectory over four waves measured with 

latent variables ξ defined by multiple indicators. 

 

 The curve of factors model is expressed as 

 

         (39) 

 

where is the first order latent variable formed by multiple indicators X,    is the time 

specific error for the latent variable  , and   and   are defined as in Equation (36). The 
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relationship between the items and the first order latent variables is defined as in 

Equation (6).  

 

1.5 Impact of violations of factorial invariance in longitudinal methods 

 Most research done regarding measurement invariance has been developed in the 

multiple group case. Although studies about the impact of violations of factorial 

invariance in the longitudinal case have received less attention, some research has been 

conducted (Ferrer, Balluerka & Widaman, 2008; Leite, 2007; Wirth, 2008).  

Ferrer, Balluerka, and Widaman (2008) studied the impact of measurement 

noninvariance in a second-order latent growth model using real data from an alcohol 

prevention program. An instrument assessing alcohol expectancy using 3 items was 

administered to 610 children measured for the first time in Grade 5, and followed through 

Grades 6, 7, 9 and 10. A confirmatory factor analysis showed that the model of metric 

invariance did not fit the data, indicating the possibility of partial invariance, but this 

hypothesis was not further explored. The authors fitted two curve of factors model that 

only differed in the item chosen to have a loading fixed to one; i. e. the models compared 

were the same except for the item used as the reference indicator. The results showed 

completely different growth trajectories obtained from the two models; using one item as 

a referent indicator a significant linear growth trajectory was found, while no significant 

growth was detected when using a different item as the reference indicator.  Although 

this study exemplifies how the results of a longitudinal study can change when partial 

invariance is present, no general conclusions can be made since the study was conducted 

with real data and no simulation study was performed.    



36 

 Leite (2005) demonstrated why fitting a latent growth model to composites 

formed by items with violations of metric longitudinal measurement invariance can yield 

to biased parameter estimates and a poor fitting model. Wirth (2008) included violations 

of strong factorial invariance over time in the demonstration provided by Leite (2005).  

Consider the composites Y at four measurement occasions with a linear growth 

trajectory,  

 

 

 

  

  

  

  

   

  
  
  
  

  
  

  
   

  

  

  
  

  (40) 

 

where all the elements are defined as in Equation (34), and the composites    are 

formedas sums of four items X. If a single factor model fits the items X, the composites 

   can also be expressed in terms of the common factor model as      
    

      
 . 

Rewriting the LGM model shown in Equation (40), 
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For the following explanation, it will be assumed that all the items have the same 

intercept and loading values. This is a restrictive assumption and in practice it is more 

common to find items that measure one latent factor but that have different loadings, 

intercepts and unique variances. However, for ease of presentation for the next 
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explanation it will be assumed that all the items share the same parameters at each time 

point. In addition, strict factorial invariance over time will be assumed.  

Setting all intercept values equal to 0, and all loadings equal to 1,  Equation (41) 

can be written as, 
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and thus,  

 

 

   
    
   
   

 

            
  

               
  

                
  

                
  

 (43) 

 

It can be seen in Equation (43) that since there is strict factorial invariance, the 

measurement loadings are multiplicative constants that do not affect the estimation of 

growth parameters. Now suppose that while the unique variances are still invariant over 

time, there are violations of strong factorial invariance such that,  
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 Using the values of the intercepts and loadings in (44), Equation (40) can be 

written as,  
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 Equation (45) can be solved for the latent factors    as,  
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Equation (46) shows that in the presence of violations of metric and strong 

factorial invariance over time, the measurement loadings and intercepts have different 

effects at each measurement occasion, altering the linear trajectory. Although there is a 

linear growth trajectory in the latent factors over time, ξ
1
...ξ

 
, the model would show a 

poor fit to the data and bias in the parameter estimates.  

 Wirth (2008) conducted a simulation study with the purpose of examining the 

impact of violations of factorial invariance in the growth parameter estimates of a 

univariate LGM and in its fit to the data using different ways of compositing items. 

Composites were defined as item means or as factor scores. Violations of factorial 

invariance were simulated in the intercepts only, or in the intercepts and loadings. The 

results indicated that mean and factor scores in the presence of violations of invariance 
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resulted in biased growth estimates, and biased χ statistics. Further, when examining a 

free loading LGM, nonlinear trend estimates over time were found even though the data 

were simulated to follow a linear growth trajectory. As expected, the results showed that 

violations of measurement invariance over time can alter the conclusions about growth 

trajectories. However, two important variables that might affect the results of the 

simulation study by Wirth (2008) and that were not systematically examined were the 

size of the violations of invariance and the number of non-invariant items.  

 Leite (2007) conducted a simulation study to examine the lack of invariance under 

different methods for fitting latent growth models. The two methods compared were the 

univariate latent growth model (LGM) of composites of multiple items and the curve of 

factors model (McArdle, 1988). Although the author generated the data with different 

levels of invariance (configural, metric or strict factorial invariance), the actual values of 

the loadings and intercepts were randomly selected without a manipulation of the size of 

the parameter difference across measurement occasions. No partial invariance conditions 

were included; either all the parameters were invariant or all items reflected violations of 

invariance.  One more difficulty with the study of Leite is that when analyzing the data 

using the curve of factor models all of the parameters were allowed to be freely estimated 

across measurement occasions. A more appropriate way to conduct the curve of factors 

model is to constrain the parameters to invariance across measurement occasions to 

ensure that the same construct is being measured across time.  

 The results indicated that the curve of factors model fitted the data better than the 

univariate LGM and that the growth estimates were less biased. However, these findings 

are due to the fact that no invariance constraints were imposed in the curve of factors 
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model while using composites in the univariate LGM assumes that the items are 

invariant. In other words, it was expected that the curve of factors model would fit better 

since it imposes less restrictions that the univariate LGM.  

Studies in which violations of measurement invariance over time are examined in 

models other than LGM have not been reported. However, it can be shown that the 

results of an autoregressive quasi-simplex model when fitting composites will be affected 

by lack of invariance of the items forming the composites.  

To demonstrate how the results of an autoregressive quasi-simplex model can be 

altered when there are violations of measurement invariance, consider composites of 

items measured in 4 measurement occasions. Consider the AR quasi-simplex model using 

composites shown in Figure 1.3, where composites Yt are formed as the sum of 4 items at 

each time point.  

Following Equations (34) and (35), the composites for the second, third and 

fourth measurement occasions can be expressed as, 
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 Specifically, the composite at the second, third and fourth measurement occasion 

are expressed as,  

                 
    

                
    

                
    

(48) 
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Composites Y2, Y3, and Y4, can be expressed in terms of the common factor 

model as      
    

      
  such that,  

 

   
    

      
               

    

  
    

      
               

    

  
    

      
               

    

(49) 

 

Solving for   , 

 

 
   

 

  
       

            
      

   

   
 

  
       

            
      

   

   
 

  
       

            
      

   

(50) 

  

Composite Y1 can also be expressed in terms of the factor model, such that 

     
    

      
 . Solving for ξ

1
, 

 

 
   

 

  
       

    
      (51) 

  

Substituting     in the right hand side of the equations in (50), 
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(52) 

 

If strict factorial invariance over time holds, and all intercepts equal 0 and all 

loadings equal 1,  then  t
    and  t

   ,  
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(53) 

 

If there are violations of invariance such that the values of the loadings and the 

intercepts change over time as shown in (44), Equations in (53) can be written as, 
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(54) 

 

Equations in (54) show that in the presence of violations of metric and strong  

invariance the measurement loadings and intercepts have different effects at each 

measurement occasion, which will bias the parameter estimates in the AR quasi-simplex 

model.  
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1.6 Purpose of the study 

 The studies of Ferrer et al. (2008) and Wirth (2008) showed some of the 

consequences of partial invariance in conclusions of growth estimates. However, the 

former was not a simulation study and no generalizations can be made, while the latter 

did not include variables that have been shown to be important in invariance studies. 

Simulation studies regarding the methods to identify non-invariant items (French & 

Finch, 2008; Johnson, Meade & DuVernet, 2009; Woods, 2009; Yoon & Millsap, 2007), 

and studies about the power to identify violations of invariance (Meade & Bauer, 2007; 

Meade & Lautenschlager, 2004) have consistently found that relevant variables in the 

study of invariance are the total number of items, the proportion of items violating 

invariance, and the size of the parameter difference across groups.  

 The study of Leite (2007) compared the violations of invariance in two different 

methods for studying growth: univariate LGM and curve of factors model. However, 

while in LGM using composites of items it was assumed that the items were invariant 

across time, in the curve of factors model no invariance constrains were imposed in the 

items across time. The better fit of the curve of factors model and the less biased growth 

estimates can be explained as a consequence of the lack of invariance constraints across 

measurement occasions. Further, there was no systematic manipulation of the differences 

in parameter estimates across time and no partial invariance conditions were examined.  

 Some questions that remain unanswered regarding the impact of partial invariance 

in longitudinal methods are: How many items should be invariant so that the conclusions 

about growth would not change? How different the measurement parameters across time 
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need to be to distort the growth estimates? Is the latent growth model affected in the same 

way by violations of invariance as other models to study longitudinal data?  

 The purpose of the present study was to examine the impact of partial invariance 

in a univariate LGM and in an AR quasi-simplex model. The manipulated variables were 

sample size, total number of items, proportion of items with violations of invariance in 

the loadings or in the intercepts, and size difference across time in the loadings or in the 

intercepts. The impact of partial invariance was examined by looking at the bias in the 

parameter estimates, the stability of the parameter estimates over replications, RMSE, 

and by the rejection rates as indicated by the χ
2
. 

The following hypotheses were tested: 

1. Larger changes over time in the item loadings will increase the bias in the growth 

parameter estimates and in the autoregressive parameters.  

2. Larger changes over time in item intercepts will increase bias in the growth parameter 

estimates and in the autoregressive parameters. 

3. Larger proportions of items with violations of invariance will increase bias in the 

parameter estimates in LGM and in AR quasi-simplex model.  

4. Larger changes over time in the size of the loadings will lead to higher rates of 

rejection of the LGM and AR quasi-simplex models by the χ
2
 test. 

5. Larger changes over time in the size of the intercepts will lead to higher rates of 

rejection of the LGM and AR quasi-simplex models by the χ
2
 test. 

6. Larger proportions of items that violate invariance will lead to higher rates of 

rejection of the LGM and AR quasi-simplex models by the χ
2
 test. 
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Chapter 2 

METHOD 

 A Monte Carlo simulation study was conducted to examine the impact of 

violations of longitudinal measurement invariance in LGM and in AR quasi-simplex 

models. In general, the method consisted of generating data for five measurement 

occasions under the COFM (see Figure 1.5) and under the AR quasi-simplex model (see 

Figure 1.2) in which there are multiple indicators defining the latent variable at each 

measurement occasion.  The multiple indicators were generated with different levels of 

violations of longitudinal measurement invariance. After generating the data, composites 

of the items at each measurement occasion were formed. The univariate LGM shown in 

Figure 1.4 was fit to the composites of the items that were generated from a COFM, and 

the AR quasi-simplex model depicted in Figure 1.3 was fit to composites of items 

generated under the AR quasi-simplex model with multiple indicators.  The results were 

evaluated by examining the extent to which the parameter estimates recover the 

generating parameter values, as indicated by measures of bias and variability of the 

parameter estimates, and by examining the fit of the models.  

The data were generated in Mplus version 6.1 (Muthén & Muthén, 2010) under 

multivariate normality via Monte Carlo simulations. Composites of item sums at each 

measurement occasion were computed in SAS version 9.2 and the composites were 

analyzed under a LGM or AR quasi-simplex using Mplus version 6.1. The different 

evaluation criteria measures, such as bias and relative bias of the estimated parameter 

values, the standard errors of the parameter estimates, and the root mean square error 
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were computed in SAS. The graphs shown in the results section were obtained using the 

free software R (R Core Team, 2013).  

In this section, the independent variables, the generating models and parameters, 

and the dependent variables are described.  

 

2.1 Independent variables 

 The manipulated variables were sample size, total number of items per 

measurement occasion, proportion of non-invariant items, size of the difference in the 

loadings across time, and size of the difference in intercepts across time. In order to 

decide the conditions to be studied for each independent variable, previous studies with 

similar manipulations were considered. 

 

2.1.1 Sample size  

 Hamilton, Gagne and Hancock (2003) showed in a simulation study that as 

sample size increased the percentage of replications that converged to a solution 

improved as well as the model fit, and suggested a minimum sample size of 100. Fan and 

Fan (2005) studied the power of LGM in detecting linear growth in a single group and 

found that for a small effect a sample size of 200 is needed, while for a medium effect 

size a sample size of 100 is enough.  

 Previous studies about the impact of partial invariance in LGM were also used as 

a reference to decide the sample size conditions. Leite (2007) included sample sizes of 

100, 200, 500 and 1000, while Wirth (2008) studied sample sizes of 250 and 750. 
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 In the present simulation study, sample sizes of 100, 200, 500 and 1,000 were 

examined.  

 

2.1.2 Total number of items and proportion of non-invariant items 

 Wirth (2008) simulated eight items per measurement occasion but did not include 

conditions in which the number of items was manipulated. Leite (2007) included 

conditions for 5, 10 and 15 items per measurement occasion and the results indicated that 

the bias in the slope mean in LGM decreased as the number of items increased.  

 Studies that examine measurement invariance in the multiple group case have 

included conditions with 6 and 12 items (Yoon & Millsap, 2007; Meade & 

Lautenschlager, 2004). Yoon and Millsap (2007) proposed a method for identifying non-

invariant items using modification indices and conducted a simulation study in which the 

total number of items was 6 or 12. The results showed that the 6 item condition yielded a 

higher percentage of samples that recovered the generating model and that had no false 

detections in contrast with the 12 item condition. However, when 2/3 of the items were 

non-invariant, the number of total items no longer influenced the number of samples 

recovering the generating model and the number of false detections. These results 

indicate that the decision about the number of total items per measurement occasion 

should consider the number of items that will be generated with violations of invariance.  

 For the present study conditions with 6, 9 and 15 items per measurement occasion 

were examined. These numbers were chosen to be comparable to the conditions in the 

studies by Wirth (2008) and by Leite (2007), and also to be able to manipulate the 

number of items violating invariance as 1/3 or 2/3 as the simulation study conducted by 
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Yoon and Millsap (2007). Another reason to select these quantities is to target social 

psychological scales often used in longitudinal tests in which the number of items tend to 

be relatively short.  

The total item pool consisted of nine items such that for the 6-item condition, six 

items were selected from the item pool, in the 9-item condition all the items in pool will 

be used, and in the 15-item condition all the items were used and additionally six items 

were selected twice. Table 2.1 shows the items that were included in the 6, 9 and 15-item 

condition.  

 

Table 2.1  

Items included in each condition 

 

6-item condition 9-item condition 15-items condition 

Item 1* Item 1* Item 1* Item 5*** 

Item 2* Item 2* Item 2* Item 6*** 

Item 3** Item 3* Item 3* Item 7*** 

Item 4** Item 4** Item 4* Item 8*** 

Item 7*** Item 5** Item 5* Item 9*** 

Item 8*** Item 6** Item 6**  

 Item 7*** Item 1**  

 Item 8*** Item 2**  

 Item 9*** Item 3**  

  Item 4**  

* Non-invariant items in the 1/3 and 2/3 conditions, ** non-invariant items in the 

2/3 conditions,  

*** invariant items across all conditions.  

 

2.1.3 Size of loading difference across measurement occasions 

The item loadings were generated to be either invariant across time or to have 

small, medium or large violations of metric longitudinal invariance. In these conditions, 

the intercepts and unique variances were invariant over time.  
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Under violations of measurement invariance item loadings in a test can decrease, 

or increase over time, or there could be a mixed pattern in which some items increase 

while others decrease. For example, Obradovic, Pardini, Long and Loeber (2007) 

analyzed responses of parents and teachers to an instrument that assessed interpersonal 

callousness of children initially interviewed at 8 years old and measured annually until 

they were 16 years old. The authors examined the items for longitudinal invariance and 

found that, some item loadings decreased over time and others increased. In general, the 

item loadings decreased in the first three measurement occasions and then remained 

invariant from the fourth to the ninth wave when the teachers answered the items. When 

the answers from the parents were analyzed it was found that 3 item loadings increased 

over time while 3 item loadings decreased over time. It was concluded that the items 

were not equally representative of interpersonal callousness over time.  

In another study Willoughby, Wirth and Blair (2012) examined the longitudinal 

invariance of a battery of six tests that were administered repeatedly over time to assess 

executive function (defined as cognitive abilities in the control and coordination of 

information in the service of goal directed actions). The authors found that two tests were 

invariant over time, while the other four tests were non-invariant, with loadings that 

increased at some measurement occasions and decreased at others.  

While the studies described indicate that it is plausible to find item loadings that 

increase or decrease over time, in the present study all the item loadings in the non-

invariant conditions decreased over time. No manipulations in which the loadings 

increase or have a mixed pattern of increasing and decreasing values over time were 

included to keep the total number of conditions within manageable limits.  
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To create the values of the loadings over time, a three step procedure similar to 

the one used by Yoon and Millsap (2007) was followed. The item loadings in the first 

measurement occasion were the same in all conditions and the loadings in the fifth 

measurement occasion were selected to represent small, medium and large violations of 

metric longitudinal invariance. As indicated by Yoon and Millsap (2007) imposing a 

fixed change in all item loadings might have a different meaning across items depending 

on the magnitude of the initial item loading; for example, the impact of a 0.1 change 

might be different in an item changing from a loadings of 0.9 to a loading of 0.8 than in 

an item changing from a loading of 0.3 to a loading of 0.2. For this reason, the first step 

to create the item loadings for the fifth measurement occasion was to define effect sizes 

for violations of metric invariance over time with respect to one specific item. The effect 

size was defined as the change in the loading of item 1 from the first measurement 

occasion, with a loading value of 0.7, to the fifth measurement occasion. A small 

violation to longitudinal metric invariance was defined as a change of .1 from the first to 

the fifth measurement occasion (a change from a loading of 0.7 to a loading of 0.6), a 

medium violation corresponded to a change of 0.2 (from 0.7 to 0.5), and a change of 0.3 

defined a large violation of longitudinal metric invariance (from 0.7 to 0.4).  

The second step was to define the loading values at the fifth measurement 

occasion for the rest of the non-invariant items by subtracting a proportional amount to 

the change in the loadings of item 1. For example, when there are small violations to 

measurement invariance, item 1 changes from a loading value of 0.7 in the first 

measurement occasion to 0.6 in the fifth measurement occasion, which corresponds to a 

proportional drop of 0.1/0.7 = 1/7. In order to determine the loadings of the items at the 
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fifth measurement occasion, the loadings of the non-invariant items were multiplied by 

6/7=0.857. In the same way, to create medium and large violations of invariance the 

loadings were multiplied by 0.714 (5/7) and 0.571 (4/7), respectively.  

Once the value of the loadings at the fifth measurement occasion is defined the 

loadings for the second, third and fourth measurement occasions were defined. The total 

change from the first to the fifth measurement occasion in the item loadings was be 

divided in equal parts so that there is a constant change from one measurement occasion 

to the next. For example, the change of 0.1 in item 1 was divided so that the change from 

one measurement occasion to the next was .025.  

Table 2.2 shows the item loadings at each measurement occasion for each size of 

violation in measurement invariance. It should be noted that six of the nine items were 

generated to show violations of metric invariance over time, while three items were 

invariant over time. Appendix A shows the item variances at each time point and at each 

condition.  



 

 

5
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Table 2.2  

Generating item loadings per measurement occasion with small, medium and large violations of invariance 

  

 
Item Time1 

Small violations Medium violations Large violations 

 

Time 

2 

Time 

3 

Time 

4 

Time 

5 

Time 

2 

Time 

3 

Time 

4 

Time 

5 

Time 

2 

Time 

3 

Time 

4 

Time 

5 

Non-

invariant 

1 0.7 0.675 0.650 0.625 0.600 0.650 0.600 0.550 0.500 0.625 0.550 0.475 0.400 

2 0.9 0.868 0.836 0.804 0.771 0.836 0.771 0.707 0.643 0.804 0.707 0.611 0.514 

3 0.5 0.482 0.464 0.446 0.429 0.464 0.429 0.393 0.357 0.446 0.393 0.339 0.286 

4 0.6 0.579 0.557 0.536 0.514 0.557 0.514 0.471 0.429 0.536 0.471 0.407 0.343 

5 0.8 0.771 0.743 0.714 0.686 0.743 0.686 0.629 0.571 0.714 0.629 0.543 0.457 

6 0.4 0.386 0.371 0.357 0.343 0.371 0.343 0.314 0.286 0.357 0.314 0.271 0.229 

Invariant 

7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

8 1 1 1 1 1 1 1 1 1 1 1 1 1 

9 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 
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2.1.4 Size of intercept difference across measurement occasions 

The item intercepts were created to be either invariant or to have small, medium 

or large violations of strong factorial invariance over time. It should be noted that the 

item loadings were invariant over time under this condition.  

As in the case of non-invariant loadings, the intercepts can increase, decrease or 

have a mixed pattern over time. For example, Millsap and Cham (2012) analyzed data 

from children assessed from 8 to 16 years of age that participated in an intervention to 

help them cope with the death of a parent. The authors found that two of the subscales 

used to assess the acting coping dimension violated strong factorial invariance: the 

intercept of the Optimism subscale decreased from 2.803 in wave 1 to 2.648 in wave 2, 

while the intercept of the Direct Problem Solving subscale decreased from 2.657 in wave 

2 to 2.607 in wave 3. In another study, Willoughby et al. (2011) found violations of 

strong longitudinal invariance in 4 of the 6 battery tests to assess executive function. 

Although the intercepts were not reported, the means of the subscales were reported to 

increase at each of the three measurement waves. Since the hypothesis of strong factorial 

invariance was rejected, part of the increase in the test means was due to violations of 

strong longitudinal invariance. In the present study it was decided to examine only 

conditions in which the intercepts increase over time. No conditions in which the item 

intercepts decrease or have a mixed pattern were considered to keep the total number of 

conditions under manageable limits. 

The size of the violations in strong longitudinal invariance was defined as the 

change in intercepts from the first to the fifth measurement occasion. To define small, 

medium and large violations of strong longitudinal invariance the ratio of the difference 
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in intercepts to the difference in the item means at two time points was considered 

(Equation 55). This measure was proposed by Millsap and Olivera-Aguilar (2012) in the 

multiple group case but can be used for studying invariance over time, 

 

 
  

       

       
 

(55) 

 

where         corresponds to the difference in intercepts for item p from time 1 to time 

5,        corresponds to the difference in means for item p from time 1 to time 5, and 

d represents the proportion of the difference in means across time that is due to 

differences in intercepts over time. A d value of 0.2 was considered a small effect size 

(Millsap & Olivera-Aguilar, 2012), 0.5 represented a medium effect size, and 0.8 

corresponded to a large effect size.  

The item means at the first and fifth measurement occasions needed in the 

denominator of Equation (55) are substituted in Equation (17). From Equation (17) it can 

be seen that    
          , and that    

          , so that Equation (55) can 

be written as,  

 

 
  

       

                       
 

(56) 

 

Since the loadings are invariant        , they can be expressed as   . 

Replacing     and     with    and solving Equation (56) for    , 
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(57) 

 

Equation (57) was used to determine the item intercepts at time 5. The item 

loadings corresponded to the loadings of the first measurement occasion shown in Table 

2.2; the factor mean at the first time point was 0 and at the fifth measurement occasion it 

was 0.8, as determined from the curve of factors model (see below); the values for the 

intercepts in the first measurement occasion were held constant across conditions, and 

correspond to the values for the first measurement occasion in Table 2.3. The values of d 

were 0.2, 0.5 and 0.8. 

For example, substituting the loading for the first item ( 1  0  ), its intercept at 

the first measurement occasion ( 11  0 5), the factor means at the first ( 1  0) and fifth 

( 5  0 8) measurement occasions, for a small difference in intercepts (d=0.2), the 

intercept at the fifth measurement occasion is,  

 

 
      

                                0 8     

      
 

(58) 

 

The item intercepts at the fifth measurement occasion were determined for all 

items using Equation (57). To determine the item intercepts at the second, third and 

fourth measurement occasions, the total difference in intercepts from time 1 to 5 was 

divided so that there is a constant change in intercepts over time. For example, the total 

change of 0.140 in the intercept of item 1 from the first to the fifth measurement occasion 

was divided so that the change from one measurement occasion to the next was .035.  
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Table 2.3 shows the resulting item intercepts across measurement occasions. It 

should be noted that six of the nine items in the item pool show violations of invariance 

while three items remain invariant over time. For the 6-item condition, 6 items were 

selected from Table 2.3; for the 15-item condition, all the items from the item pool were 

used and six items were selected twice as indicated in Table 2.1.  Appendix B shows the 

item means at each time point.  

 

2.1.5 Summary of conditions 

A total of 312 conditions were examined; 156 conditions in each of the generating 

models. For each of the generating models, the conditions examined corresponded to four 

sample sizes, three total numbers of items per measurement occasion, two proportions of 

items violating invariance, and six sizes of violation of invariance (small, medium and 

large violations of metric measurement invariance, and small, medium and large 

violations of strong factorial invariance). Additionally, in the conditions in which 

measurement invariance holds, four sample sizes and three total numbers of items were 

examined.  
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Table 2.3  

Generating item intercepts per measurement occasion with small, medium and large violations of invariance. 

 

 
Item Time1 

Small violations Medium violations Large violations 

 

Time 

2 

Time 

3 

Time 

4 

Time 

5 

Time 

2 

Time 

3 

Time 

4 

Time 

5 

Time 

2 

Time 

3 

Time 

4 

Time 

5 

Non-

invariant 

1 0.5 0.535 0.570 0.605 0.640 0.640 0.780 0.920 1.060 1.060 1.620 2.180 2.740 

2 0.6 0.645 0.690 0.735 0.780 0.780 0.960 1.140 1.320 1.320 2.040 2.760 3.480 

3 0.3 0.325 0.350 0.375 0.400 0.400 0.500 0.600 0.700 0.700 1.100 1.500 1.900 

4 0.4 0.430 0.460 0.490 0.520 0.520 0.640 0.760 0.880 0.880 1.360 1.840 2.320 

5 0.6 0.640 0.680 0.720 0.760 0.760 0.920 1.080 1.240 1.240 1.880 2.520 3.160 

6 0.4 0.420 0.440 0.460 0.480 0.480 0.560 0.640 0.720 0.720 1.040 1.360 1.680 

Invariant 

7 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
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2.2 Generating models 

 The data were generated under the COFM or under the AR quasi-simplex model. 

Data were generated for five measurement occasions, since Leite (2007) and Fan and Fan 

(2005) reported no convergence problems in LGM with five measurement occasions.  

 

2.2.1 Curve of factors model  

The mean and variance for the growth latent variables were set as the same values 

used in the simulation study by Muthén and Muthén (2002). The generating parameter 

values for the growth latent variables were, 

 

 
 
   

   
   

 
   

     
           

           
  (59) 

 

 The covariance between the intercept and the slope latent variables were set such 

that the correlation corresponds to a value of 0.2. The loadings from the intercept latent 

variable η
1
 to the first order latent variables   were set to 1, and the loadings from the 

slope latent factor η
2
 to the latent variable   were set to 0, 1, 2, 3 and 4 at each 

measurement occasion.  

The residual variances for the latent variables   were chosen such that the 

proportion of variance in   explained by the latent growth factors   correspond to values 

of 0.80 in all measurement occasions. The variance of   is defined as, 

 

  ξt
2   

t
Ψ 

t
   ξt (60) 
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 ξt
2  Ψ11   

t
2Ψ22  2 

t
Ψ21   ξt 

 

The proportion of variance in   explained by the latent growth factors   is 

defined as, 

 

 
 2 ξ

t
  

Ψ11   
t
2Ψ22  2 

t
Ψ21

Ψ11   
t
2Ψ22  2 

t
Ψ21   ξt

 (61) 

 

The resulting variances for    and its residual variances    
 that yield R

2 
values of 

0.80 are shown in Table 2.4. Table 2.4 also shows the means of    calculated as,  

 

          
     (62) 

 

Table 2.4  

Generating means and variances for  t in the curve of factors model 

 

 Mean 

 
ξt

 

Variance 

 ξt
2  

Residual var. 

 ξt
 

ξ
1
 0 0.62 0.12 

ξ
2
 0.2 0.86 0.17 

ξ
 
 0.4 1.34 0.26 

ξ
 
 0.6 2.07 0.40 

ξ
5
 0.8 3.06 0.60 

 

Figure 2.1 shows the curve of factors model with the generating parameters for 

the structural part of the model. The generating parameters for the measurement part of 

the model are not shown.  
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Figure 2.1 Curve of factors model with the generating parameter values 

 

The generating parameter values for the measurement part of the model were 

determined for a pool of 9 items. Table 2.5 shows the generating parameter values of the 

intercepts, loadings and unique variance for the condition in which longitudinal 

measurement invariance holds. In the conditions with small, medium and large violations 

of metric longitudinal invariance, the parameter values for the loadings changed over 

time as shown in Table 2.2, while the intercepts and unique variances were invariant over 

time. In the same way, in the conditions with violations of strong factorial invariance the 

values of the intercepts changed over time as indicated in Table 2.3, while the loadings 

and unique variances were invariant over time.  
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Table 2.5  

Generating item loadings, intercepts and unique variances used in the invariant conditions 

 

 Intercept  

  

Loading  

  

Unique variance 

  

Item 1 0.5 0.7 0.7 

Item 2 0.6 0.9 1.3 

Item 3 0.3 0.5 0.6 

Item 4 0.4 0.6 0.8 

Item 5 0.6 0.8 1.3 

Item 6 0.4 0.4 0.4 

Item 7 0.3 0.5 0.7 

Item 8 0 1 1.9 

Item 9 0.3 0.6 1 

  

The values of the unique variances were selected such that the item 

communalities across all measurement occasions were between 0.1 and 0.68 based on the 

Equation (57). Appendix A contains the communality values for each item in each 

condition. 

 
  

  
  
    

  
    

   

 (63) 

  

One thing to notice is that no lagged covariances between unique factor scores of 

the same variable over time were allowed. Although it is reasonable to assume that the 

unique factor scores are correlated over time, when composites of items are formed at 

each time point the covariances between unique factor scores are ignored. Hence, 

simulating data with lagged covariances and then compositing the items would introduce 

a source of bias. Wirth (1998) found that mean scores at each measurement occasion 

were less biased when there were no lagged covariances between the same item over time 

than when the items were generated to have lagged covariances over time. On the other 



 

64 

hand, Biesanz (2012) found that when using composites of items with correlated unique 

variances over time, the autoregressive parameters are inflated since the correlations 

among the unique variances are ignored when using composites.  

 

2.2.2 Autoregressive quasi-simplex model  

To select the generating values of an autoregressive quasi-simplex model the 

study of Morera, et al. (1998) was considered in which six waves of data from a smoking 

intervention study were analyzed using a quasi-simplex model. For the purposes of the 

present study only estimates from five of the six waves were considered. Figure 2.2 

shows the unstandardized parameter estimates obtained by Morera et al. for waves 1, 2, 3, 

4 and 5, and used in the present study as generating values for the structural part of the 

autoregressive model. The one-lagged unstandardized autoregressive path coefficients 

were constrained to the same value across measurement occasions for ease of 

interpretation (Biesanz, 2012). Path coefficients for lags greater than one were set to zero. 

 

 

Figure 2.2. Autoregressive quasi-simplex model with the generating parameter values 
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Since the effect sizes defined for the violations in strong measurement invariance 

take into account the factor means as indicated in Equation (57), the factor means in the 

autoregressive model were generated with the same values as the factor means in the 

LGM and shown in Table 2.4. The factor means from the first to the fifth measurement 

occasions were 0, 0.2, 0.4, 0.6, and 0.8. 

The generating parameter values for the measurement part of the model, not 

shown in Figure 2.2, were determined as described above and using the values from 

Tables 2.2, and 2.3 for the non-invariant conditions, and with the values from Table 2.5 

for the condition in which longitudinal measurement invariance holds.  

 

2.3 Data analysis 

After generating the data under the curve of factors model and the AR quasi-

simplex model, composites were generated by summing the items at each measurement 

occasion. Either a univariate LGM or an AR quasi-simplex model were fit to the 

composites of the items. 

When fitting the univariate LGM the factor loadings of the intercept factor η
1
 

were fixed to one and the factor loadings of the slope factorη
2
 were fixed to 0, 1, 2, 3, and 

4 for time points 1 to 5. The means of the intercept and the slope factors were freely 

estimated, as well as their variances and covariances.  

When fitting the AR quasi-simplex model the autoregressive paths were freely 

estimated. Also, the residual variances of the composites Y at the measurement occasions 

one and two were constrained to have the same values  11   22, as well as the residual 

variances of the composites Y at the measurement occasions four and five      55. The 
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intercepts of the composites Y were fixed to 0. The means and variances of the latent 

variables were freely estimated at each time point.  

 

2.3.1 Convergence  

The first step in the analysis of the results was to examine the number of 

replications needed to obtain 1000 converged solutions. Solutions with convergence 

problems or with improper solutions were not included in subsequent analyses.  

 

2.3.2 Parameter estimation  

The ability to recover the generating parameter values in the presence of 

violations of invariance was evaluated in the univariate LGM and the AR quasi-simplex 

model. A raw bias statistic was computed for each of the estimated parameters denoted   c 

as shown in Equation (64). In the latent curve model the estimated parameters correspond 

to the means, variances and covariances of the intercept and slope factors, and in the AR 

the estimated parameters are the path coefficients. 

 

 

B   c    1     rc   c 

 

r 1

 (64) 

 

where R refers to the total number of replications that converged to a solution,  c refers to 

the generating parameter value in LGM and in the AR quasi-simplex model;   rc refers to 

the parameter estimate for replication r in condition c.  
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Another criteria for assessing the impact of violations of invariance was relative 

bias, in which the mean difference of the parameter estimates at each condition and the 

generating parameter value is divided by the generating parameter value,  

 

 

 B   c    1  
   rc   c 

 c

 

r 1

 (65) 

 

Hoogland and Boomsma (1998) indicated that the relative bias of parameter 

estimates is considered acceptable when its absolute value is less than .05.  

The stability of the parameter estimates in LGM and in AR quasi-simplex model 

was evaluated with the standard error of   c. The standard error of the estimates is defined 

as, 

 

 

     c     1     rc      2
 

r 1

 (66) 

 

where    is the mean of the parameter estimates across conditions and replications.  

To have an overall measure of the accuracy of the parameter estimates that 

considered both the bias in the parameter estimates and their stability, the root mean 

square error (RMSE) was also calculated, 
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      c
    1     rc   c 2

 

r 1

 (67) 

 

To determine the effect of the independent variables (sample size, number of 

items, proportion of non-invariant items and magnitude of the violations of invariance) 

several ANOVAs were conducted on the bias, relative bias, standard errors and RMSE of 

each of the parameter estimates of the LGM and AR-simplex. The meaningfulness of the 

  OV  results were determined by η
2 
and Cohen’s (1988) values were used to judge 

small 0.01, medium 0.06 and large 0.14 associations between the variables. Graphic 

devices were used to compare bias, relative bias and standard errors across conditions.  

 

2.3.3 Model fit  

The χ
2
 value of model fit in each replication was compared to the χ

2
 critical value 

that would be expected from a correctly specified model that is a function of the degrees 

of freedom of the LGM or the AR quasi-simplex model and an α=.05. The rejection rates 

were computed in each condition as the proportion of replications in which the χ
2
 value 

of model fit indicates lack of fit.  
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Chapter 3 

RESULTS 

This chapter presents the results of the simulation study in which a LGM or an 

AR quasi-simplex model were fit to composites formed from items with different levels 

of violations to measurement invariance. First, the results of the LGM are described 

followed by the description of the AR quasi-simplex results. Some issues were 

encountered when analyzing the results of the LGM and the AR quasi-simplex; in the 

LGM it was found that an adjustment of the true growth parameter values was necessary, 

while in the AR quasi-simplex the identification constraints initially proposed were 

modified. The sections of each of the models start with a description of these issues. 

The presentation of the results of the LGM and the AR quasi-simplex is divided 

into three sections. First, the non-convergence percentages are presented. Then, the 

ability to recover the generating parameter values is described in terms of the bias, 

relative bias, standard errors and RMSE of each parameter estimate. Finally, the fit of the 

models are examined in terms of the rejection rates.  

For ease of presentation, graphs are shown when possible. To facilitate the display 

of the information the name of the conditions with invariant loadings and intercepts, and 

with non-invariance in the intercepts or loadings are abbreviated as shown in Table 3.1. 

 

Table 3.1  

Acronyms for the conditions examined 

 

Acronym Condition 

InvLI Invariant loadings and invariant intercepts 

NiLd Non-invariant loadings, invariant intercepts 

NiIn Non-invariant intercepts, invariant loadings 
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3.1 Latent growth model 

3.1.1 Re-scaling of the generating growth parameters 

As indicated in the method section, multiple indicators were generated under the 

curve of factors models. The multiple indicators were summed at each time point, and an 

LGM was used to analyze the composites. It was found that by substituting the latent 

factors ξ
t
 of the curve of factors model, by the composites  t a scaling factor was 

introduced that changed the growth parameter estimates even in the conditions with 

invariant loadings and intercepts. Since this change was systematic, it was possible to 

develop a re-scaling of the growth parameters that corrected for the change. The re-

scaling depended on the number of items per measurement occasion and the values of the 

item intercept sums and item loadings sums (See Appendix C). The following results 

were obtained after the re-scaling of the growth parameters.  

 

3.1.2 Non-convergence percentages 

The first criterion used to evaluate the results was the number of replications per 

condition with convergence problems. As expected, in the conditions with invariant 

loadings and intercepts there were no replications with convergence problems.  

Overall, in the conditions with violations of invariance over time the total number 

of replications with convergence problems or improper solutions was small. While all the 

replications with sample sizes of 200, 500 and 1000 reached convergence, the conditions 

with a sample size of 100 had some replications with non-convergence, which suggests 

that convergence problems were a consequence of small sample sizes and not due to the 

violations of invariance. Table 3.2 shows the percentage of replications with convergence 
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problems for the conditions with a sample size of 100. It can be observed that among 

those conditions, only a small percentage of replications (0.1 to 0.3%) resulted in non-

convergence.  

The replications with non-convergence were replaced so that the computations of 

the bias, relative bias, standard errors and RMSE of the growth parameter estimates were 

based in a total of 1000 converged replications.  

 

Table 3.2  

Non-convergence percentages for the LGM conditions with N=100 

 

Number of 

items 

Proportion of 

non-inv. items 
Effect size 

Non-invariant 

loadings 

Non-invariant 

intercepts 

6 

1/3 

Small 0 0 

Medium 0 0.1 

Large 0.1 0 

2/3 

Small 0.1 0 

Medium 0.1 0 

Large 0.1 0 

9 

1/3 

Small 0.1 0 

Medium 0 0 

Large 0 0 

2/3 

Small 0 0 

Medium 0 0 

Large 0.1 0.1 

15 

1/3 

Small 0.1 0 

Medium 0 0.1 

Large 0.3 0 

2/3 

Small 0.3 0.1 

Medium 0.1 0.1 

Large 0.1 0.2 

 

3.1.3 Parameter estimation 

Parameter estimation under violations of invariance was evaluated by examining 

at the bias, relative bias, standard errors and RMSE for each growth parameter estimate. 
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The results are divided in three sections: bias and relative bias, standard errors and 

RMSE.    

 

Bias and relative bias 

Since the results of bias and relative bias are comparable, only the tables with the 

relative bias results are presented. It was decided to present the tables with the relative 

bias results since there is a clear cutoff for judging the magnitude of relative bias 

(Hoogland & Boomsma, 1998). The tables with the bias results across conditions can be 

consulted in Appendix D. To further simplify the relative bias tables the results for the 

different sample sizes were collapsed, since the ANOVA results described below showed 

that the sample size did not have an effect on the relative bias of the growth parameter 

estimates.  

As expected, the bias and relative bias of the growth parameter estimates were 

acceptable in the conditions with invariant loadings and intercepts. A series of ANOVAs 

were conducted to examine the effect of the independent variables on the bias and 

relative bias of the parameter estimates. The results of the ANOVAs were judged by the 

overall η
2
 and by the η

2
 values of the interactions and main effects of the independent 

variables. The   OV  results indicated that none of the conditions had a η
2
 value above 

0.01, which is a small effect size following Cohen’s suggestion (Cohen, 1988). Table  .  

shows the relative bias values of the parameter estimates in the conditions with invariant 

loadings and intercepts.  

The relative bias values for each growth parameter estimate in the non-invariant 

conditions are presented in Table 3.4. In general, it can be observed that with non-
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invariant loadings the absolute values of the relative bias of the slope factor mean, the 

slope factor variance and the intercept-slope covariance are larger than in the invariant 

conditions  and larger than the suggested cutoff of 0.05. In contrast, with non-invariant 

intercepts the only parameter that showed relative bias values larger than 0.05 was the 

slope factor mean.   

 

 

Table 3.3  

Relative bias of LGM parameter estimates in the invariant conditions  

 

Num. 

items 

Intercept 

factor mean 

Intercept 

factor 

variance 

Slope factor 

mean 

Slope factor 

variance 

Intercept-

slope 

covariance 

6 0.001 0.001 -0.003 -0.004 0.006 

9 0.001 0.000 -0.005 -0.005 0.031 

15 -0.001 0.002 -0.007 -0.006 0.014 
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Table 3.4 

Relative bias of LGM parameter estimates under violations of invariance 

 

Num. 

items 

Effect 

size 

Prop. 

non-inv. 

Non-invariant loadings Non-invariant intercepts 

Int. 

mean 

Slope 

mean 

Int. 

var. 

Slope 

var. 

I-S 

covar. 

Int. 

mean 

Slope 

mean 

Int. 

var. 

Slope 

var. 

I-S 

covar. 

6 

Small 
1/3 0.009 -0.053 -0.001 -0.122 -0.126 0.000 0.101 -0.007 -0.009 0.013 

2/3 0.017 -0.092 0.001 -0.192 -0.238 0.001 0.159 -0.008 -0.003 0.012 

Medium 
1/3 0.023 -0.112 0.002 -0.228 -0.295 0.002 0.383 -0.002 -0.010 0.015 

2/3 0.037 -0.183 0.001 -0.355 -0.508 -0.001 0.643 -0.008 -0.005 0.009 

Large 
1/3 0.036 -0.167 0.005 -0.324 -0.446 0.000 1.527 -0.011 -0.005 0.007 

2/3 0.063 -0.280 0.013 -0.500 -0.803 0.002 2.572 -0.005 -0.004 0.017 

9 

Small 
1/3 0.010 -0.050 -0.004 -0.111 -0.124 -0.001 0.087 -0.005 -0.003 0.010 

2/3 0.016 -0.095 0.004 -0.198 -0.236 0.000 0.160 -0.004 -0.007 0.016 

Medium 
1/3 0.019 -0.101 0.001 -0.213 -0.270 0.000 0.351 -0.005 -0.007 0.004 

2/3 0.036 -0.189 0.005 -0.361 -0.514 0.000 0.650 -0.003 -0.009 0.007 

Large 
1/3 0.029 -0.153 0.004 -0.301 -0.417 0.000 1.403 -0.006 -0.008 0.014 

2/3 0.053 -0.285 0.012 -0.507 -0.817 0.000 2.601 -0.003 -0.003 0.021 

15 

Small 
1/3 0.008 -0.052 -0.001 -0.115 -0.115 -0.002 0.087 -0.004 -0.006 0.014 

2/3 0.014 -0.095 -0.001 -0.202 -0.245 -0.003 0.164 -0.005 -0.004 0.006 

Medium 
1/3 0.018 -0.105 -0.001 -0.212 -0.259 -0.001 0.354 -0.007 -0.005 0.012 

2/3 0.031 -0.196 0.006 -0.376 -0.526 -0.001 0.669 -0.004 -0.003 0.007 

Large 
1/3 0.025 -0.153 0.005 -0.310 -0.406 0.001 1.415 -0.006 -0.005 0.015 

2/3 0.052 -0.299 0.018 -0.523 -0.833 -0.001 2.668 -0.006 -0.004 0.018 

Note: The bolded numbers correspond to relative bias absolute values larger than 0.05.  
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Next, a detailed description of the bias, relative bias and ANOVA results for each 

growth parameter estimates is provided. The η
2
 values for the conditions with at least a 

small effect size are shown in Table 3.5. 

 

Table 3.5  

η
2
values from the ANOVAs on bias and relative bias of the LGM parameter 

estimates 

 

 
Non-invariant loadings 

Non-invariant 

intercepts 

 Int. mean Slope mean Slope var. I-S covar. Slope mean 

 
Bias 

Rel. 

bias 
Bias 

Rel. 

bias 
Bias 

Rel. 

bias 
Bias 

Rel. 

bias 
Bias 

Rel. 

bias 

Overall effect 0.04 0.03 0.47 0.36 0.86 0.65 0.44 0.24 0.99 0.98 

N. Items -- -- 0.14 -- 0.52 -- 0.21 -- 0.10 -- 

Prop. Non-inv -- -- 0.09 0.11 0.07 0.20 0.05 0.07 0.07 0.08 

Magnitude  0.02 0.02 0.18 0.23 0.15 0.42 0.09 0.15 0.66 0.83 

N. items x 

Prop. 
-- -- 0.02 -- 0.04 -- 0.03 -- 0.01 -- 

N. items x 

Mag. 
-- -- 0.02 -- 0.07 -- 0.04 -- 0.09 -- 

Prop.  x Mag. -- -- 0.02 0.02 -- 0.02 0.01 0.02 0.06 0.07 

 

Intercept factor mean  

As indicated in Table 3.4, the intercept factor mean estimates showed relative bias 

values larger or at the cutoff of 0.05 only in the conditions with non-invariant loadings 

with large violations of invariance and with 2/3 of non-invariant items. In the rest of the 

non-invariant loading conditions and in all the non-invariant intercept conditions the 

relative bias values were below 0.05.  

Figures 3.1 and 3.2 show the bias and relative bias of the intercept factor mean 

across conditions. The results by the number of items were collapsed since no differences 

were found. It can be seen that the values are very similar under violations of invariance 
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and in the invariant conditions. As expected, the ANOVA results (Table 3.5) showed 

only a small effect size for the magnitude of the violations under the conditions with non-

invariant loadings.  

 

 
Figure 3.1 Bias in the intercept factor mean in the non-invariant loading conditions 

(NiLd) and in the non-invariant intercept conditions (NiIn). The horizontal lines show the 

bias in the intercept factor mean in the conditions with invariant loadings and invariant 

intercepts. 
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Figure 3.2 Relative bias in the intercept factor mean in the non-invariant loading 

conditions (NiLd) and in the non-invariant intercept conditions (NiIn). The horizontal 

lines show the cutoff values of 0.05 and -0.05. Relative bias values inside the lines were 

considered acceptable values. 

 

Slope factor mean 

As indicated in Table 3.4, across all conditions with non-invariant loadings the 

parameter estimates of the slope factor mean were underestimated while they were 

overestimated in the conditions with non-invariant intercepts. Only the relative bias 

absolute values in the non-invariant loading conditions with small violations of 

invariance and 1/3 of non-invariant items were close to cutoff of 0.05. The relative bias 

absolute values for the rest of the conditions showed absolute values above the 

recommended cutoff. 

It should be noticed in Table 3.4 that the relative bias values were larger in the 

non-invariant intercept conditions than under the non-invariant loading conditions. While 
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the relative bias absolute values in the non-invariant loading conditions ranged from 0.05 

to 0.30, the absolute values under the non-invariant intercepts ranged from .09 to 2.67. 

This finding can be observed in Figures 3.3 and 3.4. It can also be seen that as the 

magnitude of violations increase and as the proportion of non-invariant items increase, 

the bias and relative bias absolute values increased.  

 

 
Figure 3.3 Bias in the slope factor mean in the non-invariant loading conditions (NiLd) 

and in the non-invariant intercept conditions (NiIn). The horizontal lines show the bias in 

the slope factor mean in the conditions with invariant loadings and invariant intercepts 

(InLI). 
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Figure 3.4 Relative bias in the slope factor mean in the non-invariant loading conditions 

(NiLd) and in the non-invariant intercept conditions (NiIn). The horizontal lines show the 

cutoff values of 0.05 and -0.05. Relative bias values inside the lines were considered 

acceptable values. 

 

The ANOVA results on the bias of the slope factor mean indicated that in the 

non-invariant loading conditions the magnitude of violations explained 18% of the 

variance, while the number of items explained 14% and the proportion of non-invariant 

items explained 9%.  Regarding relative bias, the ANOVA results revealed a medium 

effect size for the proportion of non-invariant items (η
2
 = .11) and a large effect size (η

2
 = 

.23) for the magnitude of violations. 

Under the non-invariant intercept conditions, the ANOVA results on the bias of 

the slope factor mean indicated a medium effect size for the interaction between the 

number of items and the magnitude of violations of invariance (η
2 

= 0.09), and for the 

interaction between the proportion of non-invariant items and the magnitude of the 
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violations (η
2 

= 0.06). The main effect of the magnitude of violations, the number of 

items, and the proportion of non-invariant items explained 66, 10 and 7% of the variance 

respectively.  

The ANOVA on the relative bias also showed a medium effect size for the 

interaction between the proportion of non-invariant items and the magnitude of the 

violations (η
2 

= 0.07). The proportion of non-invariant items explained 8% of the 

variance, and the proportion of variance in the relative bias explained by the magnitude 

of violations increased to 83%. 

 

Intercept factor variance 

Table 3.4 shows that the relative bias absolute values of the intercept factor 

variance were smaller than the cutoff of 0.05 in all conditions with violations of 

invariance. It should be noted that the intercept factor variance was the only growth 

parameter estimate that was unbiased in the non-invariant loading conditions. The 

ANOVA results showed that the independent variables did not have an effect on the bias 

and relative bias of the intercept factor variance estimates under violations of invariance.  

 

Slope factor variance 

In the conditions with non-invariant loadings, the parameter estimates of the slope 

variance underestimated the true value in all conditions. The relative bias absolute values 

were larger than 0.05, ranging from 0.11 to 0.52, as shown in Table 3.4. In contrast, in all 

the conditions with non-invariant intercepts the relative bias absolute values were lower 

than 0.05.  
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Figures 3.5 and 3.6 show the bias and relative bias for the slope factor variance 

across conditions. It should be noticed that in the non-invariant loading conditions, as the 

magnitude of violations and the proportion of non-invariant items increased, the bias and 

relative bias absolute values increased. These results were confirmed by the ANOVAs 

that showed large effects for the magnitude of violations and the proportion of non-

invariant items (Table 3.5).  

 

 
Figure 3.5 Bias in the slope factor variance in the non-invariant loading conditions 

(NiLd) and in the non-invariant intercept conditions (NiIn). The horizontal lines show the 

bias in the slope factor variance in the conditions with invariant loadings and invariant 

intercepts (InLI). 
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Figure 3.6 Relative bias in the slope factor variance in the non-invariant loading 

conditions (NiLd) and in the non-invariant intercept conditions (NiIn). The horizontal 

lines show the cutoff values of 0.05 and -0.05. Relative bias values inside the lines were 

considered acceptable values. 

 

More specifically, the ANOVA conducted in the non-invariant loading conditions 

indicated that the number of items explained 52% of the variance on the bias of the slope 

factor variance, while the magnitude of violations explained 15% and the proportion of 

non-invariant items explained 7%. A medium effect size was also found for the 

interaction between the number of items and the magnitude of the violations to invariance 

(η
2 

= 0.07).  The ANOVA on the relative bias showed that the magnitude of violations 

explained 42% of the variance and the proportion of non-invariant items explained 20%.  

In the non-invariant intercept conditions, the ANOVA on the bias and relative 

bias did not show a η
2 

value larger than 0.01. 
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Intercept-slope covariance 

The covariance between the intercept and slope factors was underestimated across 

all the non-invariant loading conditions as shown in Figure 3.7. The relative bias absolute 

values were above 0.05 even in the conditions with small violations of invariance and 1/3 

of non-invariant items. Figures 3.7 and 3.8, as well as Table 3.4, show that as the 

magnitude of violations of invariance and as the proportion of non-invariant items 

increase, the bias and relative bias absolute values also increased.   

The ANOVA conducted in the non-invariant loading conditions showed a large 

effect size for the number of items (η
2
=.21), and a medium effect size for the magnitude 

of violations of invariance (η
2
= .09) on the bias of the intercept-slope covariance. The 

ANOVA on the relative bias showed a large effect size for the magnitude of violations 

(η
2 

= 0.15) and a medium effect size for the proportion of non-invariant items (η
2 

= 0.07). 

The ANOVAs conducted on the bias and relative bias in the conditions with non-

invariant intercepts did not show η
2 

values larger than 0.01. 
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Figure 3.7 Bias in the intercept-slope covariance in the non-invariant loading conditions 

(NiLd) and in the non-invariant intercept conditions (NiIn). The horizontal lines show the 

bias in the slope factor variance in the conditions with invariant loadings and invariant 

intercepts (InLI) 

 

 
Figure 3.8 Relative bias in the intercept-slope covariance in the non-invariant loading 

conditions (NiLd) and in the non-invariant intercept conditions (NiIn). The horizontal 

lines show the cutoff values of 0.05 and -0.05. Relative bias values inside the lines were 

considered acceptable values. 
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Standard errors 

The ANOVAs conducted on the standard errors of the growth parameter estimates 

showed that the number of items and the sample size had a large effect in all conditions. 

 o other independent variable had medium or large effect sizes. Table  .6 shows η
2
 

values only for the conditions with at least small effect sizes.  

The standard errors of the growth parameter estimates are shown in Figures 3.9 to 

3.13 and are also presented in Table 3.7. Since the magnitude of violations and the 

proportion of non-invariant items did not have effects on the standard errors, the results 

shown are averaged over sample size and the number of items. It should be noticed that 

in order to accommodate the large standard errors observed for the intercept factor 

variance, the y axis of the graph of the intercept factor variance (Figure 3.11) is in a 

different scale than the graphs of the other growth parameter estimates.  

 In general, it can be observed that the standard errors of growth parameter 

estimates were very similar in the invariant conditions and in the conditions with 

violations of invariance. In all conditions, the standard errors decreased as the sample 

size increase and as the number of items decreased. The effect of the number of items can 

be seen very clearly in Figure 3.11 that corresponds to the standard errors of the intercept 

variance. The influence of the number of items is also observed in the standard errors of 

the slope factor variance (Figure 3.12) and in the standard errors of the intercept-slope 

covariance (Figure 3.13).  
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Table 3.6 

η
2
values from the ANOVAs on the standard errors of the LGM parameter estimates 

 

 

Invariant loadings and intercepts Non-invariant loadings Non-invariant intercepts 

Int. 

mean 

Slope 

mean 

Int. 

var. 

Slope 

var. 

I-S 

covar. 

Int. 

mean 

Slope 

mean 

Int. 

var. 

Slope 

var. 

I-S 

covar. 

Int. 

mean 

Slope 

mean 

Int. 

var. 

Slope 

var. 

I-S 

covar. 

Overall 0.94 0.94 0.89 0.89 0.89 0.94 0.93 0.89 0.87 0.89 0.94 0.94 0.89 0.89 0.89 

N. Items 0.33 0.35 0.59 0.60 0.59 0.34 0.32 0.60 0.56 0.58 0.33 0.35 0.60 0.60 0.61 

Sample 

size 
0.62 0.59 0.31 0.29 0.30 0.60 0.59 0.29 0.28 0.30 0.60 0.59 0.29 0.29 0.29 

Magnitude -- -- -- -- -- -- 0.01 -- 0.02 0.01 -- -- -- -- -- 

Proportion -- -- -- -- -- -- 0.01 -- 0.01 -- -- -- -- -- -- 
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Table 3.7  

Standard errors of the LGM parameter estimates by the number of items and by sample size 

 

Num. 

items 

Sample 

size 

Invariant loadings and intercepts Non-invariant loadings Non-invariant intercepts 

Int. 

mean 

Slope 

mean 

Int. 

var. 

Slope 

var. 

I-S 

covar. 

Int. 

mean 

Slope 

mean 

Int. 

var. 

Slope 

var. 

I-S 

covar. 

Int. 

mean 

Slope 

mean 

Int. 

var. 

Slope 

var. 

I-S 

covar. 

6 

100 0.36 0.16 1.89 0.36 0.58 0.36 0.14 1.88 0.27 0.52 0.35 0.15 1.85 0.35 0.57 

200 0.26 0.11 1.27 0.25 0.42 0.25 0.10 1.31 0.20 0.37 0.25 0.11 1.29 0.24 0.41 

500 0.16 0.07 0.85 0.15 0.26 0.16 0.06 0.81 0.13 0.23 0.16 0.07 0.82 0.15 0.26 

1000 0.11 0.05 0.59 0.11 0.18 0.11 0.04 0.59 0.09 0.17 0.11 0.05 0.58 0.11 0.18 

9 

100 0.47 0.21 3.49 0.62 1.08 0.48 0.19 3.41 0.51 0.96 0.48 0.21 3.41 0.65 1.05 

200 0.34 0.15 2.42 0.45 0.75 0.34 0.13 2.43 0.35 0.66 0.34 0.15 2.36 0.46 0.76 

500 0.22 0.10 1.50 0.29 0.48 0.22 0.08 1.51 0.23 0.42 0.21 0.10 1.50 0.29 0.48 

1000 0.15 0.07 1.09 0.20 0.33 0.15 0.06 1.09 0.16 0.30 0.15 0.07 1.05 0.21 0.33 

15 

100 0.74 0.33 8.24 1.51 2.58 0.76 0.29 8.38 1.19 2.26 0.76 0.34 8.20 1.61 2.55 

200 0.54 0.24 5.72 1.14 1.82 0.54 0.20 5.87 0.85 1.60 0.53 0.24 5.79 1.14 1.82 

500 0.32 0.15 3.69 0.66 1.13 0.34 0.13 3.76 0.54 1.01 0.34 0.15 3.66 0.71 1.15 

1000 0.24 0.11 2.54 0.49 0.82 0.24 0.09 2.65 0.38 0.72 0.24 0.11 2.62 0.51 0.83 
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Figure 3.9 Standard errors of the intercept factor mean in the invariant conditions (InLI), 

non-invariant loading conditions (NiLd) and non-invariant intercept conditions (NiIn). 

 

 
Figure 3.10 Standard errors of the slope factor mean in the invariant conditions (InLI), 

non-invariant loading conditions (NiLd) and non-invariant intercept conditions (NiIn). 
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Figure 3.11 Standard errors of the intercept factor variance in the invariant conditions 

(InLI), non-invariant loading conditions (NiLd) and non-invariant intercept conditions 

(NiIn). 

 

 
Figure 3.12 Standard errors of the slope factor variance in the invariant conditions (InLI), 

non-invariant loading conditions (NiLd) and non-invariant intercept conditions (NiIn). 
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Figure 3.13 Standard errors of the interceptslope covariance in the invariant conditions 

(InLI), non-invariant loading conditions (NiLd) and non-invariant intercept conditions 

(NiIn). 

 

Root mean square error (RMSE) 

Table  .8 contains the η
2
 values obtained from the ANOVAs on the RMSE of the 

growth parameter estimates. Table 3.8 indicates that the number of items and the sample 

size had a large effect on the RMSE in almost all conditions, explaining in some growth 

parameter estimates up to 66% and 62% of the total variance respectively.  

In the non-invariant loading conditions a large effect size was observed for the 

magnitude of violations of invariance on the slope factor mean (η
2
=.24) and on the slope 

factor variance (η
2
=.14), with RMSE values increasing as the magnitude of violations 

increased. The RMSE values also increased with increases in the proportion of non-
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invariant items, that showed a large effect on the slope factor mean (η
2
=.13) and a 

medium effect on the slope factor variance (η
2
=.07). 

In the non-invariant intercept conditions, the magnitude of violations had a large 

effect size (η
2
=.66) on the intercept factor mean, while the proportion of non-invariant 

items showed a medium effect size (η
2
=.07). The direction of the effects was the same as 

in the non-invariant loading conditions.  
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Table 3.8  

η
2
values from the ANOVAs on the RMSE of the LGM parameter estimates 

 

 

Invariant loadings and intercepts Non-invariant loadings Non-invariant intercepts 

Int. 

mean 

Slope 

mean 

Int. 

var. 

Slope 

var. 

I-S 

covar. 

Int. 

mean 

Slope 

mean 

Int. 

var. 

Slope 

var. 

I-S 

covar. 

Int. 

mean 

Slope 

mean 

Int. 

var. 

Slope 

var. 

I-S 

covar. 

Overall 0.94 0.94 0.89 0.89 0.89 0.94 0.88 0.89 0.87 0.94 0.83 0.89 0.89 0.89 0.94 

N. Items 0.33 0.35 0.59 0.60 0.59 0.40 0.44 0.61 0.66 0.33 0.11 0.60 0.60 0.61 0.33 

Magnitude -- -- -- -- -- 0.01 0.24 -- 0.14 -- 0.66 -- -- -- -- 

Proportion -- -- -- -- -- -- 0.13 -- 0.07 -- 0.07 -- -- -- -- 

SS 0.62 0.59 0.31 0.29 0.30 0.53 0.06 0.29 -- 0.60 -- 0.30 0.29 0.29 0.60 
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3.1.4 Model fit 

The last criterion examined was the fit of the LGM under violations of invariance. 

In general, in the invariant conditions the percentage of replications that incorrectly 

rejected the hypothesis of linear growth remained close to the nominal level as shown in 

Table 3.9. In the conditions with just 6 items the rejection rates were below the nominal 

level for sample sizes larger than 100. In the conditions with 9 items the rejection rates 

were larger than expected (6%) but as the sample size increased it got closer to the 

nominal 5%. In the conditions with 15 items the rejection rates were on average close to 

the nominal level. 

 

Table 3.9  

Rejection rates in the invariant conditions in LGM 

 

Number of items Sample size Rejection rates 

6 

100 4.7 

200 3.2 

500 3.6 

1000 3.9 

9 

100 5.2 

200 5.6 

500 5.6 

1000 4.3 

15 

100 4.5 

200 5.3 

500 4.3 

1000 4.5 

 

In the non-invariant loading conditions the rejection rates were larger than in the 

invariant conditions as shown in Table 3.10. As the number of items, the magnitude of 

the violations of invariance, the proportion of non-invariant items, and the sample size 

increased, the percentage of replications in which the hypothesis of linear growth was 
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incorrectly rejected increased. With only 6 items, the rejection rates ranged from 5.4 up 

to 85 in the condition with large violations to invariance, 2/3 of non-invariant items, and 

a sample size of 1000.  

When the total number of items was 9, only in the conditions with small 

violations to invariance and 1/3 of non-invariant items the rejection rates were close to 

the nominal level. In all the other conditions the rejection rates were higher. For example, 

in the condition with large violations to invariance, 2/3 of non-invariant items and a 

sample size of 1000, 96.4% of the replications rejected the null hypothesis.  

In the conditions with 15 items, the rejection error rates were never lower than 

7.8%, and increased up to 100% when 2/3 of the items had large violations of invariance 

and a sample size of 1000.  

In contrast, in the conditions in which composites were formed from items with 

non-invariant intercepts the rejection rates remained close to 5%. Although there were 

some conditions in which the rejection rates were slightly inflated, the rates are 

comparable to the invariant conditions.  
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Table 3.10  

Rejection rates in the conditions with violations of invariance in the LGM 

 

Num. 

Items 

Magnitude 

of violations 

Sample 

size 

Non-invariant loadings Non-invariant intercepts 

1/3 non-inv. 2/3 non-inv. 1/3 non-inv. 2/3 non-inv. 

6 

Small 

100 6.4 6.2 5.0 5.1 

200 7.0 5.0 5.3 4.7 

500 4.6 7.9 3.9 4.7 

1000 6.7 10.8 4.4 5.1 

Medium 

100 5.2 7.8 4.1 6.1 

200 4.7 10.3 5.6 4.6 

500 8.3 21.2 3.6 4.6 

1000 15.5 42.9 4.4 4.2 

Large 

100 7.4 11.2 4.2 5.1 

200 8.6 18.0 6.9 4.3 

500 15.7 49.7 5.1 3.9 

1000 30.8 84.4 5.3 4.9 

9 

Small 

100 3.9 5.1 5.5 6.2 

200 4.9 6.8 4.4 5.8 

500 6.4 9.2 3.3 4.3 

1000 5.7 14.4 4.3 4.8 

Medium 

100 5.5 10.0 4.9 4.8 

200 8.0 12.3 3.9 5.1 

500 10.6 32.2 3.9 5.7 

1000 17.2 63.6 5.1 4.6 

Large 

100 8.8 14.8 6.6 5.8 

200 9.3 26.3 4.7 4.3 

500 20.6 69.5 4.4 5.1 

1000 40.3 95.7 3.9 3.9 

15 

Small 

100 6.7 7.6 6.1 5.9 

200 5.9 9.4 5.2 5.3 

500 7.9 16.8 5.2 3.5 

1000 9.3 30.0 3.8 6.1 

Medium 

100 6.2 12.0 5.4 5.6 

200 10.0 25.5 4.2 4.4 

500 16.8 61.6 5.4 4.1 

1000 33.1 92.0 4.0 5.4 

Large 

100 9.1 27.5 5.3 5.3 

200 14.5 55.0 5.5 4.7 

500 40.0 95.4 4.8 4.6 

1000 73.4 100.0 4.1 4.5 

 

  



 

96 

3.2 Autoregressive quasi-simplex model 

3.2.1 Change in identification constraints 

The set of constraints initially proposed to identify the AR quasi-simplex model 

consisted of fixing the intercepts of the composites to zero, constraining to equal values 

the Autoregressive quasi-simplex path coefficients across waves  ρ
21

 ρ
 2

 ρ
  

 ρ
5 

, 

and constraining to equal values the unique variances of the Y composites of the first and 

second measurement occasions  11   22 and at the fourth and fifth measurement 

occasions      55. This set of identification constraints resulted in large non-

convergence rates in most conditions. In the invariant conditions the percentage of 

replications with convergence problems was between 0.6 and 32, while in the conditions 

with violations of invariance the percentage was between 0.3 and 42.  

In order to reduce the non-convergence rates, the identification constraints were 

changed. As indicated by Jöreskog (1979b) and Biesanz (2012) the first and last latent 

variables in the AR quasi-simplex are not identified and constraints in the residual 

variances are needed by constraining their values to zero, or equal to the values of the 

adjacent waves. The new set of constraints consisted of constraining the residual 

variances of the Y composites at first and second measurement occasions to equal values 

 11   22 (as in the initial set of constraints proposed) and to constrain the residual 

variance of the fifth measurement occasion to zero. It should be noted that although this 

constraint identifies the model, it implies that the assessment in the last wave contains no 

error which is an unrealistic assumption in practice. The intercepts of the composites 

were fixed to zero to identify the mean structure of the latent variables. The path 
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coefficient estimates were allowed to vary across waves. This new set of constraints 

yielded lower non-convergence rates as described in the next section.  

 

3.2.2 Non-convergence percentages 

The convergence percentages for the invariant conditions under the AR quasi-

simplex model are shown in Table 3.11. It can be observed that the invariant conditions 

with sample sizes of 100 and 200 presented between 3 and 8% of replications with non-

convergence. With sample sizes of 500, only one replication had convergence problems 

when the number of items was 6, and no convergence problems were found for 

conditions with sample sizes of 1000.  

 

Table 3.11  

Non-convergence percentages in the invariant conditions of the AR quasi-simplex 

model 

 

Num. Items Sample size % of replications 

6 
100 7.9 

200 0.9 

9 
100 3.1 

200 0.2 

15 
100 7.0 

200 0.8 

 

The non-convergence percentages for the conditions with violations of 

longitudinal invariance are shown in Table 3.12. With sample sizes of 100 the non-

convergence percentages ranged from 3.9 to 8.7, while for conditions with sample sizes 

of 200 the largest non-convergence rate was 1.5.  
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Table 3.12 shows that the sample size is the only variable that had a clear impact 

on the non-convergence percentages. It was concluded that the convergence problems 

were related to the small sample sizes and the particular set of constraints that were 

chosen for the AR quasi-simplex model.  

 

Table 3.12  

Non-convergence percentages in the AR quasi-simplex conditions with violations of 

invariance 

 

Num. 

Items 

Proportion 

non-inv. 

Magnitude 

of 

violations 

Non-invariant loadings Non-invariant intercepts 

N=100 N=200 N=100 N-200 

6 

1/3 

Small 6.5 1.2 6.7 0.8 

Medium 5.7 1.1 8.5 1.4 

Large 6.2 1.5 5.6 1.1 

2/3 

Small 7.1 1.1 6.1 1.0 

Medium 7.9 1.0 6.7 1.3 

Large 7.5 0.9 6.5 1.1 

9 

1/3 

Small 4.3 0.1 4.1 0.1 

Medium 3.4 0 4.0 0.4 

Large 4.8 0.1 4.7 0.3 

2/3 

Small 4.0 0.1 4.8 0.2 

Medium 4.5 0.3 6.3 0.3 

Large 4.4 0.4 6.4 0.3 

15 

1/3 

Small 6.3 0.3 8.0 0.8 

Medium 5.6 1.2 6.9 0.7 

Large 5.7 0.8 8.0 1.0 

2/3 

Small 6.9 0.4 7.8 0.7 

Medium 3.9 0.5 8.2 1.3 

Large 4.0 0.2 8.7 0.9 

 

3.2.3 Parameter estimation 

In this section, the bias, relative bias, standard errors and RMSE of the four 

autoregressive coefficients are described.  
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Bias and relative bias 

As in the result section under LGM, only the tables with the relative bias values 

are presented in this section, but a graphical representation of the bias and relative bias 

are included. (Appendix E presents the tables with the mean bias across conditions). To 

further simplify the presentation of the findings, the results are averaged over sample 

size, since the ANOVA results did not show an effect of sample size on the relative bias. 

The relative bias values of the parameter estimates for the invariant conditions 

and the conditions with violations to invariance are shown in Tables 3.13 and 3.14, 

respectively. As expected, the relative bias values were close to zero in all the invariant 

conditions (Table 3.13). In the non-invariant intercept conditions the relative bias values 

were also close to zero (Table 3.14).  

 

Table 3.13  

Relative bias of the AR quasi-simplex parameter estimates in the invariant 

conditions  

 

Num. items ρ21 ρ 2 ρ   ρ5  

6 0.001 0.000 0.000 0.001 

9 0.002 0.002 0.001 0.001 

15 0.002 0.002 0.001 0.002 

 

In contrast to the non-invariant intercept conditions, in the conditions with non-

invariant loadings the AR quasi-simplex parameter estimates had relative bias values 

above 0.05 in some conditions. As shown in Table 3.14, the conditions with 2/3 of non-

invariant items had relative bias absolute values between .047 and .087. It can be 

observed that as the magnitude of violations and the proportion of non-invariant items 

increased, the relative bias absolute values also increased.  



 

 

1
0
0
 

Table 3.14.  

Relative bias of the AR quasi-simplex parameter estimates in the conditions with violations of invariance 

 

Num. 

Items 

Effect 

size 

Prop. 

non-inv. 

Non-invariant loadings Non-invariant intercepts 

ρ21 ρ 2 ρ   ρ5  ρ21 ρ 2 ρ   ρ5  

6 

Small 
1/3 -0.013 -0.013 -0.013 -0.013 -0.001 -0.001 0.002 0.002 

2/3 -0.022 -0.022 -0.024 -0.023 0.000 -0.001 0.002 0.003 

Medium 
1/3 -0.029 -0.028 -0.028 -0.028 0.000 0.000 0.000 -0.002 

2/3 -0.047 -0.047 -0.049 -0.051 0.000 -0.002 0.003 0.000 

Large 
1/3 -0.041 -0.043 -0.042 -0.045 -0.001 -0.001 0.001 0.003 

2/3 -0.069 -0.073 -0.079 -0.086 -0.002 0.001 0.000 0.000 

9 

Small 
1/3 -0.011 -0.011 -0.012 -0.013 0.001 0.002 -0.001 0.002 

2/3 -0.023 -0.023 -0.022 -0.024 0.002 0.001 0.001 0.001 

Medium 
1/3 -0.023 -0.026 -0.026 -0.027 -0.001 -0.001 0.001 0.001 

2/3 -0.045 -0.048 -0.049 -0.053 0.002 0.001 0.001 0.000 

Large 
1/3 -0.037 -0.038 -0.041 -0.042 0.003 0.000 0.001 0.001 

2/3 -0.069 -0.074 -0.079 -0.088 0.004 0.001 0.000 0.000 

15 

Small 
1/3 -0.011 -0.012 -0.011 -0.010 0.001 0.001 0.001 0.000 

2/3 -0.023 -0.024 -0.022 -0.024 0.003 0.001 0.001 0.001 

Medium 
1/3 -0.024 -0.025 -0.025 -0.024 0.001 0.001 0.001 0.001 

2/3 -0.047 -0.049 -0.052 -0.053 0.001 0.000 0.000 0.001 

Large 
1/3 -0.037 -0.037 -0.041 -0.038 0.002 0.002 0.001 0.000 

2/3 -0.071 -0.076 -0.083 -0.087 0.002 0.003 0.001 0.001 

Note: The bolded numbers correspond to relative bias absolute values at the cutoff of 0.05 or larger.   
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The general pattern described in Table 3.14 can also be observed in Figures 3.14 

to 3.21 that show the bias and relative bias results averaged over sample size. In the non-

invariant intercept conditions the bias and relative bias of the parameter estimates are 

similar to the results obtained in the invariant conditions. In contrast, with non-invariant 

loadings the parameter estimates were underestimated in some conditions. It can be seen 

that as the magnitude of the violations increased, the bias and relative bias absolute 

values also increased.  

 

 
Figure  .1  Bias in ρ21 in the non-invariant loading conditions (NiLd) and in the non-

invariant intercept conditions (NiIn). The horizontal lines show the bias in the path 

coefficient ρ21 in the conditions with invariant loadings and invariant intercepts (InLI).
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Figure  .15  elative bias in ρ21 in the non-invariant loading conditions (NiLd) and in the 

non-invariant intercept conditions (NiIn). The horizontal lines show the cutoff values of 

0.05 and -0.05. Relative bias values inside the lines were considered acceptable values. 

 

 
 

Figure  .16 Bias in ρ32 in the non-invariant loading conditions (NiLd) and in the non-

invariant intercept conditions (NiIn). The horizontal lines show the bias in the path 

coefficient ρ32 in the conditions with invariant loadings and invariant intercepts (InLI). 
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Figure  .1   elative bias in ρ32 in the non-invariant loading conditions (NiLd) and in the 

non-invariant intercept conditions (NiIn).The horizontal lines show the cutoff values of 

0.05 and -0.05. Relative bias values inside the lines were considered acceptable values. 

 

 
Figure  .18 Bias in ρ43 in the non-invariant loading conditions (NiLd) and in the non-

invariant intercept conditions (NiIn). The horizontal lines show the bias in the path 

coefficient ρ43 in the conditions with invariant loadings and invariant intercepts (InLI). 
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Figure  .19  elative bias in ρ43 in the non-invariant loading conditions (NiLd) and in the 

non-invariant intercept conditions (NiIn). The horizontal lines show the cutoff values of 

0.05 and -0.05. Relative bias values inside the lines were considered acceptable values. 

 

 
Figure  .20 Bias in ρ54 in the non-invariant loading conditions (NiLd) and in the non-

invariant intercept conditions (NiIn). The horizontal lines show the bias in the path 

coefficient ρ54 in the conditions with invariant loadings and invariant intercepts (InLI). 
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Figure  .21  elative bias in ρ54 in the non-invariant loading conditions (NiLd) and in the 

non-invariant intercept conditions (NiIn).The horizontal lines show the cutoff values of 

0.05 and -0.05. Relative bias values inside the lines were considered acceptable values. 

 

The ANOVAs conducted on the bias and relative bias of each of the AR quasi-

simplex parameter estimates confirmed the patterns observed in Tables 3.13 and 3.14 and 

Figures 3.14 to 3.21. In the invariant and in the non-invariant intercept conditions no 

overall η
2 

values larger than 0.01 were found, indicating that the independent variables 

did not have an effect on the bias and relative bias of the parameter estimates.  

In the non-invariant loading conditions overall medium and large effect sizes 

were found. Table  .15 presents the η
2 

values for at least small effect sizes in the relative 

bias values. The η
2 

values obtained for the bias were the same as for relative bias. The 

results confirmed that the proportion of non-invariant items and the magnitude of the 

violations of invariance had medium and large effects on the bias and relative bias of the 

AR quasi-simplex parameter estimates.  



 

106 

 

Table 3.15  

η
2
values from the ANOVAs on the relative bias of the AR quasi-simplex conditions with 

non-invariant loadings  

 

 Relative bias 

ρ21 ρ32 ρ43 ρ54 

Overall .07 .09 .13 .17 

Prop non-inv. .02 .03 .04 .05 

Magnitude .04 .06 .08 .10 

 

Standard errors 

The ANOVAs conducted on the standard errors of the AR quasi-simplex 

parameter estimates revealed that in the invariant conditions and the conditions with 

violations of factorial invariance, the sample size explained 90% of the variance and the 

number of items explained between 7 to 10%. Neither the magnitude of the violations nor 

the proportion of non-invariant items had an effect on the standard errors of the AR 

quasi-simplex parameter estimates. Table 3.16 shows the η
2
 values of the conditions with 

at least a small effect size. Table 3.17 shows the standard errors of the AR quasi-simplex 

parameter estimates. Since the magnitude of violations and the proportion of non-

invariant items did not have an effect on the standard errors, the results are averaged over 

sample size and the number of items. Figures 3.22 to 3.25 show the standard errors of the 

AR quasi-simplex parameter estimates. The figures show that there are no differences 

between the invariant conditions and the conditions with violations to invariance. It can 

also be seen that the standard errors decreased as the sample size and as the number of 

items increased.  



 

 

1
0
7
 

Table 3.16  

η
2
values from the ANOVAs on the standard errors of the AR quasi-simplex parameter estimates 

 

 Invariant loadings and intercepts Non-invariant loadings Non-invariant intercepts 

 ρ21 ρ32 ρ43 ρ54 ρ21 ρ32 ρ43 ρ54 ρ21 ρ32 ρ43 ρ54 

Overall 0.99 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

N. Items 0.09 0.08 0.08 0.08 0.10 0.08 0.08 0.07 0.09 0.09 0.07 0.07 

Sample size 0.90 0.90 0.91 0.91 0.88 0.90 0.91 0.91 0.89 0.90 0.91 0.91 

N. Items x SS -- -- -- -- 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 

 

Table 3.17  

Standard errors of the AR quasi-simplex parameter estimates by the number of items and by sample size 

 

Num. 

items 

Sample 

size 

Invariant loadings and intercepts Non-invariant loadings Non-invariant intercepts 

ρ21 ρ32 ρ43 ρ54 ρ21 ρ32 ρ43 ρ54 ρ21 ρ32 ρ43 ρ54 

6 

100 0.12 0.11 0.09 0.08 0.12 0.11 0.10 0.09 0.12 0.10 0.09 0.08 

200 0.09 0.07 0.07 0.06 0.09 0.07 0.07 0.06 0.09 0.07 0.07 0.06 

500 0.06 0.05 0.04 0.04 0.06 0.05 0.04 0.04 0.06 0.05 0.04 0.04 

1000 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 

9 

100 0.11 0.09 0.08 0.07 0.10 0.09 0.08 0.08 0.11 0.09 0.08 0.07 

200 0.08 0.07 0.06 0.05 0.08 0.07 0.06 0.05 0.08 0.07 0.06 0.05 

500 0.05 0.04 0.04 0.03 0.05 0.04 0.04 0.03 0.05 0.04 0.04 0.03 

1000 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.02 0.04 0.03 0.03 0.02 

15 

100 0.09 0.07 0.07 0.06 0.09 0.08 0.07 0.07 0.09 0.08 0.07 0.06 

200 0.06 0.06 0.05 0.05 0.06 0.05 0.05 0.05 0.06 0.05 0.05 0.04 

500 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 

1000 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02 
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Figure  .22  tandard errors of ρ21 in the invariant conditions (InLI), non-invariant 

loading conditions (NiLd) and non-invariant intercept conditions (NiIn). 
 

 
Figure 3.23  tandard errors of ρ32 errors of ρ21 in the invariant conditions (InLI), non-

invariant loading conditions (NiLd) and non-invariant intercept conditions (NiIn). 
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Figure  .2   tandard errors of ρ43 errors of ρ21 in the invariant conditions (InLI), non-

invariant loading conditions (NiLd) and non-invariant intercept conditions (NiIn). 
 

 
Figure  .25  tandard errors of ρ54 errors of ρ21 in the invariant conditions (InLI), non-

invariant loading conditions (NiLd) and non-invariant intercept conditions (NiIn). 
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Root mean square error (RMSE) 

Table  .18 presents the η
2
 values obtained from the ANOVAs conducted on the 

RMSE of the AR quasi-simplex parameter estimates. Table 3.18 shows that in the 

invariant conditions and in the non-invariant intercept conditions the sample size 

explained 90% of the variance and the number of items explained 8%. In the non-

invariant intercept conditions neither the magnitude of the violations nor the proportion 

of non-invariant items showed effect sizes larger than 0.01.  

In contrast, in the non-invariant loading conditions all independent variables had 

at least a small effect size on the RMSE of the AR quasi-simplex parameter estimates. 

Sample size was still the independent variable that explained the larger amount of 

variance, between 42 and 76%, but the number of items, the magnitude of violations to 

invariance, and the proportion of non-invariant items had a larger effect than in the 

invariant and in the non-invariant intercept conditions. The number of items explained 

between 4 and 8% of the variance, the magnitude of violations explained between 6 and 

30%, and the proportion of non-invariant items explained between 4 and 16%. The 

interactions between the number of items and the sample size, and between the 

magnitude of violations and the proportion of non-invariant items showed small and 

medium effect sizes.  
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Table 3.18  

η
2
values from the ANOVAs on the RMSE of the AR quasi-simplex  parameter estimates 

 

 Invariant loadings and intercepts Non-invariant loadings Non-invariant intercepts 

 ρ21 ρ32 ρ43 ρ54 ρ21 ρ32 ρ43 ρ54 ρ21 ρ32 ρ43 ρ54 

Overall 0.99 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

N. Items 0.09 0.08 0.08 0.08 0.08 0.06 0.04 0.04 0.09 0.09 0.07 0.07 

Sample size 0.90 0.90 0.91 0.91 0.76 0.66 0.54 0.42 0.89 0.90 0.91 0.91 

Magnitude -- -- -- -- 0.06 0.14 0.21 0.30 -- -- -- -- 

Proportion -- -- -- -- 0.04 0.07 0.12 0.16 -- -- -- -- 

N. Items x SS -- -- -- -- 0.02 0.02 0.01 0.01 0.01 0.02 0.01 0.01 

Mag. X Prop. -- -- -- -- 0.02 0.03 0.05 0.06 -- -- -- -- 
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3.2.4 Model fit 

Tables 3.19 and 3.20 show the rejection rates for the invariant conditions and the 

conditions with violations of invariance, respectively. It can be observed that the rejection 

rates in all the conditions are close to 5%.  

 

Table 3.19  

Rejection rates in the invariant conditions in the AR quasi-simplex model 

 

Number of items Sample size Rejection rates 

6 

100 5 

200 5.7 

500 4.3 

1000 4.1 

9 

100 5.7 

200 5.6 

500 4.7 

1000 5.6 

15 

100 5.2 

200 6.3 

500 5.4 

1000 4.6 

 

Table 3.20 shows the rejection rates for the conditions with violations of 

invariance. It can be seen that although there are some conditions with rejection rates 

smaller and others larger than the nominal level, the results under violations to invariance 

(Table 3.20) are comparable to the rates in the invariant conditions (Table 3.19). No 

pattern was detected in terms of the number of items, the sample size, the proportion of 

non-invariant items, or the magnitude of the violations to invariance. These findings 

indicate that the manipulation of the violations of invariance did not affect the rejection 

rates in the AR quasi-simplex model.   
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Table 3.20 

Rejection rates in the conditions with violations of invariance in the AR quasi-simplex 

model 

 

Num. 

Items 

Magnitude 

of violations 

Sample 

size 

Non-invariant loadings Non-invariant intercepts 

1/3 non-inv. 2/3 non-inv. 1/3 non-inv. 2/3 non-inv. 

6 

Small 

100 6.4 3.9 4.6 5.9 

200 4.8 5.1 5.0 5.1 

500 5.5 5.6 5.2 4.6 

1000 5.7 3.6 5.8 5.5 

Medium 

100 3.7 5.3 5.7 4.3 

200 4.1 5.1 5.9 3.8 

500 5.4 6.0 5.3 5.4 

1000 5.3 4.6 4.3 5.5 

Large 

100 5.5 4.7 5.4 6.1 

200 6.3 5.9 4.6 5.0 

500 5.5 6.0 4.6 3.9 

1000 7.0 5.7 6.2 4.2 

9 

Small 

100 4.5 6.3 6.3 5.5 

200 5.5 6.1 4.3 5.6 

500 5.7 5.4 5.0 5.4 

1000 4.1 6.6 3.3 4.6 

Medium 

100 5.2 6.1 5.4 5.6 

200 5.2 5.9 4.2 5.8 

500 4.9 5.3 3.6 5.5 

1000 4.5 4.2 5.6 5.6 

Large 

100 4.4 5.9 6.6 6.5 

200 4.9 5.9 5.5 4.7 

500 4.8 6.3 4.6 6.1 

1000 5.1 5.2 4.5 5.6 

15 

Small 

100 6.7 6.5 6.2 4.8 

200 4.8 4.5 5.8 6.1 

500 4.4 6.5 5.9 4.2 

1000 5.1 5.8 4.5 4.2 

Medium 

100 6.8 4.7 5.8 6.0 

200 6.0 5.6 4.7 5.2 

500 4.6 6.0 5.7 4.7 

1000 5.4 5.2 4.2 5.2 

Large 

100 6.3 6.4 5.3 6.7 

200 5.6 4.7 4.6 6.3 

500 5.5 5.0 5.6 4.2 

1000 5.9 4.9 5.6 5.1 

 



 

114 

Chapter 4 

DISCUSSION 

The impact of analyzing composites formed by items that violate longitudinal 

measurement invariance has been explored in latent growth models. Leite (2007) and 

Wirth (2008) showed that wrong conclusions about growth can be formulated: biased 

growth parameter estimates as well as biased χ
2
 fit indices can be obtained under non-

invariance. However, no published research was found that examined the impact of 

violations of invariance in other longitudinal models.  

Several questions guided the present research: How many items should be 

invariant so that the conclusions about growth would not change? How different do the 

measurement parameters across time need to be to distort the growth estimates? Is the 

latent growth model affected in the same way by violations of invariance as are other 

models for longitudinal data? By answering these questions, the present study aimed to 

inform researchers about when they could have confidence in growth conclusions even in 

the presence of composites formed from items violating invariance. It was also of interest 

to study the violations of invariance in another method used to analyze longitudinal data, 

the AR quasi-simplex model. To answer these questions, a simulation study was 

conducted where the number of items violating invariance was manipulated as well as the 

magnitude of the violations over time. Composites were formed from the simulated items 

and were analyzed either by the LGM or the AR quasi-simplex model. Bias in the 

parameter estimates and the fit of the model were examined.  

A different pattern of results was found for the LGM and for the AR quasi-

simplex model. While the LGM parameter estimates were biased and the model fit was 
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severely affected by violations of invariance, the AR quasi-simplex parameters were 

usually unbiased and the model fit under violations of invariance were comparable to the 

invariant conditions. In this chapter the results are discussed, along with the limitations of 

the study and the conclusions. 

 

4.1 Non-convergence rates 

The percentage of samples with non-convergence was higher in the AR quasi-

simplex model than in the LGM. The invariant and the non-invariant conditions had 

similar rates of non-convergence which indicates that the convergence problems were 

related to the models themselves and not to the invariance issues.  

Similar results were found by the simulation study by Stockdale (2007). An AR 

quasi-simplex model and a LGM were fit to data simulated under the linear LGM and to 

data generated under an AR quasi-simplex model. He found higher convergence 

problems and inadmissible solutions when the data were analyzed with AR quasi-simplex 

than when the LGM was fit to the data, regardless of the model used to generate the data. 

Further, Stockdale found higher convergence problems and inadmissible solutions when 

the AR quasi-simplex was fit to data generated under the same model than under the 

LG . He found that low path coefficients (ρ=. 0), small sample sizes ( =100) and large 

residual variance (  1 11  were associated with non-convergence and inadmissible 

solutions.  

Stockdale originally identified the AR quasi-simplex model by constraining all 

residual variances to equality across time. In order to explain the high non-convergence 



 

116 

rates he compared models with different constraints but the non-convergence rates did 

not change drastically. 

The results of the present study are congruent with the results of Stockdale 

(2007). More studies should be conducted to explain the non-convergence rates in the AR 

quasi-simplex model. Since this was not purpose of the current study this issue was not 

further explored.  

 

4.2 Bias in the parameter estimates 

In general, it was found that as the magnitude of the violations increased and as 

the proportion of non-invariant items increased, the bias in the parameter estimates also 

increased, bringing support to Hypotheses 1 to 3.  However, the effects of the 

independent variables were different for each parameter estimate and for each model. In 

the LGM, the magnitude of violations and proportion of non-invariant item intercepts 

only affected the slope factor mean, while the effect of the non-invariant loadings was 

mostly in the slope factor mean, variance, and the covariance between the intercept and 

the slope. In contrast, in the AR quasi-simplex model, the non-invariant loadings equally 

affected all the path coefficients while non-invariant intercepts had no effect. In this 

section, an explanation for the different pattern of results is provided.  

In the LGM the slope factor was most affected by the violations of invariance in 

contrast to the intercept factor. To understand why the intercept factor mean was not 

affected, it should be noticed that the loadings in the LGM were chosen such that the 

intercept factor was defined by the composite of the first measurement occasion. Hence, 
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the mean of the intercept factor mean was defined by the mean of the composite at the 

first measurement occasion as shown in Equation (68), 

 

     
    

 (68) 

 

The mean of the composite can be expressed in terms of the common factor 

model as in Equation (69),  

 

     
   

    
    

 (69) 

 

The first order factor mean  
ξ1

at time 1 was generated with a value of 0, and as a 

consequence the loadings did not have an impact in the intercept factor mean. The 

intercept factor mean adopted the value of the sum of the intercepts at the first 

measurement occasion,  1
 . Since the violations of invariance in the intercepts were only 

shown from the second to the fifth waves, the item intercepts at the first measurement 

occasion were not affected by the lack of invariance. Hence, the intercept factor mean 

adopted the value that was expected.  

It should be noted that the intercept factor can be defined by any wave and not 

only by the first measurement occasion as was the case in the present analysis. If the 

intercept factor mean were defined by a composite from the second to the fifth 

measurement occasion, greater bias in the intercept factor mean would have been 

observed. After wave one, the true values of  
 
were larger than zero, so that the effect of 
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the loadings would not be cancelled. Also, the violations of invariance in the intercepts 

would be shown after wave one, changing the value of the sum of the item intercepts.  

To explain why the slope factor mean was affected, two cases will be considered, 

one in which the loadings are changing over time, and the second case in which intercepts 

are changing over time.  

In case 1, there are non-invariant loadings, but invariant intercepts as expressed in 

Equation (70) 

 

      
    

     
    

     
    

     
    

     
    

 

    

    

    

    

    

 

     

     

     

     

     

 (70) 

 

Since, as explained before,   
η1

   , Equation (70) can be rewritten as,  

   
    

  
    

  
    

  
    

  
    

 

     

     

     

     

     

 (71) 

 

When the loadings are non-invariant over time, each first order latent mean factor 

is changed by a different amount. For example, using the generating values for the 

conditions with 6 items, large violations of invariance and 2/3 of non-invariant items, the 

loading sums at each time point are 4.20, 3.91, 3.62, 3.33 and 3.04, such that, 
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 (72) 

 

Equation (72) shows that the means of the first order latent factors were re-scaled 

at each measurement occasion by a different amount. Since the item loadings sums were 

decreasing, the change over time in the first order latent factors was smaller than it should 

be considering the true values, and hence the slope factor mean was underestimated. It 

should be noted that if the item loadings were generated to have increasing values over 

time, the opposite pattern of results would have been observed. That is, with increasing 

loadings over time it would be expected that the estimated slope factor mean would 

overestimate the true value.  

In the second case the loadings are invariant over time but the intercepts are non-

invariant. As a consequence, in each first order latent factor a different amount is added. 

For example, for the conditions with 6 items, large violations of invariance and 2/3 of 

non-invariant items, the loading sums at each time point are 2.1, 4.26, 6.42, 8.58 and 

10.74 at each time point, such that, 

 

          

          

          

          

           

 

    

    

    

    

    

 

     

     

     

     

     

 (73) 
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Equation (73) shows that at each time point, the mean of the composites were 

changed by a different amount. Since this amount was increasing over time, the 

composites seemed to change at a higher rate than what the true growth parameter values 

were generated to be. As a consequence, the slope factor mean was overestimated. It 

should be noted that if the item intercepts were generated to decrease over time, then the 

slope factor mean would have been underestimated.  

Equation (73) shows that the amount by which the composites were changed due 

to non-invariant intercepts is much larger than the amount they changed due to non-

invariant loadings (Equation 72). Hence, the larger bias in the slope factor mean is 

observed with non-invariant intercepts.  

Regarding the variances of the growth factors and the covariance, it should be 

noted that while the intercepts have no impact in the covariance structure the loadings do 

have an impact. It was expected that non-invariant loadings would affect the growth 

factor variances. However, the intercept factor variance was unbiased in the presence of 

violations of invariance. The reason is that the intercept factor was defined by the first 

composite and the violations of invariance change the values of the loadings only after 

the second measurement occasion. If the intercept factor was defined by the composite at 

a different wave, larger bias would have been observed in the intercept factor variance.  

It should be emphasized that the same pattern of results was found in the 

simulation study conducted by Wirth (2008). He found that the slope factor mean showed 

the largest degree of bias, and that the intercept factor mean and variance resulted in the 

least amount of bias. These results correspond to the conditions in which no correlations 

over time in the unique factors were simulated, which is the way the data were simulated 
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in the present study. Wirth found that in the conditions in which the items were generated 

to have correlated unique factors the bias in the variances and covariances of the growth 

factors increased even in the invariant conditions.  

The path coefficients of the AR quasi-simplex model showed small bias only in 

the conditions of non-invariant loadings. In general, the path coefficients are dependent 

on the correlations among the measures, and the correlations are affected by the item 

loadings. Since the item intercepts do not impact the correlations among the items, the 

AR quasi-simplex coefficients were unbiased regardless of the invariance in the item 

intercepts. In this study, bias in the means of the latent variables of the AR quasi-simplex 

was not examined.  

 

4.3 Model fit 

Hypotheses 4 to 6 concern the impact of the violations of invariance on the fit of 

the LGM and the AR quasi-simplex model. The results differed in the two models 

examined. While in the AR quasi-simplex the rejection rates can be interpreted as Tupe I 

error rates, in the LGM there was a different pattern of results in the conditions with non-

invariant loadings and in the conditions with non-invariant intercepts. In the LGM 

conditions with non-invariant intercepts the rejection remained close to the nominal level. 

However, with non-invariant loadings, the percentage of replications in which the χ
2
 

rejected the null hypothesis was larger than 5% in most conditions.  

Even though the rejection rates were initially conceptualized as Type I error rates, 

an alternative explanation is that the non-invariant loadings changed the functional form 

of the growth trajectory, and as a consequence a misspecified model was fit to the data. If 
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this was the case, the high rejection rates shown in Table 3.10 could be interpreted as 

statistical power. Although a LGM with alternative growth trajectories was not examined 

in the present study, Wirth (2008) simulation study indicates that it is possible that 

violations of invariance changed the true structural model. Wirth compared the fit of two 

different LGM models under violations of invariance: a model in which the basis 

functions (the loadings relating the growth factors to the composites) were fixed to reflect 

a linear trajectory, and a model in which the basis functions were freely estimated so that 

no specific trajectory form was imposed. It was found that a model with freely estimated 

basis functions was accepted over a linear LGM with non-invariant item loadings over 

time, which indicated the existence of non-linear trajectories. It was argued that the freely 

estimated basis functions absorbed the non-invariance in the item loadings which 

changed the functional form of the trajectories. Further, Wirth found that non-invariant 

intercepts did not affect the fit of the model as long as the loadings were invariant. These 

results are consistent with what was found in the present study. The non-invariant 

intercepts did not change the functional form of the growth trajectory; however, non-

invariant loadings affected the fit of the LGM. It could be the case that non-invariant 

loadings changed the functional form of the growth trajectory and that as the sample size 

increased, the power of the LGM to correctly reject the misspecified model increased. To 

examine the change in the functional form of the growth trajectories it would be 

necessary to compare the fit of a quadratic LGM in comparison to the linear LGM. 

It should be noted that in the present simulation study the generating growth 

trajectory was fit to the data. However, in practice the true model is unknown. The 

simulation results suggest that if a researcher were to fit a quadratic LGM to composites 
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formed by sums of items with non-invariant loadings, it might be mistakenly concluded 

that the data follows a quadratic trajectory. This hypothesis should be tested in a 

simulation study. 

 

4.4 Limitations  

As in any simulation study, the present research has a number of limitations that 

need to be addressed. The two major limitations of the study concern the extent to which 

the results can be generalized to real situations and the comparability of results in the 

LGM and in the AR quasi-simplex model.  

The extent to which the results can be generalized to situations encountered in 

practice is related to the selection of the parameter values used to generate the data. In the 

AR quasi-simplex model the generating parameter values were chosen from a published 

paper in which real data was analyzed using the AR quasi-simplex (Morera, et al., 1998). 

In the case of the LGM model the growth parameter values were chosen based on 

previous simulation studies (Muthén & Muthén, 2002) that in turn chose the values based 

in results found in practice. Muthén and Muthén (2002) simulated the data such that the 

R
2
 values of the analyzed composites over time ranged from .50 to .74. To avoid another 

source of variability, in the present study it was chosen to maintain the R
2
 values constant 

over time and R
2
 values of .80 were chosen. Although it could be argued that this value is 

higher than what is frequently found, studies have reported R
2
 values between 83 and 84 

(Bollen & Curran, 2006). Wirth (2008) used a constant R
2
 value of .70, and obtained the 

same pattern of results as the ones reported in the present study. In general, when the 

growth factors can explain proportions of variance in these ranges, it is expected that the 
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results can be generalized. In the cases in which the growth factors explain a smaller 

proportion of variance, it is expected that the lack of invariance will have a lower impact 

in the growth estimates. 

Another limitation of the present study concerns the choice of identification 

constraints in the AR quasi-simplex model. In the present study, the latent variable of the 

fifth measurement occasion was identified by setting its unique variance to zero as 

suggested by Biesanz (2012) and Jöreskog (1979b). The implication of this identification 

constraint is that the last composite is measured without error. In practice, this may be an 

unrealistic assumption that might lead researchers to choose a different set of 

identification constraints, such as constraining the unique variances of the last two 

measurement occasions to equality. This more realistic constraint was initially proposed 

but high non-convergence rates were obtained. Although the change in identification 

constraints should not affect the fit of the model, previous studies have shown that in 

certain models the change in identification constraints altered the model fit (Millsap, 

2001). For these reasons, the results of the AR quasi-simplex model under violations of 

invariance should be studied with a different set of constraints.  

The extent to which the results of the LGM can be compared to the results of the 

AR quasi-simplex model should be examined. Although it is tempting to conclude that 

the impact of violations of invariance is larger in the LGM than in the AR quasi-simplex 

model, more studies should be conducted before this statement can be made. Marsh, Hau 

& Wen (2004) showed that conclusions made from models with different levels of 

misspecification can be misleading. It could be the case that the level of misspecification 

in the AR quasi-simplex model lead to an acceptable misspecified model, while the level 
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of misspecification was larger in the LGM. One way to explore this would be to conduct 

a simulation study with the same conditions explored in the present study but increasing 

the sample size to a larger N, (e.g., 500,000). By doing this, it could be determined if the 

two models show the same levels of misspecification in the population.  

The last limitation identified is that in the present study conditions with 

violations of invariance in the loadings or in the intercepts were simulated, but no 

conditions in which both parameters violated invariance were examined. In practice, it is 

frequently the case that if an item has a non-invariant loading its intercept will also be 

non-invariant. From the results of the simulation study it can be inferred that when the 

items have violations of invariance in loadings and intercepts, the same pattern of results 

observed in the conditions with non-invariant loadings would be found but it would be 

expected that the bias in the slope factor mean would increase.  

 

4.5 Recommendations 

Based on the results of the present study several recommendations can be offered 

to researchers interested in making conclusions from longitudinal data. The first 

recommendation is that longitudinal invariance should be routinely tested, rather than 

assumed. The results of the simulation study add to the existing literature showing that 

when there are violations of invariance, wrong conclusions can be made, especially when 

analyzing the data with the LGM (Ferrer, Balluerka, & Widaman, 2008; Leite, 2007; 

Wirth, 2008). The longitudinal confirmatory factor analysis described in Chapter 1 

should be used to test for invariance by sequentially constraining item parameters as 

suggested by Jöreskog (1971). If it is found that the items have invariant loadings and 



 

126 

intercepts, the items can be summarized in composites and analyzed using a LGM or an 

AR quasi-simplex model. However, if some of the items are found to have violations of 

invariance, models that incorporate both the measurement and the structural relations 

should be used, such as the curve of factors model and the AR quasi-simplex with items 

defining each latent factor. Leite (2007) showed that the curve of factors model can yield 

unbiased estimates of growth under violations of invariance when item parameters are 

allowed to be freely estimated over time.  

An alternative is to test for invariance in a model that incorporates the 

measurement and the structural relations, such as in the curve of factors model. However, 

if a model such as the curve of factors model shows poor fit to the data when testing for 

invariance, the lack of fit can be due to violations of measurement invariance or due to a 

misspecified structural model. For example, a source of structural misfit can come from 

fitting a non-linear trajectory to the data that follows a linear trajectory. If the structural 

model is misspecified it can alter the measurement model which may have consequences 

in the conclusions about measurement invariance. In order to avoid the confounding of 

the sources of misfit, the approach suggested by Anderson and Gerbing (1988) and by 

Mulaik and Millsap (2000) should be followed. This approach consists of testing a series 

of nested models in which first, the fit of the measurement model is evaluated by 

saturating the structural relations between the latent variables. If the measurement model 

fits the data, the structural relations are examined. This approach would permit 

distinguishing among the sources of lack of fit, if any.  

Researchers interested in examining invariance using models that incorporate the 

measurement and the structural relations should be cautious about the consequences of 
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selecting a non-invariant item as the referent indicator to identify the model. Ferrer, 

Balluerka, and Widaman (2008) studied the impact of measurement non-invariance in a 

curve of factors model using real data from an alcohol prevention program. A series of 

confirmatory factor analysis were conducted and the hypothesis of metric invariance was 

rejected indicating that some items were non-invariant. Two different second-order latent 

growth curve models were fit to the data that only differed in the item chosen as the 

referent indicator. The results showed completely different growth trajectories obtained 

from the two models; using one item as a referent indicator yielded a significant linear 

growth trajectory, while no significant growth was detected when using a different item 

as the reference indicator.  These results indicate that partial invariance can have a drastic 

impact in the conclusions made regarding growth, depending on the choice of referent 

indicator.  

The results of the AR quasi-simplex model suggest that in general, researchers 

can obtain unbiased path coefficients with small and medium violations of invariance and 

with 1/3 of non-invariant items. This does not suggest that researchers should stop testing 

for invariance in the AR quasi-simplex model. The researchers need to determine the 

extent of the violations of invariance. If the magnitude of the violations is comparable to 

the conditions of the present simulation study and if there are only 1/3 of non-invariant 

items, the researchers could use item composites if the sample sizes do not permit the use 

of a full SEM model that incorporates the measurement and the structural relations.  

The last recommendation is that whenever possible the use of composites should 

be avoided if longitudinal invariance is unexplored. As shown in the present results, 

forming composites when there are violations of invariance can yield biased conclusions. 
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There are other disadvantages related to the use of composites. The first one is that if the 

items have correlated unique variances over time, these are ignored when forming 

composites. Wirth (2008) showed that when the correlated unique variances are ignored 

the growth estimates can be biased even with invariant items.  

 

4.6 General conclusion  

Analytic results presented in Chapter 1 showed that the violations of longitudinal 

invariance can bias the parameter estimates of models such as the LGM and the AR 

quasi-simplex model. The present simulation study further showed that the impact of 

non-invariance can vary by the longitudinal model used. In general, researchers should 

expect that violations of metric and strong factorial invariance would bias the parameter 

estimates of the LGM as well as the fit of the model. Violations of metric and strong 

longitudinal invariance would yield unbiased AR quasi-simplex path coefficients, and 

adequate rejection rates.  

The present study emphasizes the importance of examining longitudinal 

measurement invariance before forming composites of the items to obtain adequate 

conclusions from longitudinal studies. Special caution is advised when using the LGM 

since biased estimates and a different growth trajectory can be found under non-

invariance.  

Finally, it is advised to avoid the use of item composites if longitudinal 

measurement invariance has not been investigated.  
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APPENDIX A 

ITEM VARIANCES AND COMMUNALITIES  
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 In this appendix the item variances and the communalities are shown for 

conditions with invariant loadings over time, and with small, mediums, and large 

violations of invariance over time.  

 

Table 5.1  

Item variances and communalities in conditions with invariant loadings and intercepts 

 

Item 
Time1 Time2 Time3 Time4 Time5 

 
2
 h

2
  

2
 h

2
  

2
 h

2
  

2
 h

2
  

2
 h

2
 

1 1.00 0.30 1.12 0.38 1.36 0.48 1.71 0.59 2.20 0.68 

2 1.80 0.28 2.00 0.35 2.39 0.46 2.98 0.56 3.78 0.66 

3 0.76 0.21 0.82 0.26 0.94 0.36 1.12 0.46 1.37 0.56 

4 1.02 0.22 1.11 0.28 1.28 0.38 1.55 0.48 1.90 0.58 

5 1.70 0.23 1.85 0.30 2.16 0.40 2.62 0.50 3.26 0.60 

6 0.50 0.20 0.54 0.26 0.61 0.35 0.73 0.45 0.89 0.55 

7 0.86 0.18 0.92 0.23 1.04 0.32 1.22 0.43 1.47 0.52 

8 2.52 0.25 2.76 0.31 3.24 0.41 3.97 0.52 4.96 0.62 

9 1.22 0.18 1.31 0.24 1.48 0.33 1.75 0.43 2.10 0.52 

 

 

Table 5.2  

Item variances and communalities in conditions with small violations of invariance in the 

loadings 

 

Item 
Time1 Time2 Time3 Time4 Time5 

 
2
 h

2
  

2
 h

2
  

2
 h

2
  

2
 h

2
  

2
 h

2
 

1 1.00 0.30 1.09 0.36 1.27 0.45 1.51 0.54 1.80 0.61 

2 1.80 0.28 1.95 0.33 2.24 0.42 2.64 0.51 3.12 0.58 

3 0.76 0.21 0.80 0.25 0.89 0.32 1.01 0.41 1.16 0.48 

4 1.02 0.22 1.09 0.26 1.22 0.34 1.39 0.43 1.61 0.50 

5 1.70 0.23 1.81 0.28 2.04 0.36 2.36 0.45 2.74 0.53 

6 0.50 0.20 0.53 0.24 0.58 0.32 0.66 0.40 0.76 0.47 

7 0.86 0.18 0.92 0.23 1.04 0.32 1.22 0.43 1.47 0.52 

8 2.52 0.25 2.76 0.31 3.24 0.41 3.97 0.52 4.96 0.62 

9 1.22 0.18 1.31 0.24 1.48 0.33 1.75 0.43 2.10 0.52 

 

  



 

138 

Table 5.3 

Item variances and communalities in conditions with medium violations of invariance in 

the loadings 

 

Item 
Time1 Time2 Time3 Time4 Time5 

 
2
 h

2
  

2
 h

2
  

2
 h

2
  

2
 h

2
  

2
 h

2
 

1 1.00 0.30 1.06 0.34 1.18 0.41 1.33 0.47 1.47 0.52 

2 1.80 0.28 1.90 0.32 2.10 0.38 2.34 0.44 2.56 0.49 

3 0.76 0.21 0.79 0.24 0.85 0.29 0.92 0.35 0.99 0.39 

4 1.02 0.22 1.07 0.25 1.15 0.31 1.26 0.37 1.36 0.41 

5 1.70 0.23 1.77 0.27 1.93 0.33 2.12 0.39 2.30 0.43 

6 0.50 0.20 0.52 0.23 0.56 0.28 0.60 0.34 0.65 0.38 

7 0.86 0.18 0.92 0.23 1.04 0.32 1.22 0.43 1.47 0.52 

8 2.52 0.25 2.76 0.31 3.24 0.41 3.97 0.52 4.96 0.62 

9 1.22 0.18 1.31 0.24 1.48 0.33 1.75 0.43 2.10 0.52 

 

 

Table 5.4  

Item variances and communalities in conditions with large violations of invariance in the 

loadings 

 

Item 
Time1 Time2 Time3 Time4 Time5 

 
2
 h

2
  

2
 h

2
  

2
 h

2
  

2
 h

2
  

2
 h

2
 

1 1.00 0.30 1.04 0.32 1.11 0.37 1.17 0.40 1.19 0.41 

2 1.80 0.28 1.86 0.30 1.97 0.34 2.07 0.37 2.11 0.38 

3 0.76 0.21 0.77 0.22 0.81 0.26 0.84 0.28 0.85 0.29 

4 1.02 0.22 1.05 0.24 1.10 0.27 1.14 0.30 1.16 0.31 

5 1.70 0.23 1.74 0.25 1.83 0.29 1.91 0.32 1.94 0.33 

6 0.50 0.20 0.51 0.22 0.53 0.25 0.55 0.28 0.56 0.29 

7 0.86 0.18 0.92 0.23 1.04 0.32 1.22 0.43 1.47 0.52 

8 2.52 0.25 2.76 0.31 3.24 0.41 3.97 0.52 4.96 0.62 

9 1.22 0.18 1.31 0.24 1.48 0.33 1.75 0.43 2.10 0.52 
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APPENDIX B 

ITEM MEANS  
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In this appendix the item means are shown for conditions with invariant intercepts 

over time, and with small, mediums, and large violations of invariance over time.  

 

Table 5.5 

Item means in conditions with invariant loadings and intercepts  

 

Item Time1 Time2  Time3 Time4 Time5 

1 0.5 0.68 0.85 1.03 1.20 

2 0.6 0.83 1.05 1.28 1.50 

3 0.3 0.43 0.55 0.68 0.80 

4 0.4 0.55 0.70 0.85 1.00 

5 0.6 0.80 1.00 1.20 1.40 

6 0.4 0.50 0.60 0.70 0.80 

7 0.3 0.40 0.50 0.60 0.70 

8 0 0.20 0.40 0.60 0.80 

9 0.3 0.42 0.54 0.66 0.78 

 

 

Table 5.6 

Item means in conditions with small violations of invariance in the intercepts 

 

Item Time1 Time2  Time3 Time4 Time5 

1 0.5 0.68 0.85 1.03 1.20 

2 0.6 0.83 1.05 1.28 1.50 

3 0.3 0.43 0.55 0.68 0.80 

4 0.4 0.55 0.70 0.85 1.00 

5 0.6 0.80 1.00 1.20 1.40 

6 0.4 0.50 0.60 0.70 0.80 

7 0.3 0.40 0.50 0.60 0.70 

8 0 0.20 0.40 0.60 0.80 

9 0.3 0.42 0.54 0.66 0.78 
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Table 5.7 

Item means in conditions with medium violations of invariance in the intercepts 

 

Item Time1 Time2  Time3 Time4 Time5 

1 0.5 0.78 1.06 1.34 1.62 

2 0.6 0.96 1.32 1.68 2.04 

3 0.3 0.5 0.7 0.9 1.1 

4 0.4 0.64 0.88 1.12 1.36 

5 0.6 0.92 1.24 1.56 1.88 

6 0.4 0.56 0.72 0.88 1.04 

7 0.3 0.4 0.5 0.6 0.7 

8 0 0.2 0.4 0.6 0.8 

9 0.3 0.42 0.54 0.66 0.78 

 

 

Table 5.8 

Item means in conditions with large violations of invariance in the intercepts 

 

Item Time1 Time2  Time3 Time4 Time5 

1 0.5 1.2 1.9 2.6 3.3 

2 0.6 1.5 2.4 3.3 4.2 

3 0.3 0.8 1.3 1.8 2.3 

4 0.4 1 1.6 2.2 2.8 

5 0.6 1.4 2.2 3 3.8 

6 0.4 0.8 1.2 1.6 2 

7 0.3 0.4 0.5 0.6 0.7 

8 0 0.2 0.4 0.6 0.8 

9 0.3 0.42 0.54 0.66 0.78 
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APPENDIX C 

RE-SCALING OF THE GROWTH PARAMETER ESTIMATES 
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In order to study violations of invariance in the LGM, item level data were 

generated from a curve of factors model (COFM). Item composites were formed at each 

time point by summing the items, and a LGM was used to analyze the composites as 

planned. However unexpected results were obtained. The bias and relative bias in the 

control conditions were computed using the generating parameter values shown in 

Equation 60. Since in the control conditions all the items were invariant over time, bias 

and relative bias values near zero were expected, but this was not the case. For example, 

for the control condition with 6 items and a sample size of 1000, relative bias values as 

large as 16 were found for the intercept factor variance, the slope factor variance and the 

covariance between the intercept and the slope factors. It was found that a re-scaling of 

the true growth parameter values was needed.  

In this appendix the re-scaling of the growth parameter values that occurred by 

modeling composites of items instead of the first order latent factors is explained.  

 

Intercept factor mean  

In the LGM and the COFM the intercept factor mean ( 
η1

  represents the mean of 

the composite (   
  or the mean of the first order latent factor ( 

ξ1
  in which the slope 

factor loading is set to zero. The data were generated under a COFM in which the first 

order factor at wave 1 had a zero slope factor loading (See Figure 2.1). In other words, 

the intercept factor mean was defined as the mean of first order factor at wave 1: 

 

    
  

 1
 (74) 
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The data were generated with   
ξ1

 0and  
η1

 0. However, the data were not 

analyzed using a COFM. Instead, a LGM was fitted to composites. As explained in 

Chapter 1, when the items used to generate the composites can be modeled by the 

common factor model, the mean of the composite can be expressed as the mean of the 

latent factor weighted by the sum of the item loadings plus the sum of the intercepts. The 

composite of the first measurement occasion can be expressed as, 

 

  
 1

  1
   1

 
 
ξ1

 (75) 

 

where 1
 and 1

 
are the sum of the item intercepts and the item loadings at time 1, 

respectively.  

Since a LGM was fitted to the composites of the items, the estimated intercept 

factor mean   
η1

, was defined as the mean of the composite at the first wave: 

 

     
  

 1
 (76) 

 

Substituting Equation (75) in (76),  

 

     
  1

   1
 
 
ξ1

 (77) 

Since the mean of the latent factor at time 1 was generated as zero  
ξ1

 0 (Table 

2.4 contains the generating parameter values), the estimated latent factor mean adopted 

the value of the sum of the intercepts at wave 1, 
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  1

  (78) 

 

Table 5.9 shows the sums of the generating item intercepts and loadings at wave 

1. It should be noted that this sum was the same in all time points in the conditions in 

which there were invariant loadings and invariant intercepts. It can be seen that the sum 

of the intercepts and loadings varied by the number of items. 

 

Table 5.9  

Sum of item intercepts and loadings in the first measurement occasion  

 

Num. Items Intercept sum Loading sum 

6 2.1 4.2 

9 3.4 6.0 

15 6.2 9.9 

 

In other words, Equation (78) shows that although the intercept factor mean was 

generated to be zero in the COFM, by analyzing composites of the items, the estimated 

intercept factor mean adopted the value of the sum of the item intercepts at wave 1.  

 

Slope factor mean  

In the COFM, the mean of the first order latent factors can be expressed as a 

function of the intercept and slope factors as, 
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 (79) 

 

The mean of the slope factor mean can be expressed as, 

 

    
    

     

   
    

     

   
    

     

   
    

     

   
    

     

 (80) 

 

Since the intercept factor mean was generated to be zero  
η1

  , then,  

 

    
    

   

 
    

   

 
    

   

 
    

 (81) 

 

However, the data were not analyzed using the COFM. Instead, item composites 

were analyzed using a LGM. Substituting the mean of the first order latent factors  
ξt

in 

Equation (79) with the mean of the item composites expressed as in Equation (75), yields, 
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 (82) 

 

where  
η1

 and   
η2

 represent the estimated intercept and slope factor means. In the 

conditions in which longitudinal invariance holds, the item intercepts and loadings sums 

did not change over time so the subindices denoting time were dropped. Since,   
η1

 

 1
 asdetermined in Equation (78), it follows that, 

 

      

     

     

     

     

 

     

     

     

     

     

 (83) 

 

Since the mean of the first order latent factor at wave 1 was generated to be zero,  

   
  , then,  

 

      
     

     

 
     

     

 
     

     

 
     

 (84) 
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When comparing Equation (84) to Equation (81), it is observed that the latent factor 

means were re-scaled by multiplying the sum of the loadings at each time point. As a 

consequence, the estimated slope factor mean represented the change in the re-scaled 

latent factor means.  

 

Covariance structure 

In the COFM, the variance of the first order latent factors,  
ξt

, can be expressed 

as, 

 

  
ξt

              (85) 

However, composites were analyzed instead of the first order latent factors, as 

 

   t

2                  (86) 

 

whereΨ 11 is the estimated variance of the intercept factor, Ψ 22  is the estimated variance 

of the slope factor, and Ψ 12 is the estimated covariance of the intercept and slope factors. 

Expressing the composites as a function of the common factor model, 

 

   
     

   
                  (87) 
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where t
 
  is the sum of the unique variances at wave 1. Since the growth latent factors are 

modeling only the variance of the first order factor and not the unique variance, the 

unique variance term can be dropped, 

 

   
     

              (88) 

 

Equation (88) shows that the variance of the first order latent factor was re-

scaled by multiplying the square of the sum of the intercept loadings. Hence, the 

estimated intercept factor variance, the estimated slope factor variance, and the estimated 

covariance between the intercept and the slope factors modeled the re-scaled first order 

latent factor.  

 

Re-scaling the growth parameter values 

One of the purposes of the present research was to determine the bias, relative 

bias, standard errors and RMSE of the estimated parameter values of the LGM when 

composites were formed by items that violated longitudinal factorial invariance. In order 

to calculate bias, relative bias and the RMSE of the parameter estimates, the true 

parameter values must be known. Since this research used a simulation study, the true 

parameter values were known. However, as shown above, by using composites instead of 

the latent factors there was a re-scaling that affected the estimated growth parameters 

even in the conditions in which the items were invariant over time. If the re-scaling were 

not corrected, inflated bias, relative bias and RMSE values would have been obtained 

even in the invariant conditions.  



 

150 

To correct for the re-scaling that occurred by using composites of items instead 

of the first order latent factors there were two options: to re-scale the estimated growth 

parameter values or to re-scale the true growth parameter values. In order to re-scale the 

estimated growth parameter values, it was necessary to change the estimated growth 

parameter values in each replication in each condition. Instead, the re-scale in the true 

parameter values was a one-time change, so this was the approached followed.  

To re-scale the intercept factor mean, the sum of the item intercepts were added 

to the true value. The slope factor mean was re-scaled by multiplying the generating 

value by the sum of the item loadings. Finally, the intercept factor variance, slope factor 

variance and intercept-slope covariance were re-scaled by multiplying their generating 

parameter values by the square of the sum of the loadings. Since the sum of the intercepts 

and loadings varied depending on the number of items (Table 5.9), a different set of re-

scaled true values were obtained for conditions with 6, 9 and 15 items as shown in Table 

5.10. 

 

Table 5.10  

Original and re-scaled true growth parameter values 

 

 
Original 

Re-scaled values 

 6 items 9 items 15 items 

Intercept mean ( 
η1

) 0 2.10 3.40 6.20 

Slope mean ( 
η2

) 0.20 0.84 1.20 1.98 

Intercept variance (Ψ11) 0.50 8.82 18 49.01 

Slope variance (Ψ22) 0.10 1.76 3.60 9.80 

Intercept-slope covariance (Ψ12) 0.044 0.78 1.58 4.31 

 



 

151 

After implementing the re-scaling of the growth parameter estimates, the large 

bias and relative bias values previously observed in the conditions with invariant loadings 

and invariant intercepts decreased substantially. Tables 3.3 and Table 5.11 in Appendix D 

show that the relative bias and bias values of the growth parameter estimates under 

longitudinal invariance is zero, as expected.  
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APPENDIX D 

BIAS IN THE LGM GROWTH PARAMETER ESTIMATES  
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In this appendix the bias of the growth parameter estimates by number of items, 

can be found for the invariant conditions. The bias results for the conditions with non-

invariant loadings and with non-invariant intercepts are shown by number of items, 

magnitude of the violations, and the proportion of non-invariant items. 

 

Table 5.11 

Bias in the LGM parameter estimates in the invariant conditions 

 

Num. 

items 

Intercept 

factor mean 

Intercept 

factor 

variance 

Slope factor 

mean 

Slope factor 

variance 

Intercept-

slope 

covariance 

6 0.001 0.001 -0.023 -0.007 0.005 

9 0.002 0.000 -0.092 -0.016 0.049 

15 -0.007 0.003 -0.362 -0.063 0.059 



 

 

1
5
4
 

Table 5.12  

Bias in the LGM parameter estimates in conditions with violations of invariance 

 

Num. 

items 

Effect 

size 

Prop. 

invariant 

Non-invariant loadings Non-invariant intercepts 

Int. 

mean 

Slope 

mean 

Int. 

var. 

Slope 

var. 

I-S 

covar. 

Int. 

mean 

Slope 

mean 

Int. 

var. 

Slope 

var. 

I-S 

covar. 

6 

Small 
1/3 0.02 -0.04 -0.01 -0.21 -0.10 0.00 0.09 -0.07 -0.02 0.01 

2/3 0.04 -0.08 0.01 -0.34 -0.18 0.00 0.13 -0.07 -0.01 0.01 

Medium 
1/3 0.05 -0.09 0.02 -0.40 -0.23 0.00 0.32 -0.01 -0.02 0.01 

2/3 0.08 -0.15 0.01 -0.63 -0.39 0.00 0.54 -0.07 -0.01 0.01 

Large 
1/3 0.08 -0.14 0.04 -0.57 -0.35 0.00 1.28 -0.09 -0.01 0.01 

2/3 0.13 -0.24 0.12 -0.88 -0.62 0.00 2.16 -0.04 -0.01 0.01 

9 

Small 
1/3 0.03 -0.06 -0.07 -0.40 -0.20 0.00 0.10 -0.10 -0.01 0.02 

2/3 0.05 -0.11 0.07 -0.71 -0.37 0.00 0.19 -0.07 -0.02 0.03 

Medium 
1/3 0.06 -0.12 0.02 -0.77 -0.43 0.00 0.42 -0.09 -0.03 0.01 

2/3 0.12 -0.23 0.09 -1.30 -0.81 0.00 0.78 -0.06 -0.03 0.01 

Large 
1/3 0.10 -0.18 0.08 -1.08 -0.66 0.00 1.68 -0.10 -0.03 0.02 

2/3 0.18 -0.34 0.22 -1.83 -1.29 0.00 3.12 -0.05 -0.01 0.03 

15 

Small 
1/3 0.05 -0.10 -0.07 -1.12 -0.50 -0.01 0.17 -0.20 -0.06 0.06 

2/3 0.09 -0.19 -0.04 -1.98 -1.06 -0.02 0.33 -0.25 -0.04 0.03 

Medium 
1/3 0.11 -0.21 -0.04 -2.08 -1.12 0.00 0.70 -0.33 -0.05 0.05 

2/3 0.19 -0.39 0.30 -3.68 -2.27 -0.01 1.32 -0.19 -0.03 0.03 

Large 
1/3 0.15 -0.30 0.24 -3.04 -1.75 0.01 2.80 -0.30 -0.05 0.06 

2/3 0.32 -0.59 0.89 -5.12 -3.59 0.00 5.28 -0.29 -0.04 0.08 
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APPENDIX E 

BIAS IN THE AR QUASI-SIMPLEX PARAMETER ESTIMATES 
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 In this appendix the bias of the AR quasi-simplex parameter estimates by number 

of items, can be found for the invariant conditions. The bias results for the conditions 

with non-invariant loadings and with non-invariant intercepts are shown by number of 

items, magnitude of the violations, and the proportion of non-invariant items. 

 

Table 5.13  

Bias in the AR quasi-simplex parameter estimates in the invariant conditions 

 

Num. items ρ21 ρ32 ρ43 ρ54 

6 0.00 0.00 0.00 0.00 

9 0.04 0.00 0.00 0.00 

15 0.04 0.00 0.00 0.00 
 

Table 5.14  

Bias in the AR quasi-simplex parameter estimates in conditions with violations of 

invariance 

 

Num. 

Items 

Effect 

size 

Prop. 

non-

inv. 

Non-invariant loadings Non-invariant intercepts 

ρ21 ρ32 ρ43 ρ54 ρ21 ρ32 ρ43 ρ54 

6 

Small 
1/3 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 

2/3 -0.02 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.00 

Medium 
1/3 -0.03 -0.03 -0.03 -0.03 0.00 0.00 0.00 0.00 

2/3 -0.05 -0.05 -0.05 -0.05 0.00 0.00 0.00 0.00 

Large 
1/3 -0.04 -0.04 -0.04 -0.04 0.00 0.00 0.00 0.00 

2/3 -0.07 -0.07 -0.08 -0.08 0.00 0.00 0.00 0.00 

9 

Small 
1/3 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 

2/3 -0.02 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.00 

Medium 
1/3 -0.02 -0.03 -0.02 -0.03 0.00 0.00 0.00 0.00 

2/3 -0.04 -0.05 -0.05 -0.05 0.00 0.00 0.00 0.00 

Large 
1/3 -0.04 -0.04 -0.04 -0.04 0.00 0.00 0.00 0.00 

2/3 -0.07 -0.07 -0.08 -0.09 0.00 0.00 0.00 0.00 

15 

Small 
1/3 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 

2/3 -0.02 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.00 

Medium 
1/3 -0.02 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.00 

2/3 -0.05 -0.05 -0.05 -0.05 0.00 0.00 0.00 0.00 

Large 
1/3 -0.04 -0.04 -0.04 -0.04 0.00 0.00 0.00 0.00 

2/3 -0.07 -0.07 -0.08 -0.08 0.00 0.00 0.00 0.00 

 



 

 

 


