Impact of Violations of Longitudinal Measurement Invariance
in Latent Growth Models and Autoregressive Quasi-simplex Models
by

Margarita Olivera-Aguilar

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

Approved July 2013 by the
Graduate Supervisory Committee:

Roger Millsap, Chair
Roy Levy

David Mackinnon
Stephen G. West

ARIZONA STATE UNIVERSITY

August 2013



ABSTRACT

In order to analyze data from an instrument administered at multiple time points it
IS a common practice to form composites of the items at each wave and to fit a
longitudinal model to the composites. The advantage of using composites of items is that
smaller sample sizes are required in contrast to second order models that include the
measurement and the structural relationships among the variables. However, the use of
composites assumes that longitudinal measurement invariance holds; that is, it is assumed
that that the relationships among the items and the latent variables remain constant over
time. Previous studies conducted on latent growth models (LGM) have shown that when
longitudinal metric invariance is violated, the parameter estimates are biased and that
mistaken conclusions about growth can be made. The purpose of the current study was to
examine the impact of non-invariant loadings and non-invariant intercepts on two
longitudinal models: the LGM and the autoregressive quasi-simplex model (AR quasi-
simplex). A second purpose was to determine if there are conditions in which researchers
can reach adequate conclusions about stability and growth even in the presence of
violations of invariance. A Monte Carlo simulation study was conducted to achieve the
purposes. The method consisted of generating items under a linear curve of factors model
(COFM) or under the AR quasi-simplex. Composites of the items were formed at each
time point and analyzed with a linear LGM or an AR quasi-simplex model. The results
showed that AR quasi-simplex model yielded biased path coefficients only in the
conditions with large violations of invariance. The fit of the AR quasi-simplex was not
affected by violations of invariance. In general, the growth parameter estimates of the
LGM were biased under violations of invariance. Further, in the presence of non-



invariant loadings the rejection rates of the hypothesis of linear growth increased as the
proportion of non-invariant items and as the magnitude of violations of invariance
increased. A discussion of the results and limitations of the study are provided as well as

general recommendations.



To my mom and my sister



ACKNOWLEDGMENTS

First and foremost, | owe a debt of gratitude to all the professors in the
Quantitative Psychology program at ASU: Leona Aiken, Craig Enders, David
MacKinnon, Roger Millsap and Steve West for their expert training and for providing a
very supportive learning environment. Thanks to my committee members David
MacKinnon, Roy Levy and Steve West for their helpful suggestions at critical junctures
in this project. | am especially grateful to my advisor, Roger Millsap, for his infinite
patience, support and guidance throughout my studies at ASU.

I would like to thank my colleagues at Educational Testing Service for their
support during the writing of my dissertation. In particular, I wish to thank Alina von
Davier, who invited me to participate in the graduate fellowship program, and to Andreas
Oranje, who supervised my participation in the program.

I would also like to thank my colleagues at Ceneval in Mexico for all the
encouragement they gave me to pursue my PhD studies. | am especially grateful to
Arturo Bouzas, Miguel Herrera and Lucia Monroy for all their support.

Thanks to my friends who always listened to my endless doubts and complaints
with unconditional love and compassion, Daniel Albarran, lan Blood, Yasemin Kisbu,
Yunuhen Nambo, Adriana Pichardo, Sandra Reyes and Victoria Serrano.

Last but not least, | want to express my deepest gratitude to my mom and my
sister, who provided me with the strength and love that | needed in the most difficult

times. I could not have done this without you.



TABLE OF CONTENTS

Page
LIST OF TABLES ...ttt b e viii
LIST OF FIGURES ...t Xi
CHAPTER
1 INTRODUCTION ..ottt 1
1.1 Measurement INVAITANCE ...........courrveirrrieireseeses et 3
1.2 Longitudinal measurement INVariance ..........c.oeeoerreererieessieeneseenenens 7
1.3 The longitudinal common factor model............ccccooveinniiniciinees 8
1.3.1 Longitudinal factorial invarianCe............ccccoveirneienneinreenesenene 12
1.3.2 Partial measurement iNVarianCe ..........cooeoerreenneeensieeseseeeseseeens 15
1.3.3 The common factor model and factorial invariance using
COMPOSITES ...ttt 17
1.3.4 1dentifiCation ........cccooeiiirieiiceeee e 19
1.3.5 ESHMALION. ..ottt 20
1.3.6 MOGEI FIT ... 22
1.4 Longitudinal MOGEIS ..o 25
1.4.1 Autoregressive simplex model ..........cccoeoeinnciineeee 26
1.4.2 Latent growth models..........ccooeiiiiniiicceeee 30
1.5 Impact of violations of factorial invariance in longitudinal
METNOAS ... 35
1.6 PUrp0oSe OF the STUAY .........cooireiirceeee e 45



CHAPTER Page

2 IMETHOD ... 47
2.1 Independent VariabIEsS ... 48
2.1.0 SAMPIE SIZE...eieeiieceec e 48
2.1.2 Total number of items and proportion of non-invariant items........ 49
2.1.3 Size of loading difference across measurement occasions ............. 50
2.1.4 Size of intercept difference across measurement occasions............ 55
2.1.5 Summary of CONAITIONS .......coveveiriciirieereere e 58
2.2 Generating MOGEIS .........ccovieiiicc e 60
2.2.1 Curve of factors MOdel...........ccoieiirriiice e 60
2.2.2 Autoregressive quasi-simplex model ..., 64
2.3 Data ANAIYSIS ... 65
2.3.1 CONVEIGEINCE.....cooiviieieiieeiest ettt 66
2.3.2 Parameter eStIMAtION..........ccvueiiiieiireeersieese e 66
2.3.3MOCEI It ..o 68

3 RESULTS ..ttt 69
3.1 Latent growth MOdel.........ccoueiiriiiiieeiecee e 70
3.1.1 Re-scaling of generating growth parameters..........ccccovvvevrrciennnns 70
3.1.2 NON-CONVErgence PErCENLAGES ........urvevrrerrerirreerreseeesreeeie e 70
3.1.3 Parameter eStIMAatiON...........cccuirirueiririeereeesesie e 71
LA MOUE] FIt .o 93
3.2 Autoregressive quasi-simplex model ... 96
3.2.1 Change in identification CONSIIaINTS ..........ccccvverirrerinneisseens 96

Vi



CHAPTER Page

3.2.2 NON-CONVErgence PErCENTAGES .......curvevrrerreirieirrisreiesreeeie e 97

3.2.3 Parameter eStIMatioN............cccovrrueirnieereieesesiee e 98

K |V oo L] 1 OSSR 112

4 DISCUSSION......coiiiieie ettt st ereente e e aeenee e 114

4.1 NON-CONVEIGENCE FALES ....c.veviririrriiresre e 115

4.2 Bias in the parameter eStMALES ..........cocerreirreineeesree s 116

1Y/ [T L] i ) SRS 121

A4 LIMITATIONS ...ttt 123

4.5 RECOMMENTALIONS. .....cueiveririeieierieieteseee ettt 125

4.6 General CONCIUSIONS ........ccucvieerieieiesieese e 128

REFERENGCES ... .ottt sttt et e s et e e e ne e 129
APPENDIX

A Item variances and COMMUNANTIES ..........cocoirreinieirer e 136

B HEM MEANS ... 139

C  Re-scaling of growth parameter eStimates ...........ccoceevrvreierrreriereresereeenenns 142

D Biasinthe LGM growth parameter eStimates ...........ccccovvvenrerinseresneenns 152

E  Biasinthe AR quasi-simplex parameter eStimates. ..........ccccovvererrererreenns 155

vii



LIST OF TABLES

Table Page
2.1 Items included in ach CONAITION .......cooveiieirice e 50

2.2 Generating item loadings per measurement occasion with small, medium and
large violations Of INVAITANCE ... 54

2.3 Generating item loadings per measurement occasion with small, medium and
large violations Of INVAITANCE ... 59
2.4 Generating means and variances for &; in the curve of factors model.................. 61

2.5 Generating item loadings, intercepts and unique variances in the invariant

CONTITIONS. ...ttt sttt et se st e st e e eseseeneeseneas 63
3.1 Acronyms for the conditions eXamined............oceerirrernniennneneese s 69
3.2 Non-convergence percentages for the LGM conditions with N=100................... 71
3.3 Relative bias of LGM parameter estimates in the invariant conditions................ 73
3.4 Relative bias of LGM parameter estimates under violations of invariance.......... 74

3.5 n?values from the ANOVAS on bias and relative bias of the LGM parameter
BSTIMALES ....eveeeieete ettt e st e e se st e et e e enente e ereneas 75
3.6 n’values from the ANOVAs on the standard errors of the LGM parameter
BSTIMALES ....eveeeieete ettt e st e e se st e et e e enente e ereneas 86
3.7 Standard errors of the LGM parameter estimates by the number of items and
DY SAMPIE SIZE.....e et 87
3.8 n’values from the ANOVASs on the RMSE of the LGM parameter estimates ...92
3.9 Rejection rates in the invariant conditions in LGM ........c..ccoceevveiiieneiineniennnen 93
3.10 Rejection rates in the conditions with violations of invariance in the LGM......95

viii



Table Page

3.11 Non-convergence percentages in the invariant conditions of the AR quasi-

SIMIPIEX .ttt 97
3.12 Non-convergence percentages in the AR quasi-simplex conditions with

VIOIatioNS OF INVAITANCE ..o s 98
3.13 Relative bias of the AR quasi-simplex parameter estimates in the invariant

CONTITIONS. ...ttt b st e e s et e e nse e 99
3.14 Relative bias of the AR quasi-simplex parameter estimates in the conditions

With violations OF INVAITANCE ... s 100
3.15 n* values from the ANOVAs on the relative bias of the AR quasi-simplex

conditions with non-invariant 10adings ... 106
3.16 n* values from the ANOVAs on the standard errors of the AR quasi-simplex

PAraMELEr SLIMALES .......eeveieeieiieeeiere ettt eneneens 107
3.17 Standard errors of the AR quasi-simplex parameter estimates by the

number of items and by Sample SIZe........cccoeiiiiiiices 107
3.18 n* values from the ANOVAs on the RMSE of the AR quasi-simplex

PAraMELEr SLIMALES .......eeverieeeeiireeiereeee et neneens 111
3.19 Rejection rates in the invariant conditions in the AR quasi-simplex model ....112
3.20 Rejection rates in conditions with violations of invariance in the

AR quasi-SiImpIeX MOEL..........ccoeiiic s 113
5.1 Item variances and communalities in conditions with invariant loadings

AN INTEICEPES ...ttt 137



Table

Page

5.2 Item variances and communalities in conditions with small violations of

INvariance in the 10adINGS ........coreiirieieeree e
5.3 Item variances and communalities in conditions with medium violations of

INvariance in the 10adINGS ..o
5.4 Item variances and communalities in conditions with large violations of

INvariance in the 10adINGS .......ccoreirieieeree e
5.5 Item means in conditions with invariant loadings and intercepts.....................
5.6 Item means in conditions with small violations of invariance in

T8 TNEEICEPLS. ...
5.7 Item means in conditions with medium violations of invariance in

T8 TNEEICEPLS. ...
5.8 Item means in conditions with large violations of invariance in

T TNEEICEPTS. ...t
5.9 Sum of item intercepts and loadings in the first measurement occasion...........
5.10 Original and re-scaled true growth parameter values...........cc.ccovcvrervrereennnnn.
5.11 Bias in the LGM parameter estimates in the invariant conditions...................
5.12 Bias in the LGM parameter estimates in conditions with violations of

10NV Z2 g T g Lo
5.13 Bias in the AR quasi-simplex parameter estimates in the invariant

CONTITIONS. ...ttt ae et e e enesseseesessenense e
5.14 Bias in the AR quasi-simplex parameter estimates in conditions with

VIOIAtIONS OF INVAITANCE ..eveeeeeeeeeee et et e et e e e e et e e e eeeeeseneteeeesaaneeens



LIST OF FIGURES

Figure Page

1.1 Path diagram of an autoregressive simplex model with mean mean

structure for composites Y measured at four time points ...........ccccveevrreiriniene. 27
1.2 Path diagram of an autoregressive quasi-simplex model with

meanstructure for latent variables & defined by multiple indicators X

measured at four tiMe POINTS...........oiiiriieee s 28
1.3 Path diagram of an autoregressive quasi-simplex model with mean structure

for composites Y measured at four time PoINtS..........cocecvvreiirneienseesseceieene 29
1.4 Latent growth model with a linear trajectory over four waves measured

WILh COMPOSITES Y ... 33
1.5 Curve of factors model with a linear trajectory over four waves measured

latent variables & defined by multiple indicators .........ccoeevrererererisiesereseseeeseenes 34
2.1 Curve of factors model with the generating parameter values ...........c.cccccveenne. 62
2.2 Autoregressive quasi-simplex model with the generating parameter values .....64
3.1 Bias in the intercept factor mean in the non-invariant loading conditions

(NiLd) and in the non-invariant intercept conditions (Niln)..........ccccovviinnnne. 76
3.2 Relative bias in the intercept factor mean in the non-invariant loading

conditions (NiLd) and in the non-invariant intercept conditions (Niln)............... 77
3.3 Bias in the slope factor mean in the non-invariant loading conditions

(NiLd) and in the non-invariant intercept conditions (Niln)..........cccovviiirniene. 78
3.4 Relative bias in the slope factor mean in the non-invariant loading conditions

(NiLd) and in the non-invariant intercept conditions (Niln) .........ccccooevinciinnes 79

Xi



Figure Page

3.5 Bias in the slope factor variance in the non-invariant loading

conditions (NiLd) and in the non-invariant intercept conditions (Niln)............... 81
3.6 Relative bias in the slope factor variance in the non-invariant loading

conditions (NiLd) and in the non-invariant intercept conditions (Niln)............... 82
3.7 Bias in the intercept slope covariance in the non-invariant loading conditions

(NiLd) and in the non-invariant intercept conditions (Niln) ..........ccccoeevvveiviienene 84
3.8 Relative bias in the intercept slope covariance in the non-invariant loading

conditions (NiLd) and in the non-invariant intercept conditions (Niln) .............. 84
3.9 Standard errors of the intercept factor mean in the invariant conditions

(InL1), non-invariant loading conditions (NiLd) and non-invariant intercept

CONAILIONS (NTIN) ..t ns 88
3.10 Standard errors of the slope factor mean in the invariant conditions

(InL1), non-invariant loading conditions (NiLd) and non-invariant intercept

CONAILIONS (NN ... 88
3.11 Standard errors of the intercept factor variance in the invariant conditions

(InL1), non-invariant loading conditions (NiLd) and non-invariant intercept

CONAILIONS (NN ... s 89
3.12 Standard errors of the slope factor variance in the invariant conditions

(InLI), non-invariant loading conditions (NiLd) and non-invariant intercept

CONAItIONS (NTIN) ..o 89

xii



Figure Page

3.13 Standard errors of the intercept slope covariance in the invariant conditions

(InL1), non-invariant loading conditions (NiLd) and non-invariant intercept

CONCITIONS (NTIN) vt 90
3.14 Bias in py; in the non-invariant loading conditions (NiLd) and in the

non-invariant intercept conditions (NilN) ..o 101
3.15 Relative bias in p,; in the non-invariant loading conditions (NiLd) and

in the non-invariant intercept conditions (NiIN) ... 102
3.16 Bias in p3; in the non-invariant loading conditions (NiLd) and in the

non-invariant intercept conditions (NiIN) ... 102
3.17 Relative bias in ps in the non-invariant loading conditions (NiLd) and

in the non-invariant intercept conditions (NiIN) ... 103
3.18 Bias in p43 in the non-invariant loading conditions (NiLd) and in the

non-invariant intercept conditions (NilIN) .......ccoeoiiiinniiineees 103
3.19 Relative bias in p43 in the non-invariant loading conditions (NiLd) and

in the non-invariant intercept conditions (NiIN) ... 104
3.20 Bias in psq4 in the non-invariant loading conditions (NiLd) and in the

non-invariant intercept conditions (NiIN) .......cccoeoiiiinniiic s 104
3.21 Relative bias in ps4 in the non-invariant loading conditions (NiLd) and

in non-invariant intercept conditions (NiIN) .........ccooviieinnninreeeeas 105
3.22 Standard errors of py; in the invariant conditions (InLI), non-invariant

loading conditions (NiLd) and non-invariant intercept conditions (Niln).......... 108

Xiii



Figure Page

3.23 Standard errors of ps; in the invariant conditions (InLI), non-invariant
loading conditions (NiLd) and non-invariant intercept conditions (Niln).......... 108

3.24 Standard errors of pys in the invariant conditions (InLI), non-invariant
loading conditions (NiLd) and non-invariant intercept conditions (Niln).......... 109

3.25 Standard errors of ps4 in the invariant conditions (InLI), non-invariant

loading conditions (NiLd) and non-invariant intercept conditions (Niln).......... 109

Xiv



Chapter 1
INTRODUCTION

Common longitudinal models for studying stability and change, such as latent
growth models (LGM) and autoregressive models (AR) frequently use composites of
items of a single instrument administered in repeated measurement occasions. One
assumption made when using the same instrument in different time points, is that the
meaning of the instrument used does not change over time. In other words, it is assumed
that longitudinal measurement invariance holds. However, using the same instrument
repeatedly does not guarantee that the relation between the instrument and the underlying
latent variable remains the same over time. This relation might change if there has been
an intervention between occasions or if the examinees have changed across time
(McArdle, 2007). Longitudinal measurement invariance is fundamental to conclude that
observed changes over time are due to changes in the target latent variable and not a
consequence of the characteristics of the instruments (Chan, 1998; Khoo, West, Wu, &
Kwok, 2005; Widaman, Ferrer, & Conger, 2010). Unfortunately, this assumption cannot
be tested when using composites of items.

Measurement invariance across groups has been extensively studied (Borsboom,
2006; Byrne, Shavelson & Muthén, 1989; Cheung & Rensvold, 1999; Horn & McArdle,
1992; Johnson, Meade & DuVernet, 2009; Meade & Bauer, 2007; Meade &
Lautenschlager, 2004; Meredith, 1993; Millsap, 2011; Schmitt & Kuljanin, 2008;
Vandenberg & Lance, 2000; Widaman & Reise, 1997; Yoon & Millsap, 2007). In
contrast, the research on measurement invariance over time has received less attention
(Chan, 1998; Millsap & Cham, 2012; Tisak & Meredith, 1989; Widaman, Ferrer, &
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Conger, 2010). Some studies have examined the impact of violations of longitudinal
measurement invariance on the parameter estimates and model fit of the univariate LGM
(Leite, 2007; Wirth, 2008). However, these studies did not systematically manipulate
variables that have been shown to be relevant in the multiple group case. Further, the
consequences of violations of invariance for other longitudinal models, such as AR
models, are largely unknown.

The purpose of the present study was to examine the consequences of violations
of longitudinal measurement invariance on the parameter estimates and model fit of the
univariate LGM and the univariate AR quasi-simplex model when the analyses are
conducted on composites of items. The univariate LGM and the univariate AR quasi-
simplex model represent two of the most widely used models to analyze longitudinal
data. While AR models have been one of the historically dominant approaches (Biesanz,
2012), the interest in LGM has increased during the past two decades (Ferrer, Balluerka,
& Widaman, 2008; Leite, 2007). Since the use of composites in these models is a
common practice, it is important to examine how the results from the univariate LGM
and AR quasi-simplex model might change in the presence of violations of longitudinal
measurement invariance.

The simulation study consisted of generating data for multiple indicators per
measurement occasion with different levels of violations of invariance, forming
composites of the items and analyzing the composites using a LGM or an AR quasi-
simplex model. For the LGM, data were generated under a curve of factors model
(COFM). Since the COFM can be considered an extension of the LGM that includes
multiple indicators of the latent variable at each measurement occasion, it was a natural

2



choice for generating data at the item level. For the AR quasi-simplex, the data were
generated under an AR quasi-simplex model with multiple indicators. The AR quasi-
simplex model is an extension of the AR simplex model that includes multiple indicators;
hence, the AR quasi-simplex model was a natural choice to generate data.

After generating data for multiple indicators composites were formed and
analyzed under a univariate LGM or an AR quasi-simplex model. The degree to which
the parameter estimates recover the generating parameter values was examined by
looking at the bias and relative bias of the parameter estimates, their stability across
replications, and the root mean square error (RMSE). The fit of the models was examined
by looking at the number of replications in which the ¥ rejected the null hypothesis.

The document is organized as follows. First, the problem of measurement
invariance in the multiple group case and in the longitudinal case are defined in a general
way and discussed under the common factor model approach. Then, four longitudinal
methods are described: the autoregressive simplex model, the autoregressive quasi-
simplex model, the latent growth model and the curve of factors model. A description of
previous studies that examined the impact of violations of longitudinal measurement
invariance in latent growth models along with the general findings is provided. The
simulation study is described along with the findings. Finally, the discussion of the

results and the conclusions are presented.

1.1 Measurement invariance
Psychological tests are often used to compare groups with respect to some latent
variable of interest. An important prerequisite for such comparisons is that the same

3



construct is being measured across groups. When the measurement properties of the
observed variables in relation to the target latent variable are the same across populations,
we can say that measurement invariance holds. In other words, the knowledge about the
group membership of the examinees should not alter the relationship between the
observed and the latent variables (Millsap, 2011). As expressed by Horn and McArdle

(1992),

The general question of invariance of measurement is one of whether or not,
under different conditions of observing and studying phenomena, measurement
operations yield measures of the same attribute. If there is no evidence indicating
presence or absence of measurement invariance —the usual case- or there is
evidence that such invariance does not obtain, then the basis for drawing scientific
inferences is severely lacking: findings of differences between individuals and

groups cannot be unambiguously interpreted. (pp. 117)

Mellenbergh (1989) provided a formal definition of an unbiased item as

conditional independence,

P(X|W,V) = P(X|W) (1)

where X is a vector of observed variables, W is the vector of the target latent variables,
and V contains indicators defining the groups assessed. Equation (1) indicates that the

probability of the observed variables X given the latent variables W does not depend on
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V. If measurement invariance holds, group membership should not affect the probability
of the observed variables once the latent variables are taken into account. Another way of
explaining Equation (1) is that under measurement invariance, two persons with the same
values in W have the same probability of achieving a particular score on X regardless of
their group membership.

It is important to note that the definition of measurement invariance does not
require that the groups compared have the same distribution in the latent variables W.
There could be population differences regarding W and measurement invariance can still
hold. The key idea is that measurement invariance is studied in groups in which the
values of W are matched. If individuals from different groups are matched in the latent
variable of interest, there should no longer be differences in the probabilities of the
observed values.

If Equation (1) does not hold, measurement bias is said to exist. Under
measurement bias the scores in the observed variables X of two persons with the same
values in W will depend on the groups they belong to. Measurement bias can be

expressed as:

P(X|W,V) # P(X|W) )

Measurement bias implies that the distribution of the observed variables X
conditional on the values of W will be different for at least one of the groups measured.
The conditions required by Equation (1) are stringent and often do not hold in

practice. Weaker forms of measurement invariance are considered such as first-order and
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second-order measurement invariance (Millsap, 2011). First-order measurement

invariance is defined as:

EX|W,V) = E(X|W) @)

Equation (3) indicates that the conditional mean of the observed variables X is
invariant across groups. In other words, two groups that are matched in the target latent
variables W will have the same conditional expected value for the observed variables
under first order measurement invariance. First-order measurement invariance is the
minimum level of invariance that leads to meaningful comparisons across groups.

A stronger form of measurement invariance is second-order measurement
invariance. In addition to the condition expressed in Equation (3), second-order
measurement invariance requires that the conditional covariance structure is invariant

across groups, as expressed in Equation (4),

2(X|W, V) = Z(X|W) 4)

Under the second order measurement invariance the covariance structure of X
once the target latent variables W are taken into account, should be independent of group
membership. This form of measurement invariance is also known as weak measurement

invariance (Meredith, 1993; Meredith & Teresi, 2006).



1.2 Longitudinal measurement invariance
The above definition of measurement invariance specifies invariance in relation to
group membership. Invariance can also be studied in relation to constructs measured in
multiple occasions. In this case, the meaning of a construct measured with the same
instrument over time, should be invariant regardless of the measurement occasion.
Millsap and Cham (2012) define longitudinal invariance in occasions t=1, 2,...T,

if and only if for W, = W, it is true that:

P(thwt) = P(Xt+n|wt+n) (5)

Equation (5) is defined for all t such that t + n < T. Equation (5) states that under
longitudinal invariance, given the same values in a latent variable W measured in two or
more occasions, the probability of getting some particular score in the measured variables
X should be the same across occasions. In other words, if an instrument that exhibits
longitudinal measurement invariance is used to measure a person that has the same value
on a latent variable as another person measured at a subsequent point in time, both
examinees will have the same probability of getting a particular score in the instrument
regardless of the measurement occasion.

One assumption made to simplify the study of longitudinal measurement
invariance is that once the latent variables at measurement occasion t are taken into
account, the observed variables X; and earlier latent variables are no longer related. In

other words, the effect of latent variables at previous occasions on the observed variables



X, is completely mediated through the latent variables at occasion t (Millsap & Cham,

2012).

1.3 The longitudinal common factor model

Longitudinal measurement invariance can be studied under the common factor
model, which is a widely used model to describe the relationship between the latent
variables and the observed measures. The common factor model assumes that the
measured variables are a linear combination of the underlying latent variables, or
common factors, that influence the set of observed variables and the unique factors that
are specific to each variable (MacCallum, 2009). It is expected that a number of common
factors smaller than the number of variables will explain the associations between the
observed variables.

The common factor model can be defined for occasion t as,

Xi =T + A& + 8¢ (6)

where T, is a p x 1 vector of latent measurement intercepts at time t, A, iSa p X r matrix
of factor loadings at time t, &; is a vector of r x 1 common factor scores at time t, and §; is
the p x 1 vector of unique factor scores at time t. The common factors € are the common
dimensions that explain the correlations among the observed variables. It is important to
mention that the unique factor scores & not only represent measurement error, they also
contain reliable variance that is specific to an observed variable (Meredith & Horn, 2001;

Meredith & Teresi, 2006; Millsap 2011).



In the longitudinal factor model, each of the elements of the common factor
model expressed in Equation (6) are sub-matrices and sub-vectors contained in the super-
matrices and super-vectors defined in this section (Corballis & Traub, 1970; MacCallum,
2009; McArdle, 2007; Millsap & Cham, 2012; Tisak & Meredith, 1989).

The measured variables, the measurement intercepts and the unique factor scores

can be defined as a q x 1 super-vectors where q=pT, as

X1 Tt 81
T
x = |X2 r= | 5 = |52 )
XT Tt 8’1‘

The loadings are defined as a g x s super-matrix, where s=rT. This super loading
matrix contains the loadings of each variable in each factor at each measurement

occasion,

Ay O 0
0 0 At
The common factors are defined as a s x 1 super-vector,
&1
&1



In Equation (6) it is assumed that the expected values of the common factor scores

and the unique factor scores are,

E(&) = x E(8) =0 (10)

where k; represent the meansfor the common factors at time t. The factor means are

expressed in a s x 1 super-vector,

K=]|. (12)

The covariance matrix of the common factors and the unique factor scores are

assumed to be,

Cov(&,) = ¢ Cov(8y) = O (12)

where Oy is a p x p diagonal matrix. It is assumed that the common factor scores and the
unique factor scores at time t are uncorrelated Cov(&;, 8;) = 0. Lagged covariances over
time between unique factor scores of the same variable are permitted, but not between
different variables. The lagged covariances of the unique factor scores are expressed in

Equation (13), where t + n < T and @, is a diagonal covariance matrix,
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Cov(8;,8t4n) = Oryn (13)

Each of the covariance matrices O, are included as sub-matrices of the g x q
super matrix @. The super matrix O is defined as a band diagonal matrix, since each sub-

matrix . ¢, is a diagonal matrix,

011 Oy O1r
0= 021 :@%2 Ozt (14)
Or; Or Orr

Factor scores can freely correlate across time as indicated by Equation (15),

where ¢4y, IS an r x r covariance matrix.

Cov(&, &tin) = P een (15)

where each of the lagged covariance matrices ¢ ., are assembled in a s X s super-matrix

P,

Py P 0 Par
o=|Pu Fn v O (16)
®r; Pr; 0 Pryp

Under the common factor model, the first and second unconditional moments for

the observed variables X at time tare expressed as:
11



E(Xt) = l’l‘Xt = Tt + Ath COV(Xt) = th = Atq)tA't + @t (17)

where all the elements are defined as before, and the means of the observed variables can

be expressed ina q x 1 super-vector,

K4

n=|". (18)

Kt

1.3.1 Longitudinal factorial invariance

Invariance within a factor model is denoted factorial invariance. An instrument
exhibits longitudinal factorial invariance if the same factor structure relating the observed
variables and the latent variables holds across measurement occasions. In other words,
the factor structure expressed in Equation (6) should be invariant across measurement
occasions for longitudinal factorial invariance to exist. It should be noted that
longitudinal factorial invariance is concerned with second order measurement invariance
expressed in Equations (3) and (4).

Different levels of factorial invariance can be defined by sequentially constraining
parameters of the common factor model. Joreskog (1971) initially proposed the
sequential testing of models considering only the covariance structure. Sérbom (1974)
extended the method proposed by Joreskog (1971) to multiple group analysis with mean
structures. The series of nested models used for testing invariance in multiple groups can

also be used in the longitudinal case. The levels of factorial invariance are described next.
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Configural invariance. This is the most basic form of factorial invariance. In the
multiple group case this model holds when the number of factors and the pattern of zero
and nonzero loadings is the same across groups (Horn & McArdle, 1992; Thurston,
1947). In the longitudinal case this baseline model holds when the same number of
factors and the same pattern of zero and non-zero loadings are established across
measurement occasions. If configural invariance holds, it can be concluded that each
group has the same number of factors and that each factor is defined by the same
variables (Millsap & Olivera-Aguilar, 2012). If the configural model shows a poor fit to
the data because of a different number of factors across measurement occasions, no
further invariance constraints should be imposed since the meaning of the target latent
variables is changing across time. In this case, it would be reasonable to conduct further
studies to clarify the nature of the target latent variable. In contrast, if the configural
model does not fit the data because the pattern of loadings is changing for a fixed number
of factors, further analysis should be undertaken to investigate these changes.

Metric invariance. Metric invariance (Horn & McArdle, 1992) is also called
pattern invariance and weak measurement invariance (Widaman & Reise, 1997). If the
configural model fits the data, the loadings can be evaluated for invariance over time. The
A super-matrix is constrained such that each item has the same loading value in a factor

across measurement occasions,

A=Ay = =Ag (19)
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If metric invariance holds in the data, it can be concluded that the differences in
the covariances between variables are due to the common factors. If metric invariance is
rejected, one or more items have different loadings in one or more measurement
occasions. In this case, the meaning of the latent factor may be changing across time. An
important step if metric invariance is rejected is to find which items are violating
invariance in the loadings.

Strong factorial invariance. If the hypothesis of pattern invariance is not rejected,
invariance constraints in the latent intercepts are tested. Meredith (1993) named this form
of invariance strong factorial invariance. It is also known as scalar invariance
(Steenkamp & Baumgartner, 1998) The T, super vector is constrained so that the items

have the same measurement intercepts across time as

T =T, = =Tr (20)

If strong factorial invariance holds in the data, systematic changes in the observed
means are due to changes in the latent variables. On the other hand, if the hypothesis of
strong factorial invariance is rejected, changes in the mean structure of the observed
measures might just be reflecting differences in the measurement intercepts across time.
Strong factorial invariance needs to be established in order to make clear interpretations
of the change scores. Notice that the invariance constraints in the factor loadings and the
latent intercepts ensure first-order measurement invariance as stated in Equation (3).

Strict factorial invariance. Strict factorial invariance holds when the unique factor

variances are invariant across time,
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011 =03, = = Opr. (21)

Under strict factorial invariance changes in the mean and covariance structures of
the observed variables across time can be interpreted as changes in the latent variables.
Second-order measurement invariance as defined in Equation (4) is accomplished when
strong and strict factorial invariance hold. As mentioned previously, lagged covariances
between unique factor scores of the same variable over time are allowed. Invariance in
the lagged covariances is not a requirement for strict factorial invariance.

Strict factorial invariance is rarely studied in practice (Vandenberg & Lance,
2000; Schmitt & Kuljanin, 2008). However, it has been argued that strict factorial
invariance is essential for group comparisons and should be investigated (Meredith, 1993;
Meredith & Teresi, 2006; DeShon, 2004). DeShon (2004) argues that violations of strict
factorial invariance may be due to unmodeled sources of systematic variances.
Unmodeled variables affecting only one of the groups assessed might change the
measurement process in that group, and these changes are only detected when examining

strict factorial invariance.

1.3.2 Partial measurement invariance

If invariance cannot be established in the evaluation of metric, strong and strict
factorial invariance, an alternative is to test a model in which some of the observed
measures are constrained to invariance while others are allowed to vary between groups.
Partial invariance is the term used to denote invariance in only a subset of parameters
(Byrne, Shavelson & Muthén, 1989). Partial invariance can be found at different levels of
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factorial invariance; partial metric invariance denotes invariance in only some of the
loadings, partial strong factorial invariance denotes invariance in some of the
measurement intercepts, and partial strict factorial invariance refers to invariance in some
of the unique variances. Models with partial invariance are found to fit the data more
often than invariance in the entire matrices evaluated. However, there are important
unsolved issues in partial invariance: the specification and the meaningfulness problems
(Millsap & Meredith, 2007). The specification problem deals with modifying an initial
model with lack of fit to the data, until a good fitting model is found. The problem is that
model re-specifications frequently do not lead to the true model, are data driven and often
do not generalize to other samples (MacCallum, 1986; MacCallum, Roznowski &
Necowitz, 1992). In the context of measurement invariance model modifications involve
allowing the non-invariant observed measures to have different loadings, intercepts or
unique variances across groups until a partial invariant model provides a good fit to the
data. The issue to solve is how to locate the items that should have different parameters
across time. Several methods have been proposed to locate the items that violate
invariance (Byrne et al., 1989; Cheung & Rensvold, 1999, Yoon & Millsap, 2007;
Woods, 2009).

Once non-invariant items are detected, a second issue to consider is the
meaningfulness problem or the impact that partial invariance has on the practical
conclusions made from the instrument. Unfortunately, there are no clear guidelines that
indicate how large the violation of invariance must be to be meaningful for practical
decisions. Further, non-invariance at the item level does not necessarily mean violations
of invariance at the scale level (Stark, Chernyshenko & Drasgow, 2004) which makes it
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difficult to judge the impact of partial invariance. In the context of selecting individuals
from their results in an instrument, Millsap and Kwok (2004) proposed a method to
evaluate the consequences of partial invariance by looking at the decisions made about
the examinees in the minority or low scoring group (focal group) in comparison to the
majority or high scoring group (reference group). Measures such as sensitivity and
specificity for the focal and reference groups are evaluated to determine the impact of
partial invariance in selecting individuals from both groups.

The consequences of partial invariance in longitudinal studies have also been
studied. For example, a study conducted by Ferrer, Balluerka and Widaman (2008) and
the study by Wirth (2008) show that the conclusions about the growth trajectory in LGM
change when longitudinal measurement invariance fails to hold. However, the question
about how large the violation of invariance must be to change the conclusions of

longitudinal studies has not been answered.

1.3.3 The common factor model and factorial invariance using composites

Frequently, composites of items or indicators are formed and analyzed instead of
the individual items or indicators. For example, it is a common practice to fit latent
growth models and autoregressive models to composites of items formed at each
measurement occasion. The characteristics of the items will be reflected in the
composites, such that if the items can be modeled by a common factor model, the
composite can also be expressed as following a common factor model. The relationship
between the common factor model at the item level and at the composite level is relevant
for the purposes of the present document in which the consequences of violations of
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longitudinal invariance at the item level are examined on longitudinal models fitted to
item composites. In this section, the common factor model and factorial invariance at the
item level are explained in relation to the composites.

For a longitudinal common factor model with one factor per measurement
occasion, composites of the sums of the items at time t can be formed for each individual

as,

Y, = 1'X, (22)

where 1 isap x 1 unit vector. If a single factor model fits the items, there is a relationship
between the common factor model at the item level and at the composite level as can be

observed in,

My, = Te + Aok 0%, =M, + 0} (23)

where Hy, is the mean over individuals of the composite Y at time t, csszgt is the variance of

composite Y at time t, t{ is the sum of the measurement intercepts of all the observed

items at time point t, A{ is the sum of the factor loadings of all the items at time point t, 6;
is the sum of the unique variances of all the items at time point t; « and ¢, correspond to
the factor mean and variance respectively, at time point t. In other words, the mean of the

composite at time t is a function of the sum of the item intercepts, the sum of the item
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loadings and the latent mean, while its variance is a function of the sum of the item
loadings, the sum of the item unique variances and the factor variance.

Strong factorial invariance at the item level X, implies strong invariance in the
composite Y. However, it should be noted that strong invariance in Y, does not imply
strong invariance in X;. It could be the case that differences in A; and T, across items
cancel out when forming the sums of the loadings A; and the sums of the intercepts ;. In
other words, if strong factorial invariance holds at the item level, strong factorial
invariance will hold in the composites formed with those items, but the reverse need not
be true. This relationship between invariance at the item and at the composite level exists

for metric, strong and strict factorial invariance.

1.3.4 Identification

There are an infinite number of values that the A, ®; and ¢, matrices, and the T,
and k; vectors can adopt that will reproduce the same mean and covariance structures of
the measured variables at each time point. In order to obtain a unique solution for the
factor model described in Equation (6) identification constraints are required.

Two requisites that will be assumed and that greatly simplify the identification of
the longitudinal common factor model is to have each factor defined by at least three
measured variables and that each measured variable loads on only one factor. Other
models are possible but a set of identification constraints different from the ones to be
presented are needed.

In order to identify the covariance structure it is necessary to constrain some

factor loadings and/or the factor variances to nonzero values. One option is to fix the
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loading of one chosen measured variable per factor to one at each measurement occasion.
The chosen variables are known as referent indicators. Another option to identify the
covariance structure relies on loadings that are invariant across time. If the loadings are
invariant, the variances of all factors at one measurement occasion can be fixed to one.
That is, if metric invariance holds the loadings and the covariance structure can be
identified by fixing the factors variances to one in a single measurement occasion and
freely estimating the factor variances at other measurement occasions. These
identification constraints are useful since it is not necessary to select an item as a referent
indicator.

To identify the mean structure, the measurement intercepts and/or the factor
means must be constrained. One option is to constrain the measurement intercepts of one
measured variable per factor to zero in each measurement occasion. Usually, this
constraint is imposed in the referent indicator. If the intercepts are found to be invariant
across time another option for identifying the mean structure is to fix the factor means to
zero at one measurement occasion.

Special attention is needed when choosing the referent indicator. There is
evidence that choosing a non-invariant item as a referent item leads to a distorted factor

solution (Johnson, Meade & DuVernet, 2009; Yoon & Millsap, 2007).

1.3.5 Estimation

The most common estimation technique used for continuous observed measures is
maximum likelihood. Maximum likelihood estimates have characteristics that make them
desirable. At large sample sizes the estimates are consistent, normally distributed, and
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efficient. Maximum likelihood estimation across measurement occasions typically makes
the assumption that the measured variables X at each time point have a multivariate
normal distribution. Under MVN the discrepancy function to be minimized that includes

the mean and the covariance structure is:

X
5| FulEsd - @

Fur = (X — 1ox) Tox X — pox) + In

where pyx and Z,x are the population values for the means and the covariance matrix,

while X and Sy are the sample estimators of py and Zy calculated as,

N N
X= N‘lzxi Sx = N_lz(xi_i)(xi_i), (25)
i=1 i=1

The fitted mean and covariance structures are expressed as py and Xy and are
defined as a function of the parameters (t, A, 6, k, ¢) as shown in Equation (17).
Maximum likelihood estimation looks for the set of parameters that will minimize the
discrepancy function in Equation (24) after the proper constraints for identification and
for invariance are imposed.

It is important to mention that the discrepancy function expressed in Equation
(24) assumes complete data. Although missing data and attrition are common problems in
longitudinal studies, complete data is assumed in the study proposed in the present

document.
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1.3.5 Model fit

In order to test the fit of invariance constraints, global fit indices such as the chi-
square fit statistic, the root mean square error of approximation (RMSEA) and the
standardized root mean square residual (SRMR) are used (Bollen, 1989). A brief
description of the three global fit indices considered is provided next.

Chi-square fit statistic. The chi-square goodness-of-fit statistic is used as a global

measure of exact fit. The null hypothesis that is tested is,

Hy: Xx = Zox, Mx = Mox (26)

The chi-square goodness-of-fit statistic is defined as,

XZ =(N - 1)FML (27)

p(p+3)

where Fy,; is the sample discrepancy function value, with df = — ¢ where p is the

number of measured variables and c is the number of independent parameters to be
estimated.

The difference-in-chi-square test can be used to compare nested models, such as
the models for the different levels of factorial invariance. This test is used to determine
the fit of the more constrained model in comparison with the less restricted one, assuming
the latter fits well. Suppose that model B is nested in model A. The difference in chi-

square can be calculated as:
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Xb = X8 — xa with dfp = dfs — dfa (28)

where xi(de) and sz(de) are the chi-square values and the degrees of freedom for
models A and B respectively. The difference in the chi-square values is compared to the
chi-square distribution with degrees of freedom equal to the difference in degrees of
freedom in the two models. In order to conduct this difference-in-chi-square test model A
must fit the data as indicated by the chi-square goodness-of-fit statistic in Equation (26).
When testing the levels of factorial invariance this means that the configural invariance,
model which is the less restrictive model, must hold in order to test for metric factorial
invariance. Another assumption made is that the data are normally distributed.

Root mean square error of approximation (RMSEA). The root mean square error
of approximation is a summary index indicates the model lack of fit per degree of
freedom (Browne & Cudeck, 1993; Steiger, 1990). The RMSEA can be expressed in

terms of the discrepancy function as,

P 1 1/2
= oML - 29
RMSEA [max{ i N_l,o}l (29)

where df is the degrees of freedom in the specified model and Fpy, is the discrepancy
function in the sample. As long as the discrepancy function incorporates the mean and the
covariance structure as specified in Equation (24), RMSEA will evaluate the error in
using (Zox, lox) as an approximation of(Zx, px). RMSEA introduces a penalty for

model complexity by dividing the discrepancy function by the degrees of freedom.
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RMSEA indicates how bad the fit of the model is; smaller values are better. The
minimum value is bounded at zero and there is no theoretical maximum. Values below
.05 are considered to indicate “good fit” while values between .05 and .08 indicate “fair
fit” (Browne & Cudeck, 1993).

RMSEA makes the assumption that the discrepancy function is adequate for the
data, and that the error of approximation is not too large. It should also be considered that
RMSEA is a large sample index in the sense that it has large standard errors at small
sample sizes.

Standardized root mean square residual (SRMR). Another fit index frequently
used is the SRMR that is calculated as the square root of the average squared
standardized residual. The values of SRMR are non-negative, and lower values indicate
better fit. Values below .05 are considered good fit. One problem with the SRMR is that
it only considers the covariance structure, so it does not provide any direct information

regarding the misfit of the means. The SMSR is calculated as,

’ /2
_ e Cec
SMSR = [—p =1 2] (30)

where e is a vector of standardized residuals of the covariance matrix computed as the
difference between the sample covariance matrix and the model implied covariance

matrix (Hu & Bentler, 1999; West, Taylor & Wu, 2012).
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1.4 Longitudinal models

Two of the most common statistical approaches for studying longitudinal data are
the univariate AR simplex models and univariate LGM (Khoo, et al. 2006). In these
models, the analyzed variables are observed measured variables and frequently
correspond to composites of items. The use of composites of items assumes that
longitudinal measurement invariance holds. However, this assumption cannot be tested at
the composite level.

In the present section a description of the univariate AR simplex model and
univariate LGM used to analyze composites is provided. Extensions of the univariate AR
simplex models and univariate LGM that include multiple indicators per measurement
occasion are also described, such as the AR quasi-simplex model and the curve of factors
model (COFM). The advantage of these models is that longitudinal measurement
invariance can be tested and not only assumed. In a subsequent section, studies
conducted to assess the impact of violations of longitudinal measurement invariance are
described in detail.

The standard notation of these models is slightly modified for ease of presentation
and to avoid defining matrices with changing meaning across models. Although the AR
model and LGM are described as different methods, it should be noted that recent
research has shown that they can be considered special cases of a more general model,

the AR latent trajectory (ALT) model (Bollen & Curran, 2004).
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1.4.1 Autoregressive simplex model (AR)

In AR models, variables measured across time are modeled as a direct function of
the same variable observed at an earlier measurement occasion (Heise, 1969; Joreskog,
1970a, 1979a; Werts, Joreskog & Linn, 1971; Wiley & Wiley, 1970).

Joreskog (1970b) distinguished the simplex and the quasi-simplex models. While
a perfect simplex assumes that measurement errors are negligible, quasi-simplex models
allow for measurement error. The univariate AR simplex model is shown in Figure 1.1

and is formally expressed as,

Y =a; + pri-1Ye-1 T & (31)

where Y are observed measures here defined as composites of items, a; is a fixed
intercept for time t; p,.—, represents the autoregressive parameter and indicates the
impact of Y in the time point t-1 on the value of Y at the current measurement occasion t.
The value of p._ is frequently constrained to be the same from one measurement
occasion to the next for ease of interpretation (Biesanz, 2012). It is important to note that
AR models assume that all individuals can be represented by the autoregressive
parameter p.._;. In other words, individual differences in trajectories across time are not
modeled. The variable &, is the time specific error. It is assumed that the time specific
errors are distributed as £.~N(0, 6?). Further assumptions made in this model are that the
residuals €, are uncorrelated with Y,_,, and that the residuals are uncorrelated across
individuals and across measurement occasions. The first measurement of Y is treated as

predetermined such that,
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Yl = 04 + €1 (32)

In the basic AR model it is also assumed that the observed measure Y at time
point t is only affected by Y at a previous time point; this model is denoted as AR(1).
This assumption is relaxed in other auto-regressive models it which earlier lagged values

of Y affect its current value.

€1 7, T €4
Y, P21, Y, P32 Y, P43, Y,
BN
P (' o

Figure 1.1 Path diagram of an autoregressive simplex model with mean structure for
composites Y measured at four time points.

The main focus of AR models is to determine the stability of the relative standing
of individuals over measurement occasions (Khoo, et al. 2006). Perfect stability is
expressed by a correlation of 1.0 in the Y measures across time points, and it indicates
stability in the rank order of individuals from one time period to the next.

The AR simplex model stated in Equation (31) can be modified so that latent
variables are the focus of analysis. The AR model with latent variables is called
autoregressive quasi-simplex model. The advantage of the AR quasi-simplex model is
that the observed variance can be partitioned into variance due to the latent variable of

interest and residual variance. By removing the influence of measurement error it is
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possible to obtain stability coefficients that are not attenuated (Khoo, et al. 2006;

Joreskog, 1979D).

The AR quasi-simplex model is expressed as,
§ = o +Pre-18e-1 t (&t (33)

where &; are the latent variables formed by multiple indicators X at time t, and €3 is the

time specific error for the latent variables & at time point t. The parameters a; and p; ¢4
are defined in the same way as in Equation (31). The measurement part of the model is

defined as in Equation (6). The AR model with latent variables is shown in Figure 1.2.
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Figure 1.2 Path diagram of an autoregressive quasi-simplex model with mean structure
for latent variables & defined by multiple indicators X measured at four time points
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The autoregressive quasi-simplex model can also be expressed for the case in
which composites are formed from the multiple indicators X, as shown in Figure 1.3. The

equations that define the model are,

Yt = Et + &t fOI’ t:]., 2, ey T (34)

& = o + Pre-18-1 + Q¢ fort=2, .., T (35)

The model in Figure 1.3 is not identified and the source of the indeterminacy is in

the outer variables, that is, in Y1 and Y. Therefore, in order to identify the model ¢, 0,

or p, , must be specified, and ¢, or 0,4, must also be specified (Joreskog, 1979b).

Oy o, g
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Figure 1.3 Path diagram of an autoregressive quasi-simplex model with mean structure
for composites Y measured at four time points.
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1.4.2 Latent growth models

A second common set of models used for analyzing repeated measures with three
or more measurement waves are latent growth models (LGM), often also called latent
curve analysis (Meredith & Tisak, 1990) or growth curve models. In contrast to AR
models, in LGM it is stated that latent trajectories that are directly unobservable and that
underlie the repeated measures govern the observed changes across time (Bollen &
Curran, 2006; Muthén & Curran, 1997). The focus of analysis in LGM is the implications
of the latent trajectories for the measured variables.

Univariate LGMs are appropriate models to study repeated measures of one target
latent variable when it is believed that change is related to the passage of time (Duncan,
Duncan, Strycker, Li & Alpert, 1999). One of the advantages of LGM is that it models
group trajectories over time but also models individual differences in growth trajectories.
In other words, LGMs incorporate information of the groups but also model individual
differences. Other advantages of LGM are that it is possible to test for linear and
quadratic growth curve trajectories, and that predictors of growth could be included in the
model (Duncan, et al. 1999; Bollen & Curran, 2006). For the purposes of the present
study the description of LGM will be restricted to the basic model without predictors.

LGM can be viewed as a common factor model defined as (Meredith & Tisak,

1990; Bollen & Curran, 2006),

Y=In+¢ (36)
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where Y is the t x 1 vector of observed variables here defined as composites of items; T is
a t x m matrix of factor loadings; n is an m x 1 vector of m latent factors; and € ist x 1
vector of individual time specific residuals distributed as e~N(0, 6?) in which the
variance of the residuals may vary over t. It is also assumed that the covariance between
the individual time specific residuals across individuals is zero.

In a linear LGM there are two latent factors which correspond to an intercept
factor n, and a slope factorn, as shown in Figure 1.4. The intercept factor n, refers the
level of the composite at the measurement occasion defined as 0, and the slope factor n,

represents the linear rate at which the Y measures change (Muthén & Khoo, 1998;
Preacher, Wichman, MacCallum, Briggs, 2008). In quadratic models an additional latent

variable n, representing a quadratic slope trajectory is included.
The n, and n, variables are random coefficients in the sense that they can be

modeled as deviations from the population model as shown in,

My _ Hn, <Tl1]

T]Z] - [uﬂz] * an (37)

where w, represent the population mean for the intercept and B, the population mean for
1 2

the slope factor, and the T residuals represent individual's deviations from the population

means. It is assumed that the residual terms ¢ have zero means, E(Zni) = 0 and that

Cov(sit, zni) =0.
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The residual terms ¢ in Equation (37) are called random effects, and are assumed
to have mean 0 and a covariance matrix among the latent intercept and slope factors

expressed as,
lp — I:qjll LIJ12:| (38)

The elements of the I' matrix in Equation (36) are called basis functions (Meredith
& Tisak, 1990), basic curves or latent growth vectors (Singer & Willet, 2003). In contrast
to the traditional CFA, the loadings in the T matrix are not estimated but instead are fixed
values. Loadings relating the intercept factor to the Y repeated measures are fixed to 1.0
indicating that the intercept factor equally influences all the Y repeated measures. The
slope loadings are chosen as fixed values that adequately represent the scaling of time.
Depending on the research question of interest the origin of the time scale can be defined
at different measurement occasions, usually at the first time point, in which the intercept
is interpreted as the initial status, or at the last time point in which the intercept is then
interpreted as the final status. The origin of the scale is defined by setting the loading of

the slope factor of a specific measurement occasion at 0.
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Figure 1.4 Latent growth model with a linear trajectory over four waves measured with
composites Y.

It should be noted that models in which loadings are freely estimated have been
proposed (Meredith & Tisak, 1990; McArdle, 1988; Preacher et al. 2008). In these
models, the shape of the growth function is unknown and must be estimated from the
data. The specific form of growth is not tested. These models are exploratory in the sense
that their purpose is to gain insight about the appropriate form of the growth trajectory.
These models are not further described since they are not the main focus of the present
research.

Latent variables measured by multiple indicators can also be modeled across time
with latent variables as in the univariate LGM. Curve of factors model consist of second-
order latent growth model that includes the measurement model relating the individual

items with the underlying latent construct (first-order factors) and the growth model in
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which the intercept and slope latent variables correspond to the second-order factors

(McArdle, 1988). The curve of factors model is shown in Figure 1.5

Xll" X21 X31 X12 X22 X32 X13 X23 X33 X14 X24 X34
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Figure 1.5 Curve of factors model with a linear trajectory over four waves measured with
latent variables & defined by multiple indicators.

The curve of factors model is expressed as

§=In+ (39)

wheregis the first order latent variable formed by multiple indicators X, ; is the time

specific error for the latent variable &, and I' and n are defined as in Equation (36). The
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relationship between the items and the first order latent variables is defined as in

Equation (6).

1.5 Impact of violations of factorial invariance in longitudinal methods

Most research done regarding measurement invariance has been developed in the
multiple group case. Although studies about the impact of violations of factorial
invariance in the longitudinal case have received less attention, some research has been
conducted (Ferrer, Balluerka & Widaman, 2008; Leite, 2007; Wirth, 2008).

Ferrer, Balluerka, and Widaman (2008) studied the impact of measurement
noninvariance in a second-order latent growth model using real data from an alcohol
prevention program. An instrument assessing alcohol expectancy using 3 items was
administered to 610 children measured for the first time in Grade 5, and followed through
Grades 6, 7, 9 and 10. A confirmatory factor analysis showed that the model of metric
invariance did not fit the data, indicating the possibility of partial invariance, but this
hypothesis was not further explored. The authors fitted two curve of factors model that
only differed in the item chosen to have a loading fixed to one; i. e. the models compared
were the same except for the item used as the reference indicator. The results showed
completely different growth trajectories obtained from the two models; using one item as
a referent indicator a significant linear growth trajectory was found, while no significant
growth was detected when using a different item as the reference indicator. Although
this study exemplifies how the results of a longitudinal study can change when partial
invariance is present, no general conclusions can be made since the study was conducted
with real data and no simulation study was performed.
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Leite (2005) demonstrated why fitting a latent growth model to composites
formed by items with violations of metric longitudinal measurement invariance can yield
to biased parameter estimates and a poor fitting model. Wirth (2008) included violations
of strong factorial invariance over time in the demonstration provided by Leite (2005).

Consider the composites Y at four measurement occasions with a linear growth

trajectory,

Y, 1 0 €
Y21 |1 1M &
Y3 o 1 2 [n 2] + 83 (40)
Yy 1 3 €4

where all the elements are defined as in Equation (34), and the composites Y, are
formedas sums of four items X. If a single factor model fits the items X, the composites
Y, can also be expressed in terms of the common factor model as Y, = t; + A&, + ;.

Rewriting the LGM model shown in Equation (40),

T; + A1§ + 61 10 &
T, + A +83 |1 1|y, |
O AE 48| T |1 2 o+ [ (41)
T+ NLE, + 8 1 3 €4

For the following explanation, it will be assumed that all the items have the same
intercept and loading values. This is a restrictive assumption and in practice it is more
common to find items that measure one latent factor but that have different loadings,

intercepts and unique variances. However, for ease of presentation for the next
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explanation it will be assumed that all the items share the same parameters at each time
point. In addition, strict factorial invariance over time will be assumed.
Setting all intercept values equal to 0, and all loadings equal to 1, Equation (41)

can be written as,

0+ 48 + 6] 1 0 £
0+4% +6;] 1 1M €
0+4& +85 |1 2 [le] + €3 (42)
0+ 4%, + 6, 1 3 €4
and thus,
& =.25(ny + & — 87)
& =.25(g + Ny + &, —63) (43)

& =.25(1 +2n, + &3 — 63)
€& =.25(My + 31, + &4, —8)

It can be seen in Equation (43) that since there is strict factorial invariance, the
measurement loadings are multiplicative constants that do not affect the estimation of
growth parameters. Now suppose that while the unique variances are still invariant over

time, there are violations of strong factorial invariance such that,

=0 0 0 0 .25 .25 .25 .25 .5 .5 .5 .5 .75 .75 .75 .75]

1 111 O 0 0 0 00 0 O O 0 0 0 (44)
A = 0 000 1515 15 15 0 0 0 0 O 0 0 0

0 000 O 0 0 0 2 2 2 2 0 0 0 0

0 000 O 0 0 0 0 0 0 0 25 25 25 25
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Using the values of the intercepts and loadings in (44), Equation (40) can be

written as,

0+4¢& + 6] 1 0 &
1+685+6; | |1 1|mM €,
2485, +58; |~ |1 2 Iy + s (45)
3+105, +6:.1 L1 3 €4

Equation (45) can be solved for the latent factors &; as,

& =251 +& —87)

& =171+, —1+¢; —83)
&3 =.125(n; + 21, — 2+e3 — 83)
& =.1(M; +31, — 3+ &, — &})

(46)

Equation (46) shows that in the presence of violations of metric and strong
factorial invariance over time, the measurement loadings and intercepts have different
effects at each measurement occasion, altering the linear trajectory. Although there is a

linear growth trajectory in the latent factors over time, &, ...¢,, the model would show a

poor fit to the data and bias in the parameter estimates.

Wirth (2008) conducted a simulation study with the purpose of examining the
impact of violations of factorial invariance in the growth parameter estimates of a
univariate LGM and in its fit to the data using different ways of compositing items.
Composites were defined as item means or as factor scores. Violations of factorial
invariance were simulated in the intercepts only, or in the intercepts and loadings. The

results indicated that mean and factor scores in the presence of violations of invariance
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resulted in biased growth estimates, and biased y’statistics. Further, when examining a
free loading LGM, nonlinear trend estimates over time were found even though the data
were simulated to follow a linear growth trajectory. As expected, the results showed that
violations of measurement invariance over time can alter the conclusions about growth
trajectories. However, two important variables that might affect the results of the
simulation study by Wirth (2008) and that were not systematically examined were the
size of the violations of invariance and the number of non-invariant items.

Leite (2007) conducted a simulation study to examine the lack of invariance under
different methods for fitting latent growth models. The two methods compared were the
univariate latent growth model (LGM) of composites of multiple items and the curve of
factors model (McArdle, 1988). Although the author generated the data with different
levels of invariance (configural, metric or strict factorial invariance), the actual values of
the loadings and intercepts were randomly selected without a manipulation of the size of
the parameter difference across measurement occasions. No partial invariance conditions
were included; either all the parameters were invariant or all items reflected violations of
invariance. One more difficulty with the study of Leite is that when analyzing the data
using the curve of factor models all of the parameters were allowed to be freely estimated
across measurement occasions. A more appropriate way to conduct the curve of factors
model is to constrain the parameters to invariance across measurement occasions to
ensure that the same construct is being measured across time.

The results indicated that the curve of factors model fitted the data better than the
univariate LGM and that the growth estimates were less biased. However, these findings

are due to the fact that no invariance constraints were imposed in the curve of factors
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model while using composites in the univariate LGM assumes that the items are
invariant. In other words, it was expected that the curve of factors model would fit better
since it imposes less restrictions that the univariate LGM.

Studies in which violations of measurement invariance over time are examined in
models other than LGM have not been reported. However, it can be shown that the
results of an autoregressive quasi-simplex model when fitting composites will be affected
by lack of invariance of the items forming the composites.

To demonstrate how the results of an autoregressive quasi-simplex model can be
altered when there are violations of measurement invariance, consider composites of
items measured in 4 measurement occasions. Consider the AR quasi-simplex model using
composites shown in Figure 1.3, where composites Y:are formed as the sum of 4 items at
each time point.

Following Equations (34) and (35), the composites for the second, third and

fourth measurement occasions can be expressed as,

Yi = o + pre—18-1 + G, + & (47)

Specifically, the composite at the second, third and fourth measurement occasion
are expressed as,
Y, =0, +p216 + G, &
Y; = a3 + p328; + G, + &3 (48)

Y, = a4+ pa3z83+ G, 2

40



Composites Y, Y3, and Yy, can be expressed in terms of the common factor

model as Y; = t; + A{&; + 8; such that,

T + A3, + 85 =ap +pp18 + G, + &
T3 + A383 + 83 = ag + p35; + Ce, + &3 (49)

Ty + Na8a + 84 = oy + py3ls + Ce, + €4

Solving for &,
& = A_*(az — T3 +P216 + G, + & —83)
2
1 * *
& = A_*(a3 — T3 + P3282 + G, + €5 — 5) (50)
3
€4 (04 — T4 + Pa3zds + G, + €4 — 82)

R

Composite Y can also be expressed in terms of the factor model, such that

Y; = 11 + A7§; + 87. Solving for &,

1
A (Y, —t1— 81 —¢&) (51)
1

& =

Substituting &, in the right hand side of the equations in (50),
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1

1 . i
éz =A_;<a2_’[§ +p2,1 <A_T(Yl - T _81 _El)> +C§2 _82 +£2>

1 1

1
E3 :A_g 0(3—T§+p3,2 A_z<a2_TE+p2’1<A_§(Y1_T;_8i_81))+<Ez _8;+82>

+ <§3 - 8§+ 83
1 (52)

+ P43
1 * 1 * * *

+ P32 A Qy — Ty + P21 A_*(Y1—T1_51_51) + G, — 8+ ¢,
2 1

+ZE3_8§+ 83 +<E4_82+ 84

If strict factorial invariance over time holds, and all intercepts equal 0 and all

loadings equal 1, then tf = 0 and A; = 4,
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1 1 * *
éz =Z<a2_’[§+p2,l (Z(Yl _TT_SI _81)>+C§2_82+£2>

1 *
Eszz a3 — T3

1 1
+ P32 (Z <0(2 — T2 + P21 <Z (Y, —t1 — 6] — El)) + e,

- 8;‘{‘ 82)) + <E3 - 6§+ 83)

(53)

§a=—| ay — T4

1 1
+ P32 (Z <0(2 -T2 + P21 <Z (Yr—11— 81— E1)> + G,

- 65+ 82>> + G, —83 + £3> + G, — 03+ &4

If there are violations of invariance such that the values of the loadings and the

intercepts change over time as shown in (44), Equations in (53) can be written as,
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1 . .
éz = <a2_T§+p2,1 (Z(Yl _TT — & _81)>+C§2_82 +£2>

(o Y

1 1 1
€ = §<a3 — T3 + P32 (g <0(2 — T2 + P21 <Z (Y, —t1— 61— E1)) + G, — 03+ Ez))

+ <§3 - 8§+ 83)

1 (54)

1
T P43 8 <a3 - T3

+ P32 <

+<E3_8§+ 83) +<E4—82+ €4

N -

1
(az -1+ P21 <Z (Y, —11— 8] — 31)> + ZEZ -85+ 32))

Equations in (54) show that in the presence of violations of metric and strong
invariance the measurement loadings and intercepts have different effects at each
measurement occasion, which will bias the parameter estimates in the AR quasi-simplex

model.
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1.6 Purpose of the study

The studies of Ferrer et al. (2008) and Wirth (2008) showed some of the
consequences of partial invariance in conclusions of growth estimates. However, the
former was not a simulation study and no generalizations can be made, while the latter
did not include variables that have been shown to be important in invariance studies.
Simulation studies regarding the methods to identify non-invariant items (French &
Finch, 2008; Johnson, Meade & DuVernet, 2009; Woods, 2009; Yoon & Millsap, 2007),
and studies about the power to identify violations of invariance (Meade & Bauer, 2007;
Meade & Lautenschlager, 2004) have consistently found that relevant variables in the
study of invariance are the total number of items, the proportion of items violating
invariance, and the size of the parameter difference across groups.

The study of Leite (2007) compared the violations of invariance in two different
methods for studying growth: univariate LGM and curve of factors model. However,
while in LGM using composites of items it was assumed that the items were invariant
across time, in the curve of factors model no invariance constrains were imposed in the
items across time. The better fit of the curve of factors model and the less biased growth
estimates can be explained as a consequence of the lack of invariance constraints across
measurement occasions. Further, there was no systematic manipulation of the differences
in parameter estimates across time and no partial invariance conditions were examined.

Some questions that remain unanswered regarding the impact of partial invariance
in longitudinal methods are: How many items should be invariant so that the conclusions

about growth would not change? How different the measurement parameters across time
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need to be to distort the growth estimates? Is the latent growth model affected in the same
way by violations of invariance as other models to study longitudinal data?

The purpose of the present study was to examine the impact of partial invariance
in a univariate LGM and in an AR quasi-simplex model. The manipulated variables were
sample size, total number of items, proportion of items with violations of invariance in
the loadings or in the intercepts, and size difference across time in the loadings or in the
intercepts. The impact of partial invariance was examined by looking at the bias in the
parameter estimates, the stability of the parameter estimates over replications, RMSE,
and by the rejection rates as indicated by the x°.

The following hypotheses were tested:

1. Larger changes over time in the item loadings will increase the bias in the growth
parameter estimates and in the autoregressive parameters.

2. Larger changes over time in item intercepts will increase bias in the growth parameter
estimates and in the autoregressive parameters.

3. Larger proportions of items with violations of invariance will increase bias in the
parameter estimates in LGM and in AR quasi-simplex model.

4. Larger changes over time in the size of the loadings will lead to higher rates of
rejection of the LGM and AR quasi-simplex models by the ¥ test.

5. Larger changes over time in the size of the intercepts will lead to higher rates of
rejection of the LGM and AR quasi-simplex models by the ¥ test.

6. Larger proportions of items that violate invariance will lead to higher rates of

rejection of the LGM and AR quasi-simplex models by the y test.
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Chapter 2
METHOD

A Monte Carlo simulation study was conducted to examine the impact of
violations of longitudinal measurement invariance in LGM and in AR quasi-simplex
models. In general, the method consisted of generating data for five measurement
occasions under the COFM (see Figure 1.5) and under the AR quasi-simplex model (see
Figure 1.2) in which there are multiple indicators defining the latent variable at each
measurement occasion. The multiple indicators were generated with different levels of
violations of longitudinal measurement invariance. After generating the data, composites
of the items at each measurement occasion were formed. The univariate LGM shown in
Figure 1.4 was fit to the composites of the items that were generated from a COFM, and
the AR quasi-simplex model depicted in Figure 1.3 was fit to composites of items
generated under the AR quasi-simplex model with multiple indicators. The results were
evaluated by examining the extent to which the parameter estimates recover the
generating parameter values, as indicated by measures of bias and variability of the
parameter estimates, and by examining the fit of the models.

The data were generated in Mplus version 6.1 (Muthén & Muthén, 2010) under
multivariate normality via Monte Carlo simulations. Composites of item sums at each
measurement occasion were computed in SAS version 9.2 and the composites were
analyzed under a LGM or AR quasi-simplex using Mplus version 6.1. The different
evaluation criteria measures, such as bias and relative bias of the estimated parameter

values, the standard errors of the parameter estimates, and the root mean square error
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were computed in SAS. The graphs shown in the results section were obtained using the
free software R (R Core Team, 2013).
In this section, the independent variables, the generating models and parameters,

and the dependent variables are described.

2.1 Independent variables
The manipulated variables were sample size, total number of items per
measurement occasion, proportion of non-invariant items, size of the difference in the
loadings across time, and size of the difference in intercepts across time. In order to
decide the conditions to be studied for each independent variable, previous studies with

similar manipulations were considered.

2.1.1 Sample size

Hamilton, Gagne and Hancock (2003) showed in a simulation study that as
sample size increased the percentage of replications that converged to a solution
improved as well as the model fit, and suggested a minimum sample size of 100. Fan and
Fan (2005) studied the power of LGM in detecting linear growth in a single group and
found that for a small effect a sample size of 200 is needed, while for a medium effect
size a sample size of 100 is enough.

Previous studies about the impact of partial invariance in LGM were also used as
a reference to decide the sample size conditions. Leite (2007) included sample sizes of

100, 200, 500 and 1000, while Wirth (2008) studied sample sizes of 250 and 750.

48



In the present simulation study, sample sizes of 100, 200, 500 and 1,000 were

examined.

2.1.2 Total number of items and proportion of non-invariant items

Wirth (2008) simulated eight items per measurement occasion but did not include
conditions in which the number of items was manipulated. Leite (2007) included
conditions for 5, 10 and 15 items per measurement occasion and the results indicated that
the bias in the slope mean in LGM decreased as the number of items increased.

Studies that examine measurement invariance in the multiple group case have
included conditions with 6 and 12 items (Yoon & Millsap, 2007; Meade &
Lautenschlager, 2004). Yoon and Millsap (2007) proposed a method for identifying non-
invariant items using modification indices and conducted a simulation study in which the
total number of items was 6 or 12. The results showed that the 6 item condition yielded a
higher percentage of samples that recovered the generating model and that had no false
detections in contrast with the 12 item condition. However, when 2/3 of the items were
non-invariant, the number of total items no longer influenced the number of samples
recovering the generating model and the number of false detections. These results
indicate that the decision about the number of total items per measurement occasion
should consider the number of items that will be generated with violations of invariance.

For the present study conditions with 6, 9 and 15 items per measurement occasion
were examined. These numbers were chosen to be comparable to the conditions in the
studies by Wirth (2008) and by Leite (2007), and also to be able to manipulate the
number of items violating invariance as 1/3 or 2/3 as the simulation study conducted by
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Yoon and Millsap (2007). Another reason to select these quantities is to target social
psychological scales often used in longitudinal tests in which the number of items tend to
be relatively short.

The total item pool consisted of nine items such that for the 6-item condition, six
items were selected from the item pool, in the 9-item condition all the items in pool will
be used, and in the 15-item condition all the items were used and additionally six items
were selected twice. Table 2.1 shows the items that were included in the 6, 9 and 15-item
condition.

Table 2.1
Items included in each condition

6-item condition  9-item condition 15-items condition

Item 1* Item 1* Item 1* Item 5***
Item 2* Item 2* Item 2* Item 6***
Item 3** Item 3* Item 3* Item 7***
Item 4** Item 4** Item 4* Item 8***
Item 7*** Item 5** Item 5* Item 9***

Item 8*** Item 6** Item 6**

Item 7*** Item 1**

Item 8*** Item 2**

Item 9*** Item 3**

Item 4**

* Non-invariant items in the 1/3 and 2/3 conditions, ** non-invariant items in the
2/3 conditions,
*** invariant items across all conditions.
2.1.3 Size of loading difference across measurement occasions
The item loadings were generated to be either invariant across time or to have

small, medium or large violations of metric longitudinal invariance. In these conditions,

the intercepts and unique variances were invariant over time.
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Under violations of measurement invariance item loadings in a test can decrease,
or increase over time, or there could be a mixed pattern in which some items increase
while others decrease. For example, Obradovic, Pardini, Long and Loeber (2007)
analyzed responses of parents and teachers to an instrument that assessed interpersonal
callousness of children initially interviewed at 8 years old and measured annually until
they were 16 years old. The authors examined the items for longitudinal invariance and
found that, some item loadings decreased over time and others increased. In general, the
item loadings decreased in the first three measurement occasions and then remained
invariant from the fourth to the ninth wave when the teachers answered the items. When
the answers from the parents were analyzed it was found that 3 item loadings increased
over time while 3 item loadings decreased over time. It was concluded that the items
were not equally representative of interpersonal callousness over time.

In another study Willoughby, Wirth and Blair (2012) examined the longitudinal
invariance of a battery of six tests that were administered repeatedly over time to assess
executive function (defined as cognitive abilities in the control and coordination of
information in the service of goal directed actions). The authors found that two tests were
invariant over time, while the other four tests were non-invariant, with loadings that
increased at some measurement occasions and decreased at others.

While the studies described indicate that it is plausible to find item loadings that
increase or decrease over time, in the present study all the item loadings in the non-
invariant conditions decreased over time. No manipulations in which the loadings
increase or have a mixed pattern of increasing and decreasing values over time were
included to keep the total number of conditions within manageable limits.
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To create the values of the loadings over time, a three step procedure similar to
the one used by Yoon and Millsap (2007) was followed. The item loadings in the first
measurement occasion were the same in all conditions and the loadings in the fifth
measurement occasion were selected to represent small, medium and large violations of
metric longitudinal invariance. As indicated by Yoon and Millsap (2007) imposing a
fixed change in all item loadings might have a different meaning across items depending
on the magnitude of the initial item loading; for example, the impact of a 0.1 change
might be different in an item changing from a loadings of 0.9 to a loading of 0.8 than in
an item changing from a loading of 0.3 to a loading of 0.2. For this reason, the first step
to create the item loadings for the fifth measurement occasion was to define effect sizes
for violations of metric invariance over time with respect to one specific item. The effect
size was defined as the change in the loading of item 1 from the first measurement
occasion, with a loading value of 0.7, to the fifth measurement occasion. A small
violation to longitudinal metric invariance was defined as a change of .1 from the first to
the fifth measurement occasion (a change from a loading of 0.7 to a loading of 0.6), a
medium violation corresponded to a change of 0.2 (from 0.7 to 0.5), and a change of 0.3
defined a large violation of longitudinal metric invariance (from 0.7 to 0.4).

The second step was to define the loading values at the fifth measurement
occasion for the rest of the non-invariant items by subtracting a proportional amount to
the change in the loadings of item 1. For example, when there are small violations to
measurement invariance, item 1 changes from a loading value of 0.7 in the first
measurement occasion to 0.6 in the fifth measurement occasion, which corresponds to a
proportional drop of 0.1/0.7 = 1/7. In order to determine the loadings of the items at the
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fifth measurement occasion, the loadings of the non-invariant items were multiplied by
6/7=0.857. In the same way, to create medium and large violations of invariance the
loadings were multiplied by 0.714 (5/7) and 0.571 (4/7), respectively.

Once the value of the loadings at the fifth measurement occasion is defined the
loadings for the second, third and fourth measurement occasions were defined. The total
change from the first to the fifth measurement occasion in the item loadings was be
divided in equal parts so that there is a constant change from one measurement occasion
to the next. For example, the change of 0.1 in item 1 was divided so that the change from
one measurement occasion to the next was .025.

Table 2.2 shows the item loadings at each measurement occasion for each size of
violation in measurement invariance. It should be noted that six of the nine items were
generated to show violations of metric invariance over time, while three items were
invariant over time. Appendix A shows the item variances at each time point and at each

condition.
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Table 2.2
Generating item loadings per measurement occasion with small, medium and large violations of invariance

Small violations Medium violations Large violations

Item Timel Time Time Time Time Time Time Time Time Time Time Time Time

2 3 4 5 2 3 4 5 2 3 4 5
1 0.7 0.675 0.650 0.625 0.600 0.650 0.600 0.550 0.500 0.625 0.550 0.475 0.400
2 0.9 0.868 0.836 0.804 0.771 0.836 0.771 0.707 0.643 0.804 0.707 0.611 0.514
Non- 3 0.5 0.482 0.464 0.446 0429 0.464 0.429 0.393 0.357 0.446 0.393 0.339 0.286
invariant 4 0.6 0.579 0.557 0.536 0514 0557 0514 0.471 0429 0536 0.471 0.407 0.343
5 0.8 0.771 0.743 0.714 0.686 0.743 0.686 0.629 0.571 0.714 0.629 0.543 0.457
6 0.4 0.386 0.371 0.357 0.343 0.371 0.343 0.314 0.286 0.357 0.314 0.271 0.229

7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Invariant 8 1 1 1 1 1 1 1 1 1 1 1 1 1
9 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

12°]



2.1.4 Size of intercept difference across measurement occasions

The item intercepts were created to be either invariant or to have small, medium
or large violations of strong factorial invariance over time. It should be noted that the
item loadings were invariant over time under this condition.

As in the case of non-invariant loadings, the intercepts can increase, decrease or
have a mixed pattern over time. For example, Millsap and Cham (2012) analyzed data
from children assessed from 8 to 16 years of age that participated in an intervention to
help them cope with the death of a parent. The authors found that two of the subscales
used to assess the acting coping dimension violated strong factorial invariance: the
intercept of the Optimism subscale decreased from 2.803 in wave 1 to 2.648 in wave 2,
while the intercept of the Direct Problem Solving subscale decreased from 2.657 in wave
2 t0 2.607 in wave 3. In another study, Willoughby et al. (2011) found violations of
strong longitudinal invariance in 4 of the 6 battery tests to assess executive function.
Although the intercepts were not reported, the means of the subscales were reported to
increase at each of the three measurement waves. Since the hypothesis of strong factorial
invariance was rejected, part of the increase in the test means was due to violations of
strong longitudinal invariance. In the present study it was decided to examine only
conditions in which the intercepts increase over time. No conditions in which the item
intercepts decrease or have a mixed pattern were considered to keep the total number of
conditions under manageable limits.

The size of the violations in strong longitudinal invariance was defined as the
change in intercepts from the first to the fifth measurement occasion. To define small,
medium and large violations of strong longitudinal invariance the ratio of the difference
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in intercepts to the difference in the item means at two time points was considered
(Equation 55). This measure was proposed by Millsap and Olivera-Aguilar (2012) in the

multiple group case but can be used for studying invariance over time,

T 1 (55)
llpl - upS

where t,; — T,5 corresponds to the difference in intercepts for item p from time 1 to time
5, Mp1 — Mpscorresponds to the difference in means for item p from time 1 to time 5, and
d represents the proportion of the difference in means across time that is due to
differences in intercepts over time. A d value of 0.2 was considered a small effect size
(Millsap & Olivera-Aguilar, 2012), 0.5 represented a medium effect size, and 0.8
corresponded to a large effect size.

The item means at the first and fifth measurement occasions needed in the
denominator of Equation (55) are substituted in Equation (17). From Equation (17) it can
be seen that p,, = Tp1 + ApgKy, and that . = Tp5 + ApsKs, SO that Equation (55) can
be written as,

Tp1 ~ Tps (56)

d=
(Tpl + Ap1K1) - (Tps + ApSKS)

Since the loadings are invariant A,; = Aps, they can be expressed as A,

Replacing Ap; and Ays with A, and solving Equation (56) for t,s,
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s = d—1

Equation (57) was used to determine the item intercepts at time 5. The item
loadings corresponded to the loadings of the first measurement occasion shown in Table
2.2; the factor mean at the first time point was 0 and at the fifth measurement occasion it
was 0.8, as determined from the curve of factors model (see below); the values for the
intercepts in the first measurement occasion were held constant across conditions, and
correspond to the values for the first measurement occasion in Table 2.3. The values of d
were 0.2, 0.5 and 0.8.

For example, substituting the loading for the first item (A, = 0.7), its intercept at
the first measurement occasion (t;; = 0.5), the factor means at the first («x; = 0) and fifth
(x5 = 0.8) measurement occasions, for a small difference in intercepts (d=0.2), the

intercept at the fifth measurement occasion is,

(0.270.5) + (0.2 * 0.7 * 0) — (0.20%0.7°0.8) — 0.5 (58)

0.640 = 020 =1

The item intercepts at the fifth measurement occasion were determined for all
items using Equation (57). To determine the item intercepts at the second, third and
fourth measurement occasions, the total difference in intercepts from time 1 to 5 was
divided so that there is a constant change in intercepts over time. For example, the total
change of 0.140 in the intercept of item 1 from the first to the fifth measurement occasion

was divided so that the change from one measurement occasion to the next was .035.
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Table 2.3 shows the resulting item intercepts across measurement occasions. It
should be noted that six of the nine items in the item pool show violations of invariance
while three items remain invariant over time. For the 6-item condition, 6 items were
selected from Table 2.3; for the 15-item condition, all the items from the item pool were
used and six items were selected twice as indicated in Table 2.1. Appendix B shows the

item means at each time point.

2.1.5 Summary of conditions

A total of 312 conditions were examined; 156 conditions in each of the generating
models. For each of the generating models, the conditions examined corresponded to four
sample sizes, three total numbers of items per measurement occasion, two proportions of
items violating invariance, and six sizes of violation of invariance (small, medium and
large violations of metric measurement invariance, and small, medium and large
violations of strong factorial invariance). Additionally, in the conditions in which
measurement invariance holds, four sample sizes and three total numbers of items were

examined.
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Table 2.3
Generating item intercepts per measurement occasion with small, medium and large violations of invariance.

Small violations

Medium violations

Large violations

Item Timel Time Time Time Time Time Time Time Time Time Time Time Time

2 3 4 5 2 3 4 5 2 3 4 5

1 0.5 0.535 0570 0.605 0.640 0.640 0.780 0920 1.060 1.060 1.620 2.180 2.740

2 0.6 0.645 0690 0.735 0.780 0.780 0.960 1.140 1.320 1.320 2.040 2.760 3.480

Non- 3 0.3 0.325 0.350 0.375 0.400 0.400 0.500 0.600 0.700 0.700 1.100 1.500 1.900
invariant 4 04 0.430 0.460 0.490 0520 0.520 0.640 0.760 0.880 0.880 1.360 1.840 2.320
5 0.6 0.640 0.680 0.720 0.760 0.760 0.920 1.080 1.240 1.240 1.880 2.520 3.160

6 0.4 0.420 0.440 0.460 0.480 0480 0.560 0.640 0.720 0.720 1.040 1.360 1.680

7 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Invariant 8 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3




2.2 Generating models
The data were generated under the COFM or under the AR quasi-simplex model.
Data were generated for five measurement occasions, since Leite (2007) and Fan and Fan

(2005) reported no convergence problems in LGM with five measurement occasions.

2.2.1 Curve of factors model
The mean and variance for the growth latent variables were set as the same values
used in the simulation study by Muthén and Muthén (2002). The generating parameter

values for the growth latent variables were,

“m] _ [ 0 ] g 05 0.044721 (59)
Hn, 0.2 0.044721 0.1

The covariance between the intercept and the slope latent variables were set such
that the correlation corresponds to a value of 0.2. The loadings from the intercept latent
variable n, to the first order latent variables § were set to 1, and the loadings from the
slope latent factor n, to the latent variable § were set to 0, 1, 2, 3 and 4 at each
measurement occasion.

The residual variances for the latent variables & were chosen such that the
proportion of variance in § explained by the latent growth factors i correspond to values

of 0.80 in all measurement occasions. The variance of & is defined as,

of =7y, + O (60)

60



Gét = lPll + 'Ytzlllzz + 2'Yt\P21 + e);t

The proportion of variance in  explained by the latent growth factors n is

defined as,

Wi+ Ytzlpzz + 2y, ¥y
Wiy + v W + 2y, ¥ + 6,

SOE ©

The resulting variances for & and its residual variances 0, that yield R?values of

0.80 are shown in Table 2.4. Table 2.4 also shows the means of &, calculated as,

E(§) = pg, =I'my (62)

Table 2.4
Generating means and variances for &, in the curve of factors model

Mean Variance Residual var.
Hgt Gét 6%
g, 0 0.62 0.12
g, 0.2 0.86 0.17
&, 0.4 1.34 0.26
g, 0.6 2.07 0.40
& 0.8 3.06 0.60

Figure 2.1 shows the curve of factors model with the generating parameters for
the structural part of the model. The generating parameters for the measurement part of

the model are not shown.
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Figure 2.1 Curve of factors model with the generating parameter values

The generating parameter values for the measurement part of the model were
determined for a pool of 9 items. Table 2.5 shows the generating parameter values of the
intercepts, loadings and unique variance for the condition in which longitudinal
measurement invariance holds. In the conditions with small, medium and large violations
of metric longitudinal invariance, the parameter values for the loadings changed over
time as shown in Table 2.2, while the intercepts and unique variances were invariant over
time. In the same way, in the conditions with violations of strong factorial invariance the
values of the intercepts changed over time as indicated in Table 2.3, while the loadings

and unique variances were invariant over time.
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Table 2.5
Generating item loadings, intercepts and unique variances used in the invariant conditions

Intercept Loading Unique variance
T A 0

Iltem 1 0.5 0.7 0.7
Item 2 0.6 0.9 1.3
Item 3 0.3 0.5 0.6
Item 4 0.4 0.6 0.8
Item 5 0.6 0.8 1.3
Item 6 0.4 0.4 0.4
Item 7 0.3 0.5 0.7
Item 8 0 1 1.9
Item 9 0.3 0.6 1

The values of the unique variances were selected such that the item
communalities across all measurement occasions were between 0.1 and 0.68 based on the
Equation (57). Appendix A contains the communality values for each item in each

condition.

2
h? = —)\j g
T Mg, + 65

(63)
One thing to notice is that no lagged covariances between unique factor scores of
the same variable over time were allowed. Although it is reasonable to assume that the
unique factor scores are correlated over time, when composites of items are formed at
each time point the covariances between unique factor scores are ignored. Hence,
simulating data with lagged covariances and then compositing the items would introduce
a source of bias. Wirth (1998) found that mean scores at each measurement occasion
were less biased when there were no lagged covariances between the same item over time

than when the items were generated to have lagged covariances over time. On the other
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hand, Biesanz (2012) found that when using composites of items with correlated unique
variances over time, the autoregressive parameters are inflated since the correlations

among the unique variances are ignored when using composites.

2.2.2 Autoregressive quasi-simplex model

To select the generating values of an autoregressive quasi-simplex model the
study of Morera, et al. (1998) was considered in which six waves of data from a smoking
intervention study were analyzed using a quasi-simplex model. For the purposes of the
present study only estimates from five of the six waves were considered. Figure 2.2
shows the unstandardized parameter estimates obtained by Morera et al. for waves 1, 2, 3,
4 and 5, and used in the present study as generating values for the structural part of the
autoregressive model. The one-lagged unstandardized autoregressive path coefficients
were constrained to the same value across measurement occasions for ease of

interpretation (Biesanz, 2012). Path coefficients for lags greater than one were set to zero.

v

U N L S

Figure 2.2. Autoregressive quasi-simplex model with the generating parameter values
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Since the effect sizes defined for the violations in strong measurement invariance
take into account the factor means as indicated in Equation (57), the factor means in the
autoregressive model were generated with the same values as the factor means in the
LGM and shown in Table 2.4. The factor means from the first to the fifth measurement
occasions were 0, 0.2, 0.4, 0.6, and 0.8.

The generating parameter values for the measurement part of the model, not
shown in Figure 2.2, were determined as described above and using the values from
Tables 2.2, and 2.3 for the non-invariant conditions, and with the values from Table 2.5

for the condition in which longitudinal measurement invariance holds.

2.3 Data analysis

After generating the data under the curve of factors model and the AR quasi-
simplex model, composites were generated by summing the items at each measurement
occasion. Either a univariate LGM or an AR quasi-simplex model were fit to the
composites of the items.

When fitting the univariate LGM the factor loadings of the intercept factor n,
were fixed to one and the factor loadings of the slope factorn, were fixed to 0, 1, 2, 3, and
4 for time points 1 to 5. The means of the intercept and the slope factors were freely
estimated, as well as their variances and covariances.

When fitting the AR quasi-simplex model the autoregressive paths were freely
estimated. Also, the residual variances of the composites Y at the measurement occasions
one and two were constrained to have the same values 6;; = 0,,, as well as the residual

variances of the composites Y at the measurement occasions four and five 6,4 = 0s5. The
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intercepts of the composites Y were fixed to 0. The means and variances of the latent

variables were freely estimated at each time point.

2.3.1 Convergence
The first step in the analysis of the results was to examine the number of
replications needed to obtain 1000 converged solutions. Solutions with convergence

problems or with improper solutions were not included in subsequent analyses.

2.3.2 Parameter estimation

The ability to recover the generating parameter values in the presence of
violations of invariance was evaluated in the univariate LGM and the AR quasi-simplex
model. A raw bias statistic was computed for each of the estimated parameters denoted 8,
as shown in Equation (64). In the latent curve model the estimated parameters correspond
to the means, variances and covariances of the intercept and slope factors, and in the AR

the estimated parameters are the path coefficients.

R
B(@) =R ) (@ - 0.) (64)
r=1

where R refers to the total number of replications that converged to a solution, 6, refers to

the generating parameter value in LGM and in the AR quasi-simplex model; 8, refers to

the parameter estimate for replication r in condition c.
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Another criteria for assessing the impact of violations of invariance was relative
bias, in which the mean difference of the parameter estimates at each condition and the

generating parameter value is divided by the generating parameter value,
(B = 60
RB(3,) =R~ Y == (65)
r=1 ¢

Hoogland and Boomsma (1998) indicated that the relative bias of parameter
estimates is considered acceptable when its absolute value is less than .05.

The stability of the parameter estimates in LGM and in AR quasi-simplex model
was evaluated with the standard error of .. The standard error of the estimates is defined

as,

R
SE(0.) = [R™' ) (0 -0y (66)
r=1

whered is the mean of the parameter estimates across conditions and replications.
To have an overall measure of the accuracy of the parameter estimates that
considered both the bias in the parameter estimates and their stability, the root mean

square error (RMSE) was also calculated,
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R
RMSE; = [R™ Z(érc —0,)? (67)
r=1

To determine the effect of the independent variables (sample size, number of
items, proportion of non-invariant items and magnitude of the violations of invariance)
several ANOVAS were conducted on the bias, relative bias, standard errors and RMSE of
each of the parameter estimates of the LGM and AR-simplex. The meaningfulness of the
ANOVA results were determined by n? and Cohen’s (1988) values were used to judge
small 0.01, medium 0.06 and large 0.14 associations between the variables. Graphic

devices were used to compare bias, relative bias and standard errors across conditions.

2.3.3 Model fit

The %* value of model fit in each replication was compared to the ¥ critical value
that would be expected from a correctly specified model that is a function of the degrees
of freedom of the LGM or the AR quasi-simplex model and an a=.05. The rejection rates
were computed in each condition as the proportion of replications in which the Xz value

of model fit indicates lack of fit.
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Chapter 3
RESULTS

This chapter presents the results of the simulation study in which a LGM or an
AR quasi-simplex model were fit to composites formed from items with different levels
of violations to measurement invariance. First, the results of the LGM are described
followed by the description of the AR quasi-simplex results. Some issues were
encountered when analyzing the results of the LGM and the AR quasi-simplex; in the
LGM it was found that an adjustment of the true growth parameter values was necessary,
while in the AR quasi-simplex the identification constraints initially proposed were
modified. The sections of each of the models start with a description of these issues.

The presentation of the results of the LGM and the AR quasi-simplex is divided
into three sections. First, the non-convergence percentages are presented. Then, the
ability to recover the generating parameter values is described in terms of the bias,
relative bias, standard errors and RMSE of each parameter estimate. Finally, the fit of the
models are examined in terms of the rejection rates.

For ease of presentation, graphs are shown when possible. To facilitate the display
of the information the name of the conditions with invariant loadings and intercepts, and

with non-invariance in the intercepts or loadings are abbreviated as shown in Table 3.1.

Table 3.1
Acronyms for the conditions examined
Acronym Condition
InvLI Invariant loadings and invariant intercepts
NiLd Non-invariant loadings, invariant intercepts
Niln Non-invariant intercepts, invariant loadings
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3.1 Latent growth model
3.1.1 Re-scaling of the generating growth parameters
As indicated in the method section, multiple indicators were generated under the
curve of factors models. The multiple indicators were summed at each time point, and an
LGM was used to analyze the composites. It was found that by substituting the latent

factors & of the curve of factors model, by the composites Y, a scaling factor was

introduced that changed the growth parameter estimates even in the conditions with
invariant loadings and intercepts. Since this change was systematic, it was possible to
develop a re-scaling of the growth parameters that corrected for the change. The re-
scaling depended on the number of items per measurement occasion and the values of the
item intercept sums and item loadings sums (See Appendix C). The following results

were obtained after the re-scaling of the growth parameters.

3.1.2 Non-convergence percentages

The first criterion used to evaluate the results was the number of replications per
condition with convergence problems. As expected, in the conditions with invariant
loadings and intercepts there were no replications with convergence problems.

Overall, in the conditions with violations of invariance over time the total number
of replications with convergence problems or improper solutions was small. While all the
replications with sample sizes of 200, 500 and 1000 reached convergence, the conditions
with a sample size of 100 had some replications with non-convergence, which suggests
that convergence problems were a consequence of small sample sizes and not due to the

violations of invariance. Table 3.2 shows the percentage of replications with convergence
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problems for the conditions with a sample size of 100. It can be observed that among
those conditions, only a small percentage of replications (0.1 to 0.3%) resulted in non-
convergence.

The replications with non-convergence were replaced so that the computations of
the bias, relative bias, standard errors and RMSE of the growth parameter estimates were

based in a total of 1000 converged replications.

Table 3.2
Non-convergence percentages for the LGM conditions with N=100
Number of Proportion of . Non-invariant Non-invariant
. L Effect size . .
items non-inv. items loadings intercepts

Small 0 0

1/3 Medium 0 0.1

6 Large 0.1 0
Small 0.1 0

213 Medium 0.1 0

Large 0.1 0

Small 0.1 0

1/3 Medium 0 0

9 Large 0 0
Small 0 0

2/3 Medium 0 0

Large 0.1 0.1

Small 0.1 0

1/3 Medium 0 0.1

15 Large 0.3 0
Small 0.3 0.1

2/3 Medium 0.1 0.1

Large 0.1 0.2

3.1.3 Parameter estimation
Parameter estimation under violations of invariance was evaluated by examining

at the bias, relative bias, standard errors and RMSE for each growth parameter estimate.
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The results are divided in three sections: bias and relative bias, standard errors and

RMSE.

Bias and relative bias

Since the results of bias and relative bias are comparable, only the tables with the
relative bias results are presented. It was decided to present the tables with the relative
bias results since there is a clear cutoff for judging the magnitude of relative bias
(Hoogland & Boomsma, 1998). The tables with the bias results across conditions can be
consulted in Appendix D. To further simplify the relative bias tables the results for the
different sample sizes were collapsed, since the ANOVA results described below showed
that the sample size did not have an effect on the relative bias of the growth parameter
estimates.

As expected, the bias and relative bias of the growth parameter estimates were
acceptable in the conditions with invariant loadings and intercepts. A series of ANOVASs
were conducted to examine the effect of the independent variables on the bias and
relative bias of the parameter estimates. The results of the ANOVAs were judged by the
overall n and by the n’ values of the interactions and main effects of the independent
variables. The ANOVA results indicated that none of the conditions had a nz value above
0.01, which is a small effect size following Cohen’s suggestion (Cohen, 1988). Table 3.3
shows the relative bias values of the parameter estimates in the conditions with invariant
loadings and intercepts.

The relative bias values for each growth parameter estimate in the non-invariant

conditions are presented in Table 3.4. In general, it can be observed that with non-
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invariant loadings the absolute values of the relative bias of the slope factor mean, the
slope factor variance and the intercept-slope covariance are larger than in the invariant
conditions and larger than the suggested cutoff of 0.05. In contrast, with non-invariant
intercepts the only parameter that showed relative bias values larger than 0.05 was the

slope factor mean.

Table 3.3
Relative bias of LGM parameter estimates in the invariant conditions

Num. Intercept Intercept Slope factor  Slope factor Intercept-

items factor mean factor mean variance slope
variance covariance

6 0.001 0.001 -0.003 -0.004 0.006

9 0.001 0.000 -0.005 -0.005 0.031

15 -0.001 0.002 -0.007 -0.006 0.014
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Table 3.4
Relative bias of LGM parameter estimates under violations of invariance

Non-invariant loadings Non-invariant intercepts
Num. Ef.feCt Prop. Int. Slope Int. Slope I-S Int. Slope Int. Slope I-S
items size non-inv.
mean  mean var. var. covar. mean  mean var. var. covar.

1/3 0.009 -0.053 -0.001 -0.122 -0.126 0.000 0.101 -0.007 -0.009 0.013

V.

Small 2/3 0017 -0092 0001 -0.192 -0238 0001 0159 -0.008 -0.003 0.012

6 Megum U3 0023 0112 0002 -0228 -0295 0002 0383 -0002 -0.010 0015
2/3 0037 -0183 0001 -0.355 -0.508 -0.001 0.643 -0.008 -0.005 0.009

Large 1/3 0036 -0167 0005 -0.324 -0.446 0000 1527 -0.011 -0.005 0.007
2/3 0063 -0.280 0013 -0500 -0.803 0.002 2572 -0.005 -0.004 0.017

small 13 0010 -0050 -0.004 -0111 -0.124 -0.001 0087 -0.005 -0.003 0.010
23 0016 -0.095 0004 -0198 -0236 0000 0160 -0.004 -0.007 0.016

o Megiym Y3 0019 0101 0001 0213 -0270 0000 0351 -0.005 -0.007 0.004
23 0036 -0189 0005 -0.361 -0514 0.000 0650 -0.003 -0.009 0.007

Large 13 0029 -0153 0004 -0.301 -0417 0000 1.403 -0.006 -0.008 0.014
23 0053 -0285 0012 -0507 -0817 0.000 2601 -0.003 -0.003 0.021

sl 13 0008 -0052 -0.001 -0.115 -0.115 -0.002 0.087 -0.004 -0.006 0.014
23 0014 -0095 -0.001 -0.202 -0245 -0.003 0164 -0.005 -0.004 0.006

5 Megiym Y3 0018 0105 -0001 0212 -0259 -0001 0354 -0.007 -0005 0.012
23 0031 -0196 0006 -0.376 -0526 -0.001 0.669 -0.004 -0.003 0.007

Large 13 0025 -0153 0005 -0.310 -0406 0001 1.415 -0.006 -0.005 0.015

2/3 0.052 -0.299 0.018 -0.523 -0.833 -0.001 2.668 -0.006 -0.004 0.018

Note: The bolded numbers correspond to relative bias absolute values larger than 0.05.



Next, a detailed description of the bias, relative bias and ANOVA results for each
growth parameter estimates is provided. The n? values for the conditions with at least a

small effect size are shown in Table 3.5.

Table 3.5
nvalues from the ANOVAs on bias and relative bias of the LGM parameter
estimates

. : . Non-invariant
Non-invariant loadings

intercepts
Int. mean Slope mean Slope var. I-S covar. Slope mean
. Rel. . Rel. . Rel. . Rel. . Rel.
Bias bias Bias bias Bias bias Bias bias Bias bias

Overall effect 0.04 003 047 036 08 065 044 024 099 098
N. Items -- -- 0.14 -- 0.52 -- 0.21 -- 0.10 -

Prop. Non-inv. - -- 009 011 007 020 0.05 0.07 0.07 0.08
Magnitude 002 002 018 023 015 042 009 015 066 0.83

N. items x - - 0.02 - 0.04 -- 0.03 - 0.01 -
Prop.
N. items x - - 0.02 - 0.07 -- 0.04 - 0.09 -
Mag.
Prop. x Mag. -- -- 0.02 0.02 -- 0.02 001 002 006 0.07

Intercept factor mean

As indicated in Table 3.4, the intercept factor mean estimates showed relative bias
values larger or at the cutoff of 0.05 only in the conditions with non-invariant loadings
with large violations of invariance and with 2/3 of non-invariant items. In the rest of the
non-invariant loading conditions and in all the non-invariant intercept conditions the
relative bias values were below 0.05.

Figures 3.1 and 3.2 show the bias and relative bias of the intercept factor mean
across conditions. The results by the number of items were collapsed since no differences

were found. It can be seen that the values are very similar under violations of invariance
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and in the invariant conditions. As expected, the ANOVA results (Table 3.5) showed
only a small effect size for the magnitude of the violations under the conditions with non-

invariant loadings.

Bias in the Intercept Factor Mean

Niln NiLd
6,

3
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Violations of invariance

Figure 3.1 Bias in the intercept factor mean in the non-invariant loading conditions
(NiLd) and in the non-invariant intercept conditions (Niln). The horizontal lines show the
bias in the intercept factor mean in the conditions with invariant loadings and invariant
intercepts.
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Relative bias in the Intercept Factor Mean

Niln NiLd
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Figure 3.2 Relative bias in the intercept factor mean in the non-invariant loading
conditions (NiLd) and in the non-invariant intercept conditions (Niln). The horizontal
lines show the cutoff values of 0.05 and -0.05. Relative bias values inside the lines were
considered acceptable values.

Slope factor mean

As indicated in Table 3.4, across all conditions with non-invariant loadings the
parameter estimates of the slope factor mean were underestimated while they were
overestimated in the conditions with non-invariant intercepts. Only the relative bias
absolute values in the non-invariant loading conditions with small violations of
invariance and 1/3 of non-invariant items were close to cutoff of 0.05. The relative bias
absolute values for the rest of the conditions showed absolute values above the
recommended cutoff.

It should be noticed in Table 3.4 that the relative bias values were larger in the

non-invariant intercept conditions than under the non-invariant loading conditions. While
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the relative bias absolute values in the non-invariant loading conditions ranged from 0.05
to 0.30, the absolute values under the non-invariant intercepts ranged from .09 to 2.67.
This finding can be observed in Figures 3.3 and 3.4. It can also be seen that as the
magnitude of violations increase and as the proportion of non-invariant items increase,

the bias and relative bias absolute values increased.

Bias in the Slope Factor Mean
Niln NiLd

Proportion
s IO Bl B e e, B, P S TR © O 13
A 2(3

Small Medium Large Small Medium Large
Violations of invariance

Figure 3.3 Bias in the slope factor mean in the non-invariant loading conditions (NiLd)
and in the non-invariant intercept conditions (Niln). The horizontal lines show the bias in
the slope factor mean in the conditions with invariant loadings and invariant intercepts
(InLI).
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Relative bias in the Slope Factor Mean
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Figure 3.4 Relative bias in the slope factor mean in the non-invariant loading conditions
(NiLd) and in the non-invariant intercept conditions (Niln). The horizontal lines show the
cutoff values of 0.05 and -0.05. Relative bias values inside the lines were considered
acceptable values.

The ANOVA results on the bias of the slope factor mean indicated that in the
non-invariant loading conditions the magnitude of violations explained 18% of the
variance, while the number of items explained 14% and the proportion of non-invariant
items explained 9%. Regarding relative bias, the ANOVA results revealed a medium
effect size for the proportion of non-invariant items (n” = .11) and a large effect size (n? =
.23) for the magnitude of violations.

Under the non-invariant intercept conditions, the ANOVA results on the bias of
the slope factor mean indicated a medium effect size for the interaction between the

number of items and the magnitude of violations of invariance (n2 =0.09), and for the

interaction between the proportion of non-invariant items and the magnitude of the
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violations (n = 0.06). The main effect of the magnitude of violations, the number of
items, and the proportion of non-invariant items explained 66, 10 and 7% of the variance
respectively.

The ANOVA on the relative bias also showed a medium effect size for the
interaction between the proportion of non-invariant items and the magnitude of the
violations (n = 0.07). The proportion of non-invariant items explained 8% of the
variance, and the proportion of variance in the relative bias explained by the magnitude

of violations increased to 83%.

Intercept factor variance

Table 3.4 shows that the relative bias absolute values of the intercept factor
variance were smaller than the cutoff of 0.05 in all conditions with violations of
invariance. It should be noted that the intercept factor variance was the only growth
parameter estimate that was unbiased in the non-invariant loading conditions. The
ANOVA results showed that the independent variables did not have an effect on the bias

and relative bias of the intercept factor variance estimates under violations of invariance.

Slope factor variance

In the conditions with non-invariant loadings, the parameter estimates of the slope
variance underestimated the true value in all conditions. The relative bias absolute values
were larger than 0.05, ranging from 0.11 to 0.52, as shown in Table 3.4. In contrast, in all
the conditions with non-invariant intercepts the relative bias absolute values were lower

than 0.05.
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Figures 3.5 and 3.6 show the bias and relative bias for the slope factor variance
across conditions. It should be noticed that in the non-invariant loading conditions, as the
magnitude of violations and the proportion of non-invariant items increased, the bias and
relative bias absolute values increased. These results were confirmed by the ANOVAs
that showed large effects for the magnitude of violations and the proportion of non-

invariant items (Table 3.5).

Bias in the Slope Factor Variance
Niln NiLd
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Figure 3.5 Bias in the slope factor variance in the non-invariant loading conditions
(NiLd) and in the non-invariant intercept conditions (Niln). The horizontal lines show the
bias in the slope factor variance in the conditions with invariant loadings and invariant
intercepts (InLl).
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Relative bias in the Slope Factor Variance
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3_

2_

1 @

0—ZIZIZ1:2222'2)811211:ZI:IZ'ZZIZZZIZI&Z':IZZZIZI:I:IZ'ZZZ:@I:IZI::':IZI B T L T T
W B B A
5 Num.ltems
L
-1 © 15
=
i =
S X 9
o

2_

N
1- @
O—:::1Z1:::::::&:2:1:1:::::::::2:1Zi&:::::::lZIZ:::::::::&I::::::::::: e e e e e o TR L o LR o
&
T &
-1-
Small Medium Large Small Medium Large

Violations of invariance

Figure 3.6 Relative bias in the slope factor variance in the non-invariant loading
conditions (NiLd) and in the non-invariant intercept conditions (Niln). The horizontal
lines show the cutoff values of 0.05 and -0.05. Relative bias values inside the lines were
considered acceptable values.

More specifically, the ANOVA conducted in the non-invariant loading conditions
indicated that the number of items explained 52% of the variance on the bias of the slope
factor variance, while the magnitude of violations explained 15% and the proportion of
non-invariant items explained 7%. A medium effect size was also found for the
interaction between the number of items and the magnitude of the violations to invariance
(n?=0.07). The ANOVA on the relative bias showed that the magnitude of violations
explained 42% of the variance and the proportion of non-invariant items explained 20%.

In the non-invariant intercept conditions, the ANOVA on the bias and relative

bias did not show a n* value larger than 0.01.
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Intercept-slope covariance

The covariance between the intercept and slope factors was underestimated across
all the non-invariant loading conditions as shown in Figure 3.7. The relative bias absolute
values were above 0.05 even in the conditions with small violations of invariance and 1/3
of non-invariant items. Figures 3.7 and 3.8, as well as Table 3.4, show that as the
magnitude of violations of invariance and as the proportion of non-invariant items
increase, the bias and relative bias absolute values also increased.

The ANOVA conducted in the non-invariant loading conditions showed a large
effect size for the number of items (n’=.21), and a medium effect size for the magnitude
of violations of invariance (n°= .09) on the bias of the intercept-slope covariance. The
ANOVA on the relative bias showed a large effect size for the magnitude of violations
(n? = 0.15) and a medium effect size for the proportion of non-invariant items (n®= 0.07).

The ANOVAs conducted on the bias and relative bias in the conditions with non-

invariant intercepts did not show n? values larger than 0.01.
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Bias in the Intercept Slope Covariance
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Figure 3.7 Bias in the intercept-slope covariance in the non-invariant loading conditions
(NiLd) and in the non-invariant intercept conditions (Niln). The horizontal lines show the
bias in the slope factor variance in the conditions with invariant loadings and invariant
intercepts (InLlI)
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Figure 3.8 Relative bias in the intercept-slope covariance in the non-invariant loading
conditions (NiLd) and in the non-invariant intercept conditions (Niln). The horizontal
lines show the cutoff values of 0.05 and -0.05. Relative bias values inside the lines were
considered acceptable values.
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Standard errors

The ANOVAs conducted on the standard errors of the growth parameter estimates
showed that the number of items and the sample size had a large effect in all conditions.
No other independent variable had medium or large effect sizes. Table 3.6 shows 1’
values only for the conditions with at least small effect sizes.

The standard errors of the growth parameter estimates are shown in Figures 3.9 to
3.13 and are also presented in Table 3.7. Since the magnitude of violations and the
proportion of non-invariant items did not have effects on the standard errors, the results
shown are averaged over sample size and the number of items. It should be noticed that
in order to accommodate the large standard errors observed for the intercept factor
variance, the y axis of the graph of the intercept factor variance (Figure 3.11) isin a
different scale than the graphs of the other growth parameter estimates.

In general, it can be observed that the standard errors of growth parameter
estimates were very similar in the invariant conditions and in the conditions with
violations of invariance. In all conditions, the standard errors decreased as the sample
size increase and as the number of items decreased. The effect of the number of items can
be seen very clearly in Figure 3.11 that corresponds to the standard errors of the intercept
variance. The influence of the number of items is also observed in the standard errors of
the slope factor variance (Figure 3.12) and in the standard errors of the intercept-slope

covariance (Figure 3.13).
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n°values from the ANOVAs on the standard errors of the LGM parameter estimates

Table 3.6

Invariant loadings and intercepts

Non-invariant loadings

Non-invariant intercepts

Int.

Int.

Slope Slope I-S Int.  Slope Int.  Slope I-S Int.  Slope Int. Slope I-S
mean mean var. var. covar. mean mean var. var. covar. mean mean var. var. covar.
Overall 094 094 089 089 089 094 093 089 087 089 094 094 089 089 089
N. Items 033 035 059 060 059 034 032 060 056 058 033 035 060 060 061
;ir:p'e 062 059 031 029 030 060 059 029 028 030 060 059 029 029 029
Magnitude - - - - - - 001 - 002 001 - - ~ - ~
Proportion -- -- -- -- -- -- 0.01 -- 0.01 -- -- -- -- -- --




Table 3.7
Standard errors of the LGM parameter estimates by the number of items and by sample size

Invariant loadings and intercepts Non-invariant loadings Non-invariant intercepts

Num. Sample

items  size Int. Slope Int. Slope I-S Int. Slope Int. Slope I-S Int. Slope Int. Slope I-S

mean mean valr. var. Ccovar. mean mean var. var. covar. mean mean var. var. covalr.

100 036 016 189 036 058 036 014 188 027 052 035 015 185 035 0.57
200 026 011 127 025 042 025 010 131 020 037 025 011 129 024 041

JAS

0 500 0.16 007 08 015 026 016 006 081 013 023 016 007 082 0.15 0.26
1000 011 005 059 011 018 011 0.04 059 009 017 011 0.05 058 011 0.18
100 047 021 349 062 108 048 019 341 051 09 048 021 341 065 1.05
9 200 034 015 242 045 075 034 013 243 035 066 034 015 236 046 0.76
500 022 010 150 029 048 022 008 151 023 042 021 010 150 029 0.48
10000 0.15 007 109 020 033 015 006 109 016 030 0.15 007 105 021 0.33
100 074 033 824 151 258 076 029 838 119 226 076 034 820 161 255
15 200 054 024 572 114 182 054 020 587 08 160 053 024 579 114 1.82

500 032 015 369 066 113 034 013 376 054 101 034 015 366 071 115
10000 024 0.11 254 049 082 024 009 265 038 072 024 011 262 051 0.83




Standard Errors of the Intercept Factor Mean
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Figure 3.9 Standard errors of the intercept factor mean in the invariant conditions (InL1),
non-invariant loading conditions (NiLd) and non-invariant intercept conditions (Niln).
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Figure 3.10 Standard errors of the slope factor mean in the invariant conditions (InLlI),
non-invariant loading conditions (NiLd) and non-invariant intercept conditions (Niln).
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Standard Errors of the Intercept Factor Variance
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Figure 3.11 Standard errors of the intercept factor variance in the invariant conditions
(InL1), non-invariant loading conditions (NiLd) and non-invariant intercept conditions

(Niln).
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Figure 3.12 Standard errors of the slope factor variance in the invariant conditions (InLlI),
non-invariant loading conditions (NiLd) and non-invariant intercept conditions (Niln).
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Standard Errors of the Intercept-Slope Covariance
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Figure 3.13 Standard errors of the interceptslope covariance in the invariant conditions
(InL1), non-invariant loading conditions (NiLd) and non-invariant intercept conditions
(Niln).

Root mean square error (RMSE)

Table 3.8 contains the n° values obtained from the ANOVAs on the RMSE of the
growth parameter estimates. Table 3.8 indicates that the number of items and the sample
size had a large effect on the RMSE in almost all conditions, explaining in some growth
parameter estimates up to 66% and 62% of the total variance respectively.

In the non-invariant loading conditions a large effect size was observed for the
magnitude of violations of invariance on the slope factor mean (n?=.24) and on the slope

factor variance (n°=.14), with RMSE values increasing as the magnitude of violations

increased. The RMSE values also increased with increases in the proportion of non-
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invariant items, that showed a large effect on the slope factor mean (n°=.13) and a
medium effect on the slope factor variance (1°=.07).

In the non-invariant intercept conditions, the magnitude of violations had a large
effect size (n?=.66) on the intercept factor mean, while the proportion of non-invariant
items showed a medium effect size (n?=.07). The direction of the effects was the same as

in the non-invariant loading conditions.
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Table 3.8
n°values from the ANOVAs on the RMSE of the LGM parameter estimates

Invariant loadings and intercepts

Non-invariant loadings

Non-invariant intercepts

Int.

Slope

Int.

Slope

I-S

Int.

Slope Int. Slope I-S Int. Slope Int. Slope I-S
mean mean var. var. covar. mean mean var. var. covar. mean mean var. var. covar.
Overall 094 094 08 089 089 094 088 089 087 094 083 089 089 089 094
N. Items 033 035 059 060 059 040 044 061 066 033 011 060 0.60 0.61 0.33
Magnitude  -- - - - -- 001 024 - 014 -- 0.66 -- -- -- --
Proportion - - - -- - - 0.13 -- 0.07 - 0.07 - - -- --
SS 062 059 031 029 030 053 0.06 029 -- 0.60 -- 030 029 0.29 0.60




3.1.4 Model fit

The last criterion examined was the fit of the LGM under violations of invariance.
In general, in the invariant conditions the percentage of replications that incorrectly
rejected the hypothesis of linear growth remained close to the nominal level as shown in
Table 3.9. In the conditions with just 6 items the rejection rates were below the nominal
level for sample sizes larger than 100. In the conditions with 9 items the rejection rates
were larger than expected (6%) but as the sample size increased it got closer to the
nominal 5%. In the conditions with 15 items the rejection rates were on average close to

the nominal level.

Table 3.9
Rejection rates in the invariant conditions in LGM
Number of items Sample size Rejection rates
100 4.7
6 200 3.2
500 3.6
1000 3.9
100 5.2
9 200 5.6
500 5.6
1000 4.3
100 4.5
200 5.3
15 500 4.3
1000 4.5

In the non-invariant loading conditions the rejection rates were larger than in the
invariant conditions as shown in Table 3.10. As the number of items, the magnitude of
the violations of invariance, the proportion of non-invariant items, and the sample size

increased, the percentage of replications in which the hypothesis of linear growth was
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incorrectly rejected increased. With only 6 items, the rejection rates ranged from 5.4 up
to 85 in the condition with large violations to invariance, 2/3 of non-invariant items, and
a sample size of 1000.

When the total number of items was 9, only in the conditions with small
violations to invariance and 1/3 of non-invariant items the rejection rates were close to
the nominal level. In all the other conditions the rejection rates were higher. For example,
in the condition with large violations to invariance, 2/3 of non-invariant items and a
sample size of 1000, 96.4% of the replications rejected the null hypothesis.

In the conditions with 15 items, the rejection error rates were never lower than
7.8%, and increased up to 100% when 2/3 of the items had large violations of invariance
and a sample size of 1000.

In contrast, in the conditions in which composites were formed from items with
non-invariant intercepts the rejection rates remained close to 5%. Although there were
some conditions in which the rejection rates were slightly inflated, the rates are

comparable to the invariant conditions.
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Table 3.10
Rejection rates in the conditions with violations of invariance in the LGM

Num. Magnitude Sample  Non-invariant loadings Non-invariant intercepts
Iltems of violations  size  1/3 non-inv. 2/3 non-inv. 1/3 non-inv. 2/3 non-inv.

100 6.4 6.2 5.0 5.1

small 200 7.0 5.0 5.3 4.7

500 4.6 7.9 3.9 4.7

1000 6.7 10.8 4.4 5.1

100 5.2 7.8 4.1 6.1

. 200 4.7 10.3 5.6 4.6

6 Medium g 8.3 21.2 3.6 4.6

1000 15.5 42.9 4.4 4.2

100 7.4 11.2 4.2 51

Large 200 8.6 18.0 6.9 4.3

500 15.7 49.7 5.1 3.9

1000 30.8 84.4 5.3 4.9

100 3.9 5.1 5.5 6.2

small 200 4.9 6.8 4.4 5.8

500 6.4 9.2 3.3 4.3

1000 5.7 14.4 4.3 4.8

100 55 10.0 4.9 4.8

. 200 8.0 12.3 3.9 5.1

o Medium 5 10.6 32.2 3.9 5.7

1000 17.2 63.6 5.1 4.6

100 8.8 14.8 6.6 5.8

Large 200 9.3 26.3 4.7 4.3

500 20.6 69.5 4.4 5.1

1000 40.3 95.7 3.9 3.9

100 6.7 7.6 6.1 5.9

small 200 5.9 9.4 5.2 5.3

500 7.9 16.8 5.2 35

1000 9.3 30.0 3.8 6.1

100 6.2 12.0 5.4 5.6

. 200 10.0 25.5 4.2 4.4

15 Medium g4, 16.8 61.6 5.4 4.1

1000 33.1 92.0 4.0 5.4

100 9.1 27.5 5.3 5.3

Large 200 14.5 55.0 5.5 4.7

500 40.0 95.4 4.8 4.6

1000 73.4 100.0 4.1 45
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3.2 Autoregressive quasi-simplex model
3.2.1 Change in identification constraints

The set of constraints initially proposed to identify the AR quasi-simplex model
consisted of fixing the intercepts of the composites to zero, constraining to equal values
the Autoregressive quasi-simplex path coefficients across waves p,, = p;, = p,; = P,
and constraining to equal values the unique variances of the Y composites of the first and
second measurement occasions 6,; = 8,, and at the fourth and fifth measurement
occasions 044 = 055. This set of identification constraints resulted in large non-
convergence rates in most conditions. In the invariant conditions the percentage of
replications with convergence problems was between 0.6 and 32, while in the conditions
with violations of invariance the percentage was between 0.3 and 42.

In order to reduce the non-convergence rates, the identification constraints were
changed. As indicated by Joreskog (1979b) and Biesanz (2012) the first and last latent
variables in the AR quasi-simplex are not identified and constraints in the residual
variances are needed by constraining their values to zero, or equal to the values of the
adjacent waves. The new set of constraints consisted of constraining the residual
variances of the Y composites at first and second measurement occasions to equal values
0;; = 0y, (as in the initial set of constraints proposed) and to constrain the residual
variance of the fifth measurement occasion to zero. It should be noted that although this
constraint identifies the model, it implies that the assessment in the last wave contains no
error which is an unrealistic assumption in practice. The intercepts of the composites

were fixed to zero to identify the mean structure of the latent variables. The path
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coefficient estimates were allowed to vary across waves. This new set of constraints

yielded lower non-convergence rates as described in the next section.

3.2.2 Non-convergence percentages

The convergence percentages for the invariant conditions under the AR quasi-
simplex model are shown in Table 3.11. It can be observed that the invariant conditions
with sample sizes of 100 and 200 presented between 3 and 8% of replications with non-
convergence. With sample sizes of 500, only one replication had convergence problems
when the number of items was 6, and no convergence problems were found for

conditions with sample sizes of 1000.

Table 3.11
Non-convergence percentages in the invariant conditions of the AR quasi-simplex
model

Num. Items  Sample size % of replications

6 100 7.9
200 0.9
9 100 3.1
200 0.2
100 7.0
15 200 0.8

The non-convergence percentages for the conditions with violations of
longitudinal invariance are shown in Table 3.12. With sample sizes of 100 the non-
convergence percentages ranged from 3.9 to 8.7, while for conditions with sample sizes

of 200 the largest non-convergence rate was 1.5.
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Table 3.12 shows that the sample size is the only variable that had a clear impact
on the non-convergence percentages. It was concluded that the convergence problems
were related to the small sample sizes and the particular set of constraints that were

chosen for the AR quasi-simplex model.

Table 3.12
Non-convergence percentages in the AR quasi-simplex conditions with violations of
invariance

Num. Proportion  Magnitude  Non-invariant loadings  Non-invariant intercepts

Items non-inv. of
violations N=100 N=200 N=100 N-200

Small 6.5 1.2 6.7 0.8

1/3 Medium 5.7 1.1 8.5 1.4

5 Large 6.2 15 5.6 1.1
Small 7.1 1.1 6.1 1.0

2/3 Medium 7.9 1.0 6.7 1.3

Large 7.5 0.9 6.5 1.1

Small 4.3 0.1 4.1 0.1

1/3 Medium 3.4 0 4.0 0.4

9 Large 4.8 0.1 4.7 0.3
Small 4.0 0.1 4.8 0.2

2/3 Medium 4.5 0.3 6.3 0.3

Large 4.4 0.4 6.4 0.3

Small 6.3 0.3 8.0 0.8

1/3 Medium 5.6 1.2 6.9 0.7

15 Large 5.7 0.8 8.0 1.0
Small 6.9 0.4 7.8 0.7

2/3 Medium 3.9 0.5 8.2 1.3

Large 4.0 0.2 8.7 0.9

3.2.3 Parameter estimation
In this section, the bias, relative bias, standard errors and RMSE of the four

autoregressive coefficients are described.
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Bias and relative bias

As in the result section under LGM, only the tables with the relative bias values
are presented in this section, but a graphical representation of the bias and relative bias
are included. (Appendix E presents the tables with the mean bias across conditions). To
further simplify the presentation of the findings, the results are averaged over sample
size, since the ANOVA results did not show an effect of sample size on the relative bias.

The relative bias values of the parameter estimates for the invariant conditions
and the conditions with violations to invariance are shown in Tables 3.13 and 3.14,
respectively. As expected, the relative bias values were close to zero in all the invariant
conditions (Table 3.13). In the non-invariant intercept conditions the relative bias values

were also close to zero (Table 3.14).

Table 3.13
Relative bias of the AR quasi-simplex parameter estimates in the invariant
conditions
Num. items p21 p32 p43 p54
6 0.001 0.000 0.000 0.001
9 0.002 0.002 0.001 0.001
15 0.002 0.002 0.001 0.002

In contrast to the non-invariant intercept conditions, in the conditions with non-
invariant loadings the AR quasi-simplex parameter estimates had relative bias values
above 0.05 in some conditions. As shown in Table 3.14, the conditions with 2/3 of non-
invariant items had relative bias absolute values between .047 and .087. It can be
observed that as the magnitude of violations and the proportion of non-invariant items

increased, the relative bias absolute values also increased.
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Table 3.14.
Relative bias of the AR quasi-simplex parameter estimates in the conditions with violations of invariance

Num.  Effect Prop. Non-invariant loadings Non-invariant intercepts

Items size non-inv.  p21 p32 p43 p54 p21 p32 p43 p54

1/3 -0.013 -0.013 -0.013 -0.013 -0.001 -0.001 0.002 0.002

Small 2/3 -0.022 -0.022 -0.024 -0.023 0.000 -0.001 0.002 0.003

5 Medium 1/3 -0.029 -0.028 -0.028 -0.028 0.000 0.000 0.000 -0.002
213 -0.047  -0.047 -0.049 -0.051 0.000 -0.002 0.003 0.000

Large 1/3 -0.041 -0.043 -0.042 -0.045 -0.001 -0.001 0.001 0.003

213 -0.069 -0.073 -0.079 -0.086 -0.002 0.001 0.000 0.000

small 1/3 -0.011 -0.011 -0.012 -0.013 0.001 0.002 -0.001 0.002

2/3 -0.023 -0.023 -0.022 -0.024 0.002 0.001 0.001 0.001

9 Medium 1/3 -0.023 -0.026 -0.026 -0.027 -0.001 -0.001 0.001 0.001
2/3 -0.045 -0.048 -0.049 -0.053 0.002 0.001 0.001 0.000

Large 1/3 -0.037 -0.038 -0.041 -0.042 0.003 0.000 0.001 0.001

2/3 -0.069 -0.074 -0.079 -0.088 0.004 0.001 0.000 0.000

small 1/3 -0.011 -0.012 -0.011 -0.010 0.001 0.001 0.001 0.000

2/3 -0.023 -0.024 -0.022 -0.024 0.003 0.001 0.001 0.001

15 Medium 1/3 -0.024 -0.025 -0.025 -0.024 0.001 0.001 0.001 0.001
213 -0.047 -0.049 -0.052 -0.053 0.001 0.000 0.000 0.001

Large 1/3 -0.037 -0.037 -0.041 -0.038 0.002 0.002 0.001 0.000

213 -0.071 -0.076 -0.083 -0.087 0.002 0.003 0.001 0.001

Note: The bolded numbers correspond to relative bias absolute values at the cutoff of 0.05 or larger.



The general pattern described in Table 3.14 can also be observed in Figures 3.14
to 3.21 that show the bias and relative bias results averaged over sample size. In the non-
invariant intercept conditions the bias and relative bias of the parameter estimates are
similar to the results obtained in the invariant conditions. In contrast, with non-invariant
loadings the parameter estimates were underestimated in some conditions. It can be seen
that as the magnitude of the violations increased, the bias and relative bias absolute

values also increased.
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Figure 3.14 Bias in py; in the non-invariant loading conditions (NiLd) and in the non-
invariant intercept conditions (Niln). The horizontal lines show the bias in the path
coefficient py; In the conditions with invariant loadings and invariant intercepts (InLlI).
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Figure 3.15 Relative bias in py; in the non-invariant loading conditions (NiLd) and in the
non-invariant intercept conditions (Niln). The horizontal lines show the cutoff values of
0.05 and -0.05. Relative bias values inside the lines were considered acceptable values.
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Figure 3.16 Bias in p3; in the non-invariant loading conditions (NiLd) and in the non-
invariant intercept conditions (Niln). The horizontal lines show the bias in the path
coefficient p3; Iin the conditions with invariant loadings and invariant intercepts (InLlI).
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Figure 3.17 Relative bias in p3, in the non-invariant loading conditions (NiLd) and in the
non-invariant intercept conditions (Niln).The horizontal lines show the cutoff values of
0.05 and -0.05. Relative bias values inside the lines were considered acceptable values.
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Figure 3.18 Bias in py3 in the non-invariant loading conditions (NiLd) and in the non-
invariant intercept conditions (Niln). The horizontal lines show the bias in the path
coefficient ps3 in the conditions with invariant loadings and invariant intercepts (InL1I).
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Figure 3.19 Relative bias in p43 in the non-invariant loading conditions (NiLd) and in the
non-invariant intercept conditions (Niln). The horizontal lines show the cutoff values of
0.05 and -0.05. Relative bias values inside the lines were considered acceptable values.
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Figure 3.20 Bias in ps4 in the non-invariant loading conditions (NiLd) and in the non-
invariant intercept conditions (Niln). The horizontal lines show the bias in the path
coefficient ps4 in the conditions with invariant loadings and invariant intercepts (InL1I).
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Figure 3.21 Relative bias in ps4 in the non-invariant loading conditions (NiLd) and in the
non-invariant intercept conditions (Niln).The horizontal lines show the cutoff values of
0.05 and -0.05. Relative bias values inside the lines were considered acceptable values.

The ANOVAs conducted on the bias and relative bias of each of the AR quasi-
simplex parameter estimates confirmed the patterns observed in Tables 3.13 and 3.14 and
Figures 3.14 to 3.21. In the invariant and in the non-invariant intercept conditions no
overall n values larger than 0.01 were found, indicating that the independent variables
did not have an effect on the bias and relative bias of the parameter estimates.

In the non-invariant loading conditions overall medium and large effect sizes
were found. Table 3.15 presents the n° values for at least small effect sizes in the relative
bias values. The n? values obtained for the bias were the same as for relative bias. The
results confirmed that the proportion of non-invariant items and the magnitude of the
violations of invariance had medium and large effects on the bias and relative bias of the
AR quasi-simplex parameter estimates.
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Table 3.15
n°values from the ANOVAs on the relative bias of the AR quasi-simplex conditions with
non-invariant loadings

Relative bias
p21 P32 P43 P54
Overall .07 .09 13 A7
Prop non-inv. .02 .03 .04 .05
Magnitude .04 .06 .08 .10

Standard errors

The ANOVAs conducted on the standard errors of the AR quasi-simplex
parameter estimates revealed that in the invariant conditions and the conditions with
violations of factorial invariance, the sample size explained 90% of the variance and the
number of items explained between 7 to 10%. Neither the magnitude of the violations nor
the proportion of non-invariant items had an effect on the standard errors of the AR
quasi-simplex parameter estimates. Table 3.16 shows the n? values of the conditions with
at least a small effect size. Table 3.17 shows the standard errors of the AR quasi-simplex
parameter estimates. Since the magnitude of violations and the proportion of non-
invariant items did not have an effect on the standard errors, the results are averaged over
sample size and the number of items. Figures 3.22 to 3.25 show the standard errors of the
AR quasi-simplex parameter estimates. The figures show that there are no differences
between the invariant conditions and the conditions with violations to invariance. It can
also be seen that the standard errors decreased as the sample size and as the number of

items increased.
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Table 3.16
n®values from the ANOVAs on the standard errors of the AR quasi-simplex parameter estimates

Invariant loadings and intercepts Non-invariant loadings Non-invariant intercepts

P21 P32 P43 P54 p21 P32 P43 P54 p21 P32 P43 P54

Overall 0.99 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

N. Items 0.09 0.08 0.08 0.08 0.10 0.08 0.08 0.07 0.09 0.09 0.07 0.07

Sample size 0.90 0.90 0.91 0.91 0.88 0.90 0.91 0.91 0.89 0.90 091 0091

N. Items x SS -- -- -- -- 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01
Table 3.17

Standard errors of the AR quasi-simplex parameter estimates by the number of items and by sample size

Num. Sample

Invariant loadings and intercepts

Non-invariant loadings

Non-invariant intercepts

items size P21 P32 P43 P54 P21 P32 P43 P54 P21 P32 P43 P54
100 0.12 0.11 0.09 0.08 0.12 0.11 0.10 0.09 0.12 0.10 0.09 0.08

5 200 0.09 0.07 0.07 0.06 0.09 0.07 0.07 0.06 0.09 0.07 0.07 0.06
500 0.06 0.05 0.04 0.04 0.06 0.05 0.04 0.04 0.06 0.05 0.04 0.04

1000 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03

100 0.11 0.09 0.08 0.07 0.10 0.09 0.08 0.08 0.11 0.09 0.08 0.07

9 200 0.08 0.07 0.06 0.05 0.08 0.07 0.06 0.05 0.08 0.07 0.06 0.05
500 0.05 0.04 0.04 0.03 0.05 0.04 0.04 0.03 0.05 0.04 0.04 0.03

1000 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.02 0.04 0.03 0.03 0.02

100 0.09 0.07 0.07 0.06 0.09 0.08 0.07 0.07 0.09 0.08 0.07 0.06

15 200 0.06 0.06 0.05 0.05 0.06 0.05 0.05 0.05 0.06 0.05 0.05 0.04
500 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03

1000 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02
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Figure 3.22 Standard errors of py; in the invariant conditions (InLI), non-invariant
loading conditions (NiLd) and non-invariant intercept conditions (Niln).
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Figure 3.23 Standard errors of p3; errors of py; in the invariant conditions (InLI), non-
invariant loading conditions (NiLd) and non-invariant intercept conditions (Niln).
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Figure 3.24 Standard errors of py3 errors of py; in the invariant conditions (InLI), non-
invariant loading conditions (NiLd) and non-invariant intercept conditions (Niln).
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Figure 3.25 Standard errors of psq errors of pp1 in the invariant conditions (InLI), non-
invariant loading conditions (NiLd) and non-invariant intercept conditions (Niln).
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Root mean square error (RMSE)

Table 3.18 presents the n” values obtained from the ANOVAs conducted on the
RMSE of the AR quasi-simplex parameter estimates. Table 3.18 shows that in the
invariant conditions and in the non-invariant intercept conditions the sample size
explained 90% of the variance and the number of items explained 8%. In the non-
invariant intercept conditions neither the magnitude of the violations nor the proportion
of non-invariant items showed effect sizes larger than 0.01.

In contrast, in the non-invariant loading conditions all independent variables had
at least a small effect size on the RMSE of the AR quasi-simplex parameter estimates.
Sample size was still the independent variable that explained the larger amount of
variance, between 42 and 76%, but the number of items, the magnitude of violations to
invariance, and the proportion of non-invariant items had a larger effect than in the
invariant and in the non-invariant intercept conditions. The number of items explained
between 4 and 8% of the variance, the magnitude of violations explained between 6 and
30%, and the proportion of non-invariant items explained between 4 and 16%. The
interactions between the number of items and the sample size, and between the
magnitude of violations and the proportion of non-invariant items showed small and

medium effect sizes.
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Table 3.18
n°values from the ANOVAs on the RMSE of the AR quasi-simplex parameter estimates

Invariant loadings and intercepts Non-invariant loadings Non-invariant intercepts

TTT

P21 P32 P43 P54 p21 P32 P43 P54 p21 P32 P43 P54
Overall 0.99 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
N. Items 0.09 0.08 0.08 0.08 0.08 0.06 0.04 0.04 0.09 0.09 0.07 0.07
Sample size 0.90 0.90 0.91 0.91 0.76 0.66 0.54 0.42 0.89 0.90 0.91 0.91
Magnitude -- -- - - 0.06 0.14 0.21 0.30 - - - -
Proportion -- -- -- -- 0.04 0.07 0.12 0.16 -- -- -- --
N. Items x SS -- -- - - 0.02 0.02 0.01 0.01 0.01 0.02 0.01 0.01
Mag. X Prop. -- -- -- -- 0.02 0.03 0.05 0.06 -- -- -- --




3.2.4 Model fit
Tables 3.19 and 3.20 show the rejection rates for the invariant conditions and the
conditions with violations of invariance, respectively. It can be observed that the rejection

rates in all the conditions are close to 5%.

Table 3.19
Rejection rates in the invariant conditions in the AR quasi-simplex model
Number of items Sample size Rejection rates

100 5

6 200 5.7
500 4.3
1000 4.1
100 5.7

9 200 5.6
500 4.7
1000 5.6
100 5.2
200 6.3

15 500 54
1000 4.6

Table 3.20 shows the rejection rates for the conditions with violations of
invariance. It can be seen that although there are some conditions with rejection rates
smaller and others larger than the nominal level, the results under violations to invariance
(Table 3.20) are comparable to the rates in the invariant conditions (Table 3.19). No
pattern was detected in terms of the number of items, the sample size, the proportion of
non-invariant items, or the magnitude of the violations to invariance. These findings
indicate that the manipulation of the violations of invariance did not affect the rejection

rates in the AR quasi-simplex model.
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Table 3.20
Rejection rates in the conditions with violations of invariance in the AR quasi-simplex

model

Num. Magnitude Sample  Non-invariant loadings Non-invariant intercepts
Items of violations  size 1/3 non-inv. 2/3 non-inv. 1/3 non-inv. 2/3 non-inv.

100 6.4 3.9 4.6 5.9

small 200 4.8 5.1 5.0 51

500 55 5.6 5.2 4.6

1000 5.7 3.6 5.8 55

100 3.7 5.3 5.7 4.3

. 200 4.1 5.1 5.9 3.8

6 Medium g4 5.4 6.0 5.3 5.4

1000 5.3 4.6 4.3 5.5

100 5.5 4.7 54 6.1

Large 200 6.3 5.9 4.6 5.0

500 55 6.0 4.6 3.9

1000 7.0 5.7 6.2 4.2

100 4.5 6.3 6.3 5.5

small 200 5.5 6.1 4.3 5.6

500 5.7 54 5.0 54

1000 4.1 6.6 3.3 4.6

100 5.2 6.1 54 5.6

. 200 5.2 5.9 4.2 5.8

? Medium g4 4.9 5.3 3.6 5.5

1000 4.5 4.2 5.6 5.6

100 4.4 5.9 6.6 6.5

Large 200 49 5.9 55 4.7

500 4.8 6.3 4.6 6.1

1000 5.1 5.2 45 5.6

100 6.7 6.5 6.2 4.8

small 200 4.8 45 5.8 6.1

500 4.4 6.5 5.9 4.2

1000 5.1 5.8 45 4.2

100 6.8 4.7 5.8 6.0

. 200 6.0 5.6 4.7 5.2

15 Medium g4, 4.6 6.0 5.7 4.7

1000 5.4 5.2 4.2 5.2

100 6.3 6.4 53 6.7

Large 200 5.6 4.7 4.6 6.3

500 55 5.0 5.6 4.2

1000 5.9 4.9 5.6 51
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Chapter 4
DISCUSSION

The impact of analyzing composites formed by items that violate longitudinal
measurement invariance has been explored in latent growth models. Leite (2007) and
Wirth (2008) showed that wrong conclusions about growth can be formulated: biased
growth parameter estimates as well as biased ¥ fit indices can be obtained under non-
invariance. However, no published research was found that examined the impact of
violations of invariance in other longitudinal models.

Several questions guided the present research: How many items should be
invariant so that the conclusions about growth would not change? How different do the
measurement parameters across time need to be to distort the growth estimates? Is the
latent growth model affected in the same way by violations of invariance as are other
models for longitudinal data? By answering these questions, the present study aimed to
inform researchers about when they could have confidence in growth conclusions even in
the presence of composites formed from items violating invariance. It was also of interest
to study the violations of invariance in another method used to analyze longitudinal data,
the AR quasi-simplex model. To answer these questions, a simulation study was
conducted where the number of items violating invariance was manipulated as well as the
magnitude of the violations over time. Composites were formed from the simulated items
and were analyzed either by the LGM or the AR quasi-simplex model. Bias in the
parameter estimates and the fit of the model were examined.

A different pattern of results was found for the LGM and for the AR quasi-

simplex model. While the LGM parameter estimates were biased and the model fit was
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severely affected by violations of invariance, the AR quasi-simplex parameters were
usually unbiased and the model fit under violations of invariance were comparable to the
invariant conditions. In this chapter the results are discussed, along with the limitations of

the study and the conclusions.

4.1 Non-convergence rates

The percentage of samples with non-convergence was higher in the AR quasi-
simplex model than in the LGM. The invariant and the non-invariant conditions had
similar rates of non-convergence which indicates that the convergence problems were
related to the models themselves and not to the invariance issues.

Similar results were found by the simulation study by Stockdale (2007). An AR
quasi-simplex model and a LGM were fit to data simulated under the linear LGM and to
data generated under an AR quasi-simplex model. He found higher convergence
problems and inadmissible solutions when the data were analyzed with AR quasi-simplex
than when the LGM was fit to the data, regardless of the model used to generate the data.
Further, Stockdale found higher convergence problems and inadmissible solutions when
the AR quasi-simplex was fit to data generated under the same model than under the
LGM. He found that low path coefficients (p=.30), small sample sizes (N=100) and large
residual variance (6 = 1.11) were associated with non-convergence and inadmissible
solutions.

Stockdale originally identified the AR quasi-simplex model by constraining all

residual variances to equality across time. In order to explain the high non-convergence
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rates he compared models with different constraints but the non-convergence rates did
not change drastically.

The results of the present study are congruent with the results of Stockdale
(2007). More studies should be conducted to explain the non-convergence rates in the AR
quasi-simplex model. Since this was not purpose of the current study this issue was not

further explored.

4.2 Bias in the parameter estimates

In general, it was found that as the magnitude of the violations increased and as
the proportion of non-invariant items increased, the bias in the parameter estimates also
increased, bringing support to Hypotheses 1 to 3. However, the effects of the
independent variables were different for each parameter estimate and for each model. In
the LGM, the magnitude of violations and proportion of non-invariant item intercepts
only affected the slope factor mean, while the effect of the non-invariant loadings was
mostly in the slope factor mean, variance, and the covariance between the intercept and
the slope. In contrast, in the AR quasi-simplex model, the non-invariant loadings equally
affected all the path coefficients while non-invariant intercepts had no effect. In this
section, an explanation for the different pattern of results is provided.

In the LGM the slope factor was most affected by the violations of invariance in
contrast to the intercept factor. To understand why the intercept factor mean was not
affected, it should be noticed that the loadings in the LGM were chosen such that the

intercept factor was defined by the composite of the first measurement occasion. Hence,
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the mean of the intercept factor mean was defined by the mean of the composite at the

first measurement occasion as shown in Equation (68),

Ay, = My, (68)

The mean of the composite can be expressed in terms of the common factor

model as in Equation (69),

The first order factor mean u, at time 1 was generated with a value of 0, and as a
1

consequence the loadings did not have an impact in the intercept factor mean. The
intercept factor mean adopted the value of the sum of the intercepts at the first
measurement occasion, t;. Since the violations of invariance in the intercepts were only
shown from the second to the fifth waves, the item intercepts at the first measurement
occasion were not affected by the lack of invariance. Hence, the intercept factor mean
adopted the value that was expected.

It should be noted that the intercept factor can be defined by any wave and not
only by the first measurement occasion as was the case in the present analysis. If the
intercept factor mean were defined by a composite from the second to the fifth
measurement occasion, greater bias in the intercept factor mean would have been

observed. After wave one, the true values of pgwere larger than zero, so that the effect of
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the loadings would not be cancelled. Also, the violations of invariance in the intercepts
would be shown after wave one, changing the value of the sum of the item intercepts.

To explain why the slope factor mean was affected, two cases will be considered,
one in which the loadings are changing over time, and the second case in which intercepts
are changing over time.

In case 1, there are non-invariant loadings, but invariant intercepts as expressed in

Equation (70)

T+ }\I Mg, ﬁlh Oﬁﬂz
T+ )\3 He, ﬁlh 1ﬁﬂ2
T+ )\g Mgy = ﬁTh + Zale (70)
T+ )\ZP’% ﬁTh Baﬂz
T+ }\E Mes ﬁm 4ﬁﬂ2

Since, as explained before, ﬁn = 1", Equation (70) can be rewritten as,
1

;HEA Oﬁnz

El‘lﬁz 1ﬁn2

;IJE3 = Zﬁﬂz (71)
)\Z“E4 3ﬁ7]2

El‘lﬁs 4ﬁn2

When the loadings are non-invariant over time, each first order latent mean factor
is changed by a different amount. For example, using the generating values for the
conditions with 6 items, large violations of invariance and 2/3 of non-invariant items, the

loading sums at each time point are 4.20, 3.91, 3.62, 3.33 and 3.04, such that,
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420pg,  Ofi,
391,  1fiy,
3.624¢, = 2fiy, (72)
3.33pg,  3fi,
3.04u,  4fl,,

Equation (72) shows that the means of the first order latent factors were re-scaled
at each measurement occasion by a different amount. Since the item loadings sums were
decreasing, the change over time in the first order latent factors was smaller than it should
be considering the true values, and hence the slope factor mean was underestimated. It
should be noted that if the item loadings were generated to have increasing values over
time, the opposite pattern of results would have been observed. That is, with increasing
loadings over time it would be expected that the estimated slope factor mean would
overestimate the true value.

In the second case the loadings are invariant over time but the intercepts are non-
invariant. As a consequence, in each first order latent factor a different amount is added.
For example, for the conditions with 6 items, large violations of invariance and 2/3 of
non-invariant items, the loading sums at each time point are 2.1, 4.26, 6.42, 8.58 and

10.74 at each time point, such that,

21+ )\*I‘lﬁ ﬁ‘h Oﬁﬂz
4.26 + )\*HEZ ﬁ‘ﬂl 1ﬁ'ﬂz
6.42 + X'yg, = iy, + 2{y, (73)
8.58 + A, fy, 3fiy,
1074 + Mg, fiy, A4y,
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Equation (73) shows that at each time point, the mean of the composites were
changed by a different amount. Since this amount was increasing over time, the
composites seemed to change at a higher rate than what the true growth parameter values
were generated to be. As a consequence, the slope factor mean was overestimated. It
should be noted that if the item intercepts were generated to decrease over time, then the
slope factor mean would have been underestimated.

Equation (73) shows that the amount by which the composites were changed due
to non-invariant intercepts is much larger than the amount they changed due to non-
invariant loadings (Equation 72). Hence, the larger bias in the slope factor mean is
observed with non-invariant intercepts.

Regarding the variances of the growth factors and the covariance, it should be
noted that while the intercepts have no impact in the covariance structure the loadings do
have an impact. It was expected that non-invariant loadings would affect the growth
factor variances. However, the intercept factor variance was unbiased in the presence of
violations of invariance. The reason is that the intercept factor was defined by the first
composite and the violations of invariance change the values of the loadings only after
the second measurement occasion. If the intercept factor was defined by the composite at
a different wave, larger bias would have been observed in the intercept factor variance.

It should be emphasized that the same pattern of results was found in the
simulation study conducted by Wirth (2008). He found that the slope factor mean showed
the largest degree of bias, and that the intercept factor mean and variance resulted in the
least amount of bias. These results correspond to the conditions in which no correlations

over time in the unique factors were simulated, which is the way the data were simulated
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in the present study. Wirth found that in the conditions in which the items were generated
to have correlated unique factors the bias in the variances and covariances of the growth
factors increased even in the invariant conditions.

The path coefficients of the AR quasi-simplex model showed small bias only in
the conditions of non-invariant loadings. In general, the path coefficients are dependent
on the correlations among the measures, and the correlations are affected by the item
loadings. Since the item intercepts do not impact the correlations among the items, the
AR quasi-simplex coefficients were unbiased regardless of the invariance in the item
intercepts. In this study, bias in the means of the latent variables of the AR quasi-simplex

was not examined.

4.3 Model fit

Hypotheses 4 to 6 concern the impact of the violations of invariance on the fit of
the LGM and the AR quasi-simplex model. The results differed in the two models
examined. While in the AR quasi-simplex the rejection rates can be interpreted as Tupe |
error rates, in the LGM there was a different pattern of results in the conditions with non-
invariant loadings and in the conditions with non-invariant intercepts. In the LGM
conditions with non-invariant intercepts the rejection remained close to the nominal level.
However, with non-invariant loadings, the percentage of replications in which the XZ
rejected the null hypothesis was larger than 5% in most conditions.

Even though the rejection rates were initially conceptualized as Type | error rates,
an alternative explanation is that the non-invariant loadings changed the functional form

of the growth trajectory, and as a consequence a misspecified model was fit to the data. If

121



this was the case, the high rejection rates shown in Table 3.10 could be interpreted as
statistical power. Although a LGM with alternative growth trajectories was not examined
in the present study, Wirth (2008) simulation study indicates that it is possible that
violations of invariance changed the true structural model. Wirth compared the fit of two
different LGM models under violations of invariance: a model in which the basis
functions (the loadings relating the growth factors to the composites) were fixed to reflect
a linear trajectory, and a model in which the basis functions were freely estimated so that
no specific trajectory form was imposed. It was found that a model with freely estimated
basis functions was accepted over a linear LGM with non-invariant item loadings over
time, which indicated the existence of non-linear trajectories. It was argued that the freely
estimated basis functions absorbed the non-invariance in the item loadings which
changed the functional form of the trajectories. Further, Wirth found that non-invariant
intercepts did not affect the fit of the model as long as the loadings were invariant. These
results are consistent with what was found in the present study. The non-invariant
intercepts did not change the functional form of the growth trajectory; however, non-
invariant loadings affected the fit of the LGM. It could be the case that non-invariant
loadings changed the functional form of the growth trajectory and that as the sample size
increased, the power of the LGM to correctly reject the misspecified model increased. To
examine the change in the functional form of the growth trajectories it would be
necessary to compare the fit of a quadratic LGM in comparison to the linear LGM.

It should be noted that in the present simulation study the generating growth
trajectory was fit to the data. However, in practice the true model is unknown. The

simulation results suggest that if a researcher were to fit a quadratic LGM to composites
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formed by sums of items with non-invariant loadings, it might be mistakenly concluded
that the data follows a quadratic trajectory. This hypothesis should be tested in a

simulation study.

4.4 Limitations

As in any simulation study, the present research has a number of limitations that
need to be addressed. The two major limitations of the study concern the extent to which
the results can be generalized to real situations and the comparability of results in the
LGM and in the AR quasi-simplex model.

The extent to which the results can be generalized to situations encountered in
practice is related to the selection of the parameter values used to generate the data. In the
AR quasi-simplex model the generating parameter values were chosen from a published
paper in which real data was analyzed using the AR quasi-simplex (Morera, et al., 1998).
In the case of the LGM model the growth parameter values were chosen based on
previous simulation studies (Muthén & Muthén, 2002) that in turn chose the values based
in results found in practice. Muthén and Muthén (2002) simulated the data such that the
R? values of the analyzed composites over time ranged from .50 to .74. To avoid another
source of variability, in the present study it was chosen to maintain the R? values constant
over time and R? values of .80 were chosen. Although it could be argued that this value is
higher than what is frequently found, studies have reported R? values between 83 and 84
(Bollen & Curran, 2006). Wirth (2008) used a constant R? value of .70, and obtained the
same pattern of results as the ones reported in the present study. In general, when the

growth factors can explain proportions of variance in these ranges, it is expected that the
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results can be generalized. In the cases in which the growth factors explain a smaller
proportion of variance, it is expected that the lack of invariance will have a lower impact
in the growth estimates.

Another limitation of the present study concerns the choice of identification
constraints in the AR quasi-simplex model. In the present study, the latent variable of the
fifth measurement occasion was identified by setting its unique variance to zero as
suggested by Biesanz (2012) and Joreskog (1979b). The implication of this identification
constraint is that the last composite is measured without error. In practice, this may be an
unrealistic assumption that might lead researchers to choose a different set of
identification constraints, such as constraining the unique variances of the last two
measurement occasions to equality. This more realistic constraint was initially proposed
but high non-convergence rates were obtained. Although the change in identification
constraints should not affect the fit of the model, previous studies have shown that in
certain models the change in identification constraints altered the model fit (Millsap,
2001). For these reasons, the results of the AR quasi-simplex model under violations of
invariance should be studied with a different set of constraints.

The extent to which the results of the LGM can be compared to the results of the
AR quasi-simplex model should be examined. Although it is tempting to conclude that
the impact of violations of invariance is larger in the LGM than in the AR quasi-simplex
model, more studies should be conducted before this statement can be made. Marsh, Hau
& Wen (2004) showed that conclusions made from models with different levels of
misspecification can be misleading. It could be the case that the level of misspecification

in the AR quasi-simplex model lead to an acceptable misspecified model, while the level
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of misspecification was larger in the LGM. One way to explore this would be to conduct
a simulation study with the same conditions explored in the present study but increasing
the sample size to a larger N, (e.g., 500,000). By doing this, it could be determined if the
two models show the same levels of misspecification in the population.

The last limitation identified is that in the present study conditions with
violations of invariance in the loadings or in the intercepts were simulated, but no
conditions in which both parameters violated invariance were examined. In practice, it is
frequently the case that if an item has a non-invariant loading its intercept will also be
non-invariant. From the results of the simulation study it can be inferred that when the
items have violations of invariance in loadings and intercepts, the same pattern of results
observed in the conditions with non-invariant loadings would be found but it would be

expected that the bias in the slope factor mean would increase.

4.5 Recommendations

Based on the results of the present study several recommendations can be offered
to researchers interested in making conclusions from longitudinal data. The first
recommendation is that longitudinal invariance should be routinely tested, rather than
assumed. The results of the simulation study add to the existing literature showing that
when there are violations of invariance, wrong conclusions can be made, especially when
analyzing the data with the LGM (Ferrer, Balluerka, & Widaman, 2008; Leite, 2007;
Wirth, 2008). The longitudinal confirmatory factor analysis described in Chapter 1
should be used to test for invariance by sequentially constraining item parameters as

suggested by Joreskog (1971). If it is found that the items have invariant loadings and
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intercepts, the items can be summarized in composites and analyzed using a LGM or an
AR quasi-simplex model. However, if some of the items are found to have violations of
invariance, models that incorporate both the measurement and the structural relations
should be used, such as the curve of factors model and the AR quasi-simplex with items
defining each latent factor. Leite (2007) showed that the curve of factors model can yield
unbiased estimates of growth under violations of invariance when item parameters are
allowed to be freely estimated over time.

An alternative is to test for invariance in a model that incorporates the
measurement and the structural relations, such as in the curve of factors model. However,
if a model such as the curve of factors model shows poor fit to the data when testing for
invariance, the lack of fit can be due to violations of measurement invariance or due to a
misspecified structural model. For example, a source of structural misfit can come from
fitting a non-linear trajectory to the data that follows a linear trajectory. If the structural
model is misspecified it can alter the measurement model which may have consequences
in the conclusions about measurement invariance. In order to avoid the confounding of
the sources of misfit, the approach suggested by Anderson and Gerbing (1988) and by
Mulaik and Millsap (2000) should be followed. This approach consists of testing a series
of nested models in which first, the fit of the measurement model is evaluated by
saturating the structural relations between the latent variables. If the measurement model
fits the data, the structural relations are examined. This approach would permit
distinguishing among the sources of lack of fit, if any.

Researchers interested in examining invariance using models that incorporate the

measurement and the structural relations should be cautious about the consequences of
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selecting a non-invariant item as the referent indicator to identify the model. Ferrer,
Balluerka, and Widaman (2008) studied the impact of measurement non-invariance in a
curve of factors model using real data from an alcohol prevention program. A series of
confirmatory factor analysis were conducted and the hypothesis of metric invariance was
rejected indicating that some items were non-invariant. Two different second-order latent
growth curve models were fit to the data that only differed in the item chosen as the
referent indicator. The results showed completely different growth trajectories obtained
from the two models; using one item as a referent indicator yielded a significant linear
growth trajectory, while no significant growth was detected when using a different item
as the reference indicator. These results indicate that partial invariance can have a drastic
impact in the conclusions made regarding growth, depending on the choice of referent
indicator.

The results of the AR quasi-simplex model suggest that in general, researchers
can obtain unbiased path coefficients with small and medium violations of invariance and
with 1/3 of non-invariant items. This does not suggest that researchers should stop testing
for invariance in the AR quasi-simplex model. The researchers need to determine the
extent of the violations of invariance. If the magnitude of the violations is comparable to
the conditions of the present simulation study and if there are only 1/3 of non-invariant
items, the researchers could use item composites if the sample sizes do not permit the use
of a full SEM model that incorporates the measurement and the structural relations.

The last recommendation is that whenever possible the use of composites should
be avoided if longitudinal invariance is unexplored. As shown in the present results,

forming composites when there are violations of invariance can yield biased conclusions.
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There are other disadvantages related to the use of composites. The first one is that if the
items have correlated unique variances over time, these are ignored when forming
composites. Wirth (2008) showed that when the correlated unique variances are ignored

the growth estimates can be biased even with invariant items.

4.6 General conclusion

Analytic results presented in Chapter 1 showed that the violations of longitudinal
invariance can bias the parameter estimates of models such as the LGM and the AR
quasi-simplex model. The present simulation study further showed that the impact of
non-invariance can vary by the longitudinal model used. In general, researchers should
expect that violations of metric and strong factorial invariance would bias the parameter
estimates of the LGM as well as the fit of the model. Violations of metric and strong
longitudinal invariance would yield unbiased AR quasi-simplex path coefficients, and
adequate rejection rates.

The present study emphasizes the importance of examining longitudinal
measurement invariance before forming composites of the items to obtain adequate
conclusions from longitudinal studies. Special caution is advised when using the LGM
since biased estimates and a different growth trajectory can be found under non-
invariance.

Finally, it is advised to avoid the use of item composites if longitudinal

measurement invariance has not been investigated.
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In this appendix the item variances and the communalities are shown for
conditions with invariant loadings over time, and with small, mediums, and large

violations of invariance over time.

Table 5.1
Item variances and communalities in conditions with invariant loadings and intercepts
ltem 2Timel , 2Time2 , 2Time3 , 2Time4 , 2Time5 ,
o h o h o h o h o h
1 100 030 112 038 136 048 171 059 220 0.68
2 180 028 200 035 239 046 298 056 378 0.66
3 076 021 082 026 094 036 112 046 137 056
4 1.02 022 111 028 128 038 155 048 190 0.58
5 1.70 023 185 030 216 040 262 050 326 0.60
6 050 020 054 026 061 035 073 045 089 055
7 086 018 092 023 104 032 122 043 147 052
8 252 025 276 031 324 041 397 052 496 0.62
9 122 018 131 024 148 033 175 043 210 0.52
Table 5.2
Item variances and communalities in conditions with small violations of invariance in the
loadings
ltem 2Timel , 2Timez , 2Time3 , 2Time4 , 2Time5 ,
c h c h c h c h c h
1 1.00 030 109 036 127 045 151 054 180 0.61
2 180 028 195 033 224 042 264 051 312 0.58
3 076 021 080 025 089 032 101 041 116 048
4 102 022 109 026 122 034 139 043 161 0.50
5 1.70 023 181 028 204 036 236 045 274 053
6 050 020 053 024 058 032 066 040 076 0.47
7 086 018 092 023 104 032 122 043 147 052
8 252 025 276 031 324 041 397 052 49 0.62
9 122 018 131 024 148 033 175 043 210 052
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Table 5.3
Item variances and communalities in conditions with medium violations of invariance in

the loadings

ltem 2Timel , 2Time2 , 2Time?, , 2Time4 ) 2Time5 )

o h o h o h o h o h
1 100 030 106 034 118 041 133 047 147 052
2 180 028 190 032 210 038 234 044 256 049
3 076 021 079 024 08 029 092 035 099 0.39
4 102 022 107 025 115 031 126 037 136 041
5 170 023 177 027 193 033 212 039 230 043
6 050 020 052 023 056 028 060 034 065 0.38
7 086 018 092 023 104 032 122 043 147 052
8 252 025 276 031 324 041 397 052 49 0.62
9 122 018 131 024 148 033 175 043 210 0.52

Table 5.4
Item variances and communalities in conditions with large violations of invariance in the
loadings

ltem 2Timel , 2Time2 , 2Time3 , 2Time4 , 2Time5 ,

o h o h o h o h o h
1 100 030 104 032 111 037 117 040 119 041
2 180 028 18 030 197 034 207 037 211 0.38
3 076 021 077 022 081 026 084 028 08 0.29
4 1.02 022 105 024 110 027 114 030 116 0.31
5 170 023 174 025 183 029 191 032 194 033
6 050 020 051 022 053 025 055 028 056 0.29
7 086 018 092 023 104 032 122 043 147 052
8 252 025 276 031 324 041 397 052 49 0.62
9 122 018 131 024 148 033 175 043 210 0.52
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In this appendix the item means are shown for conditions with invariant intercepts

over time, and with small, mediums, and large violations of invariance over time.

Table 5.5
Item means in conditions with invariant loadings and intercepts
Item Timel Time2 Time3 Time4 Time5
1 0.5 0.68 0.85 1.03 1.20
2 0.6 0.83 1.05 1.28 1.50
3 0.3 0.43 0.55 0.68 0.80
4 0.4 0.55 0.70 0.85 1.00
5 0.6 0.80 1.00 1.20 1.40
6 0.4 0.50 0.60 0.70 0.80
7 0.3 0.40 0.50 0.60 0.70
8 0 0.20 0.40 0.60 0.80
9 0.3 0.42 0.54 0.66 0.78
Table 5.6
Item means in conditions with small violations of invariance in the intercepts
Item Timel Time2 Time3 Time4 Time5
1 0.5 0.68 0.85 1.03 1.20
2 0.6 0.83 1.05 1.28 1.50
3 0.3 0.43 0.55 0.68 0.80
4 0.4 0.55 0.70 0.85 1.00
5 0.6 0.80 1.00 1.20 1.40
6 0.4 0.50 0.60 0.70 0.80
7 0.3 0.40 0.50 0.60 0.70
8 0 0.20 0.40 0.60 0.80
9 0.3 0.42 0.54 0.66 0.78
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Table 5.7
Item means in conditions with medium violations of invariance in the intercepts

Item Timel Time2 Time3 Time4 Time5
1 0.5 0.78 1.06 1.34 1.62
2 0.6 0.96 1.32 1.68 2.04
3 0.3 0.5 0.7 0.9 1.1
4 0.4 0.64 0.88 1.12 1.36
5 0.6 0.92 1.24 1.56 1.88
6 0.4 0.56 0.72 0.88 1.04
7 0.3 0.4 0.5 0.6 0.7
8 0 0.2 0.4 0.6 0.8
9 0.3 0.42 0.54 0.66 0.78

Table 5.8
Item means in conditions with large violations of invariance in the intercepts

Item Timel Time2 Time3 Time4 Timeb5
1 0.5 1.2 1.9 2.6 3.3
2 0.6 1.5 2.4 3.3 4.2
3 0.3 0.8 1.3 1.8 2.3
4 0.4 1 1.6 2.2 2.8
5 0.6 14 2.2 3 3.8
6 0.4 0.8 1.2 1.6 2
7 0.3 0.4 0.5 0.6 0.7
8 0 0.2 0.4 0.6 0.8
9 0.3 0.42 0.54 0.66 0.78

141



APPENDIX C

RE-SCALING OF THE GROWTH PARAMETER ESTIMATES

142



In order to study violations of invariance in the LGM, item level data were
generated from a curve of factors model (COFM). Item composites were formed at each
time point by summing the items, and a LGM was used to analyze the composites as
planned. However unexpected results were obtained. The bias and relative bias in the
control conditions were computed using the generating parameter values shown in
Equation 60. Since in the control conditions all the items were invariant over time, bias
and relative bias values near zero were expected, but this was not the case. For example,
for the control condition with 6 items and a sample size of 1000, relative bias values as
large as 16 were found for the intercept factor variance, the slope factor variance and the
covariance between the intercept and the slope factors. It was found that a re-scaling of
the true growth parameter values was needed.

In this appendix the re-scaling of the growth parameter values that occurred by

modeling composites of items instead of the first order latent factors is explained.

Intercept factor mean

In the LGM and the COFM the intercept factor mean (un ) represents the mean of
1
the composite (py, ) or the mean of the first order latent factor (u22 ) in which the slope
1

factor loading is set to zero. The data were generated under a COFM in which the first
order factor at wave 1 had a zero slope factor loading (See Figure 2.1). In other words,

the intercept factor mean was defined as the mean of first order factor at wave 1.

Mo, = Hg, (74)
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The data were generated with M = Oand = 0. However, the data were not
1 1

analyzed using a COFM. Instead, a LGM was fitted to composites. As explained in
Chapter 1, when the items used to generate the composites can be modeled by the
common factor model, the mean of the composite can be expressed as the mean of the
latent factor weighted by the sum of the item loadings plus the sum of the intercepts. The

composite of the first measurement occasion can be expressed as,

My, =T + My (75)

wheretjand\;are the sum of the item intercepts and the item loadings at time 1,
respectively.
Since a LGM was fitted to the composites of the items, the estimated intercept

factor mean ﬁn , was defined as the mean of the composite at the first wave:
1

ﬁ‘h = p‘Y (76)

1

Substituting Equation (75) in (76),

fin =70 + Mg (77)
Since the mean of the latent factor at time 1 was generated as zero e = 0 (Table
1

2.4 contains the generating parameter values), the estimated latent factor mean adopted

the value of the sum of the intercepts at wave 1,
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ﬁn L= TT (78)

Table 5.9 shows the sums of the generating item intercepts and loadings at wave
1. It should be noted that this sum was the same in all time points in the conditions in
which there were invariant loadings and invariant intercepts. It can be seen that the sum

of the intercepts and loadings varied by the number of items.

Table 5.9
Sum of item intercepts and loadings in the first measurement occasion
Num. ltems Intercept sum Loading sum
6 2.1 4.2
9 34 6.0
15 6.2 9.9

In other words, Equation (78) shows that although the intercept factor mean was
generated to be zero in the COFM, by analyzing composites of the items, the estimated

intercept factor mean adopted the value of the sum of the item intercepts at wave 1.

Slope factor mean

In the COFM, the mean of the first order latent factors can be expressed as a

function of the intercept and slope factors as,
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Hes = Hny + ZI’J‘le (79)

The mean of the slope factor mean can be expressed as,

Mg, — Hny = OI’J‘TIZ
Me, = My = 1“"]2
Mes — Hny = ZIJ‘TIZ (80)
Mg, — Hny = 3“‘“2
A L

Since the intercept factor mean was generated to be zero = 0, then,
1

“«Ez = p‘ﬂz

He

2 " Hn

He, (81)
3 s

He

23 = Hn

However, the data were not analyzed using the COFM. Instead, item composites

were analyzed using a LGM. Substituting the mean of the first order latent factors B in
t

Equation (79) with the mean of the item composites expressed as in Equation (75), yields,
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T+ He, ﬁT’Il Oﬁnz
TN He, ﬁTh 1ﬁn2
T+ 7‘*”53 = aTh + Zﬁﬂz (82)
T+ He, aTh Bﬁﬂz
TN Hes ﬁTh 4ﬁn2

Whereﬁn and ﬁn represent the estimated intercept and slope factor means. In the
1 2

conditions in which longitudinal invariance holds, the item intercepts and loadings sums

did not change over time so the subindices denoting time were dropped. Since, ﬁn =
1

tjasdetermined in Equation (78), it follows that,

A He, Oﬁnz
A He, 1ﬁ112
A HE3 = Zﬁﬂz (83)
A Me, 3ﬁﬂ2
A Hes 4ﬁn2

Since the mean of the first order latent factor at wave 1 was generated to be zero,

ug, = 0, then,

i:ufz = ﬁnz
;ES = ﬁﬂz

)\*I.l§4 _ ﬁ (84)
3 M2

Mg 0
4 M2
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When comparing Equation (84) to Equation (81), it is observed that the latent factor
means were re-scaled by multiplying the sum of the loadings at each time point. As a
consequence, the estimated slope factor mean represented the change in the re-scaled

latent factor means.

Covariance structure

In the COFM, the variance of the first order latent factors, <1>g , can be expressed
t

as,

¢, = W1 + W +2¥, (85)
&

However, composites were analyzed instead of the first order latent factors, as
GzYt = (pll + l’I'\JZZ + 2{{'\,12 (86)
where®,, is the estimated variance of the intercept factor, ¥,, is the estimated variance
of the slope factor, and ¥, is the estimated covariance of the intercept and slope factors.

Expressing the composites as a function of the common factor model,

A:Zq)gt + 9: = (pll + fpzz + 2@12 (87)
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where6; is the sum of the unique variances at wave 1. Since the growth latent factors are
modeling only the variance of the first order factor and not the unique variance, the

unique variance term can be dropped,

qu)gt =W + Wy, + 2V, (88)

Equation (88) shows that the variance of the first order latent factor was re-
scaled by multiplying the square of the sum of the intercept loadings. Hence, the
estimated intercept factor variance, the estimated slope factor variance, and the estimated
covariance between the intercept and the slope factors modeled the re-scaled first order

latent factor.

Re-scaling the growth parameter values

One of the purposes of the present research was to determine the bias, relative
bias, standard errors and RMSE of the estimated parameter values of the LGM when
composites were formed by items that violated longitudinal factorial invariance. In order
to calculate bias, relative bias and the RMSE of the parameter estimates, the true
parameter values must be known. Since this research used a simulation study, the true
parameter values were known. However, as shown above, by using composites instead of
the latent factors there was a re-scaling that affected the estimated growth parameters
even in the conditions in which the items were invariant over time. If the re-scaling were
not corrected, inflated bias, relative bias and RMSE values would have been obtained

even in the invariant conditions.
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To correct for the re-scaling that occurred by using composites of items instead
of the first order latent factors there were two options: to re-scale the estimated growth
parameter values or to re-scale the true growth parameter values. In order to re-scale the
estimated growth parameter values, it was necessary to change the estimated growth
parameter values in each replication in each condition. Instead, the re-scale in the true
parameter values was a one-time change, so this was the approached followed.

To re-scale the intercept factor mean, the sum of the item intercepts were added
to the true value. The slope factor mean was re-scaled by multiplying the generating
value by the sum of the item loadings. Finally, the intercept factor variance, slope factor
variance and intercept-slope covariance were re-scaled by multiplying their generating
parameter values by the square of the sum of the loadings. Since the sum of the intercepts
and loadings varied depending on the number of items (Table 5.9), a different set of re-

scaled true values were obtained for conditions with 6, 9 and 15 items as shown in Table

5.10.
Table 5.10
Original and re-scaled true growth parameter values
Original Re-scaled values
g 6 items 9 items 15 items
Intercept mean (“n ) 0 2.10 3.40 6.20
1
Slope mean (”n ) 0.20 0.84 1.20 1.98
2
Intercept variance (V) 0.50 8.82 18 49.01
Slope variance (¥,,) 0.10 1.76 3.60 9.80
Intercept-slope covariance (¥;,) 0.044 0.78 1.58 4.31
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After implementing the re-scaling of the growth parameter estimates, the large
bias and relative bias values previously observed in the conditions with invariant loadings
and invariant intercepts decreased substantially. Tables 3.3 and Table 5.11 in Appendix D
show that the relative bias and bias values of the growth parameter estimates under

longitudinal invariance is zero, as expected.
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APPENDIX D

BIAS IN THE LGM GROWTH PARAMETER ESTIMATES
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In this appendix the bias of the growth parameter estimates by number of items,
can be found for the invariant conditions. The bias results for the conditions with non-
invariant loadings and with non-invariant intercepts are shown by number of items,

magnitude of the violations, and the proportion of non-invariant items.

Table 5.11
Bias in the LGM parameter estimates in the invariant conditions

Num. Intercept Intercept Slope factor  Slope factor Intercept-

items factor mean factor mean variance slope
variance covariance

6 0.001 0.001 -0.023 -0.007 0.005

9 0.002 0.000 -0.092 -0.016 0.049

15 -0.007 0.003 -0.362 -0.063 0.059
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Table 5.12
Bias in the LGM parameter estimates in conditions with violations of invariance

Non-invariant loadings Non-invariant intercepts
Num. Effect Prop. Int Slope Int Slope I-S Int Slope Int Slope I-S
items size invariant ' P ' P ' P ' P
mean mean  var. var. covar. mean mean  var. var.  covar.

1/3 002 -004 -001 -021 -010 000 0.09 -007 -0.02 0.01

121"

Small 2/3 004 -008 001 -034 -018 0.00 013 -0.07 -0.01 0.01

6 Medium 1/3 005 -0.09 002 -040 -0.23 0.00 032 -0.01 -002 0.01
2/3 008 -015 001 -063 -039 0.00 054 -0.07 -0.01 0.01

Large 1/3 0.08 -014 004 -057 -035 0.00 128 -0.09 -001 0.01

2/3 013 -024 012 -0.88 -0.62 0.00 216 -0.04 -0.01 0.01

small 1/3 003 -006 -0.07 -040 -0.20 0.00 0.10 -0.10 -0.01 0.02

2/3 005 -011 007 -0.71 -0.37 0.00 019 -0.07 -0.02 0.03

9 Medium 1/3 006 -012 002 -0.77 -043 0.00 042 -0.09 -0.03 0.01
2/3 012 -023 009 -130 -0.81 0.00 0.78 -0.06 -0.03 0.01

Large 1/3 0.10 -0.18 0.08 -1.08 -0.66 0.00 168 -010 -0.03 0.02

2/3 018 -034 022 -183 -129 0.00 312 -0.05 -001 0.03

small 1/3 005 -010 -0.07r -112 -050 -0.01 017 -020 -0.06 0.06

2/3 009 -019 -004 -198 -106 -002 033 -025 -0.04 0.03

15 Medium 1/3 011 -021 -0.04 -208 -112 0.00 0.70 -0.33 -0.05 0.05
2/3 019 -039 030 -368 -227 -001 132 -019 -0.03 0.03

Large 1/3 015 -030 024 -304 -175 0.01 280 -030 -0.05 0.06

2/3 032 -059 089 -512 -359 000 528 -0.29 -0.04 0.08




APPENDIX E

BIAS IN THE AR QUASI-SIMPLEX PARAMETER ESTIMATES

155



In this appendix the bias of the AR quasi-simplex parameter estimates by number

of items, can be found for the invariant conditions. The bias results for the conditions

with non-invariant loadings and with non-invariant intercepts are shown by number of

items, magnitude of the violations, and the proportion of non-invariant items.

Table 5.13
Bias in the AR quasi-simplex parameter estimates in the invariant conditions

Num. items P21 P32 P43 P54

6 0.00 0.00 0.00 0.00

9 0.04 0.00 0.00 0.00

15 0.04 0.00 0.00 0.00

Table 5.14
Bias in the AR quasi-simplex parameter estimates in conditions with violations of
invariance
Num.  Effect Prop. Non-invariant loadings Non-invariant intercepts
Items  size non- P21 P32 P43 Ps4 P21 P32 P43 Ps4
inv.

Small /3 -001 -0.01 -001 -0.00 0.00 0.00 0.00 0.00
213 -0.02 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.00
6 Medium 1/3  -0.03 -0.03 -0.03 -0.03 0.00 0.00 0.00 0.00
213 -0.05 -0.05 -0.05 -0.05 0.00 0.00 0.00 0.00
Large 1/3  -0.04 -0.04 -0.04 -0.04 0.00 0.00 0.00 0.00
213 -0.07 -0.07 -0.08 -0.08 0.00 0.00 0.00 0.00
Small /3 -001 -0.01 -001 -0.00 0.00 0.00 0.00 0.00
213 -0.02 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.00
9 Medium /3  -0.02 -0.03 -0.02 -0.03 0.00 0.00 0.00 0.00
213 -0.04 -0.05 -0.05 -0.05 0.00 0.00 0.00 0.00
Large 1/3  -0.04 -0.04 -0.04 -0.04 0.00 0.00 0.00 0.00
213 -0.07 -0.07 -0.08 -0.09 0.00 0.00 0.00 0.00
Small /3 -001 -0.01 -0.01 -0.00 0.00 0.00 0.00 0.00
213 -0.02 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.00
15 Medium 13  -0.02 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.00
213 -0.05 -0.05 -0.05 -0.05 0.00 0.00 0.00 0.00
Large 1/3  -0.04 -0.04 -0.04 -0.04 0.00 0.00 0.00 0.00
2/3 -0.07 -0.07 -0.08 -0.08 0.00 0.00 0.00 0.00
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