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Abstract—This paper proposes a novel congestion control
algorithm for low-delay communication over best effort packet
switched networks. Due to the presence of buffers in the internal
network nodes, each congestion leads to buffer queueing and thus
to an increasing delivery delay. It is therefore essential to properly
control congestions in delay-sensitive applications. Delay-based
congestion algorithms could offer a viable solution since they
tend to minimize the queueing delay. Unfortunately they do not
cohabit well with other types of congestion algorithms, such as
loss-based algorithms, that are not regulated by delay constraints.
Our target is to propose a congestion control algorithm able to
both maintain a low queueing delay when the network conditions
allows for it and to avoid starvation when competing against flows
controlled by other types of policies. Our Low-Delay Congestion
Control algorithm exactly achieves this double objective by using
a non-linear mapping between the experienced delay and the
penalty value used in rate update equation in the controller, and
by combining delay and loss feedback information in a single
term based on packet interarrival measurements. We provide a
stability analysis of our new algorithm and show its performance
in simulation results that are carried out in the NS3 framework.
They show that our algorithm compares favorably to other
congestion control algorithms that share similar objectives. In
particular, the simulation results show good fairness properties
of our controller in different scenarios, with relatively low self
inflicted delay and good ability to work also in lossy environments.

I. INTRODUCTION

NOWADAYS, many Internet applications aim to work not
only at maximizing their throughput, but also at meeting

crucial delay constraints in the transmission of data flows.
Video conferencing applications are a good example of such
delay sensitive services, where an excessive playback delay
with the audio/video stream can drastically affect the quality
of an internet call. On-line video gaming and desktop remote
control are other examples of applications that require low la-
tency in order for the user to have a valuable experience. When
bandwidth resources are limited, these applications should
ideally adapt their sending rate so that the experienced one-way
delay is kept low and bounded, while preserving fairness with
other flows. In particular, it is extremely important for delay
sensitive algorithms to guarantee a good level of inter-protocol
fairness when competing with congestion control algorithms
such as loss-based methods that do not consider any delay
constraint.

Congestion control can be seen as a constrained resource
allocation problem that has to be solved in a distributed
way due to scalability issues. Several solving methods of
this optimization problem exist, but generally the resulting

algorithms can be divided from a theoretical point of view into
primal or dual algorithms [1]–[3]. From a more practical point
of view, the primal and dual congestion control algorithms
mentioned before roughly correspond, though not exactly, to
loss-based and delay-based controllers. Loss-based controllers
are widely deployed over the internet (e.g., TCP) and use
congestion events triggered by packet losses to perform rate
adaptation. However this class of controllers does not take
into account any type of delay measurement, such as One-
Way Delay (OWD) or Round Trip Time (RTT). Hence, there
is no control on the latency that the packets might experience
on their route. For example, in the presence of long buffers
in the network, loss-based congestion mechanisms have no
control over the increase of the queueing delay inside the
network. As a result the playback delay, in the case of
video conferencing applications, may grow very large. On
the other hand, delay-based congestion control algorithms, can
overcome the increasing delay issue by detecting congestion
events from OWD measurements. They are able to keep
a low communication delay, by adapting the sending rate
to the evolution of the delay. However, they usually suffer
when sharing the network with loss-based controllers. In the
case where both algorithms are present the queueing delay
could even grow so much that concurrent flows from delay-
based controllers quickly reach starvation with an almost zero
throughput. In these conditions, there is no chance that delay-
based and loss-based controllers could nicely coexist while
meeting the delay constraints. This calls for a congestion
control that is robust against different working conditions and
that could enable low delay communication when possible.

In addition to this challenge, deployment of new congestion
control algorithms in the Internet has the following problems.
First, new algorithms have to provide good inter-protocol per-
formances when competing against existing controllers, such
as TCP. Second, if the new protocols need a particular behavior
from the inner nodes of the network the deployment in the
Internet could also be impracticable. Third, the estimation of
some network parameters may be problematic, even if many
delay-based algorithms assume to know, or to be able to
estimate, the one-way propagation delay of the route, this is
actually not a trivial task. Many congestion algorithms have
actually been proposed, but none of them is able to outperform
the others in a large set of scenarios and, at the same time,
easily be deployed in the Internet.

In this work, we propose a new distributed Low-Delay
Congestion Control algorithm (LDCC) that is able to adapt the
sending rate to both loss and delay based congestion events and
overcome to the aforementioned issues. The ultimate objective
is to keep low delays when the flows compete with other delay-
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Fig. 1. Network system model.

based controlled flows, and at the same time not to starve when
they compete with flows generated by loss-based congestion
control algorithms. In particular, we target a scenario where
users send delay-sensitive data over a packet switched network,
as shown in Fig. 1, specifically, we have a network composed
by links and nodes. The links are shared among different users
who set up unicast communications between two end nodes of
the network. The network topology as well as the network
conditions (i.e., buffer lengths or presence of other flows)
are a priori unknown to the users. The proposed controller
measures the experienced OWD and the interarrival time of
the received packets at the receiver node, and adjusts the rate
accordingly in order to maximize the overall utility of the
network flows. As we will see more specifically in the rest of
this paper, the interarrival time of the packets is correlated to
both losses and queueing delay variations. Hence, by using this
quantity, the controller is able to work in both delay-based and
lossy scenarios. Finally, we introduce a non-linear mapping
between the experienced OWD and the penalty congestion
signal used by the rate update equation. The non-linearity of
the delay penalty is fundamental to preserve the delay-sensitive
flows when operating in lossy environments and to avoid the
starvation of the delay-based flows. The LDCC algorithm has
been tested using different topologies and in different working
conditions. It is shown to provide good intra-protocol fairness,
namely good fairness when competing with other LDCC flows.
It is also able to avoid starvation when competing with loss-
based flows, such as TCP.

The remainder of this paper is organized as follows. In
Section II, we provide a description of the system model and
the NUM framework that is used in this paper. In Section III we
describe our new congestion control algorithm in depth and we
analyze its stability in Section IV. We present the simulation
results in Section V. Section VI describes the related work and
finally conclusions are provided in Section VII.

II. NETWORK UTILITY MAXIMIZATION

A. System Model
We now give a description of the system model used in this

work. We consider a system with a set of R users represented
by data flows and indexed by r ∈ R. The users share a set of
network resources. Each of them transmits data at a sending
rate of xr, in a single-path unicast flow to one receiver node.
All users transmit over a common set of links l ∈ L and we
indicate with yl the rate at link l. We further refer to the L×R
matrix R as the routing matrix, where Rlr is equal to 1 if link
l is used by user r. Using the matrix R, we can define the
total rate passing through a link l as:

yl =
∑
r∈R
Rlrxr. (1)

Every link has a fixed maximum channel capacity cl, which
is constant over time, and is preceded by a buffer. When the
sum of the incoming flows of a link exceeds the link capacity
cl the data in surplus is accumulated inside the buffer of the
link l. The queueing delay at the buffer of link l evolves over
time:

q̇l =
1

cl
(yl − cl)+ql . (2)

The notation (z)+x is equal to z if x is positive and zero
otherwise. The queueing delay can be zero if the buffer is
empty. A data unit, or packet, that arrives at link l at time
t takes a time equal to ql(t) before being actually sent over
the link. We further define the propagation delay of the link
l as the time required for the data to propagate through the
link; we refer to this quantity with pl and we assume that
it is not varying over time. The total time taken by a unit
data to traverse link l is given by the sum of the propagation
and queueing delays dl = pl + ql. The total one-way delay
experienced by user r, er, is given by the sum of all the delays
encountered on the path followed by its data. We can define
this quantity using the routing matrix R defined previously:

er =
∑
l∈L
Rlrdl. (3)

The network buffers have a maximum size qMAX
l . When the

queue length reaches this size, the next incoming packets are
discarded. Namely, the buffers implement a drop tail policy.
The estimated loss ratio for link l when its buffer is full is:

πl =

(
yl − cl
yl

)+

yl−cl
(4)

and the total loss ratio for user r is:

πr = 1−Πl∈LRlr (1− πl) (5)

which, if the loss ratio of the links are small, can be approxi-
mated by:

πr '
∑
l∈L
Rlrπl. (6)

We further introduce another notion of communication delays
between the network nodes. We refer to τfrl as the time needed
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by the data to travel from source node of user r to the link
l, obviously only in the case where r uses link l. This time
is composed by both propagation and queueing delay of the
route from the source node of r to the link l. Similarly we
define τ brl as the time needed for the data to travel from the
link l to the sink node and to be sent back to the source node
r. Note that any kind of signal about congestion cannot be
directly received by the source from an inner network node,
but it must reach the end node, and only then it can be sent
back to the source. For this reason, for a given user r the sum
of the two values is equal to the RTT of the user independently
of the link l:

RTTr = τfrl + τ brl, ∀l ∈ r (7)

Due to the delays in the system, if we want to express the total
rate at link l at time t as a function of the sending rates, we
should delay them by an amount of time equal to τfrl:

yl(t) =
∑
r∈R
Rlrxr(t− τfrl). (8)

As final note we give the expression of the RTTr for sender
r as a function of the experienced user delay:

RTTr = er + ebr (9)

where ebr is the total experienced delay of the backward path.
In the cases where the backward is as uncongested, it is
reasonable to assume that ebr is equal to the propagation delay
of the forward path. In any case we assume the backward delay
ebr is not a function of the rate xr.

B. Optimization Problem
We now define the NUM problem based on the framework

of [1]. A key concept in the NUM framework is the utility of
a flow. The utility of a flow with rate xr associated to the user
r is quantified by the value of the utility function Ur(xr);
this function quantifies the benefits, or utility, for a user to
have a data rate xr. We assume that the utility function is a
differentiable strictly concave function of the rate xr. Then the
NUM problem is typically defined as follows:

NUM: maximize
x

∑
r∈R

Ur(xr)

subject to
∑
l∈L
Rlrxr ≤ cl, l = 1, . . . , L.

(10)

The problem consists in how to optimally allocate the rates of
the users in such a way that the overall utility is maximized
and that the capacity constraints on the network links are
matched. An exact solution means that none of the capacity
constraints is actually violated resulting in no queueing delay
at the bottlenecks links. Since the utility functions are strictly
concave, the problem is a concave maximization problem with
a unique solution. The NUM problem can be solved exactly
in a centralized way, but this requires a priori knowledge
of the complete network state, which is not available in
practical cases. A centralized solution is also impractical in real
systems as it rapidly meets its strong limitations in terms of

scalability and coordination. Thus, typically, the NUM problem
is generally decoupled and then solved in a distributed manner.

C. Solution by Decomposition
We discuss now the most commonly used approaches to

solve the problem, with solutions based on penalty decom-
position and on dual decomposition, and we point out their
main limitations. We refer to [4] for detailed tutorial on
decomposition methods for NUM. Here we present the two
methods that are mainly used and that are closely related to
our study. The first method to solve the problem in Eq. (10)
is by using penalty functions, called also prices, which map
the violation level of the capacity constraints into a negative
utility. A possible way to restate the problem using a penalty
function is the following:

maximize
x

∑
r∈R

Ur(xr)−
∑
l∈L

∫ yl

0

gl(yl) (11)

where gl(yl) can be thought of as the price to pay in order to
use link l when the link rate is equal to yl. It is important for
gl(yl) to be a positive and increasing function of the link rate
yl. The problem in Eq. (11) can be solved by a gradient-based
algorithm following the rate update equation:

ẋr = αr

(
U ′r(xr)−

∑
l∈L
Rlrgl(yl)

)
(12)

When we use the loss ratio of link l as its price, gl(yl) =
πl(yl), and assuming Rlrπl ' πr for low loss ratios, we can
deduce that, in order to converge to the equilibrium, the users
need to know only their own utility function and their loss
ratio. Note that every user can easily estimate its loss ratio by
observing the number of dropped packets at the receiving node.
In general, for a route, losses at equilibrium cannot be null
and the bottleneck buffers are completely full. Thus the queue
of the congested link always grows to its maximum value,
qMAX
l . The above congestion control solution does not take

into account any sort of delay measurement, so it is not able
to limit the experienced delays. A large family of congestion
control algorithms, such as the classical loss-based version of
TCP, can be modeled as systems governed by Eq. (12).

Another possible way to solve the NUM problem is by dual
decomposition. The NUM problem is re-written as:

minimize
λ

sup
x

∑
r∈R

Ur(xr)−
∑
l∈L

λl (yl − cl)

subject to λl ≥ 0 l = 1, . . . , L.

(13)

where λl are called dual variables. Eq. (13) corresponds to the
lagrangian dual problem of Eq. (10). This optimization prob-
lem can be solved distributively using a primal-dual algorithm
based on the following update equations:

ẋr = αr

(
U ′r(xr)−

∑
l∈L
Rlrλl

)
(14a)

λ̇l = νl (yl − cl)+λl
. (14b)
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We notice that if we set νl = 1/cl, the dual variables have
exactly the same form of the queueing delays defined in Eq.
(2). Thus the value of a network variable that can be estimated
at the end nodes, the total queueing delay, coincides with the
value of the dual variables of the dual lagrangian formulation.
As a result, users, by estimating the total queueing delay
of their own route, and by adapting their rates accordingly,
can achieve the maximization of the global utility. The value
of the queueing delay at equilibrium depends on the shape
of the utility functions. If we consider a fixed shape of the
utility function, then the delay at equilibrium depends actually
on the available capacity. Generally, the larger the bottleneck
capacities cl, the larger the user rates xr at equilibrium, and
the lower the delays at equilibrium. We also notice that a
flow, which uses a single link with capacity cl, in order to
converge to an equilibrium rate equal to cl needs to create
some queueing delay along the route, which is called the self-
inflicted delay.

The dual decomposition method has two main limitations:
i) it assumes the knowledge of the total queueing delay, ii)
it is not robust against loss-based flows. In order to reach a
fair rate allocation, the users need to know the total queueing
delay, while they can actually measure only the sum of the
propagation and queueing delay. Estimating the queueing delay
from the total delay is not a trivial task, as users are not able to
measure the real propagation delay if the network is congested.
An error in the propagation delay estimation may lead to
unfairness among the delay-based flows. Furthermore, a delay-
based congestion control should exhibit a nice behavior even
when competing against the many internet flows that are driven
by loss-based congestion control algorithms. A loss-based
congestion control algorithm tends to fill the buffers, which
results in an increasing queueing delay that can drastically
lower the throughput of delay-based flows. Delay-based flows
should therefore include in their algorithm a protection in the
case where the queueing delay grows out of control and cannot
be used as a valid congestion signal to reach the equilibrium.

In the next section, we describe our congestion control
algorithm which is able to overcome to the aforementioned
limitation of classical congestion control schemes.

III. LOW-DELAY CONGESTION CONTROL ALGORITHM

A. Control Algorithm

In this section, we present our LDCC, and show how it over-
comes the limitations of existing controllers. Our controller is
defined by the following rate update equation:

ẋr = kxr (U ′(xr)− vr(er)− ėr − πr)+xr
. (15)

Eq. (15) shares some similarities with Eq. (12) and Eq. (14a)
that have been discussed in detail in the previous section.
The main differences are: i) the combined use of losses and
delay as congestion signal, ii) the use of the experienced delay
instead of the queueing delay and iii) the use of a non-linear
function vr(). Let us describe in details the different terms of
Eq. (15). We first have the derivative of the utility function
U ′r(·). Without loss of generality we will consider in this

work logarithmic utility functions1. In order to simplify the
development, we further assume that the utility is the same
for all users and equal to:

Ur(xr) = w log(xr). (16)

Note that the conclusions of this work hold even in the case
where we assume different utility functions among the users.
The second term, vr(·), is the delay penalty function. Recall
that we denote with er the total delay experienced by user
r. The function vr(·) simply maps the one-way delay into a
penalty. This function is defined as:

vr(er) = β

(
er − Tr
RTTr

)+

(er−Tr)

, (17)

where RTTr is the round trip time of user r, β is a scaling
factor and Tr is the delay threshold of user r. The delay
threshold is related to delay that the system experiences at
the equilibrium. The value of vr(er) is equal to zero if
er − Tr < 0 and equal to β(er − Tr)/RTTr otherwise.
The normalization of the price by RTTr is motivated by rate
fairness improvements and stability conditions. Note that this
function is not a linear function of the experienced delay, er,
but rather a monotonically non-decreasing function of it.

The third term in Eq. (15) depends on the derivative of
the experienced delay, ėr. This term does not modify the
equilibrium of the system, since the time derivative at the
equilibrium point will be zero by definition. However, it
helps the controller during the transients, since it provides
information about the variation rate of the feedback variable.
The last term in Eq. (15) takes into account the experienced
losses, following Eq. (4), so that the algorithm is able to
operate in both delay-based and loss-based scenarios.

In more details, in the case of no loss (πr = 0), our
controller behaves as a delay-based controller. The experienced
delay at equilibrium becomes:

êr =
RTTr
β

U ′r(x̂r) + Tr = RTTr
w

βx̂r
+ Tr. (18)

This can be derived by setting the time derivatives to zero in
Eq (15). By defining the RTT of the user r as in Eq. (9), Eq.
(18) becomes:

êr =
êbrw/(βx̂r) + Tr

1− w/(βx̂r)
. (19)

From Eq. (19), we observe that the larger the equilibrium rate
x̂r, the closer the experienced delay is to the threshold value
Tr. Also, since the delay at equilibrium obviously has to be
positive, we can see from the denominator of Eq. (19), that
the rate at equilibrium has to verify the following inequality:

x̂r > w/β. (20)

If the above inequality is not verified, the delay-based part
is not able to converge to the equilibrium. In this case the
network queues grow until they hit the maximum buffer size,

1Our framework applies to any differentiable increasing concave utility
function.
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Fig. 2. Delay penalty as a function of the experienced delay for different
values of propagation delays.

then the loss-based part of the algorithm becomes operative.
We can finally observe that the controller is not able to achieve
the equilibrium point for low values of x̂r, which is caused by
the shape of the non-linear delay penalty mapping. However
the penalty function has other nice properties that largely
compensate this potential weakness. The main benefits of our
penalty function can be summarized as:
• The non-linearity of the penalty function protects the

flows from starvation when competing against loss-based
algorithms. Fig. 2 depicts the shape of the penalty
function of Eq. (17) for different values of the propaga-
tion delay, when the backwards delay, ebr is considered
to be equal to the one-way propagation delay in the
forward direction. The value of the penalty saturates
to β for large values of the experienced delay. As a
consequence the experienced delay can never force the
sending rate to decrease to a value lower than w/β
preventing starvation, this can simply be understood by
looking at Eq. (20).

• The non-linearity of the penalty function alleviates un-
fairness problems caused by heterogenous propagations
delays among the users. Since our control algorithm
uses the total experienced one-way delay instead of
the queueing delay, it may lead to unfairness when a
bottleneck link is shared among users with different
propagation delays. However the non-linear mapping
of the delay helps to alleviate this problem when the
available capacity is low. This can easily be understood
by looking at the shape of the penalty function in Fig. 2.
Since the penalty value tends to saturate for large delays,
i.e., low available capacity, it means that in this scenario
users with different propagation delays will have similar
penalty values and as a consequence similar sending
rates.

The loss-based part of the algorithm, πr, simply takes into
account the amount of lost packets in the flow r. It works
as an additional penalty that lowers the value of the rate at
equilibrium in the case where the delay part is not able to
reduce it significantly. Losses could happen due to the presence
of loss-based flows or to the presence of short buffers inside the
network. Consider for example the case where the maximum

queueing delay plus the propagation delay of a route is smaller
than the delay threshold, i.e., eMAX

r < Tr. In this case, the
delay penalty is always zero and the flow behaves as a loss-
based controlled flow. The flow is thus driven to its equilibrium
rate exclusively by the term πr.

B. Controller Implementation
We now briefly discuss the practical implementation of the

LDCC described above. Even if our analysis relates to a
continuous system, we obviously work in a discrete scenario
in practice. The entities that travel through the links are data
packets rather than continuous flows, and we describe below
how the controller in Eq. (15) is modified in a discrete system.

We explain how, by using the interarrival time of the
packets at the receiver node, we are able to build a term
that incorporates both aspects of our controller, namely the
delay-based part and the loss-based part. The advantage of
merging these terms is that we do not need to discriminate
between lossy environments, namely competition against loss-
based flows (or in the presence of short buffers) or competition
against other delay-based flows. More specifically, the two
terms that will be unified are the queueing derivative term,
ėr, and the term that takes into account the losses of the flow
πr. We now start the derivation of the unified term by finding
the connection between the interarrival time and the receiving
rate, then we will give the expression of the merged term and
show that it corresponds to approximates πr or ėr for the loss-
based and the delay-based case, respectively.

Ideally the interarrival time is inversely proportional to the
received rate. If we measure the receiving rate in packets per
second we can write:

xrecvr (n) =
1

ta(n)− ta(n− 1)
(21)

where ta(n) is the instant of arrival of the n-th packet. Noting
that ta(n) = ts(n) + e(n) where ts(n) is the sending time of
packet n, and that the time between two consecutive departures
is equal to 1/xr, we can write:

xrecvr (n) =
1

1/xr + er(n+ 1)− er(n)
=

1

1/xr + ∆er(n)
(22)

where ∆er(n) is the variation of the OWD between two
consecutive packets. As the propagation delay is fixed, ∆er(n)
corresponds to the variation of the queueing delay. The varia-
tion is evaluated between the sending times of two consecutive
packets, so we can write ėr(n) ' ∆er(n)xr. Recall that we
are considering to measure the sending rate xr in packets
over seconds, thus ∆er(n)xr is dimensionless, as ėr. If we
substitute this approximation in Eq. (22) and solve for ėr we
obtain:

ėr '
xr − xrecvr

xrecvr

. (23)

The value of xrecvr can be calculated at the receiver using Eq.
(21) while the value of the true sending rate can be indicated
in the header of the packets transmitted to the receiver, and
then sent back to the sender to compute the value of ėr.
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Interestingly, Eq. (21) is also valid for losses: if the estimated
received rate is lower than the sending rate, then it either means
that the flow experiences some losses, or that the packets
actually accumulate in the network nodes. In both cases, this is
a signal of a congestion inside the network. Eq. (23) can thus
be used indifferently for the delay-based or for the loss-based
scenarios. In the case of losses, it is easy to prove that Eq.
(23) is equal to:

xr − xrecvr

xrecvr

=
πr

1− πr
(24)

where πr is the loss ratio for user r. If the loss rate is low,
then the denominator of the left hand side of Eq. (24) is close
to one, 1 − πr ' 1, hence Eq. (24) is a good approximation
of πr. We can finally write the rate update rule that governs
the LDCC algorithm in the discrete system as

xnewr = xr + Tskxr

(
U ′r(xr)− β

er − Tr
RTTr

− xr − xrecvr

xrecvr

)
,

(25)
where Ts is the time interval at which the equation is updated.
The gain of the controller, k, is chosen to be inversely
proportional to the RTT for stability reasons (as discussed
in Section IV). If the sampling period Ts (i.e., the feedback
interval) is set equal to the RTT of the route, by multiplying
both terms Ts and k the dependency on RTT disappears.

IV. STABILITY ANALYSIS

In this section we discuss the stability of the LDCC al-
gorithm based on Eq. (15). In particular, we concentrate on
the case when the only congestion signal received by the
users from the network is the experienced delay. The stability
of similar delay based controllers has been studied in other
works [3], [5]. However, due to the non-linear mapping of
the experienced delay, those proofs do not apply directly to
our algorithm. We first emulate a network where the only
congestion signal is the experienced delay and set the length
of network buffers to be infinite. In this case, the flows never
experience any loss, (i.e., πl = 0) and reach the equilibrium
point using only the experienced delay as congestion feedback.
We obviously assume that the equilibrium point exists in this
case.

We first show the global stability of the non-linear LDCC
for an ideal scenario when the communication delays are
negligible, i.e., τfrl ' 0 τ brl ' 0, for a general case of R users
and L links. The communication delays are negligible when
they are remarkably smaller than the timing characteristics of
the control system. Then we study the stability of the con-
troller at the equilibrium when communication delays are non-
negligible. We recall that both cases focus on the delay-based
control regime, which means that no losses are experienced in
any link, i.e., πl = 0, ∀l ∈ L.

A. Negligible Delay Case
We first study the global stability of the undelayed system.

We follow the analysis steps of [6], but we adapt the proof
to our system and in particular to the non-linear function

RR
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Users Dynamic

q̇  1/c(y � c)

Links Dynamic

�e, �ė
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Fig. 3. Block scheme of the congestion control

vr(·) in Eq. (17). The global stability proof is based on the
passivity analysis of dynamic systems [6] [7]. A dynamic
system characterized by an input u, state x, and output y is
said to be passive if there exists a positive definite storage
function V such that its derivative can be written as:

V̇ ≤ −W (x) + uT y, (26)

where W (x) is a positive semi-definite function. If two passive
systems are interconnected in a negative feedback loop, then
the sum of their respective storage functions is a Lyapunov
function for the interconnected system. Indeed, the output of
one system is the opposite of the input of the other one, so
the two terms uT y vanish:

V̇ ≤ −W1(x1)−W2(x2) + uT1 y1 + uT2 y2 (27a)
= −W1(x1)−W2(x2)− yT2 y1 + yT1 y2 (27b)
= −W1(x1)−W2(x2). (27c)

Our dynamic system can actually be modeled as an in-
terconnection of two systems (namely, the users and links
dynamics in Fig. 3), which drive the behavior of our streaming
framework. If we can prove that these two separate systems
are both passive, then, from the above, we can prove the global
stability in the sense of Lyapunov for the entire system.

Let us first introduce some notations that are used in our
stability proof. The operator ·̂ denotes the value of the variables
at the equilibrium point, and δ denotes the deviation of a
variable from its equilibrium point, e.g., δx = x−x̂. We denote
with Vuser and Vlink the storage function of the users and links
sub-systems respectively. The input of the users system is the
experienced delays e and ė, while its output corresponds to
the sending rates x. Similarly, the links system has the link
rates, y, as input variables and the links delays, d and ḋ, as
output variables. The routing matrix R maps the user rates
to the link rates and the link delays to the users’ experienced
delays. Finally, the equilibrium point of the system is reached
when the dynamic equations (2) and (15) are set to zero. This
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is equivalent to have vr(êr) = U ′(x̂r) and ŷl = cl if q̂l > 0,
or ŷl ≤ cl if q̂l = 0. Since we are at equilibrium, q̇l = 0; we
further have ėr =

∑
l∈LRlrḋl = 0, where dl is the sum of

the queueing delay ql and the propagation delay pl (which is
constant over time).

We consider the following candidate storage functions for
the user and link subpart respectively:

Vuser =
1

kα

(∑
r∈R

∫ xr

x̂r

z − x̂r
z

dz

)
(28)

Vlink =
1

2

∑
l∈L

δd2l cl +
1

α

∑
l∈L

(cl − ŷl)dl (29)

Note that since dl ≥ 0 the two storage function are positive
definite function for δx and δq respectively. It can be verified
that by taking the time derivative of the two storage function
we can verify the inequality of Eq. (27c) for two valid function
Wuser and Wlink, proving the stability if the system. The full
proof can be found in Appendix A.

B. Non-negligible Delay Case
We now study the stability of the system when the commu-

nication between network nodes is affected by non negligible
delays, as it is typically the case in practice. Such delays
affect the stability of the system. We first linearize the rate
update equations of the non-linear delayed system around
its equilibrium point and we study the local stability of the
linearized delayed system, similarly to the analysis in [8]
or [3], for example. When communication delays are non-
negligible, Eq. (15) can be written as:

ẋr(t) = krxr(t)
(
U ′(xr(t))−

vr(
∑
l∈L
Rlrdl(t− τ brl))−

∑
l∈L
Rlrḋl(t− τ brl)

)
(30)

while the queueing delay equation, in Eq. (2), becomes:

q̇l(t) =
1

cl

(∑
r∈R
Rlrxr(t− τfrl)− cl

)
. (31)

These new equations (30) and (31) respectively represent the
users and links dynamics taking into account the communica-
tion delays. Recall that τfrl and τ brl capture the time needed
for the packets to go from source r to link l, and for the
feedback information to be received by the source respectively.
Recall also that the congestion information from link l needs
to reach the end node of user r before being sent back to
the source node. As a consequence, the sum τfrl + τ brl does
not depend on l and it is equal to the RTT of the route, i.e.,
τfrl + τ brl = RTTr. When we linearize the equations (30) and
(31) at the equilibrium point, we get the following equations
to characterize the system in the Laplace domain:

sδx(s) = KX̂
(
Û ′′δx(s)− V̂ ′RTb (s)δq(s)− sRTb (s)δq(s)

)
sδq(s) = C−1 (Rf (s)δx(s)) . (32)

Where δx indicates the deviation of the variable x from the
equilibrium point, i.e., δx = x − x̂, and δx(s) refers to the
Laplace transform of δx. The same notation applies to δq.
The system equations (32) is written in a matrix form, where
C is a L square diagonal matrix whose entries are equal to
cl. The routing matrices Rf (s) and Rb(s) embed the delay
information and are defined as Rf lr(s) = e−sτ

f
rl if user r

employs link l and 0 otherwise, and respectively Rb lr(s) =

e−sτ
b
rl if user r employs link l and 0 otherwise. Then K, X̂ ,

are R squared diagonal matrices with respectively the values of
gains kr and the values at equilibrium of the rates xr. V̂ ′ and
Û ′′ are R squared diagonal matrices whose entries correspond
to the values at the equilibrium point of the first derivative of
the penalty delay functions and the second order derivative of
the utility functions.

Next, solving for x(s) in Eq. (32) we obtain:

δq(s) = C−1Rf (s)s−1(Is−KX̂ Û ′′)−1

KX̂
(
−V̂ ′ − s

)
RTb (s)δq(s). (33)

From Eq. (33) we can easily determine the return loop ratio
F (s) [9], [10], of our multivariable feedback system:

F (s) = C−1Rf (s)s−1(Is−KX̂ Û ′′)−1KX̂
(
V̂ ′ + s

)
RTb (s).

(34)
Noting that RTb (s) = diag(e−sRTT )RTf (−s) and using the
property that diagonal matrices commute, we can write:

F (s) = C−1Rf (s)s−1(Is−KX̂ Û ′′)−1

K
(
V̂ ′ + s

)
diag(e−sRTT )X̂RTf (−s). (35)

For the sake of clarity, we introduce the matrix G(s):

G(s) = s−1(Is−KX̂ Û ′′)−1K
(
V̂ ′ + s

)
diag(e−sRTT ), (36)

this is an R by R diagonal matrix. Similarly to [5] we further
introduce the matrix:

R̃(s) = diag(1/
√
cl)Rf (s)diag(

√
xr). (37)

Since the eigenvalues of matrix product does not depend on
the order of the matrices we can write:

σ(F (s)) = σ
(
R̃(s)G(s)R̃T (−s)

)
, (38)

where σ(·) denotes the set of eigenvalues of a matrix. We
can now verify the stability of the system using the Nyquist
stability criterion. We set s = jω and vary its value on the
Nyquist path. The trajectories of the eigenvalues of the system
as a function of jω must not encircle the point −1 + j0 for
the system to be stable. Using the main result of [11]:

σ(F (jω)) ∈ ρ(R̃T (jω)R̃(−jω)) co(0 ∪ σ(G(jω))), (39)

where ρ(·) denotes to the spectral radius of a matrix and
co(·) denotes the convex hull. Eq. (39) simply tells that the
eigenvalues of F (jω) are located on the convex hull made
by the eigenvalues of G(jω) scaled by the spectral radius of
R̃T (jω)R̃(−jω).
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From [12], we further know that the spectral radius
ρ(R̃T (jω)R̃(−jω)) ≤ M , with M being the maximum
number of links used by any user r. Hence, to prove the
stability of the system, we need to show that the eigenvalues
of G(jω) in Eq. (38) do not encircle the point −1/M + j0 in
the complex plane. Since G(jω) is a diagonal matrix, as can
be seen from Eq. (36), we need to show that all the entries on
its diagonal verify the Nyquist criterion of stability. Defining
Gr(jω) as the r element of the diagonal of matrix G(jω) we
have:

Gr(jω) = kr
e−jωRTTr

jω

v′r + jω

jω − krx̂rU ′′r
, (40)

where U ′′r correspond to the second derivative of the utility
functions calculated at the equilibrium point, and v′r is the
derivative of the penalty function calculated at the equilibrium
point. As the utility functions are concave, U ′′r is negative,
so both poles of Eq. (40) are non positive. With a utility
function defined as Ur(xr) = w log(xr), the value of the
second derivative of the utility and the derivative of the price
at the equilibrium point are respectively equal to:

U ′′r = − w
x̂2r
, (41)

and
v′r =

β − w/x̂r
RTTr

(42)

where in the last equation we used the property that vr(êr) =
U ′(x̂r) at equilibrium. Note that, in order to have a negative
zero in the transfer function Gr(jω) we need the inequality
x̂r > w/β to hold. This condition supports in fact that w/β
is the minimum equilibrium rate for the purely delay-based
subpart as described in Section III.

Finally, substituting Eq. (41) and (42) in Eq. (40), we obtain:

Gr(jω) = ηr
e−jωRTTr

jωRTTr

β−w/x̂r

RTTr
+ jω

jω + ηr
w

x̂rRTTr

, (43)

where we have introduced the normalized gain ηr = krRTTr.
The value of the normalized gain ηr should be divided by M
according to Eq. (39). Eq. (43) is a simple transfer function
with two poles and one zero. The location of the second
pole and the zero are actually related since they depend
on the same quantities. In particular, due to the previous
considerations about the minimum value of the equilibrium
rate, the pole cannot be located at an angular frequency larger
than ηrβ/RTTr. The zero is located between 0 and β/RTTr.
By selecting appropriate values for the controller parameters,
w, β and ηr, we can allocate the zero-pole couple to low
frequencies. At the same time we can set a cross frequency, i.e.,
the frequency at which |Gr(jω)| is equal to 1, to a sufficiently
high frequency to ensure the stability of the system.

In summary, we have studied in this section the stability
of our system in the case where the only congestion event
received from the network was the varying experienced delay,
for the case with negligible communication delays and for the
case where user communication delays are not negligible. The

main result is that the non-linear mapping of the experienced
delay leads to a stable system. We finally note that the above
study concerns the delay-based part of the controller. It can
however be extended to the loss-based part of the algorithm.
Since we consider the case of droptail queues, we observe
that when a flow is experiencing losses at a bottleneck, then
the queue has reached its maximum size: as long as losses
are experienced, the queue delay cannot change (we do not
consider the case of RED policy [13] or any other AQM
mechanism). A constant delay plays no role in the placement
of eigenvalues of the linear dynamic system at equilibrium.
The delay-based terms of the rate update equation disappear
in the linearization process of the system. Hence, for the loss-
based part of our algorithm, the linearized update equation is
consistent with the one used in [1], [14] and the stability proof
can be carried out by following the steps described in these
works.

V. SIMULATIONS

A. Simulation Setup
To evaluate the performance of our controller, we carried

out experiments using the NS3 network simulator platform.
We have tested the controller in different network topologies
and scenarios in order to show that the algorithm is able to
work in loss or delay-based control situations. In particular, we
consider a single link topology, Topology 1 (see Fig. 4) and
Topology 2 (see Fig. 9) in our simulations. The first one is the
classic dumbbell topology, where several users share the same
unique bottleneck link. The second topology is the so-called
parking lot topology, with two bottleneck links, where two
users employ only one of these links while a third user, with a
longer data path employs both congested links. We evaluate the
performance of the LDCC algorithm under different metrics
such as throughput, self inflicted delay, and fairness.

We implement our congestion control algorithm on top of
the UDP protocol. The controller parameters are set according
to the stability analysis in Section IV. In particular we set
k = 1/(2.5RTT ) and we neglect the dependency on M (the
maximum number of links present in a route). The value of β is
equal to 0.1. The utility functions are given by w log(x), with
w equal to 20 kbps and the packets have a fixed size of 1KB. In
our practical implementation the sender schedules the sending
time of the packets according to the discrete rate update control
algorithm of Eq. (25). We set a feedback interval of one RTT ,
i.e., Ts = RTT . In practice, more than one feedback is usually
received during one RTT. The received values, such as the RTT,
the sending rate and the one way delay, are averaged using a
rectangular window and the update equation is computed every
Ts with the average values of the feedback information.

B. Fairness Analysis
In this set of simulations, we evaluate the performance of

the LDCC controller when it shares the bottleneck links with
other flows controlled by the same algorithm. Fairness is an
important metric for congestion control algorithms; it reflects
the ability of flows to fairly share the available bandwidth



9

Flow 1

Flow 2

Flow 3

UDP Flow

bottleneck link

Fig. 4. Network Topology 1.
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Fig. 5. Sending rate and OWD for the three LDCC flows sharing a common
bottleneck link when the equilibrium is driven by the experienced delay.

without penalizing early or late starting flows. We consider
a case with three LDCC flows that share a link with an
unresponsive UDP flow with a constant rate of 500 kbps. The
network topology is shown in Fig. 4. Two of the flows, flows
1 and 2, start respectively at 2 and 4 s and last until the end
of the simulation. The third flow starts at 100 s and stops
transmitting at 260 s. The unresponsive UDP flow is always
present during the simulation. The bottleneck link has a one
way propagation delay of 25 ms, and a total of capacity of 3.5
Mbps. The threshold delay imposed on the three LDCC flows
is 50 ms.

In a first simulation we set the maximum length of the drop-
tail buffers inside the network to 130 packets, equivalent to a
maximum queueing delay 300 ms. Since the LDCC algorithm
has a delay threshold parameter of 100 ms, the flows never
fill the buffer and so no loss is experienced. The results
for this simulation are provided in Fig. 5. It can be seen
that the LDCC flows fairly share the bottleneck link without
penalizing early or late starting flows. Next, we conduct
a simulation with the same settings, but with a maximum
buffer length of 25 packets, corresponding to a maximum
experienced delay smaller than 100 ms. With these parameter
values, the maximum delay allowed by the drop tail buffer is
lower than the delay threshold. As a result, the LDCC flows
are driven to equilibrium by experienced losses rather than
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Fig. 6. Three flows sharing a common bottleneck, equilibrium is driven by
losses. Drop tail bottleneck buffer.

by the experienced delay. The sending rates and OWD for this
simulation are depicted in Fig. 6. We see that, when the system
is mainly loss-based, the flows also fairly share the available
bandwidth since each active flow gets the same sending rate.

Next, we perform a simulation where flows sharing the same
bottleneck have different propagation delays. We used the same
dumbbell topology of Fig. 4, with four LDCC flows and we set
different values, [p1 p2 p3 p4], of the propagation delay for the
different users. We varied the capacity of the bottleneck link
from 1 Mbps to 6 Mbps with a max queueing delay of 0.5s and
a delay threshold of 100 ms. We measured the average sending
rate at equilibrium and we compute the Jain’s fairness index
[15], which is a well known index to measure the fairness of
rate allocation. It is defined as:

J(x) =

(∑N
n=1 xn

)2
N
∑N
n=1 x

2
n

, (44)

for the case of N flows. The Jain’s Fairness index assumes
values between 1, full fairness, and 1/N , poor fairness. The re-
sults of the simulation are shown in Fig. 7. We plot the fairness
index as a function of the normalized capacity, which is equal
to the total capacity divided by the number of flows. It can be
seen that, when the discrepancy between the propagation delay
increases the Jain’s score is lower. However, when the available
bandwidth is lower, which is the most constrained and so
the most critical scenario, the fairness level is higher. These
results correspond to the observations made in the theoretical
analysis of Section III. Finally, we also plot in Fig. 8 the
value of the rates of the flow with the lowest and highest
sending rate at equilibrium versus the normalized capacity. In
the ideal case, this plot should feature a straight line with all
the rates equal to the normalized capacity when full fairness
is achieved. For high values of capacity the full fairness is
however not achieved but flows do not starve and achieve,
in absolute terms, a relatively good amount of bandwidth. In
particular, in the worst case, where the maximum propagation
delay is three times the minimum one, the flow is still able to
send to a value that is approximately half of the normalized
capacity. This confirms the ability of the LDCC algorithm to
prevent flow starvation.
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Fig. 8. Minimum and maximum rates at equilibrium versus normalized
capacity for four LDCC flows sharing a bottleneck with different propagation
delay.

Finally, we analyze the fairness of our controller for the
parking lot network topology depicted in Fig. 9. Both bot-
tleneck links have a channel capacity of 2.5 Mbps and a
propagation delay of 25 ms. There is also an unresponsive
UDP flow that passes through both links with a constant rate
of 500 Kbps. In order for the equilibrium to be driven by
the experienced delay, we first set a threshold value of 100
ms for all the users. Then we set the maximum length of
the buffers inside the network to 100 packets, which ensures
that no losses are experienced during this simulation. Flow
3 starts at 100 s and stops at 260 s while the other flows
are always present. The simulation results are shown in Fig.
10. Flow 1 always gets a lower rate compared to the other
flows. This is expected and due to the fact that its route is
longer, hence it is penalized compared to the other flows. We
finally conduct a last simulation for a mixed-based regime the
maximum queuing delay is set to 50 ms. In this case we also
obtain expected results with flow 1 getting a lower rate when
it has to compete against the other two flows, as shown in Fig.
11. In this experiment flow 1 works in both loss and delay
mode, since it is experiencing losses and having a total delay
larger than its threshold.

Flow 1

Flow 2 Flow 3

UDP Flow

bottleneck link 1
bottleneck link 2

Fig. 9. Network Topology 2. The flow LDCC 1 passes through two
bottlenecks links and competes with another LDCC flow on each of these
links
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Fig. 10. Time evolution of the sending rates and delays for the parking lot
topology when equilibrium is driven by the experienced delay.
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Fig. 11. Time evolution of the sending rates and delays for for the parking
lot topology when equilibrium is driven by losses
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Fig. 12. Average rate at equilibrium of our algorithm competing and TCP
when competing for a bottleneck for different drop tail buffer size.

C. TCP Coexistence
We now study the performance of the LDCC when it

competes against TCP flows. We again use a single link
topology, with a capacity of 2.5 Mbps and a propagation delay
of 50 ms. Three flows are sharing the link: an unresponsive
UDP flow with a constant sending rate of 500 kbps, a flow
running the LDCC algorithm and a TCP New Reno flow. The
delay threshold has been set to 100 ms in the LDCC algorithm.

We run simulations for different values of the size of the
droptail buffer, and we vary it from 30 to 180 packets, which
roughly correspond to 100 ms to 600 ms of maximum queueing
delay respectively. The simulation results in Fig. 12 show the
average rate at equilibrium for the LDCC and TCP algorithms.
We can see that the level of fairness against TCP depends on
the buffer size: more bandwidth is given to the LDCC flow
for short buffers, and the reverse for long buffers. Ideally the
ratio between the two flows should not depend on the buffer
size. This dependency is caused by the delay-based part of the
congestion algorithm: since with long buffers the experienced
delay is higher, the equilibrium rate is smaller. However, due to
the non-linearity of the LDCC penalty function, the rate does
not reach the zero value but tends to w/β. By modifying the
value of w, we can increase the minimum rate that is reached
in large delay environments. On the other hand, with small
buffers, our algorithm reaches an higher rate at equilibrium
than TCP. This is caused by the fact that the loss-based part
of LDCC is more aggressive than the TCP congestion control.
We note that, even if the coexistence with TCP is not optimal,
the new penalty function in LDCC prevents starvation of our
flow even for large queueing delay values, which is not the
case for other delay-based congestion control algorithms in
the literature.

D. Comparison with Other Congestion Control Algorithms
We finally conduct some experiments to compare our algo-

rithm with other congestion controllers for real time communi-
cation. We concentrate on the behavior of the algorithms when
they operate in a delay-based mode. The algorithms that share
most similarities with our proposal are those that have been
proposed within the RTP media congestion control (RMCAT)

IETF working group [16]. The first comparison is with the
Network-Assisted Dynamic Adaptation (NADA) congestion
control algorithm (as described in [17]), and the second one is
with the Google congestion control (GCC) algorithm [18]. For
a more detailed analysis of these congestion control algorithms
we refer the reader to Section VI. Since GCC is already
integrated and deployed in many web browsers. This controller
comes together with the video encoding part, which renders
the comparison difficult in its original version. Since there is
no video encoding for the NADA and LDCC algorithms, we
build a simplified Google congestion controller according to
the description in [19], [20]. It permits to avoid non-idealities
and issues possibly caused by live encoding in the original
implementation, which may lead to an unfair comparison
among controllers. The mathematical model of our simplified
version of the Google algorithm is however the same as for
the original controller version. In particular, GCC does not
use absolute OWD measurements to adapt the rate, as for
LDCC and NADA, but only the OWD variations. It keeps
increasing the rate until the derivative of the queueing delay
reaches a threshold; at that point, it decreases the rate until the
queueing derivative is smaller than a negative threshold value.
As a result, it is impossible for GCC to reach an equilibrium
rate: it necessarily oscillates between overestimation and un-
derestimation of the capacity, therefore the experienced delay
also oscillates.

We consider a single link topology. With a varying channel
capacity and latency of 25 ms. We impose a threshold delay of
100 ms for our controller. In Fig. 13, we can see a comparison
of the average self-inflicted delay at equilibrium for NADA,
our LDCC algorithm and the GCC. NADA tends to converge to
a larger delay value for small capacities, while our algorithm is
able to alleviate the delay variations across the different chan-
nel capacities. The main problem with NADA is the growth of
the self-inflicted delay when the available capacity reduces. At
equilibrium, the value of the OWD at which NADA converges
is approximately given by OWDeq = RMAXOWDmin/Req
where OWDmin is the minimum OWD, RMAX is a controller
parameter indicating the maximum rate of the controller, and
Req is the value of the rate at equilibrium. As can be noticed
the value of the delay can become very high when the ratio
RMAX/Req gets large. Even if GCC, as can be seen in Fig.
13, achieves a lower average self inflicted delay for all the
tested rates, the variability of the OWD of the GCC is pretty
large, thus the maximum experienced delay is much higher
than the average one (see Fig. 14).

In Fig. 14, we show a comparison of the proposed LDCC,
the NADA algorithm and our simplified version of GCC when
flows utilize a single link of 1.5 Mbps with a one way prop-
agation delay of 25 ms. We focus on the qualitative behavior
of the algorithms. Our algorithm uses an absolute measure
of the OWD and achieves a constant rate and constant delay
by avoiding variations of these two quantities. In contrast,
the simplified GCC is not able to provide a stable rate at
equilibrium. In the case where small variations of the rate
and OWD is an important metric, our controller shows better
performance than the simplified GCC algorithm. The NADA
algorithm is also able to achieve a constant sending rate and
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Fig. 13. Average OWD at equilibrium for the NADA, the simplified version
of the GCC and the LDCC algorithms, in a single link topology.
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Fig. 14. Rate and OWD evolution at equilibrium for the NADA, the simplified
version of the GCC and the LDCC algorithms, in a single link topology.

queueing delay at equilibrium. However, as seen in Fig. 13,
the self inflicted delay for low capacity values is much higher
compared to the LDCC algorithm.

VI. RELATED WORK

We finally describe in this section some works closely
related to our study, which have implemented congestion algo-
rithms trying to overcome to the main limitations mentioned
in the Section II-C. Namely the problem of avoiding starvation
when competing against loss-based flows and the estimation
of the true queueing delay of the user’s route.

A congestion control that shares some similarities with
our proposed controller is the Low Extra Delay Background
Traffic (LEDBAT) protocol [21]. It is a quite recent delay-
based congestion control that aims to keep a constant queueing
delay at the buffer bottleneck in order not to harm other more
important flows. In short this congestion controller decreases
the sending rate when the estimated queueing delay is larger
than a fixed threshold called target delay. It has been shown
that this algorithm suffers from intra-protocol unfairness due
to the additive-increase-additive-decrease (AIAD) mechanism
used in the rate update equation [22]. A second problem is
due to the usage of the queueing delay, with latecomer flows
usually overestimating the propagation delay and achieving a
higher and unfair rate at equilibrium. Since it is meant for less

than best effort communication it is not a problem if it starves
when competing against pure TCP flows (see [23] [24] for a
detailed evaluation). However, in our case, we want to avoid
flow starvation.

From a dynamic system perspective FAST TCP [25] is
similar to our congestion control algorithm. In fact it is also a
delay-based control algorithm however it uses the RTT instead
of the OWD and since it is a modification of the TCP it is a
reliable window-based congestion control which does not make
it suitable to be used for real-time communication.

In [26], the authors present an interesting approach to
solve the complex problem of loss-based and delay-based
coexistence. The work proposes a modification of the TCP
algorithm, called Cx-TCP, with a backoff probability that is
a function of the experienced queueing delay. The backoff
probability increases linearly with the queueing delay; after a
fixed queueing threshold it then decreases to zero. If, due to the
presence of purely loss based flows, the queueing delay grows
above the threshold, the Cx-TCP flows should not backoff
because of the delay; they should rather decrease their rate
only after losses are experienced. Results in [26] show the very
good performance of this congestion control algorithm. As
for the LEDBAT algorithm however, Cx-TCP needs a correct
estimation of the propagation delay in order to work properly.
Besides, since it is a modification of the TCP protocol, its
properties are not ideal for real time applications such as video
conference applications, due to packet retransmission.

More recent solutions have been proposed in the framework
of RMCAT, that is a working group of the IETF [16] which
aims to standardize a congestion control algorithm for real
time media applications. The proposals made in this group
share similar objectives with our controller, since they both
target the design of a congestion control algorithm that is able
to work in different network environments. One proposal is
NADA [27]. This congestion control algorithm makes use of
a composite congestion signal to drive the flows at the equilib-
rium. The composed congestion signal is built by aggregating
the measured one way queueing delay, the packet losses and an
ECN [28] marking penalty. This algorithm needs to estimate
the correct propagation delay of the route. As can be seen
from [17], it seems to be able to maintain a consistent sending
rate when competing against TCP flows. Unfortunately, the
self-inflicted delay, which is the amount of queueing delay
that the congestion control needs to reach equilibrium, attains
remarkably high values when the available bandwidth is rel-
atively low. However, NADA is still an ongoing work and
according to the last version of the IETF draft the update
rate equation has remarkably changed from the work [17]. In
particular, the self-inflicted delay of the control algorithm in
low capacity environments has been significantly reduced with
the new design.

Another proposal in the RMCAT working group is the GCC
algorithm [18]. This controller is mainly composed of two
subparts. One subpart is the loss-based part, which uses the
TFRC [29] throughput equation to achieve a fair rate when
competing against TCP. The second subpart consists of a
delay-based congestion control algorithm that estimates if the
channel is underused or overused based on the measured OWD.
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The delay-based algorithm in this case is pretty different from
the other works. In fact, this algorithm uses the estimated
variation of the queueing delay, rather than its absolute value.
Hence it does not need to estimate the propagation delay. It
has been shown in [19] that the original version of the GCC
was suffering of starvation when competing against TCP flows,
However in [30], the authors have proposed a modification
of the delay-based algorithm that permits to alleviate this
problem. The main issues of this delay-based algorithm is
however the poor intra-protocol fairness [19] [20].

The controller proposed in this paper alleviates the problems
of starvation when competing against loss-based flows. It also
avoids the necessity of an estimation of the queueing delay,
which may lead to latecomer unfairness if not done properly.
Finally it achieves good intra-protocol fairness characteristics.

VII. CONCLUSION

In this work we have developed and analyzed a novel hybrid
delay-based and loss-based congestion control algorithm that
is able to maintain a low delay communication when network
conditions allow for it, and to prevent starvation when com-
peting against loss-based flows. We achieve a good flexibility
between delay-based and loss-based modes by using in a single
term, a congestion signal which depends on the interarrival
time of the packets. We further prevent starvation of our LDCC
algorithm when competing against loss-based flows by the
use of a non-linear mapping between the experienced delay
and the delay-based congestion signal. Moreover the non-
linearity of the penalty function helps to mitigate unfairness
problems when the data paths of the users have different
propagation delays. Finally, by using the total experienced
delay instead of the actual queueing delay, we avoid estimation
problems and unfairness issues due to latecomer flows. We
keep as further work some possible improvements of the
LDCC algorithm, in particular with respect to TCP fairness
and speed of convergence to the equilibrium point. The ability
of achieving low delay at the equilibrium and the flexibility
of being able to not starve against loss-based flows makes the
LDCC algorithm a suitable congestion control algorithm to
be used for delay sensitive network applications, e.g. video
conferencing, over unmanaged networks such as Internet.

APPENDIX A
NON-LINEAR STABILITY PROOF

We start by analyzing the users subpart of the system. The
time derivative of the storage function in Eq. (28) is given in
Eq. (45a). It leads to V̇user < −Wuser(x)−1/αδyT δḋ−δyT δd
which has the form of a passive function similar to Eq. (26).

The result in Eq. (45e) comes from a first inequality in
Eq. (45b), which holds due to the projection onto the positive
orthant of Eq. (15), and from the second inequality in Eq.
(45d), which holds if:

v(e)− v(ê)

α
< δe. (46)

This last inequality in Eq. (46) is true if the price function is
chosen to be non decreasing with a maximum derivative equal

to α, which is verified for our price function in Eq. (17). It
remains to show that Wuser(x) is a positive definite function,
which is needed to use the passivity theorem and eventually
prove the stability of the system. The first term in Wuser(x)
is: −δxT (U ′(x)− U ′(x̂)), which is always positive due to the
concavity of the utility function. The two terms of Eq. (45e)
will simplify when the derivative of the storage function of the
user dynamics is summed with the links dynamics subpart.

For the second subpart of the system, namely the dynamics
of the links, we now prove that it is also a passive system. We
can easily calculate the time derivative of the storage function
defined in Eq. (29):

V̇link = δqT (y − c)+q +
1

α
(c− ŷ)T q̇ (47a)

≤ δqT (y − c+ ŷ − ŷ) +
1

α
(c− ŷ)T q̇ (47b)

= δqT (ŷ − c) + δqT δy +
1

α
(c− ŷ)T q̇ (47c)

≤ δqT (ŷ − c)︸ ︷︷ ︸
−Wlink(q)

+δdT δy +
1

α
δyT ḋ. (47d)

Where we used the fact that δq = δd and q̇ = ḋ. Inequality
(47b) is true due to the projection onto the positive orthant,
while inequality (47d) holds if δyT q̇ ≥ (c − ŷ)T q̇, this can
easily be proved in the following way:

δyT q̇ − (c− ŷ)T q̇ = (y − ŷ)T δq̇ − (c− ŷ)T δq̇ (48a)
= (y − c)T δq̇ (48b)
= (y − c)T (y − c)+q > 0. (48c)

The two right most terms in Eq. (47d) simplify with the two
terms in (45e) when the two storage function are summed
together. The missing part is to show that Wlink is positive
semidefinite, which means (q − q̂)T (ŷ − c) ≤ 0. In order to
prove this consider the following deductions. If the link at the
equilibrium is fully utilized, the value of the difference ŷl− cl
is zero; otherwise it must be negative. At equilibrium a link
rate cannot be greater than the link capacity, otherwise it would
mean that the queue is growing contradicting the hypothesis
of equilibrium. Alternatively, if the link is partially utilized the
difference ql−q̂l is necessarily positive, since q̂l = 0; otherwise
it can be either positive or negative. Combining these two
deductions, we observe that the product of δqT (ŷ−c) is always
non positive. Finally, the global stability of the undelayed
control system for the case of no losses is guaranteed, as the
system is the combination of two passive systems [7], and the
sum of the two storage functions is a Lyapunov function for
the entire dynamic system.
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V̇user =
1

α
δxT (U ′(x)− v(e)− ė)+x (45a)

≤ 1

α
δxT (U ′(x)− v(ê))− 1

α
δxT ė− 1

α
δxT (v(e)− v(ê)) (45b)

=
1

α
δxT (U ′(x)− U ′(x̂))− 1

α
δxT ė− 1

α
δxT (v(e)− v(ê)) (45c)

<
1

α
δxT (U ′(x)− U ′(x̂))− 1

α
δxT ė− δxT δe (45d)

=
1

α
δxT (U ′(x)− U ′(x̂))︸ ︷︷ ︸

−Wuser(x)

+(− 1

α
δyT ḋ) + (−δyT )δd (45e)
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