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Rapid propagation of a Bloch wave packet excited by a femtosecond ultraviolet pulse
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Attosecond streaking spectroscopy of solids provides direct observation of the dynamics of electron excitation
and transport through the surface. We demonstrate the crucial role of the exciting field in electron propagation
and establish that the lattice scattering of the outgoing electron during the optical pumping leads to the wave
packet moving faster than with the group velocity and faster than the free electron. We solve the time-dependent
Schrödinger equation for a model of laser-assisted photoemission, with inelastic scattering treated as electron
absorption and alternatively by means of random collisions. For a weak lattice scattering, the phenomenological
result that the photoelectron moves with the group velocity dE/d�k and traverses on average the distance equal
to the mean-free path is proved to hold even at very short traveling times. This offers a novel interpretation of the
delay time in streaking experiment and sheds new light on tunneling in optoelectronic devices.
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Transport properties of electron wave packets underlie the
functioning of electronic devices and are an important factor
in photoemission spectroscopies and electron diffraction tech-
niques [1]. Still, little is known about how a photoexcited Bloch
wave packet emerges out of the initial state and develops on a
time scale comparable to its lifetime. Such ultrafast excitations
are probed by time-resolved photoelectron spectroscopies,
such as interference of two-photon transitions [2] or laser
streaking [3–10]. In the latter technique, a subfemtosecond
time resolution is achieved by mapping time to energy using
a strong laser field. The electron wave packet created by a
femtosecond pulse of extreme ultraviolet radiation (XUV) is
accelerated by the superimposed laser field, and the energy by
which its spectrum shifts up or down indicates the electron
release time tX relative to the temporal profile of the laser field
EL(t). In many cases the low-frequency laser field is strongly
damped by the dielectric response [11], so the photoelectron
needs to travel some distance before it gets exposed to the
streaking field. This is the basis of a number of theories
proposed to describe the electron dynamics in the attosecond
experiment [12–16].

The key questions are how much time does the excited
electron spend in the solid before it escapes into vacuum
and what is its velocity? Here, we discover the crucial role
the exciting light pulse plays in the electron dynamics in a
streaking experiment: the Bloch wave packet excited close
to a gap in the energy spectrum moves faster than with the
group velocity. The reason is that its spectrum keeps evolving
while it moves. The size of the effect depends on inelastic
scattering, so to validate the relevance of our calculations to
the actual photoemission process we numerically establish the
equivalence of the results obtained with an absorbing potential
and with a statistical averaging over random perturbations.
Further, we verify the accuracy of the laser-streaking clock by
comparing it with the exact clock based on solely the spatial
motion of the packet.

Once the wave packet is created, its time of flight to the
surface is determined by its group velocity v. Owing to inelas-
tic scattering, the photoelectron excited at a depth z has the
probability exp(−z/λ) to reach the detector, so the average tra-
versed depth is just the mean-free path (MFP) λ, and the time to
reach the surface is τ = λ/v [8]. Inelastic scattering enters the
Hamiltonian through the imaginary optical potential −iVi. For
nearly free electrons λ is proportional to v, so that τ depends on
energy solely through Vi(E), Supplemental Material A [17]:

τ = �

2Vi
. (1)

The optical potential changes smoothly with energy and is
similar for different materials, as suggested by experience
with angle-resolved photoemission (ARPES) [18,19,23] and
very low-energy electron diffraction (VLEED) [20,21,24],
Fig. 1(c). Thus, τ is expected to change slowly with energy,
irrespective of MFP, which may rapidly vary following
the group velocity, Fig. 1(b) [25]. Microscopically, the
optical potential is associated with the imaginary part of the
self-energy [23]. Figure 1(c) includes corresponding ab initio
results for a high-lying free-electron-like conduction band of
W along �N obtained within the GW approximation [26].
The good agreement of the calculated Vi(E) with the empirical
results supports our understanding of the electron absorption as
coming predominantly from the electron-electron interaction
and confirms the empirical estimate of its growth with energy.

Thus, the higher the electron energy the earlier it should
escape, see Fig. 1(d). The measurements on W(110) [22] of
the time delay between 5d valence band (VB) and semicore
4f states qualitatively follow this trend [Fig. 1(d)], but
experimental values are about three times larger. On the
contrary, the value of 5 ± 20 asec for the delay of core
Mg 2p electrons relative to VB measured on Mg(0001) at
�ω = 118 eV is much smaller than follows from Eq. (1).
Below, we present a mechanism that may be responsible for
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FIG. 1. (a) Real band structure of Mg(0001) (thin lines) and dispersion E(k) of conducting Bloch waves (see also Supplemental Material
B [17]): line thickness indicates the current carried by the wave as a constituent of the outgoing beam. Only the fragments related to real k

are shown. (b) Velocity of conducting waves (including complex band structure). Arrows show the final states for emission from Mg 2p and
from VB. (c) Vi(E) empirically derived from ARPES of TiTe2 [18] and Al(100) [19] (small full circles) and from VLEED of TiTe2 [20] and
Ru(0001) [21] (open circles). Large circles are the ab initio GW calculation for W(110) for the band highlighted in the inset. (d) Arrival delay
as a function of the final-state energy according to Eq. (1). Top (blue) curve is for the emission from Mg(0001): Mg 2p band relative to VB
(EVB − E2p = 50 eV), and bottom (red) curve is for W(110): W 4f band relative to VB (EVB − E4f = 28 eV). For W(110), the function Vi(E)
is the analytical fit to GW values [graph (c)], and for Mg(0001) we used a fit to the Al(100) data. The red square and open red circles are
experimental results for W(110) of Ref. [8] and of Ref. [22], respectively. Full blue circle is the measurement of Ref. [9] for Mg.

such drastic disagreement and point to the cases in which
Eq. (1) does not hold.

For the proof-of-concept calculation we employ a numeri-
cally exact particle-in-the-box model that makes no assump-
tions about the electron dynamics in a periodic potential
and does not separate excitation from transport. The box
comprises a thick one-dimensional (1D) crystal slab on a
structureless substrate [potential V (z) in Fig. 2(a)] and the
vacuum half space, see Supplemental Material C [17] and
Ref. [27].

We perform a series of numerical experiments, in which
electrons are excited by an XUV pulse of duration DX = 1
fs and are simultaneously acted upon by the laser pulse
EL(t) of duration 5 fs, photon energy 1.65 eV and amplitude
EM

L = 2 × 107 V/cm, see Fig. 2(b) and Supplemental Material
D [17]. The laser field is screened by multiplying by a smooth
step function θ (z). The time-dependent Schrödinger equation
is solved in matrix form in terms of exact eigenfunctions of
the unperturbed Hamiltonian Ĥ = p̂2/2m + V , so the crystal
potential is fully taken into account for both initial and final
states [27,28]. Apart from Ĥ and the two external fields the
Hamiltonian includes inelastic scattering in two alternative
ways: it is either a static absorbing potential −iVi[1 − θ (z)]
or a real stochastic potential σn(t,z)[1 − θ (z)] followed by
averaging over random configurations σn, Supplemental
Material E [17].

The displacement �E of the spectrum from its laser-free
position [Fig. 2(e)] as a function of the time shift �t = tL − tX

between the XUV and the laser pulse provides the temporal
information: by fitting the measured �E(�t) points with
the momentum transfer function p(τ ) = e

∫ ∞
τ

dt EL(t − tX), we
infer the time τ at which the electron appears in vacuum, see
the shift of the curves in Figs. 2(c) and 2(d).

First, we consider a setup where the photoelectron initial
position is known: we introduce a small defect at one of
the layers [Fig. 2(a)] and photoexcite the localized state at
the defect. Figures 2(c) and 2(d) show streaking curves for
the initial state at the third layer for XUV photon energies
�ω = 78 and 90 eV. Counterintuitively, the electron at the
higher energy arrives 40 asec later than at the lower energy:
τ = 150 asec at 90 eV and τ = 111 asec at 78 eV. Note
that phenomenological absorbing potential and microscopic
random collisions agree both in the temporal shift of the
streaking curves, Figs. 2(c) and 2(d), and in the energy shift
of the individual spectra, Fig. 2(e). Figure 2(g) shows the
escape time of the electron initially at the second, third, and
fourth layer for �ω = 65 to 159 eV (initial state energy is
Eini = −41.2 eV). The most striking are the two minima at
E = �ω + Eini = 39 and at 102 eV [A and C in Fig. 2(g)], at
which τ even shows negative values [29].

The minima B and C are located at the lower edges of
the band gaps, and minimum A is due to the vanishing
ionization cross section (Cooper minimum), see Fig. 2(f).
There τ (E) strongly deviates from the function d/v(E) with
v(E) = dE/d�k [dashed curve in Fig. 2(g)]. To prove that the
discrepancy does not arise from the rather indirect streaking
method to measure τ , we use an alternative clock: we switch
off the laser and measure the wave packet’s equation of motion
in vacuum z0 + ṽt [inset of Fig. 2(i)] to obtain the time point
t0 at which it has crossed the surface. The curves t0(E) and
τ (E) agree well, Fig. 2(h) and 2(i), so the laser-streaking clock
is reliable.

The fast delivery of the photoelectron to the surface is
due to the pump excitation: Fig. 3 shows the time evolution
of the spectrum at the τ (E) minimum, �ω = 80 eV, and at
�ω = 100 eV, where τ (E) well agrees with the instantaneous
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FIG. 2. Escape time from the streaking clock for a localized state. (a) Crystal potential V (z) with a defect at the third layer. (b) Superposition
of the XUV and laser pulses. (c) Streaking curves for �ω = 78 and 90 eV with random collisions; (d) the same with absorbing potential. (e)
Streaked spectra for �ω = 78 eV with absorption (lower curves) and with random collisions (top curves) for tL − tX = 1600 asec (solid lines)
and 200 asec (dashed lines). (f) Band structure with the periodic potential V (z) and energy dependence of the emission intensity from a localized
state at a defect. (g)–(i) Escape time as function of the final energy E = �ω − 41.2 eV. Solid lines connecting small circles in (g) and dashed
lines in (h) and (i) are streaking results with absorption. Large circles in (g) and (i) are streaking with random collisions. In (g), initial state
is at the second (black), third (red), and fourth (blue) layer; dashed curve is the depth divided by the group velocity. In (h) and (i), solid lines
are from the equation of motion z(t) in vacuum for initial state in the second (h) and in the first (i) layer, for Vi = 0, 0.07, 0.41, and 1.65 eV.
Inset shows z(t) for initial state in the first (black) and second (red) layer. The relevant final energy is indicated by the red dashed vertical bar
in (i).

approximation d/v(E). The two spectra evolve qualitatively
differently: while at 100 eV the intensity rapidly concentrates
around E = �ω + Eini, at 80 eV the evolution is much slower:
at t = 200 asec the spectrum is still spread over a range of
40 eV. Clearly, while the XUV pulse is on and the spectral
coefficients ψ(E,t) of the packet

∫
dE ψ(E,t)| E 〉 keep

changing, the centroid velocity generally deviates from the

FIG. 3. Temporal evolution of the photoelectron spectrum from
a localized state. XUV pulse duration is DX = 1000 asec. (a) XUV
photon energy �ω = 80 eV. (b) �ω = 100 eV. The black bars at 46
and 50 eV indicate a spectral gap, and the red bar at 39 eV indicates
the Cooper minimum, see Fig. 2(f). For the sake of better clarity, the
maps are presented for Vi = 0.

weighted group velocity of the states | E 〉. Such unusual
behavior happens every time when the central energy of
the wave packet approaches an intensity minimum, be it a
vanishing matrix element or a spectral gap. Note that for the
emission from the first layer there is a retardation by about
200 asec, which is apparently caused by the asymmetry of the
excitation cross section at the surface.

The comparison in Fig. 2(h) of the t0(E) curves for different
Vi shows that in the nearly free electron region the motion
in a nonabsorbing medium is slower than with Vi �= 0, the
speed gain being 20% at Vi = 1.65 eV. An obvious reason is
that the slower components of the wave packet are stronger
damped. In the gap vicinity, however, the advancement is
much larger and the dependence on Vi is much stronger.
Here we must recall that inelastic scattering is accompanied
by the dephasing of the wave packet, which is neglected in
the optical potential approach. Thus, we need to establish
that the artificial coherence does not alter the result. The
escape time τ (E) obtained with a real potential σn(t,z) (a
random function of both time and coordinate) are presented in
Fig. 2(g) for emission from the second and fourth layer and
in Fig. 2(i) for the first layer (large circles). The stochastic
perturbation was chosen such as to give the same MFP as
Vi = 1.7 eV, Supplemental Material E [17]. The dephasing
broadens the τ (E) features, but otherwise the incoherent
ensemble behaves the same as the coherent packet in the
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Fig. 2(f).

absorbing medium. For the localized states considered above
the electron initial position was known. On the contrary, a
Bloch state is coherently excited over a depth much larger
than MFP, so the initial position depends on MFP. Let us
return to the original question of whether Eq. (1) holds in
photoemission. We consider the valence band of the crystal
of Fig. 2(a) given by a set of discrete states, each extending
over the slab of thickness 96 a.u. (MFP is 10–20 a.u.). Escape
time τ is obtained from the streaking curves [as in Figs. 2(c)
and 2(d)] for the energy centroid of the sum of the spectra from
all the initial states. Figure 4 shows the results for �ω = 65
to 160 eV (VB is centered at −37.3 eV, see Supplemental
Material C [17]).

Even far from the spectral gaps τ (E) is not constant but
slowly decreases with energy. This, however, does not disprove
the idea behind Eq. (1) since this happens because the initial
states density edge does not coincide with the onset of the
streaking field, see inset of Fig. 4. The generalization of
Eq. (1) to the case of a finite distance s between the two
planes and a finite slab thickness w reads, see Supplemental
Material A [17]:

τ̃ (v) = τ + s

v
+ w/v

1 − exp(w/vτ )
. (2)

Between E = 50 and 90 eV the curves for three values of Vi

are well fitted by Eq. (2) with s = 1.75 a.u., which agrees with
the nominal distance of 2.75 a.u. between the crystal edge and

the laser field drop off. These calculations support the initial
idea that Bloch electrons can be thought of as starting at the
MFP depth λ and moving with the group velocity. However, at
the energies where the group velocity drops due to the Bragg
scattering the escape time becomes shorter and, moreover, the
wave packet leaves the crystal earlier than it would have if it
moved in a constant (inner) potential.

This result is quite relevant to Mg(0001), as illustrated in
Figs. 1(a) and 1(b): In the experiment of Ref. [9] the emission
from the VB overlaps with a continuous fragment of the
conducting spectrum, whereas the Mg 2p electrons are excited
to a narrow band between two gaps, so the photoelectron
undergoes strong lattice scattering, Fig. 1(b). This is just the
case when the escape time does not obey Eq. (2), and one may
even expect the Mg 2p to arrive earlier than the VB electron.

This phenomenon should be distinguished from the well-
known Hartman effect, where the tunneling time through a
thick barrier turns out to be shorter than the time required
by a free particle to travel the same distance [30,31]. In the
streaking experiment, owing to the broad spectrum of the pump
pulse, the packet consists mainly of propagating waves, and
generally the tunneling is negligible, see Fig. 3(a). Still, a
behavior similar to the Hartman effect is observed in the broad
gap at E = 105 eV as a minimum of the t0(E) curve for Vi = 0,
see Fig. 2(h): the transport by evanescent waves in the middle
of the gap is faster than by the propagating waves at the edges
of the gap.

It is often asked, where is the spatial starting point of the
outgoing photoelectron packet [8,9,12–16,32,33]? A meaning
to the notion “starting point” can be ascribed by the streaking
experiment or by measuring the motion at later time. If the
location of the initial state is taken for the starting point
then at certain energies we observe a curious behavior: the
electron starting from the outermost layer is overtaken by
the one coming from a deeper layer [Figs. 2(h) and 2(i)].
The discovered influence of the exciting light pulse on the
wave packet dynamics offers a way to manipulate the electron
transport at the nanoscale by tuning the temporal structure
of the pulse. Here two aspects are equally important: by
changing the frequency ω one selects the final state range
and by changing the pulse duration one further controls its
speed.
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Rev. B 78, 165406 (2008).

[20] V. N. Strocov, E. E. Krasovskii, W. Schattke, N. Barrett, H.
Berger, D. Schrupp, and R. Claessen, Phys. Rev. B 74, 195125
(2006).
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