From a car-following model with reaction time to a macroscopic convection-diffusion traffic flow model

September 28, 2016 | Antoine Tordeux2 | Forschungszentrum Jülich, Germany

2a.tordeux@fz-juelich.de
Outline

Microscopic model

Micro–Macro derivation

Numerical schemes

Stability analysis

Simulation results
Outline

Microscopic model

Micro–Macro derivation

Numerical schemes

Stability analysis

Simulation results
Pursuit law

The microscopic model comes from the generalized Newell (1961) one

\[\dot{x}_i(t + \tau) = W(\Delta x_i(t)), \quad (i, t) \in \mathbb{Z} \times (0, +\infty) \]

with \(\tau \) the reaction time (if positive), \(\Delta x_i(t) = x_{i+1}(t) - x_i(t) \) the spacing and \(W(\cdot) \) the equilibrium (or optimal) speed function

Writing \(\tau \) in rhs and applying a linear approximation for small \(\tau \) we get

\[\dot{x}_i(t) = W(\Delta x_i(t) - \tau[\dot{x}_{i+1}(t) - \dot{x}_i(t)]) \]

The model is then obtained by substituting the speeds \(\dot{x} \) in rhs by the optimal speed \(W(\Delta x) \):

\[\dot{x}_i(t) = W\left(\Delta x_i(t) - \tau[W(\Delta x_{i+1}(t)) - W(\Delta x_i(t))]\right) \quad (1) \]
Pursuit law

Microscopic model:

\[\dot{x}_i(t) = W\left(\Delta x_i(t) - \tau [W(\Delta x_{i+1}(t)) - W(\Delta x_i(t))] \right), \quad (i, t) \in \mathbb{Z} \times (0, +\infty) \]

- Speed model with two predecessors in interaction
- Collision-free (by construction):
 \[\Delta x_i \geq \ell \quad \forall i, t \]
 if \(W(\cdot) \geq 0 \) and \(W(s) = 0 \) for all \(s < \ell \)
- Same linear stability condition for homogeneous solutions as original Newell model (or OVM by Bando (1998)):
 \[|\tau| W' < 1/2 \]
 (Homogenization for small \(\tau \), stop-and-go for high \(\tau \))
Outline

Microscopic model

Micro–Macro derivation

Numerical schemes

Stability analysis

Simulation results
Rewriting the microscopic model

Same methodology as in [Aw et al. (2002)] considering the density at vehicle i and time t, $\rho_i(t)$, as the inverse of the spacing

$$\rho_i(t) := \frac{1}{\Delta x_i(t)}. \tag{2}$$

The microscopic model becomes

$$\dot{x}_i = W \left(\frac{1}{\rho_i(t)} - \tau \left[W \left(\frac{1}{\rho_{i+1}(t)} \right) - W \left(\frac{1}{\rho_i(t)} \right) \right] \right) =: \tilde{V}(\rho_{i+1}, \rho_i), \tag{3}$$

Then,

$$\partial_t \frac{1}{\rho_i(t)} = \partial_t \Delta x_i(t) = \left(\tilde{V}(\rho_{i+2}, \rho_{i+1}) - \tilde{V}(\rho_{i+1}, \rho_i) \right). \tag{4}$$

(semi–discretized version of hyperbolic partial differential equation in the space of vehicle indices)
Derivation

$y \in \mathbb{R}$ such that $y_i = i\Delta y$ with Δy proportional to ℓ

Piecewise constant density $\rho(t, y)$ such that $\frac{1}{\rho_i(t)} = \frac{1}{\Delta y} \int_{y_{i-\Delta y/2}}^{y_{i+\Delta y/2}} \frac{1}{\rho(t, z)} dz$.

Rescaling of time $t \to t\Delta y$ and reaction time $\tau \to \tau\Delta y$ to obtain

$$\partial_t \frac{1}{\rho_i(t)} - \frac{1}{\Delta y} \left(V\left(\frac{\rho_{i+1}}{1 - \rho_{i+1}\tau \frac{Z_{i+1}}{\Delta y}} \right) - V\left(\frac{\rho_i}{1 - \tau \rho_i \frac{Z_i}{\Delta y}} \right) \right) = 0,$$

(5)

where $Z_i := V(\rho_{i+1}) - V(\rho_i)$ and $V(x) = W\left(\frac{1}{x} \right)$ for $x > 0$ (non-increasing).

(5) is an upwind discretization in the rescaled time and in the limit Δy (i.e. $i \to \infty$ and $\ell \to 0$) of the macroscopic equation

$$\partial_t \frac{1}{\rho} - \partial_y V\left(\frac{\rho}{1 - \tau \rho \partial_y V(\rho)} \right) = 0.$$ (6)
Macroscopic model in Eulerian coordinates

Coordinate transformation \((t, y) \rightarrow (t, x)\) where \(y = \int_{-\infty}^{x} \rho(t, x) dx\).

In the Eulerian coordinates \((t, x)\), the macroscopic model Eq. (6) reads

\[
\partial_t \rho + \partial_x \left(\rho V \left(\frac{\rho}{1 - \tau \partial_x V(\rho)} \right) \right) = 0. \tag{7}
\]

Extension of the LWR model with FD \(\rho \mapsto V(\rho/(1 - \tau \partial_x V(\rho)))\).

Taylor expansion in terms of \(\tau\) for equation (7) yields

\[
\partial_t \rho + \partial_x (\rho V(\rho)) = -\tau \partial_x \left((\rho V'(\rho))^2 \partial_x \rho \right) \tag{8}
\]

Note that for constant densities \(\rho\) (or \(\tau = 0\)) the additional term vanishes and we recover the classical LWR.
Fundamental diagram

Figure: Illustration for the FD obtained in the macroscopic model with constant inhomogeneity $\tau \partial_x V(\rho) = \pm 0.3$. Triangular FD $V : \rho \mapsto \max\{\min\{2, 1/\rho - 1\}\}$. Bounded FD as in [Colombo (2003), Goatin (2006), Colombo et al. (2010)]
Macroscopic model

(Eulerian coordinates)

\[\partial_t \rho + \partial_x (\rho V(\rho)) = -\tau \partial_x \left((\rho V'(\rho))^2 \partial_x \rho \right) \]

\((9) \)

- \(\tau < 0 \): Convection-diffusion equation (LWR with diffusion – cf. Burger equations) with variable diffusion coefficient (cf. Fick equations)
- \(\tau = 0 \): LWR model
- \(\tau > 0 \): Negative diffusion??
Outline

Microscopic model

Micro–Macro derivation

Numerical schemes

Stability analysis

Simulation results
Discrete macroscopic models

\[\rho_i(t + \delta t) = \rho_i(t) + \frac{\delta t}{\delta x} (f_{i-1}(t) - f_i(t)) \] \hspace{1em} (10)

- Godunov/Euler scheme

\[f_i = G(\rho_i, \rho_{i+1}) + \frac{\tau}{\delta x} (\rho_i V' (\rho_i))^2 (\rho_{i+1} - \rho_i) \] \hspace{1em} (D1)

- Simple Godunov scheme

\[f_i = G \left(\frac{\rho_i}{1 - \frac{\tau}{\delta x} (V(\rho_{i+1}) - V(\rho_i))}, \frac{\rho_{i+1}}{1 - \frac{\tau}{\delta x} (V(\rho_{i+2}) - V(\rho_{i+1}))} \right) \] \hspace{1em} (D2)

- Double Godunov scheme

\[f_i = G(\rho_i, \rho_{i+1}) + \frac{\tau}{\delta x} \rho_i V'(\rho_i) [G(\rho_{i+1}, \rho_{i+2}) - G(\rho_i, \rho_{i+1})] \] \hspace{1em} (D3)

with \(G(x, y) = \min\{\Delta(x), \Sigma(y)\} \) the Godunov scheme, \(\Delta(\cdot) \) and \(\Sigma(\cdot) \) are the demand and supply functions.
Outline

- Microscopic model
- Micro–Macro derivation
- Numerical schemes
- Stability analysis
- Simulation results
Stability analysis for the continuous model

Stability analysis of the homogeneous solution where $\rho(x, t) = \rho_E$ for all x, t (ρ_E being the mean density)

Perturbation to homogeneous solution

$$\varepsilon(x, t) = \rho(x, t) - \rho_E$$

Linearisation:

$$\varepsilon_t = F(\rho_E + \varepsilon, \varepsilon_x, \varepsilon_{xx}) \approx \alpha \varepsilon + \beta \varepsilon_x + \gamma \varepsilon_{xx}$$

with $F(\rho, \rho_x, \rho_{xx}) = -\partial_x(\rho V(\rho)) - \tau \partial_x((\rho V'(\rho))^2 \partial_x), \alpha = \frac{\partial F}{\partial \rho}(\rho_E, \rho_E, \rho_E) = 0, \\beta = \frac{\partial F}{\partial \rho_x} = -V(\rho_E) - \rho_E V'(\rho_E)$, and $\gamma = \frac{\partial F}{\partial \rho_{xx}} = -\tau(\rho_E V'(\rho_E))^2$

Linear system: $\varepsilon = z e^{\lambda t - il}, \varepsilon_t = \lambda \varepsilon, \varepsilon_x = -il \varepsilon, \varepsilon_{xx} = -l^2 \varepsilon$

$$\lambda = \tau(l \rho_E V'(\rho_E))^2 + il(V(\rho_E) + \rho_E V'(\rho_E)) \quad \text{— Stable if} \, \Re(\lambda) < 0 \, \forall l > 0$$

\rightarrow Homogeneous solution linearly stable if $\tau < 0$ (positive diffusion)
Stability analysis for the discrete schemes

Perturbation to homogeneous solution

\[\varepsilon_i(t) = \rho_i(t) - \rho_E \]

Linearisation of the perturbed system:

\[\varepsilon_i(t + \delta t) = \rho_i(t + \delta t) - \rho_E = F(\rho_i(t), \rho_{i+1}(t), \rho_{i+2}(t), \rho_{i-1}(t)) - \rho_E \]

\[\approx \alpha \varepsilon_i(t) + \beta \varepsilon_{i+1}(t) + \gamma \varepsilon_{i+2}(t) + \xi \varepsilon_{i-1}(t) \]

with

\[\alpha = \frac{\partial F}{\partial \rho_i}(\rho_E, \rho_E, \rho_E, \rho_E) \]
\[\beta = \frac{\partial F}{\partial \rho_{i+1}}(\rho_E, \rho_E, \rho_E, \rho_E) \]
\[\gamma = \frac{\partial F}{\partial \rho_{i+2}}(\rho_E, \rho_E, \rho_E, \rho_E) \]
\[\xi = \frac{\partial F}{\partial \rho_{i-1}}(\rho_E, \rho_E, \rho_E, \rho_E) \]
General conditions for stability of the discrete schemes

N cells with periodic boundary conditions — The linear dynamics are

$$\vec{e}'(t + \delta t) = M \vec{e}'(t) \text{ with } \vec{e}' = (e_1, \ldots, e_N) \text{ and } M \text{ a sparse matrix with } (\xi, \alpha, \beta, \gamma) \text{ on the diagonal}$$

If $M = PDP^{-1}$ with D a diagonal matrix, then $\vec{e}'(t) = PD^{t/\delta t}P^{-1} \vec{e}'(0) \to \vec{0}$ if all the coefficients of D are less than one excepted one.

M is circulant therefore the eigenvectors of M are $z(l^0, l^1, \ldots, l^{m-1})$ with

$$l = \exp \left(i \frac{2\pi l}{N} \right) \text{ and } z \in \mathbb{Z}, \text{ and the eigenvectors are } \lambda_l = \alpha + \beta l + \gamma l^2 + \xi l^{-1}$$

The system is linearly stable if $|\lambda_l| < 1$ for all $l = 1, \ldots, N - 1$ with

$$\lambda_l^2 = \alpha^2 + \beta^2 + \gamma^2 + \xi^2 - 2\alpha\gamma - 2\beta\xi + 2f(c_l), \quad c_l = \cos(2\pi l/N) \text{ and } f(x) = (\alpha\beta + \alpha\xi + \beta\xi - 3\gamma\xi)x + 2(\alpha\gamma + \beta\xi)x^2 + 4\gamma\xi x^3$$
Stability analysis for the scheme (D1)

Affine speed function \(V(\rho) = \frac{1}{T} (1/\rho - \ell) \), with \(T > 0 \) the time gap between the vehicles and \(\ell > 0 \) their size — Godunov scheme is \(G(x, y) = \frac{1}{T} (1 - y \ell) \)

The scheme (D1) is

\[
F_1(\rho_i, \rho_{i+1}, \rho_{i+2}, \rho_{i-1}) = \rho_i + \frac{\delta t}{\delta x T} \left(\ell (\rho_{i+1} - \rho_i) + \frac{\tau}{\delta x T} \left(\frac{\rho_i - \rho_{i-1}}{\rho_{i-1}^2} - \frac{\rho_{i+1} - \rho_i}{\rho_i^2} \right) \right)
\]

and (with \(A = \frac{\delta t \ell}{\delta x T} \) and \(B = \frac{\delta t \tau}{(\delta x T \rho E)^2} \))

\[
\alpha = 1 - A + 2B \quad \beta = A - B \\
\gamma = 0 \quad \xi = -B
\]
Signs of the partial derivative $\alpha \beta \gamma$

\[A = \frac{\delta t \ell}{\delta x T} \quad \text{and} \quad B = \frac{\delta t \tau}{(T \delta x \rho_E)^2} \]

- $\alpha = 1 - A + 2B$ is positive if
 \[\delta t < \frac{\delta x T}{\ell} \left(1 - \frac{2\tau}{T \ell \delta x \rho_E^2} \right)^{-1} \]
 \[(P_\alpha) \]

 if $\tau < \frac{1}{2} T \ell \delta x \rho_E^2$, or for all $\delta t \geq 0$ if $\tau \geq \frac{1}{2} T \ell \delta x \rho_E^2$

 Moreover $1 - \alpha \geq 0$ iff $\tau < \frac{1}{2} T \ell \delta x \rho_E^2$

- $\beta = A - B$ is positive iff
 \[\tau < T \ell \delta x \rho_E^2 \]
 \[(P_\beta) \]

- The sign of $\xi = -B$ is the one of $-\tau$
Case $\tau < 0$

If $\tau < 0$ and (P_α) holds, $f(x) = \alpha(1 - \alpha)x + 2\beta\xi x^2$ is convex and is maximal on $[-1, 1]$ for $x = -1$ or $x = 1$

Therefore the model is stable if $f(-1) < f(1)$; this is simply

$$-\alpha(1 - \alpha) < \alpha(1 - \alpha)$$

that is always true since $\alpha > 0$ if (P_α) holds and $1 - \alpha > 0$ on $\tau < 0$

Therefore the system is stable for all $\tau < 0$
Case $\tau > 0$

Several cases have to be distinguished:

- $0 < \tau < \frac{1}{2} T \ell \delta x \rho_E^2 \quad \alpha, 1 - \alpha, \beta > 0, \xi < 0$

 $f(x) = \alpha(1 - \alpha)x + 2\beta\xi x^2$ is concave and maximal for $x_0 = -\frac{\alpha(1-\alpha)}{4\beta\xi} > 0$;

 The model is stable if $x_0 > 1$, this is $\delta t < \frac{\delta x T}{\ell} \left(1 - \frac{2\tau}{T \ell \delta x \rho_E^2}\right)$

- $\frac{1}{2} T \ell \delta x \rho_E^2 < \tau < T \ell \delta x \rho_E^2 \quad \alpha, \beta > 0, 1 - \alpha, \xi < 0$

 We have $f(-1) > f(1)$ therefore the model is unstable; f maximal for $x_0 < -1$ (shortest wave) if $\delta t < \frac{\delta x T}{2\ell} \left(\frac{2\tau}{T \ell \delta x \rho_E^2} - 1\right) \left(\frac{2\tau}{T \ell \delta x \rho_E^2}\right)^{-2}$

- $\tau > T \ell \delta x \rho_E^2 \quad \alpha > 0, 1 - \alpha, \beta, \xi < 0$

 Unstable for all δt with shortest wavelength since f convex and $f(-1) > f(1)$
Scheme (D1) — Summary

\[\delta t < \frac{T \delta x}{\ell} - \frac{2 \tau}{T \delta x \rho_E^2} \]

- **Stable**
 \[\delta t < \frac{T \delta x}{\ell} - \frac{2 \tau}{T \delta x \rho_E^2} \]

- **Unstable**
 \[\delta t < \frac{\tau - \frac{1}{2} T \ell \rho_E^2}{\left(\frac{2 \tau}{T \delta x \rho_E^2}\right)^2} \]

\[\ell \delta x \rho_E^2 \]

\[0 \quad \frac{1}{2} T \ell \delta x \rho_E^2 \quad T \ell \delta x \rho_E^2 \]

\[\tau \]

→ The same conditions as the continuous macroscopic model for:

\[\delta x \rightarrow 0 \quad \text{(and } \delta t \rightarrow 0 \text{ such that } \delta t / \delta x \rightarrow 0) \]
Stability analysis for the schemes (D2) and (D3)

Affine speed function $V(\rho) = \frac{1}{T}(1/\rho - \ell)$, with $T > 0$ the time gap between the vehicles and $\ell > 0$ their size — Godunov scheme is $G(x, y) = \frac{1}{T}(1 - y\ell)$

The schemes (D2) and (D3) are

$$F_2(\rho_i, \rho_{i+1}, \rho_{i+2}, \rho_{i-1}) = \rho_i + \frac{\delta t \ell}{\delta x T} \left(\frac{\rho_{i+1}}{1 - \tau \rho_{i+2} - \tau \rho_{i+2}} - 1 - \frac{\rho_i}{\tau \rho_{i+1} - 1 - \rho_i} \right)$$

$$F_3(\rho_i, \rho_{i+1}, \rho_{i+2}, \rho_{i-1}) = \rho_i + \frac{\delta t \ell}{\delta x T} \left(\rho_{i+1} - \rho_i + \frac{\tau}{\delta x T} \left(\frac{\rho_{i+1} - \rho_{i+2}}{\rho_i} - \frac{\rho_i - \rho_{i+1}}{\rho_{i-1}} \right) \right)$$

By construction, both gives (with $A = \frac{\delta t \ell}{\delta x T}$ and $B = \frac{\tau}{T \delta x \rho E}$)

$$\alpha = 1 - A(1 + B) \quad \beta = A(1 + 2B)$$

$$\gamma = -AB \quad \xi = 0$$

Signs of the partial derivative $\alpha \beta \gamma$

$$A = \frac{\delta t \ell}{\delta x T} \quad \text{and} \quad B = \frac{\tau}{\delta x T \rho_E}$$

- $\alpha = 1 - A(1 + B)$ is positive if

 $$\delta t < \frac{\delta x T}{\ell} \left(1 + \frac{\tau}{T \delta x \rho_E} \right)^{-1}$$

 if $\tau > -T \delta x \rho_E$, or for all $\delta t \geq 0$ if $\tau \leq -T \delta x \rho_E$

- $\beta = A(1 + 2B)$ is positive iff

 $$\tau > -\frac{1}{2} T \delta x \rho_E$$

 Moreover $1 - \beta > 0$ if (P_α) holds

- The sign of $\gamma = -AB$ is the one of $-\tau$
Case $\tau < 0$

If $\tau < 0$ and (P_α) holds, $f(x) = \beta(1 - \beta)x + 2\alpha \gamma x^2$ is convex is maximal on $[-1, 1]$ for $x = -1$ or $x = 1$.

Therefore the model is stable if $f(-1) < f(1)$; this is

$$\tau > -\frac{1}{2} T \delta x \rho E$$

and

$$\delta t < \frac{\delta x T}{\ell} \left(1 + \frac{2\tau}{T \delta x \rho E} \right)^{-1}$$

The condition on δt is weaker than (P_α).

If $\tau \leq -\frac{1}{2} T \delta x \rho E$ then the system is unstable at the shortest wave-length frequency $\cos^{-1}(-1)$.

A sufficiently condition for that the finite system produces the frequency $\cos^{-1}(-1)$ is simply $N \geq 2$.
Case $\tau > 0$

(P_α) holds then $f(x) = \beta(1 - \beta)x + 2\alpha\gamma x^2$ is concave and is maximum at
arg sup$_{x} f(x) = x_0 = -\frac{\beta(1-\beta)}{4\alpha\gamma} > 0$

We know that $\lambda_0^2 = \alpha^2 + \beta^2 + \gamma^2 - 2\alpha\beta + f(1) = 1 \ (\text{case } l = 0)$

Therefore the model is stable if $x_0 > 1$; this is

$$\tau < \frac{1}{2} T \delta x \rho_E \quad \text{and} \quad \delta t < \frac{\delta x T}{\ell} \left(1 - \frac{2\tau}{T \delta x \rho_E}\right)$$

The condition on δt is stronger than (P_α)

If $\tau \geq \frac{1}{2} T \delta x \rho_E$ then the system is unstable at the frequency $\cos^{-1}(x_0)$ that is reachable in the finite system if $N > 2\pi/\cos^{-1}(x_0)$

We have $x_0 \to \frac{1}{2} + \frac{T \delta x \rho_E}{4\tau}$ going from 1 to 1/2 according to τ (long-waves)
Schemes (D2) and (D3) — Summary

<table>
<thead>
<tr>
<th>Unstable</th>
<th>Unstable</th>
<th>Stable</th>
<th>Stable</th>
<th>Unstable</th>
</tr>
</thead>
<tbody>
<tr>
<td>for all (\delta t > 0)</td>
<td>Shortest wavelength</td>
<td>(\delta t < \frac{T \delta x}{\ell + \frac{T \tau}{\delta x \rho E}})</td>
<td>(\delta t < \frac{T \delta x}{\ell + \frac{T \tau}{\delta x \rho E}} - \frac{2\tau}{\ell \rho E})</td>
<td>Wavelength from (N/2) to (N/6)</td>
</tr>
</tbody>
</table>

\[-T \delta x \rho_E \quad -\frac{1}{2} T \delta x \rho_E \quad 0 \quad \frac{1}{2} T \delta x \rho_E \]

→ The same conditions as the microscopic model for:

\[\delta t \to 0 \quad \text{and} \quad \delta x = 1/\rho_E = \text{mean spacing} \]
Outline

Microscopic model

Micro–Macro derivation

Numerical schemes

Stability analysis

Simulation results
Simulation

Models
Microscopic: Euler explicit scheme
Macroscopic: Godunov/Godonov scheme (D3)

Setting
\[\rho_E = 2, \ \delta x = 1/\rho_E, \ \delta t = 1e-2, \ V : \rho \mapsto \max\{\min\{2, 1/\rho - 1\}\} \]

Environment
Ring (periodic conditions)
Initial condition: jam, random, perturbed
Trajectories

Jam initial configuration

Time

Space
Perturbed initial configuration

Trajectories
Fundamental diagram

Microscopic model

Macroscopic model

V(·)
Bounds

Density

Flow

Time