HPC Training within the HPC-LEAP Program for European Joint Doctorates

D. Pleiter | Workshop on HPC Training Best Practices | 14 November 2016
HPC-LEAP Overview

Marie-Curie Training Network funded by European Union
- 17 partners
- Universities, research labs, commercial operators

Goal
- Educate the next generation of scientists to address exascale computing challenges and enabling them to be at the forefront of their respective research fields

Highly interdisciplinary approach
- Multiple computational sciences disciplines
- Modelling and algorithms
- HPC architectures and technologies

15 Early Stage Researcher projects
HPC-LEAP Overview (cont.)
HPC Educational Goals

Provide knowledge about modern HPC architectures
\- Starting from computer architecture principles

Improve skills to program such architectures
\- Focus on parallel programming

Create understanding of attainable performance
\- Lay basis for educated choice of optimal implementation
 \- Including choice of algorithms
\- Performance modelling as a tool

Practice performance analysis
\- Need skill to measure performance

Improve performance optimisation skills
\- Apply knowledge
HPC Winter School 2016

Organisation
• 3 weeks, 16 participants
• Lectures + exercises, keynotes, student projects

Lecture topics
• Computer architectures and performance modelling
• Performance analysis and optimisation
• Parallel algorithms
• MPI and OpenMP, GPU programming
• Mathematical libraries, parallel I/O, visualisations

Student projects
• 5 projects
• 3-4 students + 1 tutor per project
• 2 * 90 + 2 * 180 minute tutorial sessions
• Vanilla, serial code provided
Student Projects: Topics

Comparative analysis STREAM on Xeon, POWER, ARM
- Comparison of achievable memory bandwidth

Parallel matrix-matrix multiply
- Analysis of different parallel algorithms

Many-body code on GPU
- Practice GPU programming

Parallelisation of Lattice Boltzmann Application
- Multi-level parallelisation of given code

Parallelisation and optimisation of code simulating SU(3) Yang-Mills theory
- Multi-level parallelisation of given code
Student Projects: Expectations

Architectural analysis
- What are the features of the architecture that are relevant?

Exploration of implementation options and implementation
- What implementation options are available?
- Test implementations
- Final implementation and test for correctness

Performance analysis
- What is the actually obtained resource utilization?

Performance modelling
- What performance could I hope to achieve?

Presentation of results
Feedback on Student Projects

Questionnaire

<table>
<thead>
<tr>
<th>Question</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>The projects have been relevant for my work?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>55%</td>
<td>45%</td>
</tr>
<tr>
<td>How do you rate the support for the projects?</td>
<td></td>
<td>27%</td>
<td>36%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36%</td>
<td></td>
</tr>
<tr>
<td>The time allocated for working on the projects was too little?</td>
<td></td>
<td>36%</td>
<td>18%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45%</td>
</tr>
</tbody>
</table>

Specific comments

- Consider either allocating more time for working on projects or shrinking the projects dimension (which in my opinion would be a pity since the final outcome was pretty nice)
- The projects were really useful and more time allocated in the schedule would be an improvement.
Conclusions

Interdisciplinary training important as well as successful
- Computational sciences vs. algorithms vs. computer sciences

Need to combine lectures/keynotes and practical elements
- Exercises
- Student projects

Participants responded well to student project challenge
- Main issue: Allocated amount of time