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Abstract
The famous Russell hypersurface is a smooth complex affine threefold which is

diffeomorphic to a euclidean space but not algebraically isomorphic to the three di-
mensional affine space. This fact was first established by Makar-Limanov, using al-
gebraic minded techniques. In this article, we give an elementary argument which
adds a greater insight to the geometry behind the original proof and which also may
be applicable in other situations.

1. Introduction

Russell’s hypersurface

X WD {(x, y, z, t) 2 C4
j x C x2yC z3

C t2
D 0} ,! C

4,

is one of the most prominent examples of an exotic variety, i.e. a variety which is
diffeomorphic to an affine space ([1], [6, Lemma 5.1]), but not isomorphic to it. The
latter is an immediate consequence of Theorem 1 below, whichstates that there are not
sufficiently many actions of the additive groupGa on X, and the aim of this paper is
to give an elementary argument for this theorem. It includessome important elements
of the original proof, but gives a greater geometrical insight to the situation.

The study of exotic varieties goes back to a paper of Ramanujam [16], where
a nontrivial example of a topologically contractible smooth affine algebraic surfaceS
over C is constructed. Ramanujam observed thatS� C is diffeomorphic toC3, and
asked whether this product is also isomorphic toC3. This was later proven not to be
the case, and thus the algebraic structure onC

3 coming from S� C2 is exotic [17].
Later on, many other exotic structures onC3 have been constructed, see e.g. the intro-
duction of [18] for a list. Note also that there are no exotic structures on affine space
in dimension� 2 [16].
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The motivation for studying Russell’s hypersurface originally came from the lin-
earization conjecture forC3, which claims that eachGm-action onC3 is linearizable.
In the proof of this result by Koras and Russell, they described a list of smooth affine
threefolds diffeomorphic toC3 which contains all the potential counterexamples to the
conjecture, and thus it was reduced to determining whether all of these so called Koras–
Russell threefolds are exotic [13]. Kaliman and Makar-Limanov established exoticity
for some of them [10], and Russell’s hypersurface is the “most simple” among the re-
maining ones. The difficulty with Russell’s hypersurface was that all the usual alge-
braic and geometric invariants failed to distinguish it from C

3. Makar-Limanov finally
established exoticity of Russell’s hypersurface (Theorem1), and later on Kaliman and
Makar-Limanov were able to prove exoticity of the remaining Koras–Russell threefolds
[8, 9] as well, elaborating on Makar-Limanov’s methods. Thisconfirmed the lineariza-
tion conjecture [7].

From now on, we will focus on Makar-Limanov’s result, stated in the following
theorem.

Theorem 1 (Makar-Limanov, [14]). The projectionpr1 W X ! C, (x, y, z, t) 7! x
is invariant with respect to anyGa-action on X.

Some years after Makar-Limanov proved Theorem 1, Kaliman proved, using non-
elementary birational geometry, that morphismsC3

! C with generic fiberC2 can-
not have any other fibers [5]. Since all the fibers of pr1 W X ! C are C2 except the
zero fiber pr�1

1 (0), it follows also from Kaliman’s result thatX 6� C3. In 2005, Makar-
Limanov gave another proof of the exoticity of Russell’s hypersurface [15]; yet another
proof was given by Derksen [3], and Crachiola also proved theexoticity in the posi-
tive characteristic case [2]. The original proof of Theorem1 used algebraic techniques,
while we rather focus on a geometric approach using fibrations and quotient maps.

An outline of our proof. In order to prove Theorem 1, we make use of an iso-
morphism X � U � M with an open subsetU of a blowup� W M ! C

3, such that
D WD M nU is the strict transform of{0} � C2

,! C

3 and

X � U � M ! C

3

is the map (x, y, z, t) 7! (x, z, t). That is, X is isomorphic to an affine modification
U of C3. The key-result is then thatO(M) � O(X) is invariant for anyGa-action on
X. SinceO(M) � O(C3), this allows us to conclude that for any givenGa-action on
X, there is an inducedGa-action onC3 which makes� jX W X! C

3 equivariant. Then
�(U ) is obviously invariant, and it follows that its interiorC�

�C

2 is invariant as well.
Theorem 1 is obtained from this by observing that anyGa-action onC�

� C

2 leaves
the first coordinate invariant: a nontrivialGa-orbit is isomorphic toC, but there are no
non-constant morphisms fromC to C�.
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2. Russell’s hypersurface in a blowup ofC3

We recall the realization of Russell’s hypersurface as an affine modification ofC3,
see also [11, Example 1.5]. LetN ,! C

2
D Spec(C[z, t ]) denote the affine cuspidal

cubic curve given by

N WD {(z, t) 2 C2
j z3
C t2

D 0},

and let I WD (g,h) � C[x,z, t ] denote the ideal which is generated by the two relatively
prime polynomialsg(x, z, t) D x2 and h(x, z, t) D x C z3

C t2. The zero set ofI is
{0} � N, and the blowup

M WD Bl I (C
3) � {((x, z, t), [u W v]) 2 C3

� P

1
j h(x, z, t)uC g(x, z, t)v D 0}

of C3 along I is a hypersurface inC3
� P

1 with singular locus of codimension two:
Sing(M) D {0} � N � {[0 W 1]}. In particular,M is a normal variety.

REMARK 2.1. Russell’s hypersurface is isomorphic to the open subset U of M
given by u ¤ 0, via the embeddingX ,! M, (x, y, z, t) 7! ((x, z, t), [1 W y]).

We denote the complement ofU in M by D. Note thatD is then given byuD 0,
and that the image ofU under the blowup morphism is�(U ) D C�

�C

2
[ ({0} � N).

3. Additive group actions on Russell’s hypersurface

In order to see thatO(M) � A WD O(X) is invariant for everyGa-action onX, we
show the equivalent fact thatO(M) � A is stable under every locally nilpotent deriva-
tion �W A! A. This obviously holds for the trivialGa-action onX, so we may assume
that � ¤ 0. The first step is to characterizeO(M) in terms of a filtration onA.

REMARK 3.1. With the filtration

A
�n WD OnD(M) D { f 2 C(M)� j div( f ) � �nD} [ {0}

we haveA
�0 D O(M) D ��(O(C3)), so ��(O(C3)) is stable with respect to a locally

nilpotent derivation� W A! A if and only if �(A
�0) � A

�0.

In order to understand the above filtration, we treatA as a subset ofC(x, z, t) and
note that multiplicities alongD are simply multiplicities along{0}�C2; so x, y, z and
t have multiplicities 1,�2, 0 and 0, respectively. Now every elementf 2 A n {0} can
be written in the form

f D
k
X

iD0

yi pi (x, z, t),
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where eachpi is at most linear inx for i � 1 (and pk ¤ 0). Thus

AD
1

M

kD�1

Ak

is a direct sum of freeC[z, t ]-modules Ak of rank 1 defined as

(1) Ak WD

8

�

<

�

:

C[z, t ]xjkj, if k � 0,

C[z, t ]yl , if k D 2l > 0,

C[z, t ]xyl , if k D 2l � 1> 0,

and one can check that

A
�n D

M

k�n

Ak.

We thus obtain an explicit description of the associated graded algebra

B WD Gr(A) D
M

n2Z

Bn with Bn WD A
�n=A

�n�1.

It is generated by the elements gr(x) 2 B
�1, gr(y) 2 B2, gr(z), gr(t) 2 B0 and

W WD Spec(B) � {(x, y, z, t) 2 C4
j x2yC z3

C t2
D 0}.

In particular B0 D C[gr(z), gr(t)] ' C[z, t ].

REMARK 3.2. This grading was also used by M. Zaidenberg, see [18, Lemma 7.4].

Let l D l (�) 2 Z be minimal with the property that�(A
�n) � A

�nCl for all n 2
Z; the existence of such anl follows from the fact that bothA

�0 and B are finitely
generated graded algebras, andl ¤ �1 since we consider a nontrivialGa-action. It
follows that � W A! A induces a nontrivial homogeneous locally nilpotent derivation
on B of degreel ; we will denote it byÆ. With this notation it is enough to show that
l � 0 in order to obtain�(A

�0) � A
�0. In fact, more is true:

Proposition 3.3. With B as above, any nontrivial locally nilpotent homogeneous
derivation Æ W B! B has degree l< 0.

Before going into the proof, let us start with a discussion ofthe geometry ofW ,!

C

4 and prove Lemma 3.6 below. As a hypersurface inC4, W is a normal variety
since its singular set Sing(W) D {0} � C � {0} � {0} has codimension two. It admits
two different group actions: theGa-action (� , w) 7! � �w corresponding to the locally
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nilpotent derivationÆ W B! B; and theGm-action corresponding to the grading ofB.
The latter is given by

Gm �W! W, (�, (x, y, z, t)) 7! (��1x, �2y, z, t),

and sinceB0 D C[z, t ], the Gm-quotient morphism is given by

p W W! C

2
� Spec(C[z, t ]), (x, y, z, t) 7! (z, t).

It is trivial aboveC2
n N: the map

(C2
n N) �Gm

�

! p�1(C2
n N), ((z, t), �) 7! (��1, �(z3

C t2)�2, z, t),

is a Gm-equivariant isomorphism with inverse

p�1(C2
n N)

�

�! (C2
n N) �Gm, (x, y, z, t) 7! ((z, t), x�1).

As for N, we havep�1(N) D F
�

[ F
C

, where F
�

and F
C

are the subsets ofp�1(N)
given by y D 0 and x D 0 respectively.

REMARK 3.4. The setF
�

consists exactly of the pointsw 2 W for which
lim

�!1

�w exists, andF
C

consists exactly of the pointsw 2 W for which lim
�!0 �w

exists.

REMARK 3.5. The above trivialization extends to a trivializationC2
�Gm

�

�!Wn
F
C

, but for W n F
�

there is no such trivialization since theGm-isotropy group of a
point in F

C

n F
�

has order 2.

Now let us turn to theGa-actionGa �W! W, (� , w) 7! � � w, corresponding to
ÆW B! B. SinceÆ is homogeneous of degreel , it is normalized by theGm-action, i.e.
for w 2 W, � 2 Ga and � 2 Gm, we have

(��l
� ) � (�w) D �(� � w).

In particular this implies that�O is a Ga-orbit for anyGa-orbit O.

Lemma 3.6. Let Æ W B ! B be a nontrivial locally nilpotent derivation, homo-
geneous of degree l. Then either
(1) l < 0 and F

C

is invariant, or
(2) l > 0 and F

�

is invariant.

Proof. Since the locally nilpotent derivationÆW B! B is homogeneous, its kernel

BÆ WD { f 2 B j Æ( f ) D 0} D { f 2 B j f (� � w) D f (w), 8� 2 Ga}
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is a graded subalgebra, i.e.:

BÆ D
M

n2Z

BÆn.

Given f 2 Bk n {0}, we haveÆ� f 2 BÆkC�l n {0} for a suitable� 2 N. It follows that
(1) if l D 0, we haveBÆn ¤ {0} for all n ¤ 0,
(2) if l > 0 we haveBÆn ¤ {0} for somen > 0,
(3) if l < 0 we haveBÆn ¤ {0} for somen < 0.

First assume thatl > 0, so thatBÆn ¤ 0 for somen, and let f 2 BÆn n {0}. Then f
vanishes onF

�

since f (�x) D �

n f (x) and since lim
�!1

�x exists in W for x 2 F
�

.
It follows that F

�

is invariant since it is an irreducible component of the invariant set
V( f ) �W of dimension two. Ifl < 0, it follows analogously thatF

C

�W is invariant.
It remains to show thatl cannot be zero.

If l D 0, both F
�

and F
C

are invariant. Sop�1(N) is invariant andW n p�1(N) as
well. Then for any nontrivialGa-orbit O �W n p�1(N) the map (z3

C t2) Æ pjO has no
zeros, and thus must be constant, say with valuea 2 C�, since O � C. However, any
morphism pjO W O ! V(C2

I z3
C t2

� a) from the complex line to the smooth affine
elliptic curve V(C2

I z3
C t2

� a) is constant, soO is contained in ap-fiber. Since
p(O) 2 C2

n N, this p-fiber is isomorphic toGm, as p is a Gm-principal bundle over
C

2
n N. This gives a contradiction sinceC cannot be embedded intoGm.

Proof of Proposition 3.3. By Lemma 3.6 it is enough to show show that F
�

,
given by y D 0, is not invariant. Suppose to the contrary thatF

�

is invariant; then
its complement inW, given by y ¤ 0, is invariant as well. Since there is no non-
constant invertible function onGa-orbits, allGa-orbits in Wn F

�

are contained in level
hypersurfaces ofy. In particular the hypersurfaceV � W which is given byy D 1 is
invariant and we haveV ' {(x, y, z) 2 C3

j x2
C z3

C t2
D 0}. The restriction of the

Gm-quotient projection

 WD pjV W V ! C

2, (x, z, t) 7! (z, t)

is a two sheeted branched covering ofC2 with branch locus �1(N) � N and deck
transformation

� W V ! V , (x, z, t) 7! (�x, z, t),

which is simply the action of�12Gm. In particular� (O) is aGa-orbit for anyGa-orbit
O. Assume for the moment that every nontrivialGa-orbit intersects �1(N) exactly
once. Since the hypersurfaceV is a normal surface, there is a quotient map

� W V ! V==Ga WD Spec(O(V)Ga),

the generic fiber of which is aGa-orbit [4, Lemma 1.1]. Thus the restriction

� j

 

�1(N) W  
�1(N)! V==Ga
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is injective on a nonempty open subset of �1(N). Hence, V==Ga being a smooth
curve, it follows from Zariski’s main theorem that this restriction is an open embed-
ding. However, this is a contradiction since the affine cuspidal cubic curve �1(N)
has a singular point.

Finally, any nontrivialGa-orbit O intersects �1(N): otherwise jO would be a
non-constant morphism to an affine elliptic curvez3

Ct2
D a for somea 2 C�, which is

impossible. Note that a point inO \ �1(N) is a common point of the twoGa-orbits
� (O) and O, so � (O) D O. Choose an equivariant isomorphismC � O such that
0 2 C corresponds to a point in �1(N). Then the involution� W O! O corresponds
to C! C, � 7! �� , and as a consequence every nontrivialGa-orbit O ,! V intersects
the branch locus �1(N) D W� (the fixed point set of� ) in exactly one point.
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