

 ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

ESTIMATION MODEL FOR SOFTWARE TESTING

BY
Jayakumar KAMALA RAMASUBRAMANI

THESIS PRESENTED TO
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY

Ph.D.

MONTREAL, 19 JULY, 2016.

 Jayakumar Kamala Ramasubramani, 2016

This Creative Commons licence allows readers to download this work and share it with

others as long as the author is credited. The content of this work may not be modified in

any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Prof. Alain Abran, Thesis Supervisor,
Department of Software and Information Technology Engineering,
École de technologie supérieure.

Prof. Claude Thibeult, Jury President,
Department of Electrical engineering,
École de technologie supérieure.

Prof. Abdel Gherbi, Member of the Jury,
Department of Software and IT Engineering,
École de technologie supérieure.

Prof. Hamid Mcheick, External Member of the Jury,
Université du Québec, Chicoutimi.

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

 ON JULY 19, 2016

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGMENTS

I would like to first thank the management and administration of École de technologie

supérieure, for admitting me as a Ph.D. student.

I am thankful to Professor Alain Abran, the co-inventor of COSMIC functional sizing method,

for taking me as his student and guiding me throughout the research work. He never got tired

of reviewing my work at various stages, put up with my questions and provided innumerable

suggestions to progress towards completion of this work. Charles Symons, co-inventor of

COSMIC and inventor of Mark II Function Point reinforced my conviction to choose the topic

for research, to whom I remain thankful.

My mother Smt. Kamala and father Sri. Ramasubramani are the spirit behind my activities; it

is their never ending love and blessings that continuously motivated me through the research

work. Kalpana, my wife who is an integral part of my life, not only sacrificed her personal time

and energy to make me complete this work, but also ensured that I was enthusiastic

throughout, in spite of the various moments of ups and downs.

No doubt, the time I spent with my daughter Lakshna and son Amitesh during the period of

research went down substantially when they as adolescents needed me the most. Their

youthfulness brought in freshness to my life and work. My brother and sisters wanted to see

me achieve my dream of acquiring Ph.D and supported in all possible ways.

I am thankful to the Investors and Board of Amitysoft Technologies who appreciated time

spent on the research besides managing the affairs of the company. I would like to

acknowledge my colleagues at Amitysoft, especially Srikanth Aravamudhan who served as a

sounding board to discuss various ideas related to this research, and Ganapathi who shared

part of my workload so that I could spare time for this research. I am thankful to my friends

Sriram who helped me with statistical analyses and Susan who extended a professional hand

in editing this document.

Without the connect with the Almighty, it would not have been possible for me to reach this

stage and I am indebted to Him for ever.

MODÈLE D'ESTIMATION POUR LESTESTS DE LOGICIELS

Jayakumar KAMALA RAMASUBRAMANI

SOMMAIRE

Tester les applications logicielles et en assurer la conformité sont devenus une partie
essentielle de la gouvernance des organisations en technologies de l'information (TI). Les
tests du logiciel ont évolué vers une spécialisation avec leurs propres pratiques et
connaissances.

L’estimation des tests consiste en l'estimation de l'effort pour un niveau particulier de tests,
en utilisant diverses méthodes, outils et techniques. Une estimation incorrecte conduit
souvent à une quantité inadéquate de tests qui, à son tour, peut conduire à des défaillances
des systèmes logiciels quand ils sont déployés dans les organisations.

A partir d’un état de l’art sur l'estimation des tests de logiciel, un cadre unifié pour l’estimation
des tests de logiciels a été proposé. Grâce à ce cadre, divers modèles d'estimation détaillés
ont été construits pour les tests fonctionnels.

La base de données ISBSG a été utilisée pour explorer l'estimation des tests de
logiciels. L'analyse des données ISBSG a révélé trois schémas de productivité de tests
représentant les économies d'échelle sur la base desquelles ont été étudiées les
caractéristiques des projets correspondants. Les trois groupes de projets liés aux trois
modèles de productivité sont jugés statistiquement significatifs et caractérisés par domaine
d'application, la taille de l'équipe, la durée de projet et la rigueur de la vérification et la
validation effectuée au cours du développement.

Au sein de chaque groupe de projets, les variations dans les efforts de test peuvent être
expliquées par les activités menées au cours du processus de développement et adoptées
pour les tests, en plus de la taille fonctionnelle. Deux nouvelles variables indépendantes, la
qualité des processus de développement (DevQ) et la qualité des processus de test (TestQ)
,ont été identifiées comme influentes dans les modèles d'estimation.

Des portfolios de modèles d'estimation ont été construits pour différents ensembles de
données en utilisant des combinaisons des trois variables indépendantes. Au moment de
l'estimation, un estimateur peut choisir le groupe de projets par la cartographie des
caractéristiques du projet à estimer et en les comparant aux attributs du groupe de projets
afin de choisir le modèle le plus proche.

La qualité de chacun des modèles a été évaluée selon les critères établis tels que R2, R2 Adj,
MRE, MedMRE, Maslow’s Cp. Les modèles ont été comparés à l'aide de leur performance
prédictive en utilisant les nouveaux critères proposés dans ce travail de recherche. De plus,
les modèles d'estimation de test à l'aide de la taille fonctionnelle mesurée en points de
fonction COSMIC présentaient une meilleure qualité et ont abouti à une estimation plus
précise par rapport à la taille fonctionnelle mesurée en points de fonction IFPUG.

viii

Un prototype de logiciel a été développé en utilisant un langage statistique "R" de
programmation intégrant les portefeuilles de modèles d'estimation. Cet outil d'estimation de
test peut être utilisé par l'industrie et le milieu universitaire pour estimer les efforts de test.

Mots clés: génie logiciel, mesures de logiciels, la taille fonctionnelle, tests de logiciel, Test
fonctionnel, Modèle d'estimation, estimation des tests, points de fonction COSMIC, points de
fonction IFPUG, outil pour l’estimation des tests étalonnage.

ESTIMATION MODEL FOR SOFTWARE TESTING

Jayakumar KAMALA RAMASUBRAMANI

ABSTRACT

Testing of software applications and assurance of compliance have become an essential part
of Information Technology (IT) governance of organizations. Over the years, software testing
has evolved into a specialization with its own practices and body of knowledge.

Test estimation consists of the estimation of effort and working out the cost for a particular
level of testing, using various methods, tools, and techniques. An incorrect estimation often
leads to inadequate amount of testing which, in turn, can lead to failures of software systems
when they are deployed in organizations

This research work has first established the state of the art of software test estimation,
followed by the proposal of a Unified Framework for Software Test Estimation. Using this
framework, a number of detailed estimation models have been designed next for functional
testing.

The ISBSG database has been used to investigate the estimation of software testing. The
analysis of the ISBSG data has revealed three test productivity patterns representing
economies and diseconomies of scale, based on which the characteristics of the
corresponding projects were investigated. The three project groups related to the three
productivity patterns were found to be statistically significant, and characterised by application
domain, team size, elapsed time, and rigour of verification and validation throughout
development.

Within each project group, the variations in test efforts could be explained by the activities
carried out during the development and processes adopted for testing, in addition to functional
size. Two new independent variables, the quality of the development processes (DevQ) and
the quality of testing processes (TestQ), were identified as influential in the estimation models.

Portfolios of estimation models were built for different data sets using combinations of the
three independent variables. At estimation time, an estimator could choose the project group
by mapping the characteristics of the project to be estimated to the attributes of the project
group, in order to choose the model closest to it.

The quality of each model has been evaluated using established criteria such as R2, Adj R2,
MRE, MedMRE and Maslow’s Cp. Models have been compared using their predictive
performance, adopting new criteria proposed in this research work. Test estimation models
using functional size measured in COSMIC Function Points have exhibited better quality and
resulted in more accurate estimation, compared to functional size measured in IFPUG
Function Points.

A prototype software is now developed using statistical “R” programming language,
incorporating portfolios of estimation models. This test estimation tool can be used by industry
and academia for estimating test efforts.

x

Key Words: Software Engineering, Software Measurements, Functional Size, Software
Testing, Functional Testing, Estimation Model, Test Estimation, COSMIC Function Point,
IFPUG Function Point, Test Estimation Tool, Benchmarking.

TABLE OF CONTENTS

Page

INTRODUCTION ... 21

0.1 Context of Software Testing and Estimation .. 21

0.2 Processes and Test Types .. 21

0.3 Early Perspectives on Testing and Effort Estimation ... 22

0.4 Implications for the Industry & Economy .. 23
0.4.1 Impacts of Testing and Software Defects ... 23
0.4.2 Potential of a Better Estimation Model for testing .. 25

0.5 Motivation for the Research ... 26

0.6 Organiztion of the Thesis ... 27

CHAPTER 1 RESEARCH GOAL, OBJECTIVES AND METHDOLOGY 29

1.1 Research Goal ... 29

1.2 Research Objectives .. 29

1.3 Research Approach ... 29
1.3.1 Research Disciplines .. 29

1.3.1.1 Software Testing .. 30
1.3.1.2 Software Engineering ... 31
1.3.1.3 Metrology ... 32
1.3.1.4 Statistics ... 33

1.3.2 Research Methodology .. 34
1.3.2.1 Literature Study .. 35
1.3.2.2 Designing an Unified Framework for Test Estimation 36
1.3.2.3 Designing Estimation Models for Functional Testing 37
1.3.2.4 Evaluating the Estimation Models .. 38
1.3.2.5 Developing a Prototype Estimation Tool .. 39

CHAPTER 2 LITERATURE STUDY .. 41

2.1 Evaluation of Test Estimation Techniques ... 41
2.1.1 Categories of Techniques .. 41
2.1.2 Model Evaluation Criteria ... 42
2.1.3 Criteria for Evaluation of Test Estimation Techniques 44

2.2 Test Estimation Techniques ... 45
2.2.1 Judgement and Rule of Thumb .. 45
2.2.2 Analogy and Work Breakdown Techniques ... 47

xii

2.2.3 Factors and Weights .. 48
2.2.4 Size-based Estimation Models ... 50

2.2.4.1 Test Size-based Estimation ... 50
2.2.4.2 AssessQ Model .. 51
2.2.4.3 Estimating test volume and effort .. 52

2.2.5 Neural Network and Fuzzy Models .. 53
2.2.5.1 Artificial Neural Network (ANN) Estimation Model 53
2.2.5.2 Fuzzy Logic Test Estimation Model ... 54

2.3 Other Literature of Interest on Test Estimation .. 55
2.3.1 Functional Testing .. 55
2.3.2 Non-functional Testing ... 56
2.3.3 Fuzzy Logic Estimation .. 57
2.3.4 Model-driven Testing ... 58
2.3.5 Agile Testing .. 59
2.3.6 Service Oriented Architecture and Cloud based Technologies 60
2.3.7 Automated testing .. 60

2.4 Summary ... 61

CHAPTER 3 PROPOSED UNIFIED FRAMEWORK FOR SOFTWARE TEST
ESTIMATION ... 63

3.1 Introduction .. 63

3.2 Structure of the Framework ... 63
3.2.1 Functional Testing .. 64
3.2.2 Non-functional Testing ... 65
3.2.3 Modification Testing ... 65
3.2.4 Test Automation ... 65
3.2.5 Mapping Framework Components to ISO Standards 66

3.3 Approach to Measurements for Estimation ... 67
3.3.1 Functional Testing .. 68
3.3.2 Non-functional Testing ... 68
3.3.3 Modification Testing ... 69
3.3.4 Test Automation ... 70

3.4 Approaches for Test Effort Estimation ... 70
3.4.1 Functional Testing .. 70
3.4.2 Modification Testing ... 72
3.4.3 Non-functional Testing ... 72
3.4.4 Functional Test Automation ... 73

3.5 Conclusion ... 73

xiii

CHAPTER 4 ESTIMATION MODEL FOR FUNCTIONAL TESTING 75

4.1 Overview .. 75

4.2 ISBSG Data for Estimation Model ... 76

4.3 Data Selection .. 77
4.3.1 Criteria for data selection ... 77

4.3.1.1 Data Quality ... 77
4.3.1.2 Data Relevance .. 78
4.3.1.3 Data Suitability ... 78
4.3.1.4 Data Adequacy ... 79

4.3.2 Data Preparation .. 79

4.4 Data Analysis ... 80
4.4.1 Strategy .. 80
4.4.2 Identification of Test Productivity Levels .. 81
4.4.3 Identification of Candidate Characteristics of Projects 83

4.5 Identification of Independent Variables .. 87
4.5.1 Development Process Quality Rating (DevQ) .. 89
4.5.2 Test Process Quality Rating (TestQ) .. 90
4.5.3 Analysis of DevQ and TestQ .. 91

4.6 Portfolio of Estimation Models for Functional Testing .. 93
4.6.1 Estimation Models – Data Set A (N = 142) ... 93
4.6.2 Estimation Models - Data Set B (N=72) ... 96
4.6.3 COSMIC Function Point Estimation Models – Data Set C (N=82) 98
4.6.4 IFPUG Function Point Estimation Models – Data Set D (N = 60) 99
4.6.5 Model Selection for Estimation ... 99

4.7 Evaluation of Estimation Models .. 103
4.7.1 Quality of Estimation Models .. 103
4.7.2 Predictive Performance of Models ... 105
4.7.3 Comparison of Performance of Models .. 107

4.7.3.1 Comparison of Models in Portfolio A .. 107
4.7.3.2 Comparison of Size Based Models .. 108
4.7.3.3 Comparison of Models in Portfolios A and B 110
4.7.3.4 Comparison of COSMIC and IFPUG Models 112

4.8 Estimation Tool .. 113

CONCLUSION ... 115

APPENDIX I DATA SELECTION AND OUTLIERS .. 125

xiv

APPENDIX II MAPPING OF V & V RIGOUR TO ISBSG DATA FIELDS 131

APPENDIX III PROJECT CHARACTERISTICS ANALYSIS - DATA SET B, C & D 133

APPENDIX IV MAPPING OF DEVQ, TESTQ RATINGS TO ISBSG DATA FIELDS........ 139

APPENDIX V ANALYSIS OF DEVQ AND TESTQ FOR DATA SET B, C & D 143

APPENDIX VI REGRESSION MODEL FIT ANALYSIS .. 157

APPENDIX VII DESIGN OF A PROTOTYPE TOOL FOR ESTIMATION 163

BIBLIOGRAPHY ... 169

LIST OF TABLES

Table 0.1 Cost Impacts of Defective Software Reported in 2011 – 12 24

Table 1.1 The Knowledge Areas in the SWEBOK Body of Knowledge..................... 31

Table 1.2 Inputs, Steps and Outputs of Phase 1 ... 35

Table 1.3 Inputs, Steps and Outputs of Phase 2 ... 36

Table 1.4 Inputs, Steps and Outputs of Phase 3 ... 38

Table 1.5 Inputs, Steps and Outputs of Phase 4 ... 39

Table 2.1 Evaluation of Test Estimation Techniques .. 45

Table 2.2 Common Types of NFR Testing .. 56

Table 3.1 Unified Framework cross referenced to ISO Standards 66

Table 3.2 Unified Framework – Measurements & Estimation Approach 74

Table 4.1 V & V Rigour Rating Scheme .. 84

Table 4.2 Analysis of Project Characteristics – Data Set A 85

Table 4.3 Statistical Significance of Attributes in Data Set A (N = 142) 86

Table 4.4 Characteristics of Project Groups .. 87

Table 4.5 Statistical Significance of Project Groups .. 87

Table 4.6 Correlation Coefficients for Size Vs Test Effort ... 89

Table 4.7 Rating for Development Process (DevQ) .. 90

Table 4.8 Rating for Test Process (TestQ) .. 90

Table 4.9 Test of Significance for Independent variables ... 93

Table 4.10 List of Models in Portfolio A ... 94

Table 4.11 Estimation Models - Portfolio A (N = 142) ... 96

Table 4.12 List of Estimation Models - Portfolio B ... 97

Table 4.13 Estimation Models Portfolio B (N = 72) ... 97

Table 4.14 Estimation Models Portfolio C (N = 82) ... 98

xvi

Table 4.15 Estimation Models Portfolio D (N = 60) ... 99

Table 4.16 Project Size Classification ... 100

Table 4.17 Evaluation of Models in Portfolios A, B, C and D 103

Table 4.18 Prediction Performance of Estimation Models .. 106

Table 4.19 Predictability of Portfolio A Models.. 107

Table 4.20 Predictability of Size Based Models across Portfolios 108

Table 4.21 Predictability of Portfolio A & B Models ... 110

LIST OF FIGURES

Figure 1.1 Research Disciplines ... 30

Figure 1.2 Measurement Context Model .. 33

Figure 3.1 Structure of the Unified Framework ... 64

Figure 4.1 Scatter Diagram: Size versus Test Effort (N = 170) 81

Figure 4.2 Multiple Data groups representing different economies of scale (N=170) . 82

Figure 4.3 Scatter Diagrams for Size vs Test Effort: Data Set A, PG1, PG2 and
PG3 ... 88

Figure 4.4 Distribution of DevQ and TestQ Ratings (N = 142) 91

Figure 4.5 Box Plots of DevQ Ratings 0, 1 and 2 ... 92

Figure 4.6 Box Plots of TestQ Ratings 0 and 1 .. 92

Figure 4.7 Project Group Selection Decision Tree ... 101

Figure 4.8 Predictability Comparison of Data Set A Models 108

Figure 4.9 Predictability Comparison of Size Based Models 110

Figure 4.10 Predictability Comparison of Data Set A and B Models 111

Figure 4.11 Predictability Comparison of COSMIC and IFPUG Models 112

LIST OF ACRONYMS AND ABREVIATIONS

CMMI Capability Maturity Model Integration

COSMIC Common Software Measurements International Consortium

DevQ Development Process Quality Rating

ERP Enterprise Resource Planning

FSM Functional Size Method

FUR Functional User Requirements

KLOC Kilo Lines of Code

NFR Non Functional Requirements

IFPUG International Function Point Users Group

ISBSG International Software Benchmarking and Standards Group

OCL Object Constraint Language

PG Project Group

PSP Personal Software Process

SPICE Software Process Improvement and Capability Determination

SWEBOK Software Engineering Body of Knowledge

TDR Test Delivery Rate

TestQ Test Process Quality Rating

TTCN-3 Testing and Test Control Notation

UML Unified Modelling Language

 INTRODUCTION

0.1 Context of Software Testing and Estimation

Software Testing, as defined by the Guide to the SWEBOK (Bourque et al., 2014), consists of

the ‘dynamic’ verification of the behaviour of a program on a ‘finite’ set of test cases. These

test cases are suitably selected from the usually ‘infinite execution domain,’ against ‘expected

behaviour’.

Testing is also part of software maintenance and operations, besides development. Testing

activities have to be managed effectively and quantitatively, in order to meet the intended

purpose.

Software testing is quite challenging, technically and managerially, for the following reasons:

1. Software testing is carried out against Functional User Requirements (FUR), where all

the operational scenarios cannot be identified due to the complexity barrier. Expected

behaviors must be tested in an infinite execution space (Beizer, 2007).

2. There is a lack of consistency in the factors to be considered for Non-functional

Requirements (NFR) (COSMIC, 2015). It is challenging to plan for testing with

incompletely described NFR because it increases the odds that the NFR testing

process will be incomplete.

3. There is no scientific approach to estimating efforts for all the aspects of software

testing. The existing estimation approaches, such as judgment based, factors and

ratings-based methods and functional size-based methods are characterized by

several limitations (Refer Section 2.2).

0.2 Processes and Test Types

The International Standard ISO 29119 on testing (ISO/IEC/IEEE 29119 – Part 1, 2013;

ISO/IEC/IEEE 29119 – Part 2, 2013; ISO/IEC/IEEE 29119 – Part 3, 2013; ISO/IEC/IEEE

29119 – Part 4, 2015) subdivides the test process into Project Test Process and Test Sub-

Process, as follows:

22

a. Component, Integration, System and Acceptance Testing are different levels/

phases of the Project Test Process.

b. Performance Testing, Security Testing and Functional Testing are different types

of testing referred to as Test Sub-Processes.

The Project Test Process involves and Dynamic Test Processes and Test Management

Processes:

a. The Dynamic test process consists of test design, preparing test scripts and test

data, setting up test environment, executing tests and reporting test results.

b. Management processes involve planning, monitoring and control of testing

activities under dynamic testing process.

This ISO 29119 Standard provides a framework to identify specific activities that would

constitute the scope of testing projects. Tasks to be undertaken for testing and estimate of

effort for executing those tasks can be derived based on the scope.

0.3 Early Perspectives on Testing and Effort Estimation

One of the early books on Software Testing, ‘Software Testing Techniques’ by Borris Beizer

(Beizer, 2007), documents the goals for testing. Testing and designing of tests, as parts of

quality assurance, should also focus on bug prevention apart from discovering bugs. Beizer

makes a practical suggestion:

“The ideal test activity would be so successful at bug prevention, that actual

testing would be unnecessary. Unfortunately, we can’t achieve this ideal. Despite

our effort there will be bugs because we are human. To the extent that testing

fails to reach its primary goal, bug prevention, it must reach its secondary goal,

bug discovery.”

Beizer refers to a ‘Complexity Barrier’ where software complexities grow to the limits of our

ability to manage the complexity. In the business context, where time-to-market or on-time

delivery with assured quality is a most important success criterion, demands on software

testing are two-fold:

23

1. Test everything that carries risks of failure.

2. Minimize efforts required for testing.

The two-component testing strategy advocated by Willam Perry (Perry, 2006), another

pioneer in software testing, consists of:

1. ‘Test Factors’ that need to be addressed to reduce the risk.

2. ‘Test Phase in the Life Cycle’ in which the test factors are to be considered.

Test factors are related to a number of generic functional requirements, non-functional

requirements and technical / quality requirements. Perry has suggested a parametric model

to estimate staff-hours using:

1. The functional size, measured in terms of function points or lines of code, further adjusted

considering project specific characteristics.

2. The total effort estimate is distributed next to project phases, based on the ‘percentage

efforts distribution’ norm established using historical data.

To meet the conflicting demands on software testing, testers must be able to use effective

estimation techniques. Managing software testing without quantitative measures increases

the odds of failure. For example, cost and time overruns potentially result in financial and legal

consequences. Estimation techniques should be based on a sound mathematical basis, and

verifiable to the satisfaction of all stakeholders (Abran, 2015).

0.4 Implications for the Industry & Economy

0.4.1 Impacts of Testing and Software Defects

World Quality Report 2015 – 16 (Capgemini, 2016) observes that ‘quality assurance and

testing’ have failed to keep up with business needs; this is inferred from the IT spend on these

activities outstripping predictions every year. This report estimates that the proportion of the

IT spend allocated to ensuring application quality and performance will continue to rise, from

the current figure of 35%, to reach 40% by 2018. Gartner’s forecast on enterprise IT spending

24

across all industry market segments in 2016 is US $ 2.77 trillion (Gartner, 2015). These two

figures from Capgemini and Gartner indicate the amount of budget involved in quality and

testing of IT solutions.

There are several instances of software failures that have resulted in major economic impacts,

including loss of human lives. A study by the National Institute of Standards and Technology

- USA (Tassey, 2002) estimated the losses to the US economy alone at close to US$ 60

billion, due to defects in software applications in the Manufacturing and Service sectors. Some

of the incidents, reported due to defects in Enterprise Software applications, together with

their cost impact, are listed in Table 0.1 for the 2011-2012 reporting period. This table lists

details such as the names of the organizations, the related defective software and the direct

cost impact.

Table 0.1 Cost Impacts of Defective Software Reported in 2011 – 12

Company Defective

Software

Cost

(mil)

Source

1 RBS
C7A batch

Process
£125

http://www.computerweekly.com/news/22401608

60/RBS-computer-problem-costs-125m

2

AXA

Rosenburg

Group

Portfolio

management
$242

http://www.advfn.com/commodities/Commoditi

esNews.asp?article=46297248&headline=axa-

rosenberg-to-pay-242-million-over-software-

glitch

3
Knight’s

Capital

Automatic

market orders
$440

http://www.bloomberg.com/bw/articles/2012-

08-02/knight-shows-how-to-lose-440-million-in-

30-minutes

4

Telecom

Company,

New

Zealand

Customer

Billing
$2.7

www.comcom.govt.nz/dmsdocument/10828

There are several incidents related to defects and consequent software failures, which are

periodically reported by the press. However, the economic impacts are not disclosed for most

25

the cases. Management processes are critical for planning and delivering testing projects

successfully. It is estimated that the annual cost of poor performance of software suppliers in

North America and in Europe is over US$ 200 billion (Symons, 2010). Comparing this to the

approximately US$ 200 billion of losses faced by banks in the 2008 credit crisis which was a

one-time event, it is apparent that the recurring annual losses due to poor performance in the

software industry is multi-fold.

The poor performance of software in this context refers to cost overruns, including cancelled

projects or projects finished but not deployed. A causal chain links poor performance to

measurements and estimation practices (Symons, 2010). The Project Management Institute

(PMI) has identified ‘Estimation’ as a key area in the Project Management Body of Knowledge

(PMI, 2013) for successful delivery of projects.

In order to tackle performance and poor management issues, the state of Victoria in Australia

has designed and implemented the ‘SouthernScope’ project contracting methodology

(SouthernSCOPE, 2012) which resulted in less than 10% cost overrun after implementing

functional size-based estimation and costing of projects. This can be compared to 84% cost

overrun that prevailed when traditional methods were used (Symons, 2010).

0.4.2 Potential of a Better Estimation Model for Testing

Software projects go through the ‘testing phase’, which is a key phase for controlling defects

within the overall development life cycle. Inadequate testing leaves defects in the software

used in production, leading to failures and consequent financial impact.

A better testing process can contribute to the reduction in the number of defects. The US

Study (Tassey, 2002), points out that improvements in the testing infrastructure could result

in US$22 billion saving by reducing the defects by 50%.

Improved estimation techniques can aid better budgeting and resourcing of software testing.

Performance measurements using International benchmarks can enable the organizations

improve their test processes to become more competitive.

26

0.5 Motivation for the Research

Software testing has evolved into a specialization with its own practices and body of

knowledge (ISTQB, 2011; QAI, 2006). Over the years, software testing has become an

industry of its own, with the emergence of independent testing services firms and IT services

companies in India (such as Cognizant, TCS, Accenture) establishing testing services as a

separate business unit.

Test estimation consists of the estimation of effort and cost for a particular level of testing,

using various methods, tools, and techniques. Test estimation techniques have often been

derived from generic software development estimation techniques (Chemutri, 2012), in which

testing figures as one of the phases of the software development life cycle. The incorrect

estimation of testing effort often leads to an inadequate amount of testing that, in turn, can

lead to failures of software systems when they are deployed in organizations. There are no

international benchmarks available to verify test effort estimates.

Existing estimation techniques such as judgment based, test estimation specific methods and

functional size methods used for estimating test efforts are hampered by several arbitrary

factors and they lack of compliance to fundamentals of metrology (Abran, 2010).

The functional size of software is found to be a significant influencer in the estimation of

development effort (Abran, 2015). Even those techniques that use functional size for

estimation models do not take into consideration the mathematically correct functional size as

a parameter (Refer Section 2.2).

 There is a growing amount of work carried out on the use of the functional sizing method

COSMIC – ISO 19761 (COSMIC, 2003; ISO, 2011), for estimation and performance

measurements of software development projects. There are several complex approaches

taken by the researchers for estimation, while simple and practical approaches to estimation

(Abran, 2015) governed by metrology principles can fulfill the needs in industry, academia and

research.

27

The motivation for the research arises from:

 Difficulties in estimating the effort for software testing.

 Opportunities emerging out of recent development in functional sizing methods.

 Lean approaches towards building estimation models.

The research strategy will involve adapting innovations from related disciplines, to come out

with practical estimation models for software testing. These estimation models will be

designed to substantially overcome the limitations of existing estimation techniques.

Additionally, they would comply with metrology, be simple to understand and use by the

industry and academia.

0.6 Organization of the Thesis

Chapter 1 presents the research goal, objectives and the methodology adopted. This chapter

also details out the research disciplines involved and the systematic steps followed as per the

methodology.

Chapter 2 provides an evaluation of existing test estimation techniques followed by detailed

discussions of each of the categories, analysis of their strengths and weaknesses followed by

comments on experimental studies. A summary of the literature study with limitations of

existing techniques is part of this chapter.

Chapter 3 proposes an ‘Unified Framework for Software Test Estimation’ mapped to relevant

ISO standards along with proposals for measures and approaches for test estimation models

for software testing.

Chapter 4 details out the estimation model for functional testing, consisting of details of data

selection and analysis, design of portfolio of estimation models, their evaluation and

comparison of predictive performance. This chapter also documents the design of a prototype

tool to automate the estimation model for functional testing.

How this research work meets the objectives set initially, contributions arising out this work,

limitations and potential for future work are presented as a part of the Conclusion chapter.

CHAPTER 1

RESEARCH GOAL, OBJECTIVES AND METHDOLOGY

1.1 Research Goal

The long term goal of this research project is to develop a practical solution for estimating

software testing effort, for all types of testing. The immediate goal is to focus on designing

estimation model for estimating the effort for functional testing.

1.2 Research Objectives

The objectives selected for this research project are to design an estimation model to:

a. Estimate the effort for functional testing. This comprises:

• Identifying the 1 to 3 factors that contribute most to the relationship with effort for

functional testing.

• Arriving at a model that can be used during the early stages of software testing.

b. Serve the needs for benchmarking and measuring the performance of software testing

projects.

c. Be capable of automation, which can be deployed as an estimator’s tool for use by

industry and academia.

1.3 Research Approach

1.3.1 Research Disciplines

The research approach selected to address the problem involves combining knowledge from

four disciplines (Figure 1.1).

a. Software Testing

b. Software Engineering

c. Metrology

d. Statistics

The contexts of each of these disciplines in this research work are presented next.

30

Figure 1.1 Research Disciplines

1.3.1.1 Software Testing

Software Testing has evolved into a discipline along with the development of software

development methodologies: its evolution has passed through the following phases (Beizer,

2007):

• Phase 0: There is no difference between testing and debugging. Other than in support of

debugging, testing has no purpose.

• Phase 1: The purpose of testing is to show that the software works.

• Phase 2: The purpose of testing is to show that the software does not work.

• Phase 3: The purpose of testing is not to prove anything, but to reduce the perceived risk

of not working to an acceptable value.

• Phase 4: Testing is not an act. It is a mental discipline that results in low-risk software

without much testing effort.

The two key words in Phase 4 of the evolution of software testing are ‘low-risk’ and ‘testing

effort’. Analysing the product risks and designing and executing tests in such a way that effort

for testing is minimal are the key characteristics of current phase. Estimating the effort

required for testing and measuring performance of testing can provide a quantitative basis for

managing testing projects.

31

1.3.1.2 Software Engineering

Software Testing is a part of software engineering. The ‘Guide to the SWEBOK’ (Bourque et

al., 2014) identifies software testing as one of the knowledge areas related to software

engineering (Table 1.1).

Table 1.1 The Knowledge Areas in the SWEBOK Body of Knowledge

No. Knowledge Area No. Knowledge Area

1 Software Requirements 9 Software Engineering Models and

Methods

2 Software Design 10 Software Quality

3 Software Construction 11 Software Engineering Professional

Practice

4 Software Testing 12 Software Engineering Economics

5 Software Maintenance 13 Computing Foundations

6 Software Configuration

Management

14 Mathematical Foundations

7 Software Engineering

Management

15 Engineering Foundations

8 Software Engineering Process - --

Estimation of efforts for software testing cannot be looked into isolation, without considering

software life cycle aspects and measurements related to various aspects of software

engineering. While software testing is the key knowledge area relevant to this research work,

other knowledge areas such as Software Engineering Management, Software Engineering

Process, Software Engineering Models and Methods, Software Quality, Software Engineering

Professional Practice, Software Engineering Economics and Mathematical Foundations

contribute to this research work. This research work explored the literature on software

engineering, in order to establish the state of the art of software test effort estimation.

32

A major problem in software engineering is the passing on of some trivial rumour from one

person to the next, until it has become distorted and blown out of all proportion. The outcome

is that it becomes entrenched as ‘fact’, claimed to be supported by ‘figures’, and attains an

elevated status despite being merely anecdotal (Bossavit, 2015). Appealing to authority

overlies such so-called ‘facts’ and ‘figures’; this is the key guideline for this research work, in

order to differentiate the ‘feel good’ aspects from the ‘feel right’ approach to developing

estimation models.

1.3.1.3 Metrology

Metrology deals with rigorous definitions of measurement standards and their instrumentation.

This discipline helps to tackle the disparity in the units of measurements, in support to various

derived measures and models.

Metrology related concepts from the ISO Vocabulary on Metrology (VIM, 2007) have been

adopted as the basis for measurement terminology for future ISO standards on software

measurement. Information technology and computer science have not been subjected to the

metrological scrutiny that other sciences have (Gray, 1999; Kaner, 2013). According to the

principles of metrology, the term measurement has to be used in the context of ‘measurement

method’, ‘application of a measurement method’ or ‘measurement results’. They correspond

to three steps (Figure 1.2) in the measurement context as illustrated in the Measurement

Context Model from (Abran, 2010):

a. Design of the measurement method: before measuring, it is necessary to either select a

measurement method if one already exists, or design one if an existing method does not

fit the need.

b. Application of the measurement method: once the measurement method has been

designed or selected, its rules are applied to a piece of software to obtain a specific

measurement result.

c. Exploitation of the measurement results: the measurement result is exploited in a

quantitative or qualitative model, usually in combination with other measurement results

of different types.

33

Figure 1.2 Measurement Context Model

(Taken from Abran, (2010))

While metrology is mature in other disciplines, it is yet to become a norm in software

engineering. This has resulted in several flaws (Abran, 2010) in the existing ‘software metrics’

used in software engineering.

This research project ensures the application of measurement principles to arrive at soundly-

structured estimation models.

1.3.1.4 Statistics

Statistics is broadly divided into two branches – descriptive and inferential statistics (Levine,

2013):

34

a. Descriptive statistics deal with quantitative data and the methods for describing them.

This is the most familiar branch of statistics used in everyday life, such as in social

services, business, health care and sports. For example, measures of central tendency

and measures of spread are used to describe data.

b. Inferential statistics make inferences about populations by analyzing data gathered from

samples and lead to conclusion from these data. Methods of inferential statistics include

testing of hypotheses and estimation of parameters.

This research project uses various data sets to build test estimation models, and hence the

correct application of principles and practices of statistics is of paramount importance. Even

though basic statistical concepts, such as measures of central tendency, are a foundation to

any analysis, there are several statistical techniques available in the process of building an

estimation model.

In large data sets, wider deviations are mostly attributable to noise than to information (Taleb,

2012). Hence, if complex models are built, their relevance may become questionable and

usage may become difficult. Nassim Nicholas Taleb, noted author of ‘Antifragile’ proposes

antifragile models for informed decisions rather than fragile and robust models. The fragile

and robust models collapse faster, while antifragile systems can change and evolve.

This research project has come out with portfolios of estimation models for different contexts,

rather than attempting one single robust and complex model that can only provide an illusion

of stability. It has been observed that, more the small variations in the system, the fewer would

be the major surprises (Taleb, 2012). These insights form the backbone of the work carried

out in this research.

1.3.2 Research Methodology

The methodology adopted for carrying out this work consists of the following five research

phases:

1. Literature study

2. Designing Unified Framework for Test Estimation

3. Designing Estimation Models for Functional Testing

35

4. Evaluating the Estimation Models

5. Developing a Prototype Estimation Tool

Each phase is briefly described next.

1.3.2.1 Literature Study

A literature study has been conducted to understand the techniques and practices in the

estimation for software testing. The study covered estimation techniques used in both industry

and academia. The study reviewed the basic approaches to test estimation, including

estimation techniques for functional and non-functional testing. Other estimation approaches

such as neural network and case based reasoning have also been examined.

Besides, the literature study has also reviewed model-driven testing, agile testing, service

oriented architecture and test automation from the perspective of estimation; the presents the

state of the art on software test estimation techniques, their strengths and weaknesses. The

inputs for this phase, the various steps performed and the outputs from this phase are listed

in Table 1.2.

Table 1.2 Inputs, Steps and Outputs of Phase 1

Inputs Steps Outputs

SWEBOK Body of

Knowledge

ISO 29119 : Software

and Systems

Engineering – Software

Testing

• Study of basic approaches to

test estimation

• Estimation techniques for

Functional Testing

• Estimation for Non-functional

Testing

• Fuzzy, Neural Network and

Case-Based Reasoning for

Estimation

• Grouping test estimation

techniques into

categories

.

.

• Evaluation criteria for

estimation techniques

36

Inputs Steps Outputs

ISO 19761 : COSMIC

Functional Sizing

Method

• Current key developments in

Testing

• Review of evaluation criteria

for estimation techniques

1.3.2.2 Designing an Unified Framework for Test Estimation

This phase comes out with a Unified Framework for test estimation, based on the learnings

from the Literature Study.

The first step for designing the Unified Framework consists of characterizing the various facets

of functional and non-functional testing, based on ISO Standards. This results in a qualitative

model.

The next step transforms this model into a quantitative model by identifying relevant

measures. This quantitative view of the Unified Framework provides a basis for building

estimation models for testing. Table 1.3 presents the inputs considered for this phase, the

steps performed during the phase and the outputs from this phase.

Table 1.3 Inputs, Steps and Outputs of Phase 2

Inputs Steps Outputs

• ISO 25010 on quality

characteristics of

software

• ISO 29119: Software

and Systems

Engineering – Software

Testing.

• Characterizing various

facets of Functional and

Non-functional Testing

• Identification of

measures related to

individual aspects of

Functional and Non-

functional Testing

• Unified Framework for

various facets of

functional and non-

functional testing with

qualitative

characteristics,

37

Inputs Steps Outputs

• ISO 19759: SWEBOK

Guide v3

• Software Metrics and

Software Metrology

book

• Developing approaches

to building estimation

models

• Quantitative measures

and approaches to

estimation.

1.3.2.3 Designing Estimation Models for Functional Testing

The Functional Testing component has been taken up from the Unified Framework, for

designing detailed estimation models for functional testing.

Release 12 (2013) of ISBSG database serves as the data source for building the testing

estimation model. The following steps are performed during this phase 3:

a. Data preparation from ISBSG by applying relevant filters, to come out with high quality

data representing testing.

b. Selection of four different data sets, consisting of relevant samples from a statistical point

of view.

c. Data analysis using statistical analysis tools.

d. Identification of relevant variables for project contexts.

e. Building a portfolio of context specific estimation models.

f. Model selection approach for estimation user.

Table 1.4 provides the inputs considered for this phase 3, the various steps performed during

the phase and the outputs from the phase.

38

Table 1.4 Inputs, Steps and Outputs of Phase 3

Inputs Steps Outputs

• Literature Study

• Unified Framework for

Functional Testing

• ISBSG Release 12 Data

repository

• Observation of project

data & data preparation

• Selection of relevant

samples and ensuring

adequacy of samples

from a statistical point of

view.

• Data analysis using

statistical analysis tools

• Identification of relevant

variables for project

contexts.

• Building context specific

estimation models.

• Portfolio of Estimation

Models based on initial

data set

• Portfolio of Estimation

Models based on a

subset of initial data set

• Portfolio of Estimation

Models for COSMIC

Functional Size.

• Portfolio of Estimation

Models for IFPUG

Functional Size.

• Approach for selection

of a model

1.3.2.4 Evaluating the Estimation Models

The quality of the estimation models for functional testing are evaluated using the criteria

followed by the researchers. This phase also compares the performance of COSMIC-based

estimation models versus IFPUG-based estimation models.

The inputs considered for this phase, the steps performed during the phase and the outputs

are listed in Table 1.5. The conclusions are based on the performance of each of the model.

39

Table 1.5 Inputs, Steps and Outputs of Phase 4

Inputs Steps Outputs

• Portfolio of Estimation

Models

• Quality criteria for

evaluation of Models

• Criteria for performance

of estimation models

• Computation of quality

criteria for each of the

model

• Computation of model

performance for each of

the model

• Comparison of quality of

estimation models

• Developing criterion for

comparison of

performance of models

& its application

• Quality of estimation

models.

• Performance of

estimation models.

• Comparison of models.

1.3.2.5 Developing a Prototype Estimation Tool

A prototype tool will be developed, based on the estimation models. The tool will allow the

estimation user to choose a project context and, based on the functional size, will provide an

estimate for the test effort.

The design of the tool takes into consideration refinements to the estimation model, based on

the availability of organization specific project data and regeneration of models, based on the

availability of a larger multi-organizational data set.

The basic purpose of the development of this tool is to confirm the possibility of automation of

the estimation using the models generated.

CHAPTER 2

 LITERATURE STUDY

2.1 Evaluation of Test Estimation Techniques

2.1.1 Categories of Techniques

The test estimation techniques studied can be categorized into the following five groups:

1. Judgment and rules of thumb.

2. Analogy and work breakdown.

3. Factors and weights.

4. Size based estimation models.

5. Fuzzy, Neural and Case based models.

Approaches towards estimation adopted by these techniques can be broadly classified as

formula oriented and model oriented while some of the techniques combine both. Several of

these techniques identify variables relating to the project and come out with a formula to

provide an estimate. They incorporate various heuristics based on the experience of the

person proposing the technique. There are no established criteria to evaluate such formulae.

Other techniques use those variables to build a statistical model for estimation based on the

relationship between the independent variables and the dependent variable. An a-posteriori

estimation model representing testing process is built with data from completed projects. The

models are subsequently used to estimate new projects. These models can be evaluated

using recognized criteria (see section 2.1.2).

New criterion has been proposed to evaluate existing categories of estimation techniques (see

2.1.3). A brief review of several techniques falling into each of the above groups is presented

later in section 2.2.

42

2.1.2 Model Evaluation Criteria

Estimation models are built using past data for prediction in future, and so they are to be

evaluated for fitness for the purpose. The criteria used for evaluating the estimation models

(Conte, 1986) are:

a. Coefficient of determination (R2)

b. Adjusted R2 (Adj R2)

c. Mean Magnitude of Relative Error (MMRE)

d. Median Magnitude of Relative Error (MedMRE)

The coefficient of determination (R2) describes the percentage of variability explained by

the independent variable(s). This coefficient has a value between 0 and 1. A value of R2 close

to 1 indicates that the variability in the response to the independent variable can be explained

by the model and hence there is a strong relationship between the independent and

dependent variables. A R2 close to 0 indicates that the variability in the response to the

independent variable cannot be explained by the model and hence there is a no relationship

between the independent and dependent variables. The equation 2.1 show how the adjusted

R2 is computed. = 		1 −	 	 (2.1)

where 			 = 	∑ (−) and =	∑ (−)

 is original data value,	 	 is predicted value, n is number of samples.

Adjusted R2 (equation 2.2) is an improvement over the R2 in revealing explanatory power of

models when there are more than one independent variables used in the model.

 	 	 = 1 −	 ()() (2.2)

The sum-of-squares of the residuals from the regression line or curve have n-K degrees of

freedom, where n is the number of data points and K is the number of parameters fit by the

regression. As the Adj R2 increases, the model becomes more desirable. When there are

more than one variable used, the value of the adjusted R2 is always lower than of the R2.

43

 = | | = 		 (2.3)

 =	 	 = 	 	 	∑ (2.4)

MRE provides an indication of the divergence between the values estimated by the model and

the actual values. MMRE (or) is the mean magnitude of relative error across all the data

points. The MMRE does not represent the extreme of the estimate errors and only the mean.

There will be estimates which would be much closer to actuals as well as estimates which are

quite higher compared to the mean.

Median MRE (MedMRE), calculated from Median value instead of Mean value analogous to

equations 2.3 and 2.4, can provide a better indication of the error in such cases.

Another criterion, referred to as Mallow’s Cp, is used (Lindsey, 2010) for evaluating linear

regression models along with the Adjusted R2.

 	 = (− − 1)	 − (− 2) (2.5)

Where 	 	 ℎ 	 for the model with p regression coefficients and is the

 for the full model with m possible predictors excluding intercept.

Mallow’s Cp helps to strike an important balance with the number of predictors in the model.

It compares the precision and bias of the full model to models with a subset of the predictors.

Models where Mallow’s Cp is small and close to the number of predictors in the model plus

the constant (p) are usually preferred.

A small Mallow’s Cp value indicates:

a. that the model is relatively precise (i.e., has a small variance) in estimating the true

regression coefficients and predicting future responses;

b. that the model is relatively unbiased in estimating the true regression coefficients and

predicting future responses.

44

Models with bias or improper fit will have a Mallow’s Cp value larger than the number of

independent variables plus a constant. Mallow’s Cp values are computed with p = 1 for each

of the models.

These criteria will be used to evaluate the portfolio of estimation models designed later in this

research work.

2.1.3 Criteria for Evaluation of Test Estimation Techniques

In order to evaluate the test estimation techniques identified in the literature study, I propose

the following criteria:

Customer view of requirements: This criterion makes it possible to determine whether the

estimation technique looks at the software requirements from a customer viewpoint or from

the technical/implementation viewpoint. Estimation based on the customer viewpoint provides

an opportunity for customer to directly relate estimates to the requirements.

Functional size as a prerequisite to estimation: Most estimation methods use some form

of size, which is either implicit or explicit in effort estimation. When size is not explicit,

benchmarking and performance studies across projects and organizations are not possible.

Functional size can be measured using either international standards or locally defined sizing

techniques.

Mathematical validity: Several of the estimation techniques discussed in Section 2.2 have

evolved over the years, mostly based on a ‘feel good’ approach and ignoring the validity of

their mathematical foundations. This criterion looks at the metrological foundation of the

proposed estimation techniques and application of statistical criteria to assess the quality of

the estimation models. A valid mathematical foundation provides a sound basis for further

improvements.

Verifiability: The estimate produced must be verifiable by a person other than the estimator.

Verifiability makes the estimate more dependable.

45

Benchmarking: It is essential that estimates be comparable across organizations, as this can

help later in benchmarking and verifying performance improvement. The genesis of the

estimation techniques is looked at to determine whether or not benchmarking is feasible.

Using these five criteria, Table 2.1 presents summary of my high level analysis of each

category of techniques for the estimation of software testing. The details supporting this

analysis are presented in the following sub-sections.

Table 2.1 Evaluation of Test Estimation Techniques

Criteria

Estimation
techniques

Customer
view of

requirements

Functional
size as a

prerequisite

Mathematical
validity

Verifiable Benchmarking

1- Judgment
& rule of
thumb

NO NO
Not
applicable

NO NO

2- Analogy &
work
breakdown

NO NO YES YES

Partial, and
only when
standards are
used

3- Factor &
weight

NO NO
NO – units
are most
often ignored

YES NO

4- Size YES YES

Varies with
sizing
technique
selected

YES YES

5-Neural
Network &
Fuzzy logic
models

Partially
Most often,
No

YES, in
general, but
at times units
are ignored

Partial

Partially, and
only when
standards are
used

2.2 Test Estimation Techniques

2.2.1 Judgement and Rule of Thumb

A description of judgement and rule of thumb techniques is presented next.

46

Delphi (Chemuturi, 2012): A Delphi is a classic estimation technique in which experts are

involved in determining individual estimate for a particular set of requirements based on their

own earlier experience. Multiple iterations take place during which the experts learn the

reasoning from other experts, and rework their estimate in subsequent iterations. The final

estimate is selected from the narrowed range of values estimated by experts in the last

iteration.

Rule of Thumb: The rule of thumb estimates are based on ratios and rules pre-established

by individuals or by experienced estimators, but without a well-documented and independently

variable basis. For example: the following rules of thumb (Jones 2007) are used to estimate

efforts for certain activities involved in testing:

a. Function points raised to the 1.2/ 1.15/ 1.3 power will give an approximation of

the average/ minimum/ maximum number of test cases.

b. Function points raised to the power 1.25 predict the approximate defect potential

for new software projects.

c. Each software test step will find and remove 30 percent of the bugs that are

present.

Strengths and Weakness

Strengths are as follows:

• Simple to use.

• Perception of quick results.

Weaknesses are as follows:

• Results cannot be verified by an independent person

• Estimation is not based on the analysis of well documented historical data and hence

benchmarking is not feasible.

• Estimator often takes up an implementation view of the requirements.

• Some of the techniques do not provide estimates for all activities in testing.

47

Experimental Studies

No experimental studies are recorded to evaluate the effectiveness of these rules of thumb

techniques.

2.2.2 Analogy and Work Breakdown Techniques

A description of analogy and work breakdown techniques is presented below:

Analogy-based (Chemuturi, 2012): The analogy-based techniques involve comparisons of

the components of the software under test with a set of reference components, for which test

effort is known based on historical data. The total estimate of all the components of the

software to be tested is further adjusted based on project-specific factors and the

management effort required, such as planning and review.

Task-based (Chemuturi, 2012): It is a typical work breakdown-based estimation technique

where all testing tasks are listed and three-point estimates for each task are calculated with a

combination of the Delphi Oracle and Three Point techniques (Black, 2002). One of the

options offered by this method for arriving at an expected estimate for each task is a beta

distribution formula. The individual estimates are then cumulated to come out with the total

effort for all the tasks. Variations of these techniques, such as Bottom-Up and Top-Down,

are based on how the tasks are identified.

Test Case Enumeration-based (Chemuturi, 2012): This is an estimation technique which

starts with the identification of all the test cases to be executed. The estimate of the expected

effort for testing each test case is calculated, using a beta distribution formula.

Strengths & Weaknesses

Strengths are as follows:

• These techniques can work in a local context within an organization, where similar types

of projects are executed.

• Simple to use.

48

• Estimates can be verified by an independent person, if historical records are maintained.

Weaknesses are as follows:

• Benchmarking is not possible, since there is no agreed definition of what constitutes a

task or work breakdown.

• Implementation view of the requirements is taken while estimating.

Experimental Studies

No known experimental studies on the effectiveness of these techniques for test effort

estimation are reported.

2.2.3 Factors and Weights

A description of factors and weights techniques is presented below:

Test Point Analysis (Kerstner, 2011): It is a technique in which dynamic and static test points

are calculated to arrive at a test point. Dynamic test points are calculated based on function

points, functionality-dependent factors, and quality characteristics. Function-dependent

factors, such as user importance, usage intensity, interfacing requirements, complexity, and

uniformity are given a rating based on predefined ranges of values. Dynamic quality

characteristics, such as suitability, security, usability, and efficiency, are rated between 0 and

6 to calculate dynamic test points. Each applicable quality characteristic as defined in ISO

9126 is assigned a value of 16 and summed to obtain the total number of static test points.

The test point total is converted to effort based on ratings to be provided for a set of

productivity and environmental factors.

Use Case Test Points: Use case test points (Kerstner, 2011) is proposed as an alternative

to Test Points and derived from Use Case-based estimation for software development.

Unadjusted Use Case Test Points are calculated as the sum of the actors multiplied by each

actor’s weight from an actors’ weight table and the total number of use cases multiplied by a

weight factor, which depends on the number of transactions or scenarios for each use case.

Weights assigned to each of the technical and environmental factors are used to convert

‘unadjusted use case points’ to ‘adjusted use case points’. A conversion factor accounting for

technology/process language is used to convert adjusted use case points into test effort.

49

Test Execution Points (Aranha and Borba, 2007): This technique estimates test execution

effort based on system test size. Each step of the test specifications is analyzed based on

characteristics exercised by the test step, such as screen navigation, file manipulation, and

network usage. Each characteristic that impacts test size and test execution is rated on an

ordinal scale – low, average, and high – and execution points are assigned.

Test team efficiency is factored into another variation of the estimation model for test

execution effort. The Cognitive Information Complexity Measurement Model (Silva,

Abreua and Jino, 2009) uses the count of operators and identifiers in the source code coupled

with McCabe’s Cyclomatic Complexity measure.

Strengths & Weaknesses

Strengths are given below:

• Partial customer view of requirements.

• Consideration of various factors which are believed to impact test effort provides a feel-

good factor to estimator.

• Estimates can be verified by an independent person.

Weaknesses are given below:

• Factors used to calculate are not of the same measurement scale.

• The measures used in this model lack the basic metrological foundations for

quantification (Abran, 2010) and the validity of such measurements for estimating test

execution effort has not been demonstrated.

• Formulae used to calculate contain invalid mathematical operations.

Experimental studies

There are no documented studies recorded on the effectiveness of these techniques.

50

2.2.4 Size-based Estimation Models

The size of the software in terms of its functional size measured using any functional size

measurement method is used in this class of estimation techniques. The size, along with other

relevant measures, is built into an estimation model which is used to estimate effort. Some

techniques use size to build a regression model using historical data, while others do not

follow a statistical approach in modelling. As individual techniques differ from each other in

using a particular functional size measurement method and the approach used to building

estimation model, they are dealt separately in the following subsections.

2.2.4.1 Test Size-based Estimation

A description of test size-based estimation techniques is presented below.

The size of the functional requirements in Function Points using IFPUG’s Function Point

Analysis (FPA) (IFPUG, 2005; ISO 20926, 2009) is converted to unadjusted test points

through a conversion factor in estimation using Test Size (Chemuturi, 2012). Based on an

assessment of the software, the programming language and the scope of the testing, weights

from a weight table are assigned to test points. Unadjusted test points are modified using a

composite weighting factor to arrive at a test point size. Next, test effort in person hours is

computed by multiplying Test Point Size by a productivity factor.

Strengths & Weaknesses

The strengths are given below:

• Takes a customer view of the requirements during functional size measurement

• Estimates can be verified by an independent person

• Benchmarking is feasible as test effort is computed with reference to a size measured

using FPA.

The weaknesses are given below:

• The technique uses FPA. Mathematical limitations of FPA have been analyzed and

documented (Abran, 2010).

• Basis of weight and composite weight factor used to arrive at test point size is not known.

51

• No statistical approach used in determining the productivity factors.

Experimental Studies

There are no recorded experimental studies to assess the quality of test size based

estimation.

2.2.4.2 AssessQ Model

A description of AssessQ Model is presented below:

The AssessQ model (Mutalik, 2003) and tool built by the founder of the first independent

software testing organization in India, were used within his own organization prior to getting

acquired by another IT services organization. The model was built based on internal

experience of executing independent testing contracts. It uses IFPUG Function Points as its

basic size measure which gets multiplied by factors based on the software engineering

maturity of the development organization whose product is tested. This model uses past

project data and provides estimates for (i) number of test cases to be designed and (ii) the

number of expected defects. The estimates are adjusted to accommodate project specific

factors.

Strengths & Weaknesses

The strengths are given below:

• Takes a customer view of the requirements during functional size measurement.

• Estimates can be verified by an independent person and benchmarking is feasible.

• Provides specific estimates for test case preparation and test case execution based on

domain of the software tested.

• Recognizes ‘developer’ maturity of the development organization as a major factor

affecting testing efforts. Process maturity of developer is assessed and used as one of

the parameters in the model.

• Maturity of verification and validation process of the testing organization is used as

another parameter in the estimation model, thus taking into consideration process

aspects of testing organization.

52

• Statistical approach using historical data for building the estimation model.

The weaknesses are given below:

• The technique uses FPA. Mathematical limitations of FPA have been documented

(Abran, 2010).

• The technique was internal to the organization. Technical details of the model, and the

data used for building the model are not available for public review and validation.

Experimental Studies

No known experimental studies published on the effectiveness of the usage of this model.

2.2.4.3 Estimating test volume and effort

A description of the technique is presented below:

An approach for estimating the test volume and effort is proposed (Abran, Garbajosa and

Cheikhi, 2007), where a functional size of requirements is used as a basis for quantitatively

estimating test volume and used later in an effort estimation model. The initial estimate based

on the functional requirements is adjusted subsequently by taking into consideration non-

functional requirements. This technique uses the European Space Standards (ECSS, 2003)

as a reference for functional and non-functional requirements. This model uses COSMIC

Function Point (COSMIC, 2007; ISO/IEC 19761, 2011) to measure functional size. Estimates

for non-functional testing are arrived at based on a graphical assessment of non-functional

requirements of project data.

Strengths & Weakness

The strengths are given below:

• Uses COSMIC Function Point (ISO 1976, 2011) and overcomes the limitations of first

generation of functional size measurement methods [Kamala Ramasubramani, 2011].

• Mathematically valid, verifiable and benchmarking is feasible.

• Provides an approach for accommodating non-functional requirements into estimation

model.

53

The Weaknesses are given below:

• Combines all non-functional requirements together for estimation. Testing for non-

functional requirements such as Security, Performance is often carried out separately

by specialist teams, which requires separate estimate.

• Assumes all variations in efforts for particular functional size is due to non functional

requirements only. There are several other cost drivers and project specific factors that

affect test effort.

Experimental Studies

A case study using the February 2006 release of the ISBSG repository considering 292 new

development projects data and 366 enhancement projects data, reports estimation models for

functional testing with R2 value of 0.31 and R2 value of 0.20 for enhancement projects (Abran,

Garbajosa and Cheikhi, 2007).

2.2.5 Neural Network and Fuzzy Models

2.2.5.1 Artificial Neural Network (ANN) Estimation Model

A description of the technique is presented below:

An Artificial Neural Network (ANN) is a model of the functioning of the human brain. ANN

consists of several layers of neurons, each of which takes inputs from other neurons in the

network and fires its outputs to other neurons, if the sum of its input connections rises above

some specific ‘threshold value’. A typical ANN configuration involves an input layer, an output

layer, and one or more ‘hidden layers’. There is an implementation of Artificial Neural Network

(ANN) for software testing (Chintala et al., 2010) in which two effort estimation models are

proposed:

• pre-coding model based on use case point, and

• post-coding model based on a number of variables, their occurrences, complexity of

the code and criticalness of the code.

54

Strengths & Weaknesses

The strengths are given below:

• Pre-coding model takes up a customer view of the requirements.

• Estimates can be verified by an independent person.

The weaknesses are given below:

• Use case point with its mathematical limitations (Abran, 2010) made use of in pre-coding

model.

• Post coding model uses factors such as number of variables, complexity and criticality

of the code with arbitrary assignment of weights.

• Implementation view is taken up for estimation using post coding model.

• Benchmarking is not possible.

Experimental Studies

It is reported in (Chintala, 2010) that an experimental studies technique resulted in estimated

effort deviating not more than 8% from actual in a few real time data from projects. However,

the sample size of 4 projects used is much too small for statistical inference.

2.2.5.2 Fuzzy Logic Test Estimation Model

A description of the technique is presented below:

Fuzzy logic application to estimate software testing effort has been proposed in (Srivastava,

2009). This approach uses COCOMO (Boehm, 2000) as the basis in which KLOC is used as

an input and development effort is calculated using ‘Effort Adjustment Factors’ based on ‘Cost

Drivers’. Four testing specific cost drivers such as Software Complexity (SC), Software Quality

(SQ), Schedule Pressure (SP) and Work Effort Driver (WFD) are used as inputs to fuzzy

inference system that produces ‘test effort’ as output.

Strengths & Weaknesses

The strength is as follows:

55

• Deals with inputs which are uncertain - testing specific cost drivers inputs to fuzzy

inference.

The weaknesses are given below:

• Testing Effort Drivers such as software complexity, software quality and work force

drivers depend upon several other factors and they are not well defined.

• This technique uses COCOMO with its inherent mathematical limitations (Abran, 2010)

• Benchmarking is not possible.

Experimental Studies

No experimental studies with large data sets reported.

2.3 Other Literature of Interest on Test Estimation

2.3.1 Functional Testing

Scenario based black box testing using COSMIC (Abu Talib et al., 2006) is a method to

optimise the test cases. COSMIC model of a scenario can lead to a test set consisting of test

cases corresponding to the scenario. Test cases are partitioned into equivalent classes based

on similarity and dissimilarity between test cases. A measure of functional complexity is

proposed to prioritize test cases. Test cases with higher functional complexity are chosen for

execution from the possible choices within an equivalent class. This approach aims to provide

the best possible coverage with optimal use of resources.

Mapping of software scenarios to COSMIC model and using the model for preparation of test

cases is a new approach. COSMIC model not only facilitates mapping business scenarios to

a standard reference, but also provides a quantitative basis for measuring the scenarios that

can be used for estimating.

Testing for the changes made to software and carrying out regression testing involves

understanding the impact of the changes across the software. These impacts are not just

related to ‘functional size of the change’ and there is no way of estimating for the changes

using the scenario based black box testing approach.

56

2.3.2 Non-functional Testing

Non-functional requirements (NFR), in addition to the functional requirements, are quite

critical for testing of the software: they can skew the efforts required for testing

disproportionately to the size of functional requirements. The ‘Guideline on Non-Functional

and Project Requirements’ (COSMIC, 2015) standardizes a glossary of terms associated with

NFR. The most common types of testing carried out to test against NFR (Table 2.2) are

identified as a part of types of testing in ISO 29119-4 (ISO/IEC/IEEE 29119 – Part 4, 2015).

Table 2.2 Common Types of NFR Testing

Type of NFR Testing Type of NFR Testing

Accessibility Testing Localization Testing

Backup/Recovery Testing Maintainability Testing

Compatibility Testing Performance Testing

Conversion Testing Portability Testing

Disaster Recovery Testing Procedural Manual Testing

Installability Testing Reliability Testing

Interoperability Testing Security Testing

Stability Testing Usability Testing

NFR specified at a high level of granularity are often ignored during the entire development

life cycle until they become an issue at the stage of acceptance or during operation of the

software. Lack of details in NFR specifications adversely affects the test strategy. A set of

reference models of NFR defined at different levels of details on the basis of various standards

opens up a new vista to view NFR in terms of functional requirements, thus enabling size

measurement. NFR such as System Maintenance, System Portability (Al Sarayreh, Abran

and Cuadrado-Gallego, 2013), System Configuration and System Operational Requirements

(Al Sarayreh, Abran and Cuadrado-Gallego, 2013) have been explored using this approach

and mapped to functional requirements that can be allocated to software.

57

The standards-based framework for portability NFR provides for 4 function types and 11

portability functions when portability requirements are allocated to software and implemented

as functional requirements. Once the relevant portability functions are specified, their size can

be measured using COSMIC FSM method, as the portability functions are ‘functional’ in

nature.

This literature has not explored their application specifically to software testing. The reference

model accounts for certain NFRs such as Portability and Maintenance as defined by

standards. Application of this model to other NFRs and across application domains has to be

investigated further.

2.3.3 Fuzzy Logic Estimation

A fuzzy logic estimation process has been designed by Francisco Valdés (Valdes, 2011) as a

part of his doctoral thesis. The process involves six stages of which the first three stages are

setting up the fuzzy rule-based estimation model and the next three stages are the application

of the model to obtain an estimate for a specific project.

The model allows the experts from a software organization to decide the most significant input

variables for the kind of projects for which the model will be used. Typical input variables are

size, team skills and complexity. The membership function is defined for the input variables

and the values are assigned based on the opinions of the expert practitioners. This creates

fuzzy values which are used in inference rule execution.

His approach differs over several other estimation techniques in terms of modelling

capabilities. Estimation process based on fuzzy logic resembles how experts make decisions

in the context of uncertain, incomplete, imprecise and conflicting information. Unlike expert

judgement-based methods where the knowledge resides with experts, here the knowledge is

captured in the form of inference rules and stay within the organization. People who use the

fuzzy system to estimate do not need to be experts themselves. The estimates produced by

the fuzzy model can be verified, which overcomes a limitation of expert judgement-based

techniques. This approach can be explored for estimation of NFR test effort.

58

2.3.4 Model-driven Testing

Model-driven testing is an evolving approach to testing based on ‘modelling’ of requirements

using established notations such as UML diagrams. Model refers to the ‘what’ aspect of the

requirements. Requirements are translated into UML Testing Profile (UTP), Testing & Test

Control notation (TTCN-3) and Object Constraint Language (OCL) that enable the creation of

generic test models. Model Driven Architecture (MDA) aids the conversion of abstract test

cases into test models to specific test cases (Seigl, Kai-Steffen, Reinhard, 2010). This

approach improves the ‘Extended Automation Method’ (EXAM) through ‘Timed Usage Model’

(TUM) based on Markov chains using a probability density function. In this approach all

sequences of stimuli and their responses across the system boundary are enumerated

following the principles of ‘sequence based software specification’.

By systematically and unambiguously depicting all the transitions into TUM, test cases are

generated. Automated tools perform several transformations to generate and execute test

cases on various platforms. The major advantage of model-driven testing is that the error

prone manual activity of preparation of test cases can be avoided. This approach resulted in

minimizing the number of test cases and mean test case length.

However, if the sampling method is not relevant to the context, the test cases generated may

not be the most appropriate ones. There is a possibility of spending time on weak test cases

while critical ones are missed out due to sampling. Some of the tests are mandatory as known

to designers and they are to be included in the final set of test cases. There is no such

provision in this method to include compulsory test cases. Test designers create usage model

which can be error prone. There is no mechanism to validate the model.

A survey of model driven testing techniques (Musa, et al., 2009) discusses various

approaches used for model-driven testing. Their survey identifies modeling languages such

as UML activity diagrams, Extended UML, Class diagrams, Object Diagrams, State

Diagrams/FSM, UML sequence diagrams, UML Testing Profile, Testing and Test Control

Notation (TTCN-3) and Object Constraint Language (OCL). Modeling Language, Automatic

Test Generation, Testing Target and Tool Support have been taken up as criteria to evaluate

various Model-Driven Testing techniques. While the survey mentions that testing consumes

59

more than 50% of the time while model based testing is introduced, there is no quantitative

data provided on saving testing time using these techniques. Modeling requires complete

understanding of requirements and large upfront investment in time and money is required to

build the model. The survey has not captured efforts required to build the model in various

techniques surveyed. The model once built needs to be verified before usage, which is also a

time and resource intensive activity to be factored in estimate. There is no information

available on the ‘effectiveness’ of the automatically generated test cases in order to judge the

efficacy of the automated test cases generation.

2.3.5 Agile Testing

Agile methods have been increasingly adopted for software development over the past

decade. Agile Project Management methods and Agile Software Development methods are

two broad categories under which all agile methods are grouped (COSMIC, 2011):

SCRUM, Feature Driven Development and Dynamic Systems Development method are

practiced for the management of projects.

Methods such as Extreme Programming, Crystal Clear, Test Driven Development and

Domain Driven Development are advocated for software development.

Customer requirements take the form of User Stories, one of the three characteristics of which

is referred as ‘Confirmation’ meaning exactly what behaviour will be verified to confirm the

scope of user story leading to the test plan. ‘Estimatable’ and ‘Testable’ are two of the six

‘INVEST’ criteria proposed to verify the quality of a User Story (Cohn, 2005).

From the point of view of testing, activities required to be performed to deliver value to the

customer in a particular iteration have to be completed as a part of the iteration: this implies

execution of all test cases for the user stories identified for the iteration. Testing related

activities, such as writing code to test and/or executing test cases, are part of most of the

iterations during agile development.

60

Using COSMIC Function Point to measure the size of a User Story instead of Story Points

provides a mechanism to estimate projects early in the life cycle and to carry out performance

measurements (COSMIC, 2011). COSMIC size based estimation can also be explored for

estimating testing specific efforts in agile projects.

2.3.6 Service Oriented Architecture and Cloud based Technologies

Service Oriented Architecture and Cloud based technologies extend the scope of testing

beyond the deployment of software. Services provided by components can change any time

during their production use and require testing during the operational phase. Changes to any

service oriented component can affect the overall orchestration, even if other participating

components remain unchanged.

Service Level Agreements of the services provided can change during the operational phase

due to the performance of a collection of components. Using probabilistic customer models to

estimate the cost of checking SLAs of real time systems (Cesar, Merayo and Nunez, 2012)

provides insights to handling such situations. Further research work is required to build an

estimation model considering these behaviours of software designed using a service oriented

architecture.

2.3.7 Automated testing

Automated testing is continuously evolving as testing techniques and approaches to testing

evolve in tune with the changes in technology. Test automation is a major cost driver in

software testing. Functional tests are automated for the purpose of using them repeatedly for

regression testing when changes are made to the software and new builds are released.

Automated test tools are essential to perform load/stress testing to identify performance

bottlenecks.

Most of the techniques discussed so far can be tuned for estimating efforts for test automation

despite their limitations. Test automation is akin to software development and methods for

estimating software development efforts can be explored for estimating test automation

efforts.

61

The Collaborating Automation Elements Framework (CAFÉ) (Kamala Ramasubramani, 2006)

provides an architecture for test automation. Test Strategy, ROI Models for Automation,

Automation Frameworks, Levels of Test Automation, Modular Script & Library, COTS & Open

Source Tools, Script Extension Methods and Test break-in prevention techniques form part of

this architectural framework. Components of this framework and details of individual elements

provide information which can aid estimating efforts for test automation. The components of

the model can be explored for building an estimation model. However, CAFÉ is a theoretical

architectural model, and its practical implementation and claimed benefits are yet to be

verified.

2.4 Summary

This literature study has reviewed various test estimation techniques and evaluated their

strengths and weakness, resulting in documenting the state of the art in software test

estimation. Five factor evaluation criteria consisting of Customer view of requirements,

Functional size as a prerequisite to estimation, mathematical validity, verifiability and

benchmarking have been proposed to examine existing test estimation techniques. The study

also noted established criteria such as R2, Adjusted R2, MRE, MedMRE, Mallow’s Cp used to

evaluate a posteriori estimation models built using sample dataset. These criteria will be used

to evaluate estimation models to be built for testing as a part of this research work.

Test estimation techniques have been classified into four groups based on their approach to

estimation:

Judgment & Rule of Thumb-based estimation techniques: are quick to produce very

approximate estimates, but the estimates are not verifiable and of unknown ranges of

uncertainty. They take an implementation viewpoint of requirements to come out with

estimates and cannot be used for benchmarking.

Analogy & Work Break-Down estimation techniques: may be effective when they are fine-

tuned for technologies and processes adopted for testing. They take an implementation view

of the requirements. Estimates can be verified when the components are properly defined and

a consistent approach used. They cannot be used for benchmarking across organizations.

62

Factor & Weight-based estimation techniques: perform most often several illegal

mathematical operations, and they lose scientific credibility in the process.

Functional Size-based estimation models: are more amenable to performance studies and

benchmarking provided that a proper statistical approach is used while building the estimation

model. Method used for functional size measurement plays a key role: current methods, other

than COSMIC, violate mathematical principles.

The literature study has also covered new approaches and technologies, such as: model

based testing, agile testing, service oriented architecture and cloud based technologies from

the perspective of test estimation. There is a reference to conventional techniques such as

Delphi, Analogy, software Size based estimation and Test Case Enumeration in the context

of Service Oriented Architecture and Regression Testing (Bharadwaj Yogesh and Kaushik

Manju, 2014). However, this remains conceptual without clarity on application to the context.

Existing estimation techniques such as judgment based, work-break down, factors & weights,

and functional size methods used for estimating test efforts suffer from several limitations due

to arbitrary factors and lack of compliance to metrology fundamentals while arriving at final

estimates. Even those techniques that use functional size for estimation models, do not take

into consideration mathematically correct functional size as a parameter. Innovative

approaches, such as Fuzzy Inference, Artificial Neural Networks, and Case-based Reasoning,

are yet to be adopted in the industry for estimating testing effort. A review of over 150 papers

spanning 30 years (Kafle, 2014) could not find any new approaches to estimation in testing

and the techniques adopted by the industry are derived from software development effort by

expert judgement resulting in similar error level.

CHAPTER 3

PROPOSED UNIFIED FRAMEWORK FOR SOFTWARE TEST ESTIMATION

3.1 Introduction

Phase 2 of the research methodology involves designing a Unified Framework that can

characterize facets of functional and non-functional testing. A Unified Framework is proposed

in this chapter consisting of basic parameters relevant for each type of testing and techniques

that can be adopted for building an estimation models for software testing.

Section 3.2 presents the structure of the proposed unified framework for software testing

based on the nature of the different types of testing and with the aid of ISO Standards related

to testing.

Section 3.3 defines the candidate base measures in terms of size and effort as relevant for

each type of testing.

Section 3.4 relates the above two sections in order to develop estimation models that can be

used to estimate test effort.

Section 3.5 summarises the unified framework and discusses how the framework can be

exploited to develop test estimation models for various types of testing. This section identifies

the scope of the unified framework for further elaboration in the following phases of this

research work.

3.2 Structure of the Framework

Software Testing consists of both Functional and Non-functional Testing. When software

undergoes changes Re-testing and Regression Testing are carried out. Re-testing will be

required for both functional and non-functional testing. Automated testing comes into context

when tests are to be automated. While non-functional tests are mostly automated, functional

testing is automated based on the need and mostly for regression testing. Functional and

64

Non-functional testing are core to the structure of the unified framework. Test Management

involves planning and managing test activities and defects. The structure of the proposed

Unified Framework is illustrated in Figure 3.1. Individual components of the structure are

presented in following sections.

Figure 3.1 Structure of the Unified Framework

3.2.1 Functional Testing

In real-life testing, functionality as provided by the application and functionality as emerged

out of operational scenarios bring in two distinct aspects to functionality testing:

1. Functional specifications serve as a primary reference for testing to ensure conformance.

2. An understanding of end to end business process help identifying various workflows within

the software that can be used to validate the software for the fitness of purpose for which

it is deployed.

65

This perspective leads to two categories: ‘Base Functional Testing’ and ‘Business Process

Testing’ (Figure 3.1).

3.2.2 Non-functional Testing

Non-functional requirements (NFR) identified for testing can be classified into two groups:

1. NFR selected for testing such as Performance, Compatibility, Usability, Portability,

Security, Maintainability, Reliability are different from one another with little commonality

between them and are tested under different scopes of testing. Some of these

requirements can evolve into functional requirements as per standards based framework

(Al Sarayreh, Abran and Cuadrado-Gallego, 2013). These requirements are referred to

as Convertible NFR.

2. Non Functional Requirements which cannot be converted into functional requirements

are referred to as True NFR in (COSMIC, 2015).

Non Functional Testing is classified accordingly into Convertible NFR Testing and True NFR

Testing (Figure 3.1, Table 3.1).

3.2.3 Modification Testing

Re-testing and Regression testing are carried out when software undergoes modifications.

Products are to be tested to ensure that changes are implemented properly and that they have

not introduced any new defects. Modification testing encompasses both functional and non-

functional parts of the proposed Unified Framework.

3.2.4 Test Automation

Test automation is similar to programming, where programs are generated and/or developed

to test other programs using specialized test tools and various programming/ scripting

languages. Functional tests are automated mostly for regression testing after manual testing.

However, recent software engineering methodologies, such as Agile, advocate test

automation from the early stages of development. In case of non-functional testing use of

66

automation tools are essential as many of the non-functional types of testing cannot be carried

out manually.

3.2.5 Mapping Framework Components to ISO Standards

Dynamic testing, as referred to in International Standard ISO 29119 – Software Testing

(ISO/IEC/IEEE 29119, 2013), involves testing against both functional and non-functional

requirements which cover all the quality characteristics (ISO/IEC 25010, 2011) such as

Functional Suitability, Performance Efficiency, Compatibility, Usability, Reliability, Portability

and Maintainability.

Elements of the proposed Unified Framework are mapped to International Standards (Table

3.1), enabling this framework to be used as a standard reference by builders of estimation

model.

 Table 3.1 Unified Framework cross referenced to ISO Standards

Test

Processes

ISO 29119

Test

Types

ISO 29119

Quality

Characteristics

ISO 25010

Unified Framework

Components

Dynamic

Test

Processes

Functional

Testing

Functional

Suitability

Functional Testing

Base

Functional

Testing

Business

Process

Testing

67

Test

Processes

ISO 29119

Test

Types

ISO 29119

Quality

Characteristics

ISO 25010

Unified Framework

Components

Dynamic

Test

Processes

Performance

Testing

Security

Testing

Usability

Testing

Compatibility

Testing

Reliability

Testing

Portability

Testing

Maintainability

Testing

….

….

Performance

Security

Usability

Compatibility

Reliability

Portability

Maintainability

….

….

….

Non Functional Testing

Convertible

NFR

True NFR

3.3 Approach to Measurements for Estimation

It is essential to quantify various components of the proposed Unified Framework in order to

build a test estimation model. ‘Functional Size’ measured using a Functional Sizing Method

and ‘Test Effort’ measured in person hours are considered as the base measures in this

model. Specific variants of functional size and test efforts are defined to suit the nature of the

elements of the Unified Framework.

68

3.3.1 Functional Testing

Functional testing type carried out to meet functional suitability quality characteristic has been

classified into Base Functional Testing and Business Process Testing (Table 3.1). Follows

definitions for functional size and test effort for both categories:

a. Functional Size: Functional Size of the software functionality measured using a

Functional Size Measurement Method recognized by ISO.

b. Functional Test Effort: Effort required to test the functionality including efforts required

to manage, design and execute tests.

c. Business Process Size: Size of functionality scaled up considering business processes

and their variations. This includes the sum of the functional sizes of all components

participating in a business process scenario considering only their inputs and outputs (i.e.,

excluding internal functionality of individual component). There is a similar approach used

in (Izak, 2012) for measuring business process size in ERP functional size measurement

method delivering time and cost estimates for implementations where business

processes and their sequences as used by customer become critical input to arrive at

estimates: estimations based on such an approach for in a Cash to Order business

process in 9 projects resulted in 8% overrun compared to earlier judgement based

methods where the overrun was 39%.

 Business Process Test Effort: Effort required to test the functionality represented by

Business Process Size. This includes effort required to manage, design and execute the

tests.

3.3.2 Non-functional Testing

According to the Unified Framework, Non-functional Testing is categorized into testing for

Convertible NFR and for True NFR (Table 3.1). When some of the NFR evolve into Functional

69

Requirements, those requirements will be tested as a part of functional testing and the others

which remain as True NFR are to be tested separately.

Functional Size and Test Effort are defined for Convertible NFR. Only Test Effort is defined

for True NFR where the concept of functional size is not relevant.

a. Convertible NFR Size: Functional Size of the system NFR converted into software FUR,

measured using a Functional Size Measurement Method.

b. Convertible NFR Test Effort: Effort required to manage, design and execute the tests

for testing convertible NFR.

c. True NFR Test Effort: Effort required for testing specific NFR which are not convertible

into software FUR. This effort will include effort for automation, as automation is an

integral activity in NFR Testing.

3.3.3 Modification Testing

Modification Testing for functional changes involves re-testing and regression testing.

Functional Size and Test Effort for functional modification testing are defined as follows:

a. Impact Size: Size of changes to functional requirements plus the size of those

requirements which are impacted due to changes, measured using a Functional Size

Measurement Method.

b. Modification Test Effort: Effort required to test for the changes. Modification Test Effort

includes test design efforts for the changed functionality and test execution efforts for both

changed and impacted functionality, apart from test management effort.

There are no specific definitions identified for non-functional testing related to modification.

They would be viewed similar to non-functional testing as defined in the previous section. True

70

NFR effort as defined in section 3.3.2 has to be worked out for each round of Non- functional

testing whenever True NFR is modified.

3.3.4 Test Automation

Definitions for size and test effort for functional test automation have been arrived at as

follows:

a. Functional Test Automation Size: The functional size of the requirements that would

be automated will be a key driver for functional test automation. This is measured using

a Functional Size Measurement method.

b. Functional Test Automation Effort: Efforts required to manage, create test automation

scripts and execute for functional test automation. Effort includes all phases of

preparation of test automation scripts like specification, design, scripting, testing the

automation scripts and executing those automated scripts.

c. True NFR Test Automation Effort: This will be part of True NFR Test Effort defined in

Section 3.3.2.

When most of the non-functional tests are automated, test effort automation of non-functional

tests will be part of ‘True NFR Test Effort’ defined earlier.

3.4 Approaches for Test Effort Estimation

This section provides approaches for test effort estimation based on the measures identified

in section 3.3. Techniques for Size Measurement and Test Effort for each type of testing as

discussed below enable building estimation models corresponding to those types of testing.

3.4.1 Functional Testing

Functional Size: Functional size can be measured using IFPUG Function Points (FP) or

COSMIC Function Points (CFP). It has been observed (Bhardwaj, Mridul and Rana Ajay,

71

2015) that functional size measurement is the most accepted approach to measuring the size

and change in unit size has bigger impact than effort. Appropriate estimation techniques have

to be used to reduce the margin of error. COSMIC is preferred for the following reasons:

a. Compared to other functional sizing methods, the COSMIC method measures pure

functional size and is ideal for carrying out performance measurements comparisons of

projects using different technology and also as an input to estimating method (Gencel

Cigdem, Charles Symons, 2009).

b. COSMIC is the only second generation FSM Method approved as an ISO Standard

(ISO/IEC 19761, 2011).

c. COSMIC is fully compliant with ISO 14143, a meta standard for Functional Size

Measurement (ISO/IEC 14143-1, 2007).

d. Is designed from the principles of metrology.

e. Applicable across Business applications and Real-time domains.

f. Recognized by the International Benchmarking and Standards Group (ISBSG) for data

collection and benchmarking.

Functional Test Effort: A posteriori estimation model using Functional Size as the

independent variable and Functional Test Efforts from past data can be used to estimate

functional test effort. Regression technique appears to be a promising approach due the

following reasons:

a. Regression analyses have been used with Functional sizes for estimation of software

development efforts with a good relationship (Hill, 2010).

b. A comparison of four models namely SLIM (Putnam, 1978), COCOMO 81 (Boehm, 1981),

Estimacs (Rubin, 1982) and Function Point (Albrecht, 1979) using data from 15 projects

resulted in the conclusion that function point based regression model performed much

better than all the other models (Kemerer, 1987).

c. Estimation models using regression trees, artificial neural network, Function Points

(IFPUG, 2005), (Boehm and Abst, 2000) and the SLIM model (Putnam, 1978) using 63

COCOMO project data points from different applications as training set and tested the

results on 15 projects (Srinivasan, 1995). The regression trees outperformed the

COCOMO and SLIM Model. A later study (Lionel et. al., 1999) found that the function

point based prediction model performed much better than regression trees.

72

d. Liner regression has been sued for estimation models for testing using ISBSG data based

in a study (Kamala Ramasubramani J. and Abran, 2013) carried out by the researcher.

e. Parametric models are objective, repeatable, fast and easy to use which can be used

early in life cycle if they are properly calibrated and validated (Galorath, 2015).

3.4.2 Modification Testing

Impact Size: Impact size is similar to functional size but takes into account the sizes of

impacted functionality in addition to size of modifications to functionality. Impact size can be

measured in CFP.

Modification Test Effort: Regression Model using Impact Size and Modification Test Effort

can be used to estimate functional modification test effort. The approach is similar to

estimation of Functional Test Effort discussed in previous section 3.4.1

3.4.3 Non-functional Testing

NFR selected for testing under different scopes of testing engagement based on contractual

needs (such as: Performance, Compatibility, Usability, Portability, Security, Maintainability,

Reliability) are different from one another with little commonality between them. There may

not be significant relationships between functional size and efforts required to test against

those specific True NFR. Separate effort model for each of the True NFR should be built due

to the distinct nature of each of the NFR.

Effort model for each of the NFR can be arrived at by considering the following possibilities:

a. NFR that can be converted into suitable software functional requirements:

Conversion of system NFR into software Functional Requirements based on generic

standards-based reference models as discussed earlier for Maintainability and Portability.

Regression model based on Functional size of converted NFR and corresponding test

effort can be used to estimate converted NFR Test Effort.

b. True NFR that cannot be converted into software functional requirements:

73

This research project has reviewed estimation models such as Work-breakdown,

COCOMO-like and Fuzzy inference in addition to size based estimation model. Fuzzy

inference based on expert judgment appears promising for estimating test efforts for True

NFR due to following reasons:

Inputs required to estimate is often based on expert judgment and fuzzy inference model

can use the input variables as identified by experts.

Experts judge the relationship between inputs and test activities, which can help defining

membership functions and assigning values based on expert opinion.

3.4.4 Functional Test Automation

Functional Automation size: Size of functionality measured in COSMIC would be a key

parameter in determining efforts for test automation.

Functional Test Automation Efforts: Effort model based on regression analysis with

functional size has worked quite well for estimation software development projects (Hill, 2010).

The same approach can be explored for test automation as automation of functional testing

is analogous to a software development process.

3.5 Conclusion

The proposed Unified Framework (Table 3.2) provides a high level view for software testing

in terms of measures and approaches towards estimation for all types of testing. This Unified

Framework, an innovative part of this research work, has taken an holistic view and, at the

same time, provides a practical approach to test estimation models.

Size and effort measures along with their relevant unit of measurement applicable to different

types of testing have been proposed as a part of this framework. Estimation models may

include other parameters such as domain, architecture, team size, etc., based on specific

contexts that can be considered while building test estimation models.

While the Unified Framework deals with estimation for all types of testing, detailed research

work presented in the next chapter will focus only on the design of estimation models for

74

functional testing, particularly for base functional testing: base functional testing is most

fundamental to software testing and is always performed, while all other types of testing are

carried out based on the testing context and needs. The base functional testing specified in

this framework will be referred as the functional testing in subsequent chapters for the sake

of simplicity and for conforming with the convention. Proposals related to estimation of all

other types of testing appearing as a part of Unified Framework will open up opportunities for

further research and are not included within the scope of this research work.

Table 3.2 Unified Framework – Measurements & Estimation Approach

Test Type Framework
Component

Measure Unit of
Measure

Model
Technique

Functional Functional

Testing

Functional Size CFP Regression

Functional Test

Effort

Hours Regression

Business

Process Testing

Business Process

Size

CFP Regression

Business Process

Test Effort

Hours Regression

 Non-

Functional

Convertible NFR

Testing

Functional Size of

Convertible NFR

CFP Regression

Converted NFR

Test Effort

Hours Regression

Non Convertible

NFR Testing

True NFR Test

Effort

Hours Fuzzy

Inference

Modification Modification

Testing

Impact Size CFP Regression

Modification Test

Efforts

Hours Regression

Test

Automation

Automated

Testing

Functional Test

Automation Size

CFP Regression

Functional Test

Automation Efforts

Hours Regression

CHAPTER 4

 ESTIMATION MODEL FOR FUNCTIONAL TESTING

4.1 Overview

This chapter deals with the phase 3 of the research work consisting of designing estimation

models and phase 4 covering evaluation of estimation models.

The engineering approach adopted to design estimation models consists of:

1. Identification of project data set from repository of software projects (Section 4.2).

2. Selection of relevant project samples and data preparation (Section 4.3).

3. Analysis of data to understand productivity levels of testing (Section 4.4.1).

4. Contextualization of the projects based on attributes and categorization of projects

(Section 4.4.2).

5. Identification of independent variables of significance that can influence test effort

(Section 4.5).

6. Building context specific portfolio of estimation models for each category using

combination of independent variables (Section 4.6).

The following steps are performed for evaluation of the estimation models:

1. Verification of the quality of estimation models based on established criteria (4.7.1).

2. Evolving a criterion for comparing predictive performance of models (4.7.2).

3. Comparison of predictive performance of models (Section 4.7.3).

The approach does not aim at designing a single model that could handle all possible

conditions but aims at designing a portfolio of estimation models suiting specific contexts. A

set of estimation models will be built with data chosen from the International Software

Benchmarking and Standards Group (ISBSG) repository. An initial portfolio of estimation

models will be built using a larger data set followed by a second portfolio of estimation models

based on a more homogeneous subset of the larger data set. A third and fourth portfolio of

estimation models will use only data from projects where functional size has been measured

using COSMIC Function Points and IFPUG Function Points, respectively. These estimation

76

models will be evaluated using various criteria for measuring outputs from estimation models.

The estimation models will be compared based on the measure of their predictability.

4.2 ISBSG Data for Estimation Model

The ISBSG database consists of data related to parameters of software projects reported over

the last two and half decades: it provides industry and researchers with standardized data for

benchmarking and estimation (Abran, 2015). Release 12 of ISBSG data published in 2013

has a repository of 6006 projects. It provides up to 126 project attributes related to information

specific to each project based on the availability of the data submitted. ISBSG dataset has

been extensively reviewed for applicability to build effort estimation models including effect of

outliers and missing values (Bala, 2013).

The attributes that would be of interest for building test estimation models include:

a. Functional Size data based on international measurement standards, including

IFPUG Function Point (ISO 20296, 2009) or COSMIC Function Point (ISO 19761,

2011).

b. Schedule, Team Size and Work Effort information in terms of project elapsed

time, team size and break down of work efforts in terms of Plans, Specifications,

Design, Build, Test and Install project phases.

c. Project Processes related data based on software life cycle activities followed

such as planning, specifications, design, build, test and adoption of practices from

standards or models such as ISO 9001, CMMI, SPICE, PSP etc. used while

developing the software.

d. Grouping Attributes consisting of industry sector, application groups such as

business application, real time etc., and development type in terms of new

development, enhancement or re-development.

e. Development Platform information such as PC, Mid-Range, Main Frame or Multi-

Platform.

f. Architecture information such as whether the application is built Stand Alone,

Multi-Tier, Client/ Server or Web.

g. Language Type information in terms of 3GL, 4GL, Application Generators used

for development.

77

h. Data Quality Rating in terms of A, B, C or D varying from Very Good to Unreliable

assigned by the ISBSG data administrator.

i. Another attribute provides Unadjusted Function Points data quality rating in terms

of A, B, C or D if IFPUG Function Points is used for the measurement of

Functional Size.

The above data fall into one of the following scale types:

1. Nominal (Project Management Tool name, Requirements Tool name, etc.,)

2. Categorical (Platform Types such as Main Frame, PC, etc.,)

3. Numerical (Functional Size in COSMIC Function Points, Project Work Effort in Hours,

etc.,)

4.3 Data Selection

4.3.1 Criteria for data selection

A set of criteria to ensure the quality of the data, relevance of the data to current industry

needs, suitability of the data to the testing context and adequacy of data for statistical analysis

have been defined as follows.

4.3.1.1 Data Quality

a. ISBSG Quality Rating:

The ISBSG Data Quality Rating field is a categorical field with the following candidate

rating and corresponding criteria (ISBSG, 2013):

- A: The data submitted were assessed as sound, with nothing identified that might

affect their integrity.

- B: The submission appears fundamentally sound, but there are some factors that could

affect the integrity of the submitted data.

- C: Due to significant data not being provided, it was not possible to assess the integrity

of the data.

- D: Due to one factor or a combination of factors, little credibility should be given to the

data.

78

In this research project, data with Data quality rating A and B are selected to reduce the

risks of poor data quality and improve confidence on the result of analysis.

b. Function Point Size Quality:

When IFPUG Function Points are used for measurement of Functional Size, only the

Unadjusted Function Points value is considered. A rating has been assigned by ISBSG to

the quality of Function Points data based on the integrity of data:

- A: Data is sound with nothing identified affecting the integrity of data.

- B: Data appears to be sound, but integrity cannot be assured as a single final figure

was provided.

- C: Due to break-down data not provided, the data may not be reliable.

- D: Due to one or a combination of factors, little credibility should be given to the data.

Data quality ratings of C and D are excluded from the data set in order to improve the

quality of estimation models.

4.3.1.2 Data Relevance

ISBSG data consists of projects reported since the early ‘90s. Most of the projects during’ the

90s were developed in mainframe environment, predominantly using the COBOL

programming language. In order to ensure data relevant to current development environment

is taken up for building model the following filters were applied:

a. Size Measurement Method chosen should be either IFPUG 4+ or COSMIC, which would

represent industry data post year 2000.

b. Projects with architecture as ‘Stand Alone’ removed in order to eliminate trivial projects.

c. Architecture values with either Client/Server or Web based projects data were considered.

d. Architecture value with ‘blanks’ will be included in an initial data set.

e. Architecture value with ‘blanks’ will be filtered out for another data set.

4.3.1.3 Data Suitability

In order to build estimation model for software testing, effort data related to software testing

should be non trivial. ISBSG data field ‘Normalized Work Effort’ refers to full life-cycle effort

for projects. For partial life cycle projects, ISBSG fills this field with an estimate of the full

development life-cycle effort. For projects covering the full development life-cycle, and

79

projects where life-cycle is not known, this value is the total effort in hours recorded for the

projects, referred to as Summary Work Effort in ISBSG. In order to exclude trivial projects and

include only projects with at least a minimum amount of test efforts expended on projects, the

following filters are chosen:

a. Total normalized work effort is equal to or above 80 hours.

b. Efforts reported for testing is above or equal to 16 hours.

c. Projects referring to types of testing other than functional testing will be filtered out of the

data set.

4.3.1.4 Data Adequacy

a. Application Group is chosen as ‘Business Application’. Several projects are of Business

Application category and this filter would result in a larger data set. As Functional size is

a key parameter in estimation model, the methods used for functional sizing should be

suitable to the application type. Functional Sizing methods IFPUG Function Point and

COSMIC Function Point both are applicable for Business Application, while only COSMIC

is applicable for other types.

b. New Development and Re-Development were chosen from the Development Type field

among the values New Development, Enhancement and Re-Development. Data related

to enhancement were fewer for project context specific statistical analysis.

4.3.2 Data Preparation

Applying all the filters related to the criteria for data selection resulted in 193 data points.

Identification of outliers based on domain and John Tukey’s Inter Quartile Range statistical

criteria resulted in 170 data points (see APPENDIX I). Further based on identification of

suitability of the data points (see APPENDIX I) for estimation model, 28 data points were

removed, thus resulting in 142 data points for building estimation model. Details of application

of individual filters and resulting data points are presented in APPENDIX I.

Four data sets are formed by applying the criteria for data selection and then removing outliers

for building estimation models:

80

Data Set A: This data set A of the 142 data points from above contains functional size

measured using IFPUG 4.1 and COSMIC FP which are not differentiated for this study

considering the fact that they correlate well even though the relationship is not the same

across all size ranges (Dumke and Abran, 2011).

Data Set B: While arriving at Data Set A, projects with field value for architecture ‘Stand

Alone’ were eliminated from the original ISBSG data set, while ‘blanks’ were retained. In order

to be very specific about the architecture type, ‘blanks’ were also eliminated to arrive at Data

Set B. This data set is expected to be more homogeneous than Data Set A. Data Set B

consists of 72 data points.

Data Set C: Data Set C is made up of only projects where functional size is measured using

the COSMIC Function Points method. This data set is another subset of Data Set A and likely

to be more homogeneous. Data Set C consists of 82 data points.

Data Set D: Data Set D is formed considering only projects where functional size is measured

using the IFPUG method. This data set is another subset of Data Set A and consists of 60

data points.

4.4 Data Analysis

4.4.1 Strategy

The following research strategy is adopted for data analysis:

a. Identification of subset of data points exhibiting different levels of testing productivity. This

is discussed in this section 4.4.2.

b. Analysis of each of these subsets to identify what could be the causes for such distinct

testing levels of productivity. This will be discussed in section 4.4.3.

81

4.4.2 Identification of Test Productivity Levels

‘Functional Size’ and efforts for testing reported as ‘Test Effort’ are key data values from Data

Set A taken up for the initial analysis. The scatter diagram in Figure 4.1 depicts an overall

large dispersion in the relationship between functional size and test efforts, the respective

independent and dependent variables: the pattern is closer to wedge-shaped and is typical of

data from large repositories (Abran, 2015).

Within this dataset of Figure 4.1, there are candidate groups of data within the data exhibiting

both large economies of scale and large diseconomies of scale: the rate of increase of test

effort is not same for all similar functional sizes. For those set of projects demonstrating large

economies of scale, an increase in functional size does not lead to significantly larger increase

in efforts. On the other hand, projects demonstrating diseconomies of scale, a small increase

in size requires a much larger increase in test effort.

A further graphical analysis of data slicing along different testing productivity levels resulted

in four subsets (Figure 4.2).

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000

Te
st

 E
ff

or
t (

H
rs

)

Size (FSU)

Size vs Test Effort

Figure 4.1 Scatter Diagram: Size versus Test Effort (N = 170)

82

Figure 4.2 Multiple Data groups representing different economies of scale (N=170)

As economies and diseconomies of scale represent different productivity levels during testing,

a new term ‘Test Delivery Rate (TDR)’ is defined to deal with the productivity of testing

projects. Test Delivery rate is the rate at which software functionality is tested as a factor of

the effort required to do so and is expressed as hours per Functional Size Unit (hr/ FSU).

Functional Size Unit (FSU) refers to either IFPUG Function Point or COSMIC Function Point

depending upon the sizing method used for measurement. The four varying levels of

productivity will be referred as ‘TDR Levels’. TDR, being the effect, characteristics of the

project falling into each of the level have to be investigated for identifying underlying causes.

Review of TDR levels (Refer APPENDIX – I) resulted in the following observations:

a. TDR for projects is uniformly distributed within levels 1, 2 and 3 but not for level 4.

b. TDR level 4 projects appear quite odd as their minimum test effort is 7 – 12 times more

than other levels, while the maximum functional size itself is 0.4 – 0.7 times of other levels.

c. The 23 data points in level 4 consists of small projects in terms of functional size and

disproportionately very large test efforts compared to the other projects.

Due to the highly skewed nature of TDR Level 4, only TDR Levels 1 to 3 are taken up for

further analysis and building estimation models.

-500
0

500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

0 200 400 600 800 1000

Te
st

 E
ff

or
t (

H
rs

)

Size (Functional Size Unit)

Functional Size vs Test Efffort

Level 1
Level 2
Level 3
Level 4
Linéaire (Level 1)
Linéaire (Level 2)
Linéaire (Level 3)
Linéaire (Level 4)

83

4.4.3 Identification of Candidate Characteristics of Projects

Research study carried out at Putnam’s organization (Putnam, 2005, Kate 2012) based on

data from hundreds of software projects brought out the fact that team size and schedule

(duration of the project) within a particular domain affect productivity of development project.

As software testing is one of the phases of development projects, project attributes such as

Domain, Team Size and Elapsed Time are likely candidates for software testing productivity

too. Testability of the software components, i.e., quality of the software delivered for testing is

found to be critical for reducing the testing cost (Ossi, 2007) and hence the effort for testing.

Quality of the software delivered for testing can be determined by the extent of verification

and validation activities carried out during the development process.

Candidate project characteristics that would of interest in this context of test effort estimation

would be application domain of the project, size of team involved, estimated duration of the

project and the extent of verification and validation activities carried out. These attributes of

projects can be derived from the ISBSG data fields.

Team Size: Team sizes of 1 to 20 members have been more frequent in the team size field

in the data set. I classified team size into three categories:

a. 1 – 4 (referred as ‘small’)

b. 5 – 8 (referred as ‘medium’)

c. above 8 (referred as ‘large’)

They represent small, medium and large team sizes typically present in the industry.

Elapsed Time: Elapsed time in calendar months is derived from the ‘Project Elapsed Time’

field from the data set. In order to characterize the projects as small, medium and large which

are typically related to duration, this attribute has been classified into three groups:

a. 1 – 3 months (referred as ‘small’)

b. 4 – 6 months (referred as ‘medium’)

c. above 6 months (referred as ‘large’)

V & V Rigour: This attribute is derived from the values for data fields related to ‘Documents

& Techniques’ category in ISBSG that can indicate the rigour followed during verification and

84

validation activities. Fields such as specifications, design and build representing documents/

artefacts produced during the development phases and techniques such as review carried out

during each of the phase can indicate the quality of the software engineering life cycle followed

during the development. Two ratings are worked out for V & V Rigour (Table 4.1). Refer to

APPENDIX II for mapping of ISBSG data fields to V & V rigour for assigning rating.

Table 4.1 V & V Rigour Rating Scheme

V & V Rigour Rating Description

Low None or very little evidence of Reviews/Inspection to infer the
rigour.

High Reviews/ Inspection reported for at least one of the
specification, design and build phases.

Application Domain: This attribute has been derived from the ISBSG data field ‘Industry

Sector’. Typical values found for this field are Banking, Service Industry, Government,

Financial, Communication, Insurance, etc. Considering the number of data points available

for different industry sectors, application domain is classified into three categories namely:

a. IT Services representing banking, financial and insurance (BFSI).

b. Educational.

c. Government.

The group of projects contributing to each TDR level will be referred to as Project Group.

Project Group 1 (PG1), Project Group 2 (PG2) and Project Group 3 (PG 3) are related to TDR

Levels 1, 2 and 3 respectively. The percentages of projects falling into each of the project

groups for the four attributes of interest (Table 4.2) enable characterisation of the project

groups.

85

Table 4.2 Analysis of Project Characteristics – Data Set A

Domain
No./
%

PG
1

PG
2

PG
3

BFSI

No 14 23 32

% 20 33 46

Education

No 11 0 0

% 100 0 0

Government

No 6 10 2

% 33 56 11

Team
Size No./%

PG
1

PG
2

PG
3

 Small

No 10 4 2

% 63 25 13

Medium

No 18 14 7

% 46 36 18

Large

No 5 4 8

% 29 24 47
Elapsed
Time

No./
%

PG
1

PG
2

PG
3

Small

No 18 7 5

% 60 23 17

Medium

No 6 8 7

% 29 38 33

Large

NO 14 20 16

% 28 40 32

V & V
Rigour No./%

PG
1

PG
2

PG
3

Low

No 25 42 43

% 23 38 39

High

No 21 7 4

% 66 22 13

Closer to half of the BFSI projects (46%) fall in PG3 followed by 1/3rd in PG2. All projects of

education domain fall in PG1 while slightly more than half of the government projects fall in

PG2.

As far as the Team Size attribute is considered, almost 2/3rd of the projects with small team

size fall in PG1, while 82% (46% + 36%) of the projects of medium team size are shared by

PG1 and PG2. Little less than 50% of the projects of large team size fall in PG3.

Small Elapsed Time is closer to 2/3rd in PG1, while 71% (38% + 33%) of the projects with

medium Elapsed Time are spread between PG2 and PG3. Similarly, PG2 and PG3 share

72% (40% + 32%) of the projects with large elapsed time.

Projects with higher V & V rigour has 2/3rd presence in PG1 while 77% (38% + 39%) of the

lower V & V rigour projects are spread between PG2 and PG3.

86

The three project groups have certain distinctions with respect to Team Size, Elapsed Time,

V & V Rigour and Domain apart from test productivity. In order to establish statistical

significance, test of hypothesis performed and p value is computed.

Table 4.3 Statistical Significance of Attributes in Data Set A (N = 142)

Attribute/

Statistical Test

Team
Size

Elapsed
Time

V & V
Rigour

Domain

Chi-Square

P Value

0.088 0.057 < 0.001 < 0.001

The Chi-Square Test conducted (Table 4.3) on the three project groups with respect to these

attributes resulted in p value of less than 0.001 for V & V Rigour and Domain and less than

0.1 for Team Size and Elapsed Time. This further establishes that variations across the three

project groups are reasonably significant and the attributes identified are potential contributors

to the test productivity. These project characteristics could be the causes for different TDR

levels resulting in economies and diseconomies of the scale depicted in Figure 4.2.

Other general observations based on these analyses are:

a. Smaller team size projects and short duration projects exhibit higher productivity in terms

of TDR and largely fall in PG1.

b. Projects executed with rigorous verification and validation have higher TDR and mostly

fall in PG1.

c. Less business critical projects such as educational projects executed at universities have

higher TDR, falling into PG1 as compared to projects executed for Government and BFSI

domains.

These project attributes (Table 4.4) pave the way for building a portfolio of estimation models

representing different contexts than a single model representing the entire data set.

87

Table 4.4 Characteristics of Project Groups

Attribute PG1 PG2 PG3

Domain Educational Government BFSI

Team Size Small/ Medium Small/ Medium Large

Elapsed Time Small Medium/ Large Medium/ Large

V & V Rigour High Low Low

The statistical tests (Table 4.5) conducted to compute the P Value establishes higher level of

significance across three product groups for test effort.

Table 4.5 Statistical Significance of Project Groups

Statistical Test P Value

PG and Test Effort

Significance

< 0.001

The results of analysis of project characteristics based on Data Set A and Data Sets B, C and

D (APPENDIX III), with exception to Data Set D, demonstrate more or less similar behaviour.

Project attributes taken up for analysis such as Domain, Team Size, Elapsed Time and V & V

Rigour are reasonable causes for varying productivity level in testing. Projects can be grouped

into one of the three project groups namely PG1, PG2 and PG3 based on these attributes.

Separate estimation models can be built for each project group which can more closely

represent the projects within that group instead of developing a single model.

4.5 Identification of Independent Variables

It has been identified earlier (Section 3.4) in the unified framework that functional size (referred

as ‘size’ in later sections) is one of the independent variables that can be used in building

estimation model software testing using ISBSG data set. Scatter Diagrams of Size versus

88

Figure 4.3 Scatter Diagrams for Size vs Test Effort: Data Set A, PG1, PG2 and PG3

Test Effort for the whole data set A and individual project groups PG1, PG2 and PG3 (Figure

4.3) depicts relationship between size and test effort within the data sets chosen for estimation

model for testing.

Correlation coefficients computed between Size and Test Effort in the data sets (Table 4.6)

also indicate good correlation and hence size is chosen as the primary independent variable.

0

500

1000

1500

2000

2500

0 200 400 600 800

Te
st

 E
ffo

rt
 (h

r)

Size (FSU)

Size vs Test Effort
(Data Set A)

0

100

200

300

400

500

600

0 200 400 600 800

Te
st

 E
ffo

rt
 (h

r)
Size (FSU)

Size vs Test Effort
(Data Set A PG1)

0

500

1000

1500

2000

0 200 400 600 800

Te
st

 E
ffo

rt
 (h

r)

Size (FSU)

Size Vs Test Effort
(Data Set A PG2)

0

500

1000

1500

2000

2500

0 200 400 600

Te
st

 E
ffo

rt
 (h

r)

Size (FSU)

Size Vs Test Effort
(Data Set A PG3)

89

 Table 4.6 Correlation Coefficients for Size Vs Test Effort

Size being the main independent variable, other independent variables are examined for their

significance to incorporate into estimation models.

AssessQ model for software test effort estimation designed (Mutalik, 2003) for independent

testing projects, discussed in the literature study, brought out ‘Developer maturity’, referring

to the quality of the processes used for development and ‘Maturity of verification and validation

processes’ as two of the process factors affecting estimates for testing.

In Ossi Taipale Ph. D thesis (Ossi, 2007), it has been observed that ‘testability of software

components’ meaning the quality of the software delivered for testing and testing processes

followed while testing as critical factors for reducing testing cost and improving software

quality.

In order to accommodate for the process factors two new variables representing development

process quality and testing process quality have been defined and investigated next.

4.5.1 Development Process Quality Rating (DevQ)

The process followed during the development can be rated considering the nature of the

development life cycle followed and the artefacts produced, using the following attributes of

the project:

1. Standards followed

2. Distinct development life cycle phases followed.

3. Verification activities carried out during development.

Data Set Correlation coefficient

Data Set A 0.3565

Data Set A PG1 0.9035

Data Set A PG2 0.8572

Data Set A PG3 0.8752

90

The ISBSG data field ‘software process’ has one of the values - CMMI, ISO, SPICE, PSP or

any such standard followed during the development. A set of fields representing ‘Documents

and Techniques’ exists in ISBSG data provide information on the life cycle phases followed

and verification activities carried out during the development (Refer to APPENDIX IV). Based

on these, a rating for DevQ has been arrived at as in Table 4.7.

Table 4.7 Rating for Development Process (DevQ)

4.5.2 Test Process Quality Rating (TestQ)

While reviewing the data related to the testing process followed, it is found that there were not

enough fields in ISBSG data to capture the details of the testing process followed such as

testing techniques adopted, levels of testing executed, test artefacts produced, reviews of test

cases etc., to gauge the extent of testing. However, it is possible to classify the test process

rating broadly into two categories (Table 4.8). The detailed mapping of the test process rating

criteria against fields of ISBSG is provided in APPENDIX IV.

Table 4.8 Rating for Test Process (TestQ)

Test Process Criteria Test Process Rating (TestQ)

No evidence of Test Artefacts 0

Evidence of Test Artefacts 1

Software Process Documents & Techniques DevQ Rating
Not reported Very little reporting to infer 0

Reported Very little reporting to infer 1

Not reported One or more phases has values 1

Reported One or more phases has values 2

91

4.5.3 Analysis of DevQ and TestQ

Classification of the data set in terms of DevQ and TestQ rating reveals that 36%, 49%, and

15% of the projects are of DevQ Ratings 0, 1 and 2 respectively. TestQ percentages are 80%

and 20 % for TestQ ratings 0 and 1 respectively (Figure 4.4).

Figure 4.4 Distribution of DevQ and TestQ Ratings (N = 142)

Different median test effort and interquartile ranges for DevQ values of 0, 1 and 2 (Figure 4.5)

reveals the effect of DevQ on test effort. Median test effort and the interquartile range is the

lowest for the highest DevQ rating.

0
36%

1
49%

2
15%

Dev Q Distribution

0

1

2

0
80%

1
20%

Test Q Distribution

0

1

92

 Figure 4.5 Box Plots of DevQ Ratings 0, 1 and 2

Similarly, different median test effort and interquartile ranges for TestQ values of 0 and 1

(Figure 4.6) reveals the effect of TestQ on test effort. Median test effort and the interquartile

range is the lowest for the highest TestQ rating.

Figure 4.6 Box Plots of TestQ Ratings 0 and 1

93

In order to further justify the inclusion of these variables, two statistical tests were carried out

to evaluate their significance:

1. the Kruskal-Walis Test was taken up for DevQ as it involved three categories, and

2. the Mann Whitney Test was applied for TestQ (Table 4.9).

Table 4.9 Test of Significance for Independent variables

Statistical Test Variable P Value

Chi Square P Value Size < 0.001

Kruskal-Wallis Test DevQ 0.005

Mann-Whitney Test TestQ 0.003

The P-value indicates that Size, DevQ and TestQ are statistically significant.

Analysis of DevQ and TestQ for Data Set B, C and D are detailed out in APPENDIX V. These

analyses reveal that the two additional variables viz., DevQ and TestQ can play a useful role

in estimation models.

4.6 Portfolio of Estimation Models for Functional Testing

4.6.1 Estimation Models – Data Set A (N = 142)

The linear regression technique has been chosen to build test effort estimation models.

APPENDIX VI details out a study of fitment of different models to the data set. The linear

models are better understood by the practioners and simpler to use. Further data set used for

models are subdivided into three project groups exhibiting similar characteristics, making

application of the linear model a reasonable choice.

A portfolio of 9 models are built using Data Set A:

a. Three models are built using functional size as an independent variable for each of the

three Project Groups using simple linear regression.

94

b. Three models are built with Size and DevQ as independent variables for each of the

Project Group using multiple regression technique.

c. Three models are developed using Size, DevQ and TestQ for each of the Project Group

using multiple regression technique.

Each model in this portfolio has been identified with a Model Id (Table 4.10), Model Name,

Project Group to which it corresponds to, related independent variables and the number of

data points available.

Table 4.10 List of Models in Portfolio A

Model
ID

Model
Name

Project
Group

No of
Data
Points

Independent Variable

Size DevQ TestQ

1 APG1S 1 46 √ - -

2 APG2S 2 49 √ - -

3 APG3S 3 47 √ - -

4 APG1SD 1 46 √ √ -

5 APG2SD 2 49 √ √ -

6 APG3SD 3 47 √ √ -

7 APG1SDT 1 46 √ √ √

8 APG2SDT 2 49 √ √ √

9 APG3SDT 3 47 √ √ √

a. Model IDs 1, 2 and 3 present model for each Project Group using Size as an independent

variable.

b. Model 4, 5 and 6 use both Size and DevQ as independent variables and relate to Project

Groups 1, 2 and 3 respectively.

c. Models 7, 8 and 9 use Size, DevQ and TestQ as independent variables and represent

Project Groups 1, 2 and 3 respectively.

95

Depending upon the number of independent variables, model equations will have co-efficients

A, B, D1, D2, T1 and T2 (Table 4.11), which can be used to estimate a value for Test Effort

for specific values of Size, DevQ and TestQ as explained next.

Using Estimation Models1 2 & 3 based on Size

Test effort for a particular functional size can be estimated from models (Table 4.11) using the

following equation:

Test Effort = A + B × (Size)

Using Estimation Models 4, 5 & 6 based on Size and DevQ

Test effort for a particular values of functional size and DevQ can be estimated from models

(Table 4.11) using the following equation:

Test Effort = A + (B × (Size)) + D1 + (D2 × (Size))

D1 and D2 have different values based on the value of DevQ. Appropriate values from the

table to be chosen depending on whether DevQ = 0 or Dev Q = 1. For DevQ = 2, the value

will be 0, the base value considered for this model.

Using Estimation Models 7, 8 & 9 based on Size, DevQ and TestQ

The equation for estimating Test Effort for particular values of Size, DevQ and TestQ from the

model (Table 4.11) takes the form:

Test Effort = A + (B × (Size)) + D1 + (D2 × (Size)) + T1 + (T2 × (Size))

Values for D1 and D1 can be chosen from the table depending upon input value of DevQ

either 0 or 1. Value for T1 and T2 are provided for TestQ value of 0. Values for DevQ = 2 and

Test Q = 1 are zero, as they are considered as base while modelling.

96

The portfolio consisting of nine models generated by regression as explained above are listed

in Table 4.11 in terms of the values of the coefficients of the equations representing the

models.

Table 4.11 Estimation Models - Portfolio A (N = 142)

ID

Model Coefficients

A B
D1 D2 T1 T2

DevQ=0 DevQ=1 DevQ=0 DevQ=1 TestQ=0 TestQ=0

1 1.617 0.604

2 20.69 1.705

3 98.13 4.801

4 16.12 0.485 19.347 -39.375 -0.23 0.214

5 20.57 1.56 -94.1 34.077 0.562 -0.009

6 38.85 3.734 -55.913 92.609 2.14 0.852

7 -9.62 0.65 6.967 -41.78 0.003 0.193 38.124 -0.191

8 30.74 1.541 -19.755 62.481 -0.039 -0.338 -84.511 0.62

9 38.85 3.734 -55.913 92.609 2.14 852 0 0

4.6.2 Estimation Models - Data Set B (N=72)

In the previous sub-section, the data Set A has been considered for estimation models in

order to gain the larger picture with respect to project characteristics related to various TDR

levels. The Data Set A with 142 data points represents web or client server projects even

though they include projects where the information about their architecture value was not filled

up. In order to remove some uncertainty related to projects with blanks, the Data Set B with

72 projects was filtered out from Data Set A by eliminating projects with architecture value as

blank. Therefore, the Portfolio B of estimation models identified based on Data Set B (Table

4.12) represent Web and Client/ Server projects more closely than Portfolio A models.

97

Table 4.12 List of Estimation Models - Portfolio B

Model
ID

Model
Name

Project
Group

No of
Data
Points
(N)

Indepdendent Variable

Size DevQ TestQ

10 BPG1S 1 32 √ - -

11 BPG2S 2 24 √ - -

12 BPG3S 3 16 √ - -

13 BPG1SD 1 32 √ √ -

14 BPG2SD 2 24 √ √ -

15 BPG3SD 3 16 √ √ -

16 BPG1SDT 1 32 √ √ √

17 BPG2SDT 2 24 √ √ √

18 BPG3SDT 3 16 √ √ √

Portfolio B consisting of nine models are listed in Table 4.13 in terms of values of coefficients:

a. Models 10, 11 and 12 relate to Project Groups 1, 2 and 3 respectively using Size as

independent variable.

b. Models 13, 14 and 15 relate to Project Groups 1, 2 and 3 respectively using Size and

DevQ as independent variables.

c. Models 16, 17 and 18 relate to Project Groups 1, 2 and 3 using Size, DevQ and TestQ

as independent variables.

Table 4.13 Estimation Models Portfolio B (N = 72)

ID

Model Coefficients

A B

D1 D2 T1 T2

DevQ=0 DevQ=1 DevQ=0 DevQ=1 TestQ=0 TestQ=0

10 -8.3448 0.61

11 -30.569 1.929

12 -157.62 6.126

98

ID

Model Coefficients

A B

D1 D2 T1 T2

DevQ=0 DevQ=1 DevQ=0 DevQ=1 TestQ=0 TestQ=0

13 16.124 0.485 46.572 -52.672 -0.201 0.222

14 20.57 1.56 -180.84 -60.58 0.973 0.313

15 38.847 3.734 -375.38 5.027 3.881 1.449

16 -12.583 0.68 58.608 -43.272 -0.208 0.171 16.67 -0.188

17 56.462 1.492 2.443 129.634 -0.354 -1.025 -219.18 1.395

18 38.847 3.734 -375.38 5.027 3.881 1.449 0 0

Specific model from Portfolio B can be chosen based on project context in terms of Project

Group 1, 2 or 3 and based on the availability of DevQ and/ or TestQ as additional inputs.

4.6.3 COSMIC Function Point Estimation Models – Data Set C (N=82)

The models in Portfolio A and B both have been built using data of projects measured in

IFPUG Function Point or COSMIC Function Point meaning that the size measure in some

projects has FP (IFPUG Function Point) as unit of measure and for the rest of the projects

CFP (COSMIC Function Point) as their unit of measure. In practice, size is measured using

any one of the methods. However, Portfolio A and B models serve as useful reference as

there is a correspondence between both functional sizes (Dumke and Abran, 2011). In order

to generate models specific to COSMIC Function Points measured projects, Data Set C, a

subset of Data Set A consisting of 82 projects is taken up. Portfolio C (Table 4.14) consisting

of 3 models, one for each of the project group are generated, which can be used if the

measurement method is known as COSMIC Function Point. Models with additional variables

DevQ and TestQ are not listed due to lack of sufficient data within project groups.

Table 4.14 Estimation Models Portfolio C (N = 82)

Model
ID

Model
Name

PG
No. of Data
Points (N)

Model Coefficients

A B

19 CPG1S 1 27 -20.142 0.693

99

Model
ID

Model
Name

PG
No. of Data
Points (N)

Model Coefficients

A B

20 CPG2S 2 26 47.999 1.590

21 CPG3S 3 29 136.267 4.481

4.6.4 IFPUG Function Point Estimation Models – Data Set D (N = 60)

IFPUG Function Point based models are generated (Table 4.15) out of Data Set D consisting

of projects reporting functional size in terms of IFPUG FP unadjusted points. Data Set D is

derived as a subset of Data Set A, by choosing only projects reporting size method as IFPUG

Function Points. Model ID 22 represents Project Group 1, Model ID 23 represents Project

Group 2 and Model ID 24 Project Group, all of them use only size as independent variable.

Due to lack of data, models using DevQ and TestQ could not be generated within project

groups.

 Table 4.15 Estimation Models Portfolio D (N = 60)

Model
ID

Model
Name

PG
No. of Data
Points (N)

Model
Coefficients

A B

22 DPG1S 1 19 37.588 0.455

23 DPG2S 2 23 -29.939 1.917

24 DPG3S 3 18 77.585 6.087

4.6.5 Model Selection for Estimation

The models developed are categorised into the project groups based on the attributes of the

project and portfolios based on the data set. Within a portfolio and project group models differ

from one another based on the combination of independent variables used for modelling.

Estimator can choose a particular model for estimation following the following steps:

a. Decide the Project Group

100

b. Decide the relevant portfolio from models built using different data sets.

c. Choose the model based on the availability of values for independent variables

Decide Project Group:

Estimator can map the project to be estimated to the project attributes – domain, team size,

elapsed time and v & v rigour. Domain of the project to be tested is known prior.

Team size and elapsed time of the project with respect to ‘development’ would have been

already estimated as a part of estimation for the development. These two attributes together

indicate comparative size of the project referred as ‘project size’ using which projects are

classified as Small, Medium and Large.

 Table 4.16 Project Size Classification

Team Size Elapsed Time Project Size

Small Small Small (S)

Small Medium Small (S)

Small Large Medium (M)

Medium Small Small (S)

Medium Medium Medium (M)

Medium Large Medium (M)

Large Small Medium (M)

Large Medium Large (L)

Large Large Large (L)

Extent of project management and process requirements are determined by the project size

and are factored into project planning in the Project Management Advisor tool built by

University of Wisconsin (Wisconsin, 2007; 2015). Based on the values of Team Size and

Elapsed Time, the variable Project Size can be figured out (Table 4.16).

101

Figure 4.7 Project Group Selection Decision Tree

BFSI

Project Size = S
V&V = Low

V&V = High

V&V = Low

V&V = High

V&V = NC PG 3

PG 2

PG 1

PG 3

PG 2

Project Size = M

Project Size = L

Education
V & V = Low

V &V = High

PG 1

PG 2

PG 1

PG 2

Project Size = S

Project Size = M

Project Size = L

V&V = NC

V&V = NC

Government

V & V = High

V & V = Low

V & V = NC

V & V = High

V & V = Low

PG 1

PG 2

PG 2

PG 2

PG 3

Project Size = S

Project Size = M

Project Size = L

102

V & V rigour refers to the quality of the development process followed: the value may be

known at the time of testing. Higher rating for V & V rigour improves the quality of the product

delivered for testing. It can be observed that TDR Level is high, if V & V rigour is high as 66%

of the projects (Table 4. 2) with V & V rigour 1 (i.e., High) falls into PG1.

Once a choice is made based on domain and project size, V & V rigour attribute can be used

to determine the final project group as relevant. Hence this attribute can be used to promote

the project group from lower to higher productivity or de-promote it based on the v& v rigour

rating. Values of V & V rigour that will be used to determine project group are Low (rating ‘0’),

High (rating ‘1’) or NC (meaning Not a Concern) for the set of domain and project sizes. The

Decision Tree in Figure 4.7 illustrates how Project Group can be identified based on Domain,

Project Size and V & V rigour.

Decide Portfolio:

The models in Portfolio A were built from Data Set A, which is a larger data set compared to

Data Set B, where there can be some ambiguity in terms of ‘architecture’ of the project. If the

estimator is quite sure about the architecture, then models from Portfolio B can be chosen for

estimation.

In case of Portfolios A and B, there is no difference as to which functional size method is used

for measuring the functional size. If the estimator uses either COSMIC Function Point or

IFPUG Function Point, then models from Portfolios C or D could be chosen for estimation.

Choose the model:

Once the estimator has narrowed down a particular portfolio and project group, then based

on the availability of value(s) for independent variables, a particular model can be chosen for

project group from portfolios of models (Tables 4.11, 4.13, 4.14 and 4.15). Size is a mandatory

independent variable. Model Ids 1, 2,3,10,11,12,19,20,21,22, 23 and 24 uses Size as the only

independent variable. Size and DevQ are used in Model Ids 4,5,6,13,14 and 15. All the three

variables namely Size, DevQ and TestQ are used in Model Ids 7,8,9,16,17 and 18.

103

4.7 Evaluation of Estimation Models

4.7.1 Quality of Estimation Models

The quality of estimation models is evaluated using the criteria (Refer Section 3.6.2) such as

Coefficient of determination (R2), Adjusted R2, Median Magnitude of Relative Error and

Mallow’s Cp (Table 4.17).

Table 4.17 Evaluation of Models in Portfolios A, B, C and D

Portfolio Model Id No. of
Projects

R2 Adj R2

MedMRE Mallow’s
Cp

A

(N=142)

1 46 0.82 0.81 0.24 2

2 49 0.74 0.73 0.27 2

3 47 0.77 0.79 0.25 2

4 46 0.85 0.83 0.24 6

5 49 0.75 0.73 0.28 6

6 47 0.79 0.77 0.22 6

7 46 0.86 0.83 0.23 8

8 49 0.78 0.74 0.24 8

9 47 0.79 0.77 0.22 6

B

(N = 72)

10 32 0.80 0.8 0.24 2

11 24 0.67 0.66 0.26 2

12 16 0.83 0.82 0.25 2

13 32 0.84 0.81 0.22 6

14 24 0.70 0.62 0.25 6

15 16 0.91 0.86 0.10 6

16 32 0.87 0.83 0.20 8

17 24 0.70 0.57 0.25 8

18 16 0.91 0.86 0.10 6

C

(N = 82)

19 27 0.87 0.86 0.19 2

20 26 0.73 0.71 0.30 2

104

Portfolio Model Id No. of
Projects

R2 Adj R2

MedMRE Mallow’s
Cp

21 29 0.82 0.82 0.23 2

D

(N = 60)

22 19 0.78 0.77 0.25 2

23 23 0.76 0.75 0.26 2

24 18 0.70 0.68 0.33 2

The Value of R2 for Portfolio A ranges between 0.74 and 0.86 and that of Adj R2 ranges

between 0.72 and 0.83 indicating strong relationship between independent variables - Size,

DevQ and TestQ with the dependent variable test effort in all models.

MedMRE value ranging between 0.22 and 0.28 shows that the error levels between estimate

and actual are less than 30% for 50% or less of the samples, which is practical considering

the multi-organizational data used for building the models. Models using DevQ and TestQ are

better compared to Models using DevQ, which are in turn better than Models using just Size

as independent variable.

Similar observations can be made for Portfolio B models. Project Group 3 specific models

using DevQ and Test Q in Portfolio B have excellent quality with R2 value of 0.91 and MedMRE

of 0.10.

R2 values for COSMIC based models range from 0.73 to 0.82 while that of IFPUG FP based

models range from 0.70 to 0.78 demonstrating strong relationship between test effort and size

in all models in both Portfolios C and D.

The MedMRE value for COSMIC based models ranging between 0.19 and 0.30 compared to

IFPUG FP based models ranging between 0.25 and 0.33 demonstrate better accuracy of

COSMIC FP based models.

The Mallow Cp values indicate that the model is good in predicting future responses based

on the variable(s) chosen. In all the models, the Cp value computed is the value required to

satisfy the Mallow’s Cp Criterion.

105

4.7.2 Predictive Performance of Models

The criterion used to evaluate the predictive quality of an estimation model is PRED (l) = k/n,

where k is the number of projects in a specific sample of size n for which MRE <= l. In the

software engineering literature, an estimation model is considered good when PRED (0.25) =

0.75 (Conte, 1986) or PRED (0.30) = 0.70 and PRED (0.20) = 0.80 (Abran, 2015). PRED

(0.25) = 0.75 means 75% of the samples should have MRE values less than or equal to 0.25.

While the MRE error level in 75% of the population should be less than 25% - is the

expectation of the above criteria, multi-organizational data such as in ISBSG data base are

less homogeneous and will exhibit larger MRE for 75% of the population. In a study conducted

(Solomon et., al, 2016) to compare estimation results of models from multiple organizations

data with single organization data using MedMRE, it has been found that single organizational

scored better without normalization and both yielded approximately similar results when data

sets were subjected to the z-score normalization technique. When the data is heterogeneous,

error for 50% of the population can also be a reasonable indicator of the model predictability.

The main requirement in this research context is not just look at the predictability of an

individual model, but to compare between models to infer how they differ.

Instead of comparing only at a single upper arbitrary value for PRED (0.25), which relates to

‘k/n= ¾ = 0.75’, that is the smallest upper range of MRE for 75% of the sample, I propose a

new scheme to identify and compare the smallest upper ranges of MRE that would include

50% and 25% of the samples i.e., the smallest upper range of MRE values for ‘k/n= ½ = 0.5’

and ‘k/n= ¼ = 0.25’ to gain a better understanding of the error distribution within each

estimation model.

The prediction performance of estimation models (Table 4.18) provides the smallest ranges

(from 0% to the % indicated in PRED (l) of MRE values for 25%, 50% and 75% of the

population which are actually values for the right hand side of the PRED equation. The values

within the following tables are MRE values for 25% (represented as Q25), 50% (represented

as Q50) and 75% (represented as Q75) of the population.

106

Considering the Model Id 1 from the (Table 4.18):

Q25 = 0.13

Q50 = 0.24

Q75 = 0.38

which means:

a. MRE value of less or equal to 0.13 is found in 25% of the projects in the samples;

b. MRE value of less or equal to 0.24 is found in 50% of the samples, and

c. MRE value of less or equal to 0.38 is found in 75% of the samples.

Table 4.18 Prediction Performance of Estimation Models

Model ID # of Data
Points

MRE

Q25 Q50 Q75

1 46 0.13 0.24 0.38

2 49 0.13 0.27 0.38

3 47 0.11 0.25 0.4

4 46 0.14 0.24 0.39

5 49 0.13 0.28 0.4

6 47 0.08 0.22 0.39

7 46 0.12 0.23 0.35

8 49 0.08 0.24 0.36

9 47 0.08 0.22 0.39

10 32 0.17 0.24 0.35

11 24 0.18 0.26 0.37

12 16 0.05 0.25 0.42

13 32 0.11 0.22 0.42

14 24 0.17 0.25 0.38

15 16 0.03 0.1 0.39

16 32 0.07 0.2 0.38

17 24 0.1 0.25 0.36

107

Model ID # of Data
Points

MRE

Q25 Q50 Q75

18 16 0.03 0.1 0.39

19 27 0.11 0.19 0.35

20 26 0.2 0.3 0.45

21 29 0.1 0.23 0.34

22 19 0.13 0.25 0.34

23 23 0.07 0.26 0.37

24 18 0.13 0.33 0.45

4.7.3 Comparison of Performance of Models

4.7.3.1 Comparison of Models in Portfolio A

There are 9 models in Portfolio A (Table 4.19). A comparison of these nine models can reveal

how predictability varies between project groups and those using different independent

variables within the context of Data Set A.

Table 4.19 Predictability of Portfolio A Models

Portfolio A Models MRE

ID Name Description Q75 Q50 Q25

1
APG1S PG1 with Size 0.38 0.24 0.13

4
APG1SD PG1 with Size & DevQ 0.39 0.24 0.14

7
APG1SDT PG1 with Size, DevQ &TestQ 0.35 0.23 0.12

2
APG2S PG2 with Size 0.38 0.27 0.14

5
APG2SD PG2 with Size & Dev Q 0.4 0.28 0.13

8
APG2SDT PG2 with Size, DevQ & TestQ 0.36 0.24 0.08

3 APG3S PG3 with Size 0.4 0.25 0.11

6 APG3SD PG3 with Size & Dev Q 0.39 0.23 0.12

9 APG3SDT PG3 with Size, DevQ & TestQ 0.39 0.22 0.08

108

The chart corresponding to predictability of Portfoio A models (Figure 4.8) depicts how

predictability varies between models. Within Project Group 1 models with DevQ and TestQ

namely APG1SD and APG1SDT are better than APG1S for Q50. Project Group 2 models

APG2S, APG2SD and APG2SDT possess less predictability compared to their counter parts

in PG1. However APG2SDT, the model with both DevQ and TestQ is better in PG2. PG3

models have better predictability than others, in general.

4.7.3.2 Comparison of Size Based Models

A comparison of all models using only size as an independent variable across all portfolios

can provide under which context size based models provide better predictability. MRE values

for these models (Table 4.20) for Q25, Q50 and Q75 are used to plot comparison chart (Figure

4.9).

Table 4.20 Predictability of Size Based Models across Portfolios

Size Based Models MRE

ID Name Description Q75 Q50 Q25

 1 APG1S PG1 in Portfolio A 0.38 0.24 0.13

0
0,05

0,1
0,15

0,2
0,25

0,3
0,35

0,4
0,45

M
R

E

Model Name

Data Set A Models Comparison

 Figure 4.8 Predictability Comparison of Data Set A Models

109

Size Based Models MRE

ID Name Description Q75 Q50 Q25

 2 APG2S PG2 in Portfolio A 0.38 0.27 0.14

 3 APG3S PG3 in Portfolio A 0.4 0.25 0.11

 10 BPG1S PG1 in Portfolio B 0.35 0.24 0.17

 11 BPG2S PG2 in Portfolio B 0.37 0.26 0.18

 12 BPG3S PG3 in Portfolio B 0.42 0.25 0.05

 19 CPG1 PG1 in Portfolio C 0.35 0.19 0.11

 20 CPG2 PG2 in Portfolio C 0.45 0.3 0.2

 21 CPG3 PG3 in Portfolio C 0.34 0.25 0.13

 22 DPG1 PG1 in Portfolio D 0.34 0.25 0.13

 23 DPG2 PG2 in Portfolio D 0.37 0.26 0.07

 24 DPG3 PG3 in Portfolio D 0.45 0.33 0.13

MRE value for Q75 for the models range from 0.34 to 0.45, Q50 values range from 0.19 to

0.33 and Q25 values range between 0.05 and 0.2.

a. MRE values at Q50 level is consistently higher for Project Group 2 models across

all portfolios as revealed by the slope of the line connecting the Q50 values in the

comparison chart (Figure 4.5).

b. Size based models for Project Groups PG1 and PG3 are better than PG2.

c. PG3 size models, in general perform better than PG1 and PG2.

110

Figure 4.9 Predictability Comparison of Size Based Models

4.7.3.3 Comparison of Models in Portfolios A and B

Portfolio B models are developed using a subset of data used for Portfolio A. Portfolio B

models are more specific to Web or Client/ Server architecture unlike Portfolio A models where

there is an approximation due to architecture. A comparison between the models across

portfolios A and B using DevQ and TestQ as independent variables along with size can help

to make certain observations. MRE values for these models (Table 4.21) are used to plot a

comparison chart (Figure 4.10)

Table 4.21 Predictability of Portfolio A & B Models

 Models MRE

ID Portfolio Name Q75 Q50 Q25
4 A APG1SD 0.39 0.24 0.14

13 B BPG1SD 0.42 0.22 0.11

5 A APG2SD 0.4 0.28 0.13

14 B BPG2SD 0.38 0.25 0.17

0
0,05

0,1
0,15

0,2
0,25

0,3
0,35

0,4

0,45
0,5

M
RE

Model Names

Size based Models Comparison

111

 Models MRE

ID Portfolio Name Q75 Q50 Q25
6 A APG3SD 0.39 0.23 0.12

15 B BPG3SD 0.39 0.1 0.03

7 A APG1SDT 0.35 0.23 0.12

16 B BPG1SDT 0.38 0.2 0.07

 8 A APG2SDT 0.36 0.24 0.08

 17 B BPG2SDT 0.36 0.25 0.1

 9 A APG3SDT 0.39 0.22 0.08

 18 B BPG3SDT 0.39 0.1 0.03

MRE values for Q50 varies between 0.1 and 0.28 and that for Q75 varies between 0.35 and

0.42 for the models identified for comparison. Lowest MRE values for Q50 occurs for PG3

model using Size and DevQ variables as well as Size, DevQ and TestQ variables.

Figure 4.10 Predictability Comparison of Data Set A and B Models

Comparison chart (Figue 4.10) reveals that models from Portfolio B consistently performs

better than models from Portfolio A. Models from Portfolio B can result in better prediction

accuracy and can be a choice for estimation when the sizing method is not of concern. Models

0

0,1

0,2

0,3

0,4

0,5

APG1 BPG1 APG2 BPG2 APG3 BPG3

M
R

E

Model Names

Data Set A vs B: Size & DevQ
Models

0

0,1

0,2

0,3

0,4

0,5

APG1 BPG1 APG2 BPG2 APG3 BPG3

M
RE

Model Names

Data Set A vs Data Set B: Size,
Dev Q & TestQ Model

112

with DevQ and TestQ as independent variables along with Size perform better than models

using DevQ alone along with Size.

4.7.3.4 Comparison of COSMIC and IFPUG Models

Performance of COSMIC and IFPUG models can be compared taking size based models from

Portfolio A as reference.

Figure 4.11 Predictability Comparison of COSMIC and IFPUG Models

Both COSMIC and IFPUG data are subsets of Data Set A used to generate models in Portfolio

A. This comparison can help to evaluate prediction accuracy of COSMIC based models versus

IFPUG based models.

0
0,05

0,1
0,15

0,2
0,25

0,3
0,35

0,4

APG1 CPG1 DPG1

M
R

E

Model Names

PG1 Data Set A, COSMIC & IFPUG Comparison

0

0,1

0,2

0,3

0,4

0,5

APG2 CPG2 DPG2

M
R

E

Model Names

PG2 Data Set A, COSMIC &
IFPUG

0

0,1

0,2

0,3

0,4

0,5

APG3 CPG3 DPG3

M
R

E

Model Names

PG3 Data Set A, COSMIC &
IFPUG

113

COSMIC based estimation models using Data Set C have better performance than IFPUG

based estimation models using Data Set D (Table 4.20) as can be seen from Figure 4.11.

With the exception to PG2, Q50 values are always lower for COSMIC based models. COSMIC

based PG3 model demonstrates the best predictability with the lowest variation between Q25

and Q75.

4.8 Estimation Tool

A prototype estimation tool has been conceptualized to automate the estimation process using

the models generated. The tool, the development of which is in progress will choose a relevant

model based on the inputs in terms of project context and values for the independent

variables. The tool will have facility to capture actual data as and when projects are executed.

Facility to refine the models based on organization specific project execution data and facility

to regenerate models as and when such multi-organizational data are available are useful

features of this tool. APPENDIX VII provides design details of this tool named as ‘Chabroo’.

CONCLUSION

Summary

This research work has explored the software testing discipline from the perspective of

estimation of efforts for testing. The literature study carried out as a part of this work has

established the state of the art of software test estimation techniques, along with their

strengths and weaknesses. A criterion has been proposed to evaluate the existing techniques.

While there are several research papers discussing approaches to test estimation, they have

limitations as well. There is hardly any detailed work for practical application to industry use,

nor is there the necessary academic rigour. Estimation techniques reviewed in the literature

are often conceptual without experimental validity; otherwise they are complex techniques

based on a limited data set, yet to be adopted in the industry.

Based on the test estimating components in the literature review, this work has proposed first

a Unified Framework for Software Test Estimation for estimating the needs in the software

testing arena. Based on this framework, detailed estimation models have been built for

functional testing.

The ISBSG database, with its wealth of project data from around the globe, has been used

for the first time for estimation of software testing. This data represents the software industry

from different countries, and follows standard data reporting conventions. Data from ISBSG

has been filtered, to represent current architecture models followed in the industry, especially

web and client server. This is to make it possible for the results to be used for many of the

current software testing projects.

The analysis of the data has revealed three test productivity patterns representing economies

and diseconomies of scale, based on which the characteristics of the corresponding projects

have been investigated. Test productivity was measured, using a new terminology defined as

Test Delivery Rate. This is the rate at which software functionality is tested as a factor of the

effort required to do so.

The three project groups related to the three productivity patterns have been found to be

statistically significant; they are characterised by domain, team size, elapsed time and rigour

116

of verification and validation carried out during development. These patterns are observed in

most of the data sets used for building the estimation model, which turns out to be a major

finding. They provide an opportunity to build estimation models representing those project

groups, instead of building a generic model for all types of projects.

Within each project group, the variations in test efforts could be explained, apart from the

functional size, by (i) the processes executed during the development, and (ii) the processes

adopted for testing. Two new independent variables, the quality of the development processes

(DevQ) and the quality of testing processes (TestQ), were identified as influential in the

estimation models. Portfolios of estimation models were built, using combinations of the three

independent variables. An estimator could choose the project group, by mapping the

characteristics of the project to be estimated to the attributes of project group, in order to

choose the model closest to it.

Overall, four portfolios consisting of a total of 24 estimation models were generated. Models

were evaluated using standard evaluation criteria, for their fitness for purpose.

The quality of each model was evaluated using established criteria such as R2, Adj R2, MRE,

MedMRE and Maslow’s Cp. As these models were built from ISBSG data, they could serve

as an industry benchmark for functional test efforts. The quality of models improved when

more homogeneous data from ISBSG was used, as seen during the comparison of Portfolio

A and Portfolio B.

The design of these models can serve as Meta Model for building proprietary test estimation

models, using data from within an organization. Such models can be more accurate than the

benchmark models built using heterogeneous data from ISBSG.

Test estimation models using projects measured in COSMIC Function point exhibited better

quality and resulted in more accurate estimates compared to projects measured in IFPUG

Function Point. Adopting COSMIC FSM is a better choice, when accuracy of test effort

estimate is of paramount importance.

117

A prototype test estimation software was developed using the statistical programming

language “R”, incorporating portfolios of estimation models generated during this research

work. This tool can be used by industry and academia for estimating test efforts.

Research Objectives Revisited

The research objectives selected for this research project were to build an estimation model

for:

1. Estimating the effort for functional testing.

2. Serving the needs for benchmarking and performance measurement of software testing

projects

3. Automation capability that can be deployed as an estimator’s tool, for use by industry and

academia.

Estimating Test Effort

This consisted of:

1. Identification of the 1 to 3 factors that contribute most to the relationship with efforts for

functional testing. The research has designed estimation models based on three

parameters: (i) Functional Size, (ii) Quality of development processes – DevQ, and (iii)

Quality of test process – TestQ. This means that

a. 12 models were built using Size as independent variable,

b. 6 Models were generated using Size and DevQ, and

c. 6 Models were generated using Size, DevQ and TestQ.

These models were evaluated using standard evaluation criteria.

2. Arriving at a model that can be used during the early stages of software testing.

The early stage of software testing is when only the requirements of the software to be tested

are known. All the models developed as a part of this research work require functional size as

118

a major input, which can be measured during the early stage in life cycle. Other attributes of

the project related to development, such as ‘domain’ of the software, ‘size of team’, ‘duration

of the project’ and ‘verification and validation rigour’, can be known at the beginning of testing.

The estimation model that corresponds to the project group closely matching the attributes of

the software to be tested can be chosen.

Benchmarking and performance measurement

Apart from the basic need to produce reliable estimates, an organization has to be

competitive. This is required, to raise its performance to be on par with competitors in the

market. Currently there are no International benchmarks available for comparing and

benchmarking, except certain unreliable thumb rules like 20% to 30% of development efforts

being assigned for testing.

The current work has used a data set representative of the industry from ISBSG. The

estimates from models generated out this data set can serve as a benchmark reference for

software test estimates, just like models made for development from ISBSG serve as

benchmarking reference for development efforts. The models generated support the

benchmarking needs for testing, and hence fulfil a major gap in the engineering approach to

software testing.

Automation Capability

A prototype tool using statistical programming language “R” has been designed, to automate

estimation. This tool will use model equations rather than the actual project data points, thus

maintaining the confidentiality of project data used for generating models. To choose an

appropriate model, the tool takes as inputs the project context in terms of size, domain, team

size, elapsed time, and V & V rigour. Advanced features that would be part of the tool in future

include generation of new models based on actual values from within an organization. It would

also include re-generation of models, based on larger data sets from multiple organizations.

119

Contributions

The research outcome contributes positively to three primarily different segments: software

organizations, researchers in estimation and the software benchmarking community.

Software Organizations

The industry follows mostly judgement based estimation techniques and rules of thumb for

testing estimation. Another approach followed is the allotting of a certain percentage of

software development effort to software testing; this is based on thumb rules. Because testing

has become a separate discipline and often carried out independently from development, it is

essential that scientific methods be designed and adopted, for estimation and performance

measurement.

The current research work has provided a set of four portfolios consisting of 24 estimation

models, which can be used for estimating functional test efforts for different project contexts.

The models can be fine-tuned with organization specific data, to improve the accuracy of

estimation. Tools can be developed based on the models, for the estimator to (i) quickly and

consistently carry out estimation, and (ii) capture the actual project performance data as and

when tests are carried out.

A freely downloadable version of the estimation tool to be developed based on this research

work will be made available to the organizations.

Researchers in Estimation

This research has focused on the estimation of effort for software testing. The principles

involved in estimation and techniques adopted can be used, in general, for estimating any

specific phase of development such as software testing. For instance, ‘construction’ (or

otherwise referred to as ‘coding’) is one of the phases outsourced by the industry, and any

specific estimation for construction can also adopt a similar approach. Researchers can

review the estimation models and parameters, to build coding specific estimation models.

120

The research work has proposed a Unified Framework, for addressing estimation for different

types of testing. This framework has also suggested an innovative sizing and estimation

approach to business process testing, which can be explored further by researchers.

Due to the lack of detailed parameters in ISBSG data with respect to testing related activities,

there is no opportunity to derive TestQ rating levels in a refined manner. Researchers can

further review the process ratings such as DevQ and TestQ, and modify their impact on

functional test effort. The evaluation of estimation models presented provides confidence to

researchers on the applicability of simpler techniques within the context of a specific group of

projects, resulting in practical solution. The research work has also come out with a new

criterion from the perspective of managers and estimators, to evaluate performance of models

based on Q25, Q50 and Q75 values of MRE. This criterion can be adopted while dealing with

multi-organizational data that tends to be heterogeneous.

Benchmarking

This research work has defined a new term – ‘Test Delivery Rate’ – to deal with productivity

in testing. This provides scope for measuring productivity of testing in different projects within

an organization, or across organizations, in order to benchmark productivity.

All current testing productivity measurements use either lines of code or other implementation

aspects of software such as screens etc., to work out related measures. TDR based

measurement can enable definition of metrics for test case design, test execution and test

automation. ISBSG, which maintains the world’s largest repository of software projects, has

not yet published any benchmarks for testing related activities. ISBSG and/or other

measurement organizations can initiate data capture mechanism for testing projects, which

can provide a strong basis for benchmarking of testing projects.

Research Impact

The impact of this research on the community can be viewed from both short term and long

term perspectives.

121

Short Term Impact

A consistent way to estimate efforts for functional testing, based on the project characteristics,

has laid a foundation for estimation with a scientific basis. Industry can use the models for test

effort estimation straightaway. The accompanying estimation tool will ease the use of models,

besides providing a mechanism to capture data to improve accuracy of estimations in future

within an organization.

Organizations will also be able to measure the performance of the testing projects, and

compare with that of other organizations that have contributed data to the repository. It is also

expected that mature organizations will use the estimation model as a reference meta model,

and build proprietary models with additional/different factors that influence test efforts in their

organizations.

Researchers could further classify project groups, with respect to enhancement projects or

real-time projects, and generate similar estimation models with factors influencing test

productivity. The software measurement community could immediately start using TDR as

one of the criteria to evaluate testing projects.

Long Term Impact

The current models are generated from ISBSG data. Using these models to capture

organization specific project performance data, still better models can be generated with a

view to improving estimates within organizations. With wide spread adoption, the data from

multiple organizations maintained in a central repository by benchmarking organizations can

pave the way for periodically regenerating the models for similar and new contexts.

The future versions of the estimation tool will provide estimation as a cloud based service,

making automated estimation affordable and available at any time. An online repository of

global project data that can be built using this approach can open up a new era in

benchmarking.

122

Test estimation models for Business Process Testing, Modifications Testing, Convertible

NFR, True NFR testing and Test Automation proposed in the Unified Framework can be

explored further by researchers, to come out with specific estimates for each type of testing.

Once the models are generated with a large number of data points from multiple organizations

representing different geographies, these models can serve as reference in case of disputes

with respect to efforts put in testing.

Limitations of this Research and Future Work

While this research work has taken a major step in the hitherto untouched area of software

test effort estimation based on ISBSG data, there are limitations due to the approach and

validity threats, both internal and external.

The research project has come out with an estimation model for ‘functional testing’. The

models generated are applicable for both development and re-development projects, but not

for enhancement projects. The models are currently applicable only for business application

testing projects. These limitations can be overcome by generating specific models for

enhancements or real-time projects, using an approach similar to one followed in this research

work. This may require identification of additional project characteristics, as well as other

variables influencing testing effort.

The current models are applicable for software whose functional sizes are within the range of

functional sizes present as a part of data set, and cannot be extrapolated beyond this range.

Going by the current trend in the software development, influenced by agile project

management approach, the estimation is usually done for smaller scopes and hence this

limitation may not affect its use in the industry.

The current work has come out with three categories of projects based on attributes such as

domain, team size, elapsed time and V & V rigour. Each one of them is a categorical variable.

Estimation users must be able to map the characteristics of the software project tested to a

relevant category, in order to come out with a value for each of the attributes. There is a

possibility that some approximation takes place during such mapping, affecting the estimates.

The fourth group of project data points, which were not considered for building estimation

123

models in this research work, are to be analyzed further to study the possibility of building

models.

The research work also has identified DevQ and TestQ as additional variables influencing

testing efforts, apart from functional size. These process factors can be studied further within

organizational context, and selectively used. There could be other variables that can influence

test efforts in specific contexts, which require further study and analysis.

The data used for building estimation models was taken up from the ISBSG database, which

has the provision to capture data related only to development projects. However, a majority

of the projects have reported data related to testing activities, enabling estimation models for

software testing. Applying models built from this data set to purely independent testing

assignments executed by a separate contractor would not be straightforward. However, these

models could provide a reference for test efforts, which can be further adjusted considering

the cost drivers related to independent testing projects. There is an observation (Bareja K and

Singal A, 2015) that testing techniques using machine learning and data mining help to reduce

the effort required to test. The estimation models designed can be further refined considering

testing techniques adopted as a parameter in order to evaluate their impact and use them in

building estimation model.

Functional testing is the foundation for all other types of testing; however, models for business

processes testing, with end to end integration of upstream and downstream enterprise

business processes, have not yet been built. An elegant approach to handle this has been

proposed, as a part of the Unified Framework. The approach can be used with organization

specific data points, to build estimation models for business process testing. The estimation

models generated do not address the needs of Modifications Testing, Convertible NFR

Testing, True NFR testing and Test Automation. Further work can be carried out to develop

solutions to these types of testing aligned with the Unified Framework for test effort estimation

designed as a part of this research work.

APPENDIX I

DATA SELECTION AND OUTLIERS

This appendix provides details of how the data is selected from ISBSG data set by applying

various selection criteria and, next, removing outliers.

Data Selection

The data selection criteria (Refer 4.3.1) applied on the ISBSG R12 data set consisting of 6006

projects data, resulted in a data set consisting of 193 data points (Table A I – 1).

 Table A I -1 Data Selection Filters

Selection

Criteria

Filter Filter Details

(items removed)

No. of

Projects

Removed

Remains

ISBSG

R12 Data Original Data - - 6006

Data

Quality

ISBSG Data

Quality Rating C, D 448 5558

Data

Quality Test Effort Blank 4080 1478

Data

Quality UFP Rating C, D 147 1331

Data

Adequacy

Application

Group

Real-time,

Infrastructure 91 1240

Data

Adequacy

Development

Type Enhancement 643 597

Data

Relevance FSM

Other than COSMIC &

IFPUG 4+ 161 436

Data

Suitability Normalized effort < 80 hrs 2 434

126

Selection

Criteria

Filter Filter Details

(items removed)

No. of

Projects

Removed

Remains

Data

Suitability Test Effort < 16 Hrs only 16 418

Data

Relevance

Application

Group Blank 138 280

Data

Relevance Architecture Stand alone 75 205

Data

Suitability Test Activity Non Functional Testing 12 193

Identification of Outliers

Projects with very low Test Delivery Rate, such as less than 0.3 hrs/ FSU, are an indicator of

inadequacy of testing for the functionality. Such projects cannot serve as good candidates for

building estimation models for testing. Six projects were found to be in this category and were

removed.

Identification of outliers based on John Tukey’s Inter Quartile Range (IQR) statistical criteria

(Below Q1 – 1.5 × IQR or above Q3 + 1.5 × IQR) for the size value resulted in all projects with

sizes above 940 FSU showing up as outliers. There were 17 project data points having sizes

above 940 FSU. They were removed from the data set considered for estimation model.

Overall 23 data points were eliminated (Table A I – 2) resulting in 170 data points.

Table A I - 2 Outliers

Selection

Criteria

Filter Filter Details No. of Projects

Removed

Remains

Data Suitability

Very Low

TDR TDR < 0.3 6 187

Data Suitability

Statistical

outliers

Size > 940

removed 17 170

127

A box plot (Figure A I - 1) of size prior to the removal of outliers and after the removal of

outliers depicts the distribution of size values. Outliers increase the mean value of size by

173% and the mean value of effort by 140%. Further, the maximum value of size goes up by

5.5 times and the maximum value of effort goes up by 1.6 time with the outliers.

Size in FSU with Outliers Size in FSU after removal of outliers

Figure A I -1 Box Plot of Size before and after removal of 23 outliers (N=193)

Identification of outliers within individual TDR Levels

Scatter diagrams of individual TDR Levels provide the dispersion of the data within each

individual TDR level.

The data point (923, 718), stands out in the scatter diagram for TDR Level 1 (Figure A I - 2).

There are no adequate data between size value 923 and its immediate next lower size value

of 751. Absence of data between these size values will affect the accuracy of the model,

hence the one data point (923, 718) is removed from the data set considered for further

analysis.

128

Figure A I – 2 Scatter Diagram of TDR Level 1 Data Points

Observing the scatter diagram (Figure A I - 3) corresponding to TDR Level 3, four data points

which can affect the model quality are removed. An observation of size and test effort values

for these four points - (278, 2813), (556,1978), (475, 4276) and (550,5600) reveal that

dispersion of test effort values are quite high compared to rest of the points in the data set.

Figure A I – 3 Scatter Diagram of TDR Level 3

0
100
200
300
400
500
600
700
800

0 200 400 600 800 1000

Te
st

 E
ffo

rt
 (h

r)

Size (FSU)

Size Vs Test Effort (TDR Level 1)

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500 600

Te
st

 E
ffo

rt
 (h

r)

Size (FSU)

Size Vs Test Effort (TDR Level 3)

129

An analysis of the TDR distribution of TDR Level 4 (Figure A I - 4) in terms of percentile

values– 10th Percentile (P10), 25th Percentile (P25), 50th Percentile (P50), 75th Percentile

(P75) and 90th Percentile (P90) in the data set within each TDR level (Table A I - 3).

Figure A I – 4 Scatter Diagram of TDR Level 3

a. TDR is uniformly distributed in TDR levels 1, 2 and 3. Median TDR for these levels are

more or less 50% of the maximum TDR for the level except for TDR level 4.

b. TDR level 4 projects appear quite odd as their minimum test effort is 7 – 12 times more

than other levels and maximum effort is 2 – 10 times more than that of other levels, while

the maximum functional size is 0.4 – 0.7 times of other levels.

c. The 23 data points in level 4 category consists of small projects in terms of functional size

and consuming very large test efforts compared to the other projects.

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300 350

E
ff

or
t (

hr
)

Size (FSU)

Size Vs Test Effort (TDR Level 4))

130

 Table A I - 3 TDR Distribution for various percentiles (N = 170)

TDR

Level

TDR

Min P10 P25 P50 P75 P90 Max

ALL 0.31 0.49 0.87 2.28 6.29 14.90 57.97

1 0.31 0.37 0.44 0.60 0.75 0.87 0.99

2 1.04 1.14 1.34 1.67 2.33 2.87 2.97

3 3.04 3.52 4.00 5.61 7.23 8.71 10.88

4 11.47 11.48 13.15 18.26 24.60 54.23 57.97

TDR Level 4 points are not considered for further analysis and building estimation model.

One data point from TDR Level 1 and 4 data points from TDR Level 3 and all the 23 data

points related to TDR Level 4 totalling 28 data points were removed (Table A I - 4) resulting

in 142 data points.

Table: A I – 4 Data points removed in within TDR Levels

Selection

Criteria

Filter Filter Details No. of

Projects

Removed

Remaining

Data Suitability

TDR Level 1

Outlier Size > 923 1 169

Data Suitability

TDR Level 3

Outliers Effort > 1978 4 165

Data Suitability

PG4 Data

Points TDR > 11 23 142

APPENDIX II

MAPPING OF V & V RIGOUR TO ISBSG DATA FIELDS

This appendix details out how the V & V Rigour rating is derived from relevant fields of ISBSG

data repository.

V & V Rigour refers to the extent of verification and validation activities carried out during

development. This attribute of project is derived from the values for data fields related to

‘Documents & Techniques’ category in ISBSG that can indicate the rigour followed during

verification and validation activities. The Document and Techniques grouping of ISBSG data

fields (Table A II – 1) deals with methodologies and techniques used during development,

phase wise artefacts produced and activities carried out.

Table A II – 1 Extract of ISBSG Documents & Techniques Data Fields

ISBSG Grouping Document and Techniques

ISBSG Column No BL BN BP

Column Title Specification

Techniques

Design Techniques Build Activity

Typical V & V

related value

Specification

Review

Design Review/

Inspection

Code Review/

Inspection;

Unit Testing

Specification review, Design review/ Inspection, Code Review/ Inspection and Unit Testing

activities are the verification and validation activities carried out in a project. It has been

observed that for some projects one or two of these fields carry values, for a few projects most

of these fields have values, and for several projects these fields remain blank.

A scheme has been devised (Table A II – 2) to rate the rigour of V & V based on how many

of the verification and validation activities are carried out in a project.

132

Table A II – 2 V & V Rigour Rating Scheme

V & V Rigour Rating Description

Low None or very little evidence of Reviews/Inspection to

infer the rigour.

High Reviews/ Inspection reported for at least one of the

specification, design and build phases.

APPENDIX III

PROJECT CHARACTERISTICS ANALYSIS - DATA SET B, C & D

This appendix provides details of the analysis of project characteristics based on Data Set B,

C and D. The project attributes, such as Domain, Team Size, Elapsed Time and V & V Rigour

(Section 4.4.3) taken up for the analysis, are the same as those considered for Data Set A.

Analysis of Data Set B

Data Set B is derived from Data Set A by eliminating data where architecture type did not

have any value. This data set represents Web and Client/Server projects. Data Set B consists

of 72 data points. Analysis of this data set (Table A III-1) with respect to Project Groups and

Project attributes provides a picture of the characteristics of individual project groups.

Table A III-1 Analysis of project characteristics – Data Set B

Domain

No./

%

PG

1

PG

2

PG

3

BFSI

Count 4 5 5

% 29 36 36

Education

Count 11

% 100 0 0

Government

Count 4 9 2

% 27 60 13

Team

Size No./%

PG

1

PG

2

PG

3

 Small

Count 7 3 1

% 64 27 9

Medium

Count 12 5 4

% 57 24 19

Large

Count 3 4 5

% 25 33 42

Elapsed Time

No./

%

PG

1

PG

2

PG

3

Small

Count 16 5 3

% 67 21 13

Medium

Count 5 3 4

% 42 25 33

Large

Count 6 12 7

% 24 48 28

V & V

Rigour No./%

PG

1

PG

2

PG

3

Low

Count 12 19 12

% 28 44 28

High

Count 20 5 4

% 69 17 14

134

The number of projects and percentage of projects falling within each of the Project Group for

all the four attributes are reviewed (Table A III – 1).

All the projects in the educational category fall into PG1, while 60% of government projects

fall into PG2. 72% of the BFSI projects are equally spread between PG2 and PG3.

As far as Team Size is considered, small team size contributes close to 2/3rd of the projects

in PG1. A little less than 60% of the projects of medium team size also fall into PG1 and 3/4th

of the projects with large team size are spread between PG 2 and PG3.

Almost two third of projects in PG1 fall into the low elapsed time category. 67% of medium

elapsed time projects fall into PG1 and PG2. PG 2 and PG3 share the majority of the projects

with a large elapsed time.

Closer to 2/3rd of the projects are in V & V rigour rating high. Low V & V rigour rating is

predominant in PG2 and PG3 project groups.

The three project groups within Data Set B have certain distinctions with respect to Team

Size, Elapsed Time, V & V Rigour and Domain.

Table A III – 2 Statistical Significance of Project Attributes within Data Group B

Attribute/

Statistical Test

Team

Size

Elapsed

Time

V & V

Rigour

Domain

Chi-Square

P Value

0.258 0.039 0.003 < 0.001

The Chi-Square Test conducted (Table A III - 2) on the three project groups with respect to

these attributes demonstrates good significance for domain and reasonably significant for

Elapsed Time and V & V Rigour.

Analysis of Data Set C

Data Set C is made up of only projects where functional size is measured using the COSMIC

Function Points method. This data set is subset of Data Set A and consists of 82 data points.

This data set was analysed (Table A III - 3) to understand the characteristics of project groups

135

with respect to the project attributes such as domain, team size, elapsed time and V & V

Rigour.

Table A III - 3 Analysis of project characteristics – Data Set C

Domain

No./

%

PG

1

PG

2

PG

3

BFSI

Count 4 14 27

% 9 31 60

Education

Count 11 0 0

% 100 0 0

Government

Count 1 5 0

% 17 83 0

Team

Size No./%

PG

1

PG

2

PG

3

 Low

Count 6 2 0

% 75 25 0

Medium

Count 10 0 0

% 100 0 0

Large

Count 1 1 3

% 20 20 60

Elapsed Time

No./

%

PG

1

PG

2

PG

3

Low

Count 13 1 3

% 76 6 18

Medium

Count 4 4 2

% 40 40 20

Large

Count 6 11 7

% 25 46 29

V & V

Rigour No./%

PG

1

PG

2

PG

3

Low

Count 9 22 28

% 15 37 47

High

Count 18 4 1

% 78 17 4

While most of the projects in the educational domain fall into PG1, closer to two thirds of BFSI

projects fall into PG3 and majority of the Government projects fall into PG2.

Most of the small and medium team size projects fall into PG1 and 60% of the large team size

fall into PG3. Over 3/4th of small elapsed time projects fall in PG1, while 75% of the projects

with medium and large elapsed time are spread between PG2 and PG3.

78% of the projects with high rating for V & V fall in PG1 and lower rating are spread between

PG2 and PG3.

136

Table A III – 4 Statistical Significance of Project Attributes within Data Group C

Attribute/

Statistical Test

Team

Size

Elapsed

Time

V & V

Rigour

Domain

Chi-Square

P Value

0.003 0.018 < 0.001 <0.001

The test of significance carried out (Table A III – 4) reveal very high significance for attributes

Domain, V & V Rigour and Team Size and comparatively less significance for Elapsed Time.

As in other Data Sets A and B, these attributes are potential contributors for varying

productivity levels across project groups.

Analysis of Data Set D

Data Set D is formed considering only projects where the functional size is measured using

the IFPUG method. This data set is another subset of Data Set A and consists of 60 data

points. Distribution of the projects into the three project groups based on the project attributes

is analysed (Table A III – 5) to understand the pattern.

Unlike the previous data sets IFPUG project data do not demonstrate a clearly visible pattern

with respect to project attributes. All project attributes are spread across all project groups

without concentration on any one of the project groups. In many cases they are more or less

equally spread across all project groups. Chi Square test (Table A III – 6) also do not conform

statistical significance.

Data Sets B and C demonstrate pattern similar to Data Set A, while Data Set D does not fall

into that pattern. By reviewing the pattern, a common approach to mapping characteristics

of a project to be estimated to a Project Group can be arrived.

137

Table A III - 5 Analysis of project characteristics – Data Set D

Domain

No./

%

PG

1

PG

2

PG

3

BFSI

Count 10 9 5

% 42 38 21

Education

Count 5 5 2

% 42 42 17

Government

Count 15 14 7

% 42 39 19

Team

Size No./%

PG

1

PG

2

PG

3

 Small

Count 4 2 2

% 50 25 25

Medium

Count 8 14 7

% 28 48 24

Large

Count 4 3 5

% 33 25 42

Elapsed Time

No./

%

PG

1

PG

2

PG

3

Small

Count 5 6 2

% 38 46 15

Medium

Count 2 4 5

% 18 36 45

Large

Count 8 9 9

% 31 35 35

V & V

Rigour No./%

PG

1

PG

2

PG

3

Low

Count 16 20 15

% 31 39 29

High

Count 3 3 3

% 33 33 33

Table A III – 6 Statistical Significance of Project Attributes within Data Group D

Attribute/

Statistical Test

Team

Size

Elapsed

Time

V & V Rigour Domain

Chi-Square

P Value

0.466 0.568 0.943 0.948

APPENDIX IV

MAPPING OF DEVQ, TESTQ RATINGS TO ISBSG DATA FIELDS

DevQ and TestQ are quality rating for the development processes and test processes. These

ratings can be arrived at by reviewing the values from the ‘Documents and Techniques’

grouping of ISBSG data fields. This appendix details out how ISBSG fields are mapped to

these rating.

Development Process Quality Rating (DevQ)

The process followed during the development can be rated considering the nature of the

development life cycle followed and the artefacts produced, using the following attributes of

the project:

• Standards followed,

• Distinct development life cycle phases followed, and

• Verification activities carried out during development.

The ISBSG data grouping ‘software process’ (Table A IV - 1) provides an indication of the

application of CMMI, ISO, SPICE, PSP or any such standards/models followed during the

development.

Table A IV – 1 ISBSG Grouping Software Process (Fields AR to AV)

Column No Column Title Nature

AR CMM Quality of Dev Process

AS SPICE Quality of Dev Process

AT ISO Quality of Dev Process

AU TickIT Quality of Dev Process

140

A set of fields representing ‘Documents and Techniques’ (Table A IV - 2) in ISBSG data

provide information on the life cycle phases followed and verification activities carried out

during the development, an indication of development processes.

Table A IV – 2 ISBSG Grouping Documents & Techniques (Fields BK to BP)

Column No Column Title Nature

BK Specification Document Engineering artefact

BL Specification Techniques V & V techniques

BM Design Document Engineering artefact

BN Design Techniques V & V techniques

BO Build Products Engineering artefact

BP Build Activities V & V techniques

A DevQ rating between 0 - 2 has been derived (Table A IV – 3) by reviewing the values for

both Software Process and Document & Techniques grouping.

Table A IV - 3 Rating for Development Process (DevQ)

Software Process Documents & Techniques DevQ Rating

Not reported Very little reporting to infer 0

Reported Very little reporting to infer 1

Not reported One or more phases has values 1

Reported One or more phases has values 2

141

Test Process Quality Rating (TestQ)

While reviewing the data related to the testing process followed, it was observed that there

were not enough fields in ISBSG data to capture the details of the testing process followed

(such as testing techniques adopted, levels of testing executed, test artefacts produced,

reviews of test cases etc.) to gauge the extent of testing. However, data fields BQ and BL

(Table A IV – 4) provided information to infer quality of testing process.

 Table A IV – 4 ISBSG Grouping Documents & Techniques (Fields BQ & BR)

Column No Column Title Nature

BQ Test Document Testing artefact

BL Test Activity Testing Techniques

It was possible to classify the test process rating broadly into two categories (Table A IV - 5).

Table A IV - 5 Rating for Test Process (TestQ)

Test Process Criteria Test Process Rating (TestQ)

No evidence of Test Artefacts 0

Evidence of Test Artefacts 1

APPENDIX V

ANALYSIS OF DEVQ AND TESTQ FOR DATA SET B, C & D

This Appendix V discusses the analysis of the independent variables - Size, DevQ and TestQ

- for incorporating them into estimation models based on Data Sets B, C and D.

Size refers to the functional size measured using either IFPUG Function Points or COSMIC

Function Points.

DevQ refers to the rating of the process followed during the development based on the nature

of the development life cycle followed and the artefacts produced. TestQ refers to the rating

of the process followed for testing based on test artefacts produced.

Data Set B:

Scatter Diagrams of Size versus Test Effort for the whole Data Set B and individual project

groups PG1, PG2 and PG3 (Figure A V - 1) illustrate the relationship between size and test

effort for each of these data sets.

0

500

1000

1500

2000

2500

0 200 400 600 800

T
es

t E
ffo

rt
 (

hr
)

Size (FSU)

Size Vs Test Effort (Data Set B)

0

100

200

300

400

500

600

0 200 400 600 800

T
es

t E
ffo

rt
 (

hr
)

Size (FSU)

Size vs Test Effort
(Dataset B PG1)

144

Figure A V - 1 Scatter Diagrams for Size vs Test Effort: Dataset B - PG1, PG2 and PG3

A correlation coefficient computed between Size and Test Effort in the data sets (Table A V -

1) especially for PG1, PG2 and PG3 indicate good correlation; size can be included as the

primary independent variable.

Table A V - 1 Correlation: Size Vs Test Effort – Dataset B

Size being the main independent variable, other independent variables are examined next for

their significance to incorporate them into an estimation model.

Analysis of DevQ and TestQ for Data Set B

The classification of the data set in terms of DevQ and TestQ rating reveals that 29%, 42%,

and 29% of the projects are of DevQ Ratings 0, 1 and 2 respectively. TestQ percentages are

64% and 36% for TestQ ratings 0 and 1 respectively (Figure A V - 2).

0

500

1000

1500

2000

0 200 400 600 800

T
es

t E
ffo

rt
 (

hr
)

Size (FSU)

Size Vs Test Effort
(Data Set B PG2)

0

500

1000

1500

2000

2500

0 100 200 300 400

T
es

t E
ffo

rt
 (

hr
)

Size (FSU)

Size Vs Test Effort
(Data Set B PG3)

Data Set Correlation Coefficient

Data Set A 0.3591

Data Set A PG1 0.8952

Data Set A PG2 0.8212

Data Set A PG3 0.9134

145

Figure A V - 2 Distribution of DevQ and TestQ Ratings (N = 72)

The different median test effort and interquartile ranges for DevQ values of 0, 1 and 2 (Figure

A V - 3) reveals the effect of DevQ on test effort. Median test effort and the interquartile range

is also the lowest for the highest DevQ rating.

 Figure A V - 3 Box Plots of DevQ Ratings 0, 1 and 2

DevQ 0
29%

DevQ 1
42%

DevQ 2
29%

DevQ Distribution

DevQ 0

DevQ 1

DevQ 2
TestQ 0

64%

TestQ 1
36%

TestQ Distribution

TestQ 0

TestQ 1

146

Similarly, different median test effort and interquartile ranges for TestQ values of 0 and 1

(Figure A V - 4) reveal the effect of TestQ on test effort.

 Figure A V - 4 Box Plots of TestQ Ratings 0 and 1

In order to further justify the inclusion of these variables, two statistical tests were carried out

to evaluate their significance:

• the Kruskal-Wallis Test was taken up for DevQ as it involved three categories, and

• the Mann-Whitney Test was applied for TestQ (Table A V - 2).

Table A V - 2 Test of Significance for Independent variables

Statistical Test Variable P Value

Chi Square P Value Size < 0.001

Kruskal-Wallis Test DevQ 0.018

Mann-Whitney TestQ 0.001

The P-value indicates that Size, DevQ and TestQ are statistically significant.

147

Data Set C (COSMIC):

Scatter Diagrams of Size versus Test Effort for the whole Data Set C (COSMIC subset of Data

Set A) and individual project groups PG1, PG2 and PG3 (Figure A V - 5) depict relationship

between size and test effort.

Figure A V - 5 Scatter Diagrams for Size vs Test Effort: COSMIC - PG1, PG2 and PG3

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 200 400 600 800

T
es

t E
ffo

rt
 (

hr
)

COSMIC Function Point

Size Vs Test Effort (COSMIC)

0

100

200

300

400

500

600

0 200 400 600 800
T

es
t E

ffo
rt

 (
hr

)

COSMIC Function Point

Size Vs Test Effort
(COSMIC PG1)

0

500

1000

1500

2000

0 200 400 600 800

T
es

t E
ffo

rt
 (

hr
)

COSMIC Function Point

Size Vs Test Effort
(COSMIC PG2)

0

500

1000

1500

2000

0 200 400 600 800

T
es

t E
ffo

rt
 (

hr
)

COSMIC Function Point

Size Vs Test Effort
(COSMIC PG2)

148

The correlation coefficient computed between Size and Test Effort in the data sets (Table A

V - 3) also indicates a good correlation, and hence size is chosen as the primary independent

variable.

 Table A V - 3 Correlation: Size Vs Test Effort – COSMIC

Analysis of DevQ and TestQ for Data Set C

Classification of the data set in terms of DevQ and TestQ rating reveals that 83%, and 17%

of the projects are of DevQ Ratings 1 and 2 respectively. There are no projects qualifying for

DevQ rating 0 in the COSMIC data set. TestQ percentages are 71% and 29% for TestQ ratings

0 and 1 respectively (Figure A V - 6).

Figure A V - 6 Distribution of DevQ and TestQ Ratings (N = 82)

68;
83%

14;
17%

Dev Q Distribution

0

1

2 58;
71%

24;
29%

TestQ Distribution

Test Q 0

Test Q 1

Data Set Correlation Coefficient

Data Set A 0.3980

Data Set A PG1 0.9307

Data Set A PG2 0.8520

Data Set A PG3 0.9077

149

Different median test effort and interquartile ranges for DevQ values of 1 and 2 (Figure A V -

7) reveal the effect of DevQ on test effort. Median test effort and the interquartile range are

also the lowest for the highest DevQ rating.

 Figure A V - 7 Box Plots of DevQ Ratings 0,1 & 2

Similarly, different median test effort and interquartile ranges for TestQ values of 0 and 1

(Figure A V - 8) reveals the effect of TestQ on test effort. Median test effort and the interquartile

range is also the lowest for the highest TestQ rating.

150

 Figure A V - 8 Box Plots of TestQ Ratings 0 and 1

In order to further justify the inclusion of these variables, two statistical tests were carried out

to evaluate their significance:

• the Kruskal-Walis Test was taken up for DevQ as it involved three categories, and

• the Mann-Whitney Test was applied for TestQ (Table A V - 4).

Table A V - 4 Test of Significance for Independent variables

Statistical Test Variable P Value

Chi Square P Value Size < 0.001

Kruskal-Wallis Test DevQ 0.001

 Mann-Whitney Test TestQ 0.001

The P-value indicates that Size, DevQ and TestQ are statistically significant.

151

Data Set D (IFPUG):

The scatter diagrams of Size versus Test Effort for the whole IFPUG subset of Data Set A

(referred as Data Set D) and individual project groups PG1, PG2 and PG3 (Figure A V - 9)

depict the relationship between size and test effort.

Figure A V - 9 Scatter Diagrams for Size vs Test Effort: IFPUG - PG1, PG2 and PG3

The correlation coefficient computed between Size and Test Effort in the data sets (Table A

V - 5) also indicates a good correlation and, hence, size is chosen as the primary independent

variable.

0

500

1000

1500

2000

2500

0 200 400 600 800

T
es

t E
ffo

rt
 (

hr
)

IFPUG Function Point

Size Vs Test Effort
(IFPUG)

0

50

100

150

200

250

300

350

400

0 200 400 600 800

T
es

t E
ffo

rt
 (

hr
)

IFPUG Function Point

Size Vs Test Effort
(IFPUG PG1)

0
200
400
600
800

1000
1200
1400
1600

0 200 400 600 800

T
es

t E
ffo

rt
 (

hr
)

IFPUG Function Point

Size Vs Test Effort
(IFPUG PG2)

152

 Table A V - 5 Correlation: Size Vs Test Effort – IFPUG

Analysis of DevQ and TestQ for Data Set D

The classification of the data set in terms of DevQ and TestQ rating reveals that 51%, 3%,

and 12% of the projects are of DevQ Ratings 0, 1 and 2 respectively. TestQ percentages are

92% and 8% for TestQ ratings 0 and 1 respectively (Figure A V - 2).

Figure A V - 10 Distribution of DevQ and TestQ Ratings (N = 60)

51;
85%

2; 3%

7; 12%

Dev Q Distribution

0

1

2 55;
92%

5; 8%

TestQ Distribution

Test Q 0

Test Q 1

Data Set Correlation Coefficient

Data Set A 0.2863

Data Set A PG1 0.8846

Data Set A PG2 0.8724

Data Set A PG3 0.8359

153

Different median test effort and interquartile ranges for DevQ values of 0, 1 and 2 (Figure A V

- 10) reveal the effect of DevQ on test effort.

 Figure A V - 11 Box Plots of DevQ Ratings 0, 1 and 2

Similarly, different median test effort and interquartile ranges for TestQ values of 0 and 1

(Figure A V - 6) reveal the effect of TestQ on test effort.

154

 Figure A V - 12 Box Plots of TestQ Ratings 0 and 1

In order to further justify the inclusion of these variables two statistical tests were carried out

to evaluate their significance:

• the Kruskal-Walis Test was taken up for DevQ as it involved three categories, and

• the Mann-Whitney Test was applied for TestQ (Table A V - 6).

Table A V - 6 Test of Significance for Independent variables

Statistical Test Variable P Value

Chi Square P Value Size < 0.001

Kruskal-Wallis Test DevQ 0.723

 Mann-Whitney Test TestQ 0.565

The P-value indicates that DevQ and TestQ are not statistically significant.

155

Based on the analysis of the data sets in this Appendix it can be concluded that, to the

exception of the IFPUG data set, Size, DevQ and TestQ can serve as independent variables

for estimation models.

APPENDIX VI

REGRESSION MODEL FIT ANALYSIS

This appendix analyses regression models such as linear, exponential, power, logarithmic

and polynomial models as to their fitment to the data set selected for constructing estimation

models.

Data Set A has been taken up with its subsets PG1, PG2 and PG3 for this study: the objective

is to provide estimation model specific to project contexts such as PG1, PG2 and PG3.

Linear model (Figure A VI – 1), Exponential & Power model (Figure A VI – 2) and Logarithmic

and Polynomial model (Figure A VI – 3) are fitted to the PG1 data set.

Figure A VI – 1 Linear Model for PG1

y = 0,6035x + 1,6165
R² = 0,8165

0

100

200

300

400

500

600

0 200 400 600 800

Te
st

 E
ff

or
t (

hr
)

Size (FSU)

Size Vs Test Effort (PG1) Linear

Size Vs Test Effort (PG1)

Linéaire (Size Vs Test Effort
(PG1))

158

Figure A VI – 2 Exponential and Power Models for PG1

Figure A VI – 3 Logarithmic and Polynomial Models for PG1

Linear, Power and Polynomial models closely match with respect to R2 values for PG1 while

Exponential and Logarithmic models lag behind.

Based on PG2 data set, Linear model (Figure A VI – 4), Exponential & Power model (Figure

A VI – 5) and Logarithmic and Polynomial model (Figure A VI – 6) are fitted.

y = 50,205e0,0033x

R² = 0,7725

y = 0,6776x0,9731

R² = 0,8392

0

100

200

300

400

500

600

700

0 200 400 600 800

T
es

t E
ffo

rt
 (

hr
)

Size (FSU)

Size vs Test Effort (PG1) Expon & Power

Size Vs Test Effort (PG1)
Expon & Power

Expon. (Size Vs Test Effort
(PG1) Expon & Power)

Puissance (Size Vs Test Effort
(PG1) Expon & Power)

y = 159,8ln(x) - 689,14
R² = 0,7291

y = -7E-05x2 + 0,6554x - 4,9581
R² = 0,8168

-200

-100

0

100

200

300

400

500

600

0 200 400 600 800

T
es

t E
ffo

rt
 (

hr
)

Size (FSU)

Size vs Test Effort (PG1) Log & Poly

Size Vs Test Effort (PG1) Log
& Poly

Log. (Size Vs Test Effort (PG1)
Log & Poly)

Poly. (Size Vs Test Effort
(PG1) Log & Poly)

159

Figure A VI – 4 Linear Model for PG2

Figure A VI – 5 Exponential and Power Models for PG2

y = 1,7048x + 20,689
R² = 0,735

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 200 400 600 800

T
es

t E
ffo

rt
 (

hr
)

Size (FSU)

Size Vs Test Effort (PG2)

Size Vs Test Effort (PG2)

Linéaire (Size Vs Test
Effort (PG2))

y = 146,29e0,0034x

R² = 0,7191

y = 2,6938x0,919

R² = 0,8377

0

500

1000

1500

2000

0 200 400 600 800

T
es

t E
ffo

rt
 (

hr
)

Size (FSU)

Size Vs Test Effort (PG2) Expon & Power

Size Vs Test Effort (PG2)
Expon & Power

Expon. (Size Vs Test Effort
(PG2) Expon & Power)

Puissance (Size Vs Test Effort
(PG2) Expon & Power)

160

Figure A VI – 6 Logarithmic and Polynomial Models for PG2

A review of models fitted for PG2 reveals that Linear and Polynomial closely match with

respect to R2 Values while the power model results in better R2 value, while the Exponential

and Logarithmic models are poor.

Linear model (Figure A VI – 7), Exponential & Power model (Figure A VI – 8) and Logarithmic

and Polynomial model (Figure A VI – 9) are explored for PG3.

Figure A VI – 7 Linear Model for PG3

y = 386,03ln(x) - 1578,3
R² = 0,6064

y = 8E-05x2 + 1,6473x + 28,131
R² = 0,735

-1000

-500

0

500

1000

1500

2000

0 200 400 600 800T
es

t E
ffo

rt
 (

hr
)

Size (FSU)

Size Vs Test Effort (PG2) Log & Poly

Size Vs Test Effort (PG2) Log &
Poly

Log. (Size Vs Test Effort (PG2)
Log & Poly)

Poly. (Size Vs Test Effort (PG2)
Log & Poly)

y = 4,8007x + 98,132
R² = 0,7659

0

500

1000

1500

2000

2500

0 100 200 300 400 500

T
es

t E
ffo

rt
 (

hr
)

Size (FSU)

Size Vs Test Effort (PG3)

Size Vs Test Effort (PG3)

Linéaire (Size Vs Test
Effort (PG3))

161

Figure A VI – 8 Exponential and Power Models for PG3

Behaviour of models fit for PG3 is similar to PG2 with Linear and Polynomial sharing the same

R2 value while Power model providing better value, and Exponential and Logarithmic models

resulting in poorer values.

Figure A VI – 9 Logarithmic and Polynomial Models for PG3

Review of R2 values of models across PGs (Table A VI – 1) indicate that Linear and polynomial

models are similar, while power model appears better. Between Linear and Power models

the difference is not significant for the PG1 data set.

y = 233,84e0,0066x

R² = 0,6293

y = 7,7862x0,9244

R² = 0,8306

0
500

1000
1500
2000
2500
3000
3500
4000

0 100 200 300 400 500

T
es

t E
ffo

rt
 (

hr
)

Size (FSU)

Size Vs Test Effort (PG3) Expon & Power

Size Vs Test Effort (PG3)
Expon & Power

Expon. (Size Vs Test Effort
(PG3) Expon & Power)

Puissance (Size Vs Test Effort
(PG3) Expon & Power)

y = 532,45ln(x) - 1712,9
R² = 0,6343

y = -0,0021x2 + 5,5917x + 46,018
R² = 0,7677

-1000

-500

0

500

1000

1500

2000

2500

0 100 200 300 400 500T
es

t E
ffo

rt
 (

hr
)

Size (FSU)

Size Vs Test Effort (PG3) Log & Poly

Size Vs Test Effort (PG3) Log &
Poly

Log. (Size Vs Test Effort (PG3)
Log & Poly)

Poly. (Size Vs Test Effort (PG3)
Log & Poly)

162

Table A VI – 1 Values of R2 for Models for each PG

Model PG1 PG2 PG3

Linear 0.82 0.74 0.77

Exponential 0.77 0.72 0.63

Power 0.83 0.84 0.83

Logarithmic 0.73 0.61 0.63

Polynomial 0.82 0.74 0.77

Linear models have better interpretability as equal increments of the independent variable

yield equal increments of the dependent variable. The same cannot be said with respect to

other models. One of the major intention of this research work is to enable project managers

to use estimation models without bothering too much about the mathematics behind it. The

complex equations scare them and they do away with those coming with such equations.

Some of them blindly follow and adjust them to suit project needs based on their judgements

without really understanding the mathematics behind them and making major mistakes in that

process.

APPENDIX VII

DESIGN OF A PROTOTYPE TOOL FOR ESTIMATION

The prototype estimation tool named as ‘Chabroo’ is being developed to confirm that the

estimation models for testing built during this research work can be automated. The first

version of the tool will be a direct implementation of models and subsequent upgrades will

involve more sophistications. This Appendix briefly describes the design approach used for

the current prototype and its future versions.

The tool provides an option to use it to estimate or enter actual project data (Figure A VII – 1).

Figure A VII – 1 ‘Chabroo’ Prototype

Inputs and outputs of estimate feature (Figure A VII – 2):

(1) Project Context: Project Identification, Project Name, Project Owner, Project

Estimator, Date Start, Estimated End Date, Domain, Development Team Size,

Development Duration, Rating of rigour of verification and validation activities during

development

Options Inputs

Estimator

Project
Data

Estimate

Project
Data

Capture

Estimation
Models

Project
Actual
Data

164

(2) Independent Variables: Measure of the functional size of the requirements,

Development Process Rating (DevQ) and Test Process Rating (TestQ)

(3) Other inputs for Estimation: Prediction Interval

Figure A VII – 2 Inputs and outputs for Estimation

Original data from the projects based on which the models were generated will not be part of

the data base as these data may be sensitive and/or not allowed to be shared. The models

generated out of these data set will only be available as a part of the tool to be used within an

organizational context.

Project data capture functionality (Figure A VII – 3) will facilitate for the tool user to enter actual

data during the execution of the project. The data captured includes Project id, Details of

testing phase, efforts expended, changes to any of the original inputs such as functional size,

team size, duration, v & v rigour. These details will be stored in database organized in terms

Estimator

Estimation
Model

Estimate

Project
Context

Independent
Variables

Estimation
Inputs

Inputs

165

of project domain, initial estimate, actual efforts, changes to project context inputs – functional

size, development team size, development duration, v & v rigour and revised estimate.

Figure A VII – 3 Project Actual Data Capture

Model Refinement (Figure A VII – 4) has been conceptualized to refine the existing models

based on the actual data from several projects within an organizational context.

Figure A VII – 4: Model Refinement based on actual data from projects

Project
Actual Data

Project
Details

Actual Data

Project Data Entry

Project Data

Capture

Model
Refinement

Refined
Estimation

Model Modeling Input

Estimation
Model

Project Actual
Data

166

There are two kinds of data available to refine the model. The model equations based on the

original project data from where these models are generated and actual data generated during

the execution of projects are used to regenerate models. Regeneration will involve certain

user interventions in terms of modelling inputs to select and classify data from actual project

data repository to suit the existing contexts. As there are no data points available as a part of

the data repository related to the original models, simulation will be used to generate data

points which will be merged with actual data from projects to generate new model equations.

These new model equations are referred as ‘Refined Estimation Model’. The refined

estimation model will be available to estimator to use for prediction from this stage. As the

data is a closer representative of the organizational context, estimates from this stage will

provide better confidence to the user.

Figure A VII – 5 Model Regeneration based on multi-organizational data

The advanced implementation of the tool will involve (Figure A VII – 5) regeneration of models

based on actual data from multiple organizations. When this tool is used by multiple

Model
Regenerator

Refined
Estimation

Model Modeling Input

Estimation
Model

Project
Actual Data

Project
Actual Data

Project
Actual Data

Multi Organizational Project Repository

167

organizations and are willing to share the actual project data related to the organization, the

tool can be used to regenerate a completely new set of models using the multi organizational

data. Organizational data will be sufficiently sanitized and only the relevant parameters will be

used for regeneration of models.

This advanced feature will enable international data repositories to be built and shared with

confidence without the conventional hardship of data compilations for submission to

international benchmarking agencies.

BIBLIOGRAPHY

Abu Talib, Olga Ormandjieva, Alain Abran, Luigi Buglione, Adel Khelifi, 2006, Scenario
Based Blank Box Testing in COSMIC FFP, Software Quality Professional.

Abran, Alain, 2010, Software Metrics and Software Metrology, New Jersey: Wiley & IEEE

Computer Society Press, pp. 328.

Abran, Alain, Juan Garbajosa, Laila Cheikhi, 2007, Estimating the Test Volume and Effort for

Testing and Verification & Validation: International Workshop on Software
Measurement - IWSM-Mensura Conference, Nov. 5-9, 2007, Publisher: UIB-
Universitat de les Illes Baleares, Spain, 2007, p. 216-234.

 Abran, Alain 2015, Software Project Estimation: The Fundamentals for Providing High

Quality Information to Decision Makers, IEEE Computer Society, New Jersey: John
Wiley & Sons.

Al-Sarayreh, Abran, Alain, Khalid T., Juan J. Cuadrado-Gallego, 2013, ‘A Standards Based

Framework for System Portability Requirements, Computer Standards & Interfaces,’
Amsterdam: Elsevier Science Publishers, Volume 35, Issue 4, June 2013, p 380 –
395.

Al-Sarayreh, Khalid T., Alain Abran, Juan J. Cuadrado-Gallego, 2013, A Standards Based

Reference Framework for System Operations Requirements, Journal Computer
Standards & Interfaces, B V Amsterdam : Elsevier Science Publishers, Volume 47,
Issue 4, July 2013, pp. 351–363.

Albrecht, A. J., 1979, Measuring Application Development Productivity, Joint SHARE,

GUIDE, and IBM Application Development Symposium, Monterey, California, October
14–17, IBM Corporation (1979), pp. 83–92.

Amrinder Sing Grewal, Vishal Gupta, Rohit Kumar, 2013, Comparative Analysis of Neural

Network Techniques for Estimation, International Journal of Computer Applications
Volume 67-No. 11, April 2013.

Bala, Abdalla, 2013, Impact Analysis of a Multiple Imputation Technique for Handling Missing

value in the ISBSG Repository of software project, Ph. D Thesis, Ecole de technologie
superieure – University of Quebec, Montreal (Canada), October 17, 2013.

Bareja, K and Singal A, 2015, A Review of Estimation Techniques to Reduce Testing Efforts

in Software Development, Fifth international Conference on Advanced Computing &
Communication Technologies (ACCT), IEEE, 2015.

Beizer, Boris, 2007, Software Testing Techniques, 2nd Edition, Reprint Edition: 2007, New

Delhi : Dreamtech Press, 550 p.

Bharadwaj, Mridul and Rana, Ajay, 2015, Estimation of Testing and Rework Efforts for

software Development Projects, Asian Journal of Computer science and Information
Technology, v.5, n.5, May 2015, pp 33 – 37.

170

Bharadwaj, Yogesh, Kaushik Manju, 2014, A Review paper on Effort Estimation and Model

Based Regression Testing with SOA, International Journal of Computer Science and
Mobile Computing, IJCSMC, Vol. 3, Issue. 4, April 2014, pg. 1116 - 1121.

Black, Rex, 2002, Test Estimation - Tools & techniques for realistic predictions of your test

effort,; www.rbcs-us.com/documents/TestEstimation (article) .pdf, Access date 9 May
2012.

Boehm, B. W, 1981, Software Engineering Economics, New York, Prentice Hall.

Boehm, B. W, Abst, C. 2000, Software Cost Estimation with COCOMO II, New Jersey:

Prentice Hall, 502 p.

Bossavit, Laurent, 2015, ‘The Leprechauns of Software Engineering - How folklore turns into

fact and what to do about it,’ https://leanpub.com/leprechauns

Bourque, P., J. Moore, A. Abran, R. Dupuis, L. Tripp, 2014,Guide to the Software Engineering

Body of Knowledge -- SWEBOK v3.0, 2014 Version, IEEE Computer Society, Los
Alamitos, http://www.swebok.org

Capgemini, 2015, World Quality Report 2015 – 16, Seventh Edition, Published by Capgemini,

2015, www.worldqualityreport.com, 80p.

Cesar Andres, Mercedes G Merayo, Alberto Nunez, 2012 Using probabilistic customer

models to estimate the cost of checking SLAs of real time systems, Departamento
Sistemas Informaticos y Computacion Universidad Computense de Madrid E-28040
Madrid. Spain, Research Report, (TIN2009-14312-C02-01).

Chemuturi, Murali, 2012, Test Effort Estimation, http://chemuturi.com/Test

%20Effort%20Estimation.pdf, Access date : 9 May 2012.

Chintala Abhishek, Veginati Pavan Kumar, Harish Vitta, Praveen Ranjan Srivastava, 2010,

‘Test Effort Estimation Using Neural Network’, Journal of Software Engineering &
Application, 2010, 3, p 331-340.

Cohn, M., 2005, Agile Estimating and Planning, Prentice Hall, 2005.

Conte, SD, Dunsmore DE, Shen VY,1986, Software Engineering Metrics and Models, Menlo

Park: The Benjamin/ Cummings Publishing Company, Inc.

COSMIC, 2015, The COSMIC Functional Size Measurement Method, Version 4.0.1,

Measurement Manual, (The COSMIC Implementation Guide for ISO/IEC 19761:2011),
Common Software Measurements International Consortium, Canada, April 2015,
98p., www.cosmic-sizing.org.

171

COSMIC, 2011, Guideline for usage of COSMIC to manage Agile projects, Common
Software Measurements International Consortium, Canada, September 2011, 35p.,
www.cosmic-sizing.org.

COSMIC, 2015, Guideline on Non-Functional and Project Requirements v1.0, Common

Software Measurements International Consortium, Canada, November 2015, 56p.,
www.cosmic-sizing.org.

Daniel Guerreiro E Silva, Bruno Teixeira De Abreu, Mario Jino, 2009, ‘A Simple Approach

for Estimation of Execution Effort of Functional Test Cases,’ International Conference
on Software Testing Verification and Validation, IEEE Computer Society: Denver,
Colorado, USA, , 2009, Pages 289-298.

David F. Stephan, David M. Levine, 2013, Even You Can Learn Statistics: A Guide for

Everyone, by David M. Levine, David F. Stephan, Pearson 2013.

Delany, Sarah Jane, Cunningham, Padraig, 2000, 'The Application of Case-Based

Reasoning to Early Software Project Cost Estimation and Risk Assessment'. - Dublin,
Trinity College Dublin, Department of Computer Science, TCD-CS-2000-10, 2000, p
20.

Dirk Basten, Ali Sunyaev, 2011, Guidelines for Software Development Effort Estimation,

IEEE Computer, October 2011, p 88 - 90.

Dumke, Reiner and Abran, Alain (Edr), 2011, COSMIC Function Points, Theory and

Advanced Practices, Chapter 3.5: Measurement Convertibility - From Function Points
to COSMIC FFP, New York: CRC Press, p ,214- 225.

ECSS-E-40 Part 1B, 2003, European Consortium for Space Standardisation: Software –

Part1 : Principles and Requirements, November 28, 2003.

Eduardo Aranha and Paulo Borba, 2007, Sizing system tests for estimating test execution

effort, The 22nd International Annual Forum on COCOMO and Systems/ Software Cost
Modelling, USC Campus: Los Angeles, CA, October 29 – November 2, 2007, 8p.,
http://csse.usc.edu/events/2007/CIIForum.

Galorath, Dan, 2015, Why Can't People Estimate: Estimation Bias and Mitigation,

Conference presentation at IT Confidence October 2015, ISBSG.

Gartner, 2016, Forecast: Enterprise IT Spending by Vertical Industry Market, Worldwide 2013

– 2019, 4Q15 Update, 27 January 2016, www.gartner.com/doc/3191919.

Gencel Cigdem, Charles Symons, 2009, From performance measurement to project

estimating using COSMIC functional sizing, Software Measurement European Forum
2009 (SMEF 2009), January 2009, 14p.

Gray Martha M., 1999, ‘Applicability of Metrology to Information Technology’, Journal of

Research of the National Institute of Standards and Technology, Vol. 104, Number 6,
November-December.

172

Hill. Peter, ISBSG, 2010, Practical Software Project Estimation: A Toolkit for Estimating

Software Development Effort and Duration, McGraw Hill, 312 p.

IFPUG, 2005, Function Point Counting Practices Manual, Version 4.2.1, International

Function Points Users Group, 500p.

ISBSG, 2013, Repository Data Release 12 – Field Descriptions, ‘e.Field Descriptions – Data

Release 12. Pdf’ document provided as a part of data set, International Software
Benchmarking and Standards Group, 14 p.

ISO/IEC 14143-1, 2007, Information technology – Software measurement – Functional size

measurement Part 1: Definition of concepts, International Organization for Standards,
Geneva.

ISO/IEC 19761, 2011, Software Engineering – COSMIC – A Functional Size Measurement

Method, International Organization for Standardization, ISO, Geneva.

ISO/IEC 20926:2009, Software and systems engineering - software measurement - IFPUG

Functional size measurement method, 2009, International Organization for
Standardization, Geneva.

ISO/IEC 25010 – Software engineering – Software product Quality Requirements and

Evaluation (SQuaRE) – System and software quality models, (2011), International
Organization for Standardization, Geneva.

ISO/IEC/IEEE 29119 – Part 1(2013): Software and Systems Engineering – Software Testing

– Concepts and Definitions, 2013, International Organization for Standardization,
Geneva.

ISO/IEC/IEEE 29119 – Part 2 (2013): Software and Systems Engineering – Software Testing

– Test Processes, 2013, International Organization for Standardization, Geneva.

ISO/IEC/IEEE 29119 – Part 3(2013): Software and Systems Engineering – Software Testing

– Test Documentation, 2013, International Organization for Standardization, Geneva.

ISO/IEC/IEEE 29119 – Part 4 (2015): Software and Systems Engineering – Software Testing

– Test Techniques, 2015, International Organization for Standardization, Geneva.

ISTQB, 2011, Certified Tester, Foundation Level Syllabus, Released Version 2011,

International Software Testing Qualifications Board, www.istqb.org, 78p.

Izak Pierre Eramus, 2012, The COSMIC EPC Method: An ERP functional size measurement

method delivering time and cost estimates, University of Gothenburg, Sweden, April
2012.

Jaswinder Kaur, Satwinder Sing, Dr. Karanjeet Singh Kahlon, Pourush Bassi, 2010, ‘Neural

Network – A Novel Technique for Software Estimation’, International Journal of
Computer Theory and Engineering, Vol. 2, No.1, February 2010, p17-19.

173

Jones, Capers, 2007, Estimating Software Costs- Bringing Realism to Estimating, Second

Edition, New Delhi: Tata McGraw-Hill. 653 p.

Kafle, Lava, 2014, An Empirical study on software test effort estimation, International Journal

of Soft Computing and Artificial Intelligence, ISSN: 2321-404X, Volume-2, Issue-2,
Nov-2014, pp 96-106.

Kamala Ramasubramani J., 2006, CAFÉ – A framework for Effective Automation of Software

Testing, M.Phil. Thesis, 2006, Madurai Kamaraj University, Madurai, India.

Kamala Ramasubramani J., Alain Abran, 2013, Analysis of ISBSG Data for understanding

Software Testing Efforts, 1st International Conference on IT data collection, Analysis
and Benchmarking, Rio (Brazil) – Oct 3, 2013.

Kamala Ramasubramani J., 2011, ‘Why you must change to COSMIC for Sizing and

Estimation’, International Conference on Software Engineering CONSEG - 2011, 17-
19 February, 2011, Bangalore, India, p 86 - 92.

Kaner Cem, 2013, Practical Approaches to software metrics, Power Point Presentation,

March 2013, http://kaner.com/pdfs/PracticalApproachToSoftwareMetrics.pdf

Kate Armel, 2012, Top Performing Projects Use Small Teams Deliver Lower Cost, Higher

Quality, Blog Posting, Quantitative Software Management, Inc, USA, accessed on 18
January 2016.

Kemerer, Chris F. 1987, An Empirical Validation of Software Cost Estimation Models,

Communications of the ACM, May 1987, Volume 30, Number 5, p 416-429.

Kerstner, Matthias, 2011, Software Test Effort Estimation Methods, Graz University of

Technology, Austria; www.kerstner.at/en/2011/02/software-test-effort-estimation-
methods/; Accessed on:18 May 2012.

Krishnamurthy Srinivasan, 1995, Machine Learning Approaches to Estimating Software

Development Effort, IEEE Transactions on Software Engineering, Volume 21, Issue 2,
February 1995, pp. 126-137.

Lindsey Charles, Simon Sheather, 2010, ‘Variable selection in linear regression,’ The Stata

Journal, 10, Number 4, pp 650-669.

Lionel C Briand, Khaled El Emam, Dagmar Surmann, Isabella Wieczorek, Katrina D Maxwell,

1999, ‘An Assessment and Comparison of Common Software Estimation Modeling
Techniques’, 21st International Conference on Software Engineering’ pp 313-322,
1999.

174

Mussa, Mohamed, Samir Ouchani, Waseem Al Sammane, and Abdelwahab Hamou-Lhadj,
2009, A survey of model-driven testing techniques, 9th International Conference on
Quality Software - QSIC'09., pp. 167-172. IEEE, 2009.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5381477

Mutalik, Prakash, 2003, Test Metrics and Estimation Model, Power point presentation,

National Summit on Software Testing (NSST), Chennai, India.

Ossi Taipale, 2007, Observations on Software Testing Practice, PhD Thesis, Lappeenranta

University of Technology, Finland, 2007.

Perry, William, 2006, Effective Methods for Software Testing, 3rd Edition, Singapore: John

Wiley & Sons (ASIA) Pte Ltd, 812 p.

PMI, 2013, A Guide to the Project Management Body of Knowledge (PMBOK Guide), Fifth

Edition, PMI Standards Committee, Project Management Institute, USA, 2013.

Putman, L., 1978, A general empirical solution to the macro software sizing and estimating

problem. IEEE Transactions on Software Engineering, Volume 4, No 4, pp 345-61,
April 1978.

Putnam Doug 2005, Team Size can be the Key to a successful software project, Quantitative

Software Management Inc., USA. www.qsm.com.

QAI 2006, Guide to the CSTE Common Body of Knowledge, Version 6.2, Software Testing

Body of Knowledge, QAI Global Institute, USA, 561p.

Rubin, H.A, 1982, Macro estimation of software development parameters: The Estimacs

system. In SOFTFAIR Conference on Software Development Tools, Techniques and
Alternatives (Arlington, Va., July 25-28), IEEE Press, New York, 1982, pp. 109-118.

Siegl, Sebastian; Hielscher, Kai-Steffen; German, Reinhard, 2010, "Model driven testing of

embedded automotive systems with timed usage models," Vehicular Electronics and
Safety (ICVES), 2010 IEEE pp.110-115, 15-17 July 2010,
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5550938&isnumber=5550
921.

Solomon Mensah, Jacky Keung, Kwabena Ebo Bennin and Michel Franklin Bosu, 2016,
Multi-Objective Optimization for Software Testing Effort Estimation, International
Conference on Software Engineering & Knowledge Engineering, SEKE 2016,
June 30 – July 3, 2016, San Francisco, California, USA,
http://ksiresearchorg.ipage.com/seke/seke16paper/seke16paper_163.pdf.

southernSCOPE, 2012, Avoiding Software Budget Blow outs, eGovernment Resource

Center, State of Victoria, Australia, http://www.egov.vic.gov.au/ victorian-government-
resources/e-government-strategiesvictoria/ southern scope /southernscope-avoiding-
software-budget-blowouts.html.

175

Srivastava, Praveen Ranjan, 2009, Estimation of Software Testing Effort: An Intelligent
Approach, 20th International Symposium on Software Reliability Engineering (ISSRE),
Mysore, India.

Symons, Charles, 2010, Webminar presentation on ‘Effective use of Software Metrics',

Software Measurement Services, http://www.smsexemplar.com.

Symons, Charles, Alain Abran, Jean-Marc Desharnais, Serge Oligny, Denis St-Pierre, 2009,

The COSMIC Functional Size Measurement Method Version 3.0.1, Measurement
Manual, (The COSMIC Implementation Guide for ISO/IEC 19761:2003), Common
Software Measurements International Consortium.

Taleb, Nassim Nicholas, 2012, Anti Fragile, London: Penguin Books Limited, 519 p.

Tassey, Gregory, 2002, ‘The Economic Impacts of Inadequate Infrastructure for Software

Testing’, National Institute of Standards and Technology, USA, 309 p.

Valdes, Francisco, 2011, Design of Fuzzy Logic Estimation Process, Ph. D., Thesis, Ecole

de technologie supérieure - ETS, University of Quebec, Canada.

VIM ISO/IEC Guide 99, 2007, International vocabulary of metrology – Basic and general

concepts and associated terms (VIM), International Organization for Standardization
– ISO, Geneva.

Wisconsin, 2007; 2015, Do IT’s Project Management Advisor (PMA), PM Best Practice

Guide, Board of Regents, University of Wisconsin, www.pma.doit.wisc.edu, 2007, site
last updated in November 3, 2015, accessed on 27 December 2015.

