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Abstract 

 

The increased amount of electromagnetic emission into the environment has increased 

the public concern over the possible health risks of wireless devices. However, to 

minimize the amount of energy absorbed by the user (measured by the Specific 

Absorption Rate, SAR) not only reduces any possible health hazards but is 

advantageous from the technical point of view, as well.  

The purpose of this thesis is to investigate techniques for the reduction of the 

interaction between the mobile phone’s antenna and the user’s head by using different 

SAR control mechanisms while taking into account possible degradations of the 

electrical and mechanical antenna properties.  

The thesis starts with fundamental theory of mobile terminal antennas and SAR and 

the numerical and measurement technologies are reviewed. The boundary conditions 

on electromagnetic fields are shown to effect EM wave propagation inside dielectric 

bodies, in particular, the permittivity of the material strongly affects the E&H field 

distributions. This is followed by an introduction of some of the recently suggested 

solutions for reduced SAR from internal handset antennas such as parasitic elements, 

directive control antenna, wave traps and slots in the PCB ground plane. These 

methods aim to control the current distribution and the direction of radiation in the 

near field, while ferrite, conductors and AMC shields are used to disperse or attenuate 

the EM fields radiated against the human body. As a superior solution, this thesis 

proposes a High-Impedance Surface Electromagnetic Band Gap (EBG) planar 

structure integrated below the antenna as SAR reduction solution. 

With this method, for the case of a monopole antenna for GSM 1900 with backing by 

an EBG the SAR values inside a phantom are well reduced with only slight impact on 

the antenna radiation efficiency. On the other hand, the possible performance 

degradation of a Loop antenna for low-band (GSM 900) by the influence of the EBG 

(which is designed for GSM 1900) is checked and found to be acceptably small.  
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Chapter 1 
 

1. Introduction and Overview 

 

With the development of mobile communication and the popularization of mobile 

phones during the past ten years, since handsets have to meet tough technical 

requirements (Voice and Data), the transmitting power has increased. Therefore, the 

absorption of electromagnetic energy in the human head generated by the mobile 

phones has become an essential topic in the scientific research due to possible health 

risks. The Specific Absorption Rate (SAR) is a well-defined Figure of merit to 

evaluate the power absorbed by biological tissue, and the standards organizations have 

set exposure limits in terms of SAR.  

Moreover, because of the bandwidth limitation of the Patch Inverted F Antenna 

(PIFA), the antenna types presently used mostly such as monopole and loop have been 

suggested as remedy for 4G handsets. However, most of monopole type radiation 

suffers from excessive SAR values; therefore, this radiator is placed near the bottom 

of the phone, which is naturally farther away from the head in talk position, but this 

tends to be not enough to satisfy SAR limits.  

The purpose of this thesis is to investigate possible reduction of the interaction 

between the mobile phone’s antenna and the user’s head by using different SAR 

control mechanisms without redesigning the antenna. In addition, any solution must 

keep within the applicable terminal antenna design specifications. The specifications 

are concerned with electrical properties such as efficiency, bandwidth etc., and 

mechanical properties such as size, placement, mechanical shock impact etc. This 

thesis studies and analyses different published SAR reduction solutions, and proposes 

a High impedance surface-Electromagnetic Band Gap (EBG) structure as SAR 

reduction solution. 

The EBG structure is proposed as RF shielding when it is inserted between the 

monopole antenna and the user’s head at the frequency band GSM1900 which is most 

critical due to peak SAR values.    

This thesis includes eight chapters. The concept of the mobile communication 

technique is introduced in the second chapter. This includes an overview about the 

interrelation between the most important antenna performance parameters such as the 
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reflection coefficient, bandwidth, and radiation efficiency. In addition, the 

fundamentals of the interaction between the user and the antenna are presented. The 

antenna and SAR measurement technologies are reviewed, which are later used in 

next chapters. 

Chapter 3 reviews the interaction mechanisms between RF Fields and the Body, the 

radiation regions of an antenna are introduced to define the RF interaction region with 

the user’s body. The effect of the boundary conditions on electromagnetic fields is 

presented and numerical results are generated to describe the EM fields distribution at 

the body boundary and inside the human’s body. An overview of Antenna parameters 

in free space and in the vicinity of a user is presented to describe the RF antenna 

radiation losses inside the head.           

These first three chapters provide the necessary background for the reader to be able 

to understand the concepts discussed in the later parts of this work.  

In chapter 4, a quick view of different numerical simulation technologies (FDTD, 

MOM...) to simulate the 3D electromagnetic fields is presented; for the investigation 

in this thesis two commercial software packages: Computer Simulation Technology 

(CST) and High Frequency Structural Simulator (HFSS) are used.  

In chapter 5, the near field distribution of the widely used monopole antenna close to a 

dielectric material interface at 900 GHz, and 1900 GHz are investigated. The relation 

between peak SAR location and surface currents distribution on the chassis is 

presented and compared between the two frequencies. In particular, the effect of the 

chassis size on the maximum SAR values and antenna efficiency is studied. 

In chapter 6, state-of-the-art SAR control mechanisms, some recently published 

solutions for reducing SAR of internal antennas are investigated. The purpose of this 

investigation is to evaluate the possibility of using these solutions inside the mobile 

phone without negative impact on the mobile antenna performance at all frequency 

bands. In addition, numerical and experimental studies for some proposed solutions 

are presented. Including a simulation study on shield made of a Perfect Magnetic 

Conductor (PMC), which leads to the concept of a “metamaterial” used as a shield behind 

the antenna. This concept is investigated in detail using a specially designed multilayer 

offset stacked EBG structure in the next chapter.     

In Chapter 7, interference and diffraction of EM waves on the EBG structure and peak 

SAR are investigated and compared for the case when no EBG is applied. The specific 

absorption rate values inside the phantom and antenna radiation efficiency are 

investigated for the case of a monopole antenna for GSM 1900 with and without 

backing by an EBG.  Placement of the small EBG structure inside the phone is 

presented, moreover, SAR and antenna performance are investigated in free space and 

beside the user’s head. Finally, the performance degradation of a Loop antenna for 
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low-band (GSM 900) is investigated to study the influence of the EBG (designed for 

GSM 1900), on the loop antenna operating at GSM 900.  

In Chapter 8, the conclusions of this thesis are summarized and some suggestions for 

future work are presented. 
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Chapter 2 

2. Mobile Communication Systems 

 

In today’s environment of almost constant connectivity, wireless devices are 

ubiquitous, as the Radio Frequency (RF) electronics technology for these wireless 

devices continues to decrease in size, there is a corresponding demand for a similar 

decrease in size for the antenna element. Unfortunately, the performance requirements 

for the antenna are rarely relaxed with the demand for smaller size. In fact, the 

performance requirements generally become more complex and more difficult to 

achieve as the wireless communications infrastructure evolves. 

In the early organisation of cellular, Digital Cellular System (DCS), Personal 

Communications Service/System (PCS), and Global System for Mobile 

Communications (GSM) networks, the wireless device typically had to operate within 

a single band, defined by the specific carrier’s license(s). In today’s environment, the 

wireless device is often required to operate in more than one band that may include 

several GSM frequencies, 802.11 (Wi-Fi), 802.16 (Wi-Max) and Global Positioning 

System (GPS) as defined in Table 2-1. Note, frequencies below GSM 800 are not 

presented. 

In today’s wireless device terminology, an antenna that covers more than one of the 

wireless communications bands is considered as a multiband antenna. For example, an 

antenna that simultaneously covers two separate bands encompassing frequencies of 

824–960 MHz and 1,710–1,990 MHz is considered as a four-band or quad-band 

antenna since it provides coverage of the GSM 800, GSM 900, GSM 1800, and GSM 

1900 frequencies.  

In addition, as known from the EM wave propagation theory, the power density (S) of 

waves is decreased when the distance (R) from the antenna is increased. Therefore, by 

decreasing the mobile phone thickness, the antenna comes closer and the effect of the 

antenna radiation on the user becomes higher.   



 

 

Mobile communication systems  
 

5 

 

 

Table 2-1: Uplink and downlink frequency bands for various cellular networks 

(Frequencies in MHz). [1] 

Although the most common fear in people’s minds is the concern with the potential 

risk of getting a brain cancer or other serious disease, investigations on mobile 

terminals in the vicinity of a user are important also from the technical point of view. 

The reduction of power absorbed by the user not only reduces any potential health 

hazards but also makes the antennas more efficient. Arising from these aspects, 

antenna designers have been forced to pay a growing amount of interest on reducing 

the radiation absorbed by the user.  

Fully understanding the process of how and why the fields generated by a mobile 

terminal antenna are absorbed by the user would enable the antennas to be designed 

from the very beginning so that the energy absorbed by the user could be minimized. 

The antenna size, bandwidth, radiation efficiency and SAR (Specific Absorption Rate) 

are interrelated in a complex manner, such that a design of a mobile terminal antenna 

that operates as desired in all possible environments is a great challenge. [2] 

In this chapter, the interrelations between the most important performance parameters 

of a mobile terminal antenna are discussed by introducing the concepts of impedance 

bandwidth, radiation efficiency and quality factor. In addition, the fundamentals of the 

interaction between the user and the antenna are presented. 

As shown in Figure 2-1 there are different antenna types commonly used as 

transmitting antenna such as Monopole antenna and IFA (Inverted F Antenna), PIFA 

(Planar Inverted F Antenna), Loop Antenna. 
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Figure 2-1: Mobile phone antenna types 

 Reflection coefficient: 

A part of the incident wave reflects back from the antenna, when the antenna 

impedance 𝑍 a differs from the characteristic impedance 𝑍o of the transmission line. 

The reflection coefficient caused by the antenna is given by 

𝜌 =
𝑍a−𝑍𝑜

𝑍a+𝑍𝑜
                                                                 (2.1) 

Where ρ is often described as the scattering parameter  𝑆 11 . 

The impedance of an antenna consists of resistive 𝑅a and reactive components 𝑋a 

according to Equation (2.2) 
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Transmission line Antenna 

Radiation 

𝑍o 

𝑅r 

𝑅l 

𝑗𝑋a 

𝑍 a = 𝑅a + 𝑗𝑋a                                                         (2.2) 

The equivalent circuit model for the impedance parameters of an antenna and 

transmission line are presented in Figure 2.2. 

The resistive part of the impedance further consists of radiation and dissipation 

losses,𝑅a = 𝑅r + 𝑅l, and the reactive part 𝑋a is caused by energy stored in the antenna’s 

reactive near fields. However, at the antenna’s resonant frequency, the reactive part of the 

impedance disappears. 

A very close object affects the antenna impedance. However, in many cases a slight 

mismatch is accepted. E.g., for small handset antennas |ρ| = | 𝑆 11| ≤ 0.5 is often 

considered adequate for the operating frequency range. 

 

 Bandwidth: 

When designing small mobile terminal antennas, the absolute bandwidth 𝐵𝑊𝑎𝑏𝑠  

mostly refers to the impedance bandwidth, i.e. the frequency range where condition |ρ| 

= | 𝑆 11| ≤-6 dB is satisfied. The corresponding values for Voltage Standing Wave 

Ratio VSWR ≤ 3, and return loss 𝑅L ≥ 6 dB can be calculated from Equations:  

𝑉𝑆𝑊𝑅 =
1+|𝜌|

1−|𝜌|
                                                    (2.3) 

𝑅L = 10𝑙𝑜𝑔
1

|𝜌|2
                                                  (2.4) 

Figure 2-2 : Equivalent circuit of the transmitting 

antenna 
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Bandwidth can also be represented relative to the center frequency 𝑓c leading to the 

relative bandwidth, which is defined in the following equation: 

𝐵r =
𝐵𝑊abs

𝑓c
                                                      (2.5) 

𝐵𝑊abs : Absolute impedance bandwidth, 𝑓c : Center frequency 

Table 2.2 presents bandwidth requirements for different wireless systems that can be 

applied in portable devices. 

System 𝑓𝐜 [MHz] 𝑩𝑾𝐚𝐛𝐬[MHz] 𝑩𝐫 [%] 

GSM 850 859 70 8.1 

GSM 900 920 80 8.7 

GSM 1800 1795 170 9.5 

GSM 1900 1920 140 7.3 

WLAN (802.11g) 2450 100 4.1 

WLAN (802.11a) 5250 200 3.8 

Table 2-2: Frequency bands of different systems. 

 

 Efficiency  

The radiation efficiency 𝜂radof an antenna is defined as the ratio of the radiated power 

𝑃rad to the power 𝑃in accepted by the antenna: 

𝜂rad =
𝑃rad

𝑃in
                                                        (2.6) 

By using the impedance parameter of an antenna, the radiation efficiency can be 

written as: 

𝜂rad =
𝑅r

𝑅r+𝑅l
                                                      (2.7) 

Because the radiation efficiency does not take into account the losses due to mismatch 

between the antenna input and the transmission line, the total efficiency of an antenna 

is defined as the ratio of the radiated power to the incident power 𝑃inc to the antenna, 

and it can be calculated from: 

𝜂tot = 𝜂rad𝜂m                                                 (2.8)  
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Where 𝜂m=1-|𝜌|2 represents the matching efficiency.  

Figure 2-3 shows the relation between the powers in the antenna system which can be 

written as the following: 

𝑃inc = 𝑃reflected + 𝑃loss + 𝑃rad                                         (2.9) 

𝑃acc = 𝑃loss + 𝑃rad                                                              (2.10) 

Part of the accepted power is dissipated by conductors and dielectrics losses, which is 

symbolised as 𝑃loss.  

 

 Antenna efficiency measurement  

The measurement of the mobile terminal antenna performance is an important step in 

antenna design. The antenna performance of a mobile antenna is generally evaluated 

by measuring its radiation pattern in an anechoic chamber. This has traditionally been 

achieved by a passive measurement method that feeds the antenna from an external 

signal source via a coaxial cable. However, due to the fact that a feeder cable need to 

be drawn to the mobile antenna, spurious emission caused by leaked current on this 

feeder cable can significantly degrade measurement accuracy. To overcome this 

problem the active measurement method has been used in recent years, which 

measures the antenna radiation pattern with high accuracy by using the terminal’s own 

RF transceiver 

𝑃inc 𝑃acc 

𝑃rad 

𝑃reflected 

𝑃loss 

Figure 2-3 : Power distribution in the antenna system 
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Figure 2-4: Overview of SATIMO passive antenna measurement system. After [3] 

The Figure 2-4 shows the antenna measurement system from SATIMO, which was 

used in this thesis as passive measurement instrumentation for antenna efficiency. The 

Vector Network Analyzer VNA is used as RF source/receiver and the control unit 

drives the two positioning motors and the electronic scanning of the 15 two-

polarization probes, with space 22.5° between two probes and rotation step of the mast 

of 11.25°. 

The active measurement was used to analyse the radiation pattern shape and the 

efficiency; this method generally is referred to as OTA, where OTA measurements 

determine the Over-The-Air performance of mobile terminals such as mobile phones. 

The resulting values for Total Radiated Power (TRP) are a figure of merit for 

qualifying a mobile terminal performance in a network as shown in Figure 2-5. 

 

Figure 2-5: Overview of active measurement system (TRP), consisting of 64 two-

polarization probes with 0.02° Azimuth accuracy.After [4] 
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In TRP measurement, the total RF channel power radiated by the mobile phone is 

calculated by integrating the measured Effective Isotropic Radiated Power (EIRP) 

data over the measurement sphere. The amplification unit amplifies the signal on 

reception channels according to the frequency bands; the Radio Communication 

Tester (CMU) controls the transmit power of the mobile terminal by the link antenna. 

TRP measurement is on the complete system, combining the antenna performance and 

the RF transceiver performance and is defined in the following equation: 

𝑇𝑅𝑃 =
1

4𝜋
∮ (𝑃tx𝐺𝜃(𝛺; 𝑓) + 𝑃tx𝐺𝜙(𝛺; 𝑓)) 𝑑𝛺                               (2.11) 

Here, 𝐺θ and 𝐺ϕ denote the vertical and horizontal polarization components, 

respectively, of the antenna gain pattern at frequency f and 𝛺 denotes the area of a 

spherical surface cut away by a cone whose vertex is the center of the sphere. In 

addition, 𝑃tx is the transmitted power of the DUT so that 𝑃tx𝐺θ and 𝑃tx𝐺ϕ denote the 

effective radiated power known as Equivalent Isotropically Radiated Power (EIRP). 

 

 User interaction 

The everyday use of devices emitting radio frequency (RF) is rapidly increasing. 

Close to the antennas, the electric field strengths can reach several hundred volts per 

meter. Even higher values can be found close to occupational sources used for 

processing of various materials by heating and sometimes by formation of plasma 

discharge in the material. Power sources generating high levels of electromagnetic 

fields are typically found in medical applications and at certain workplaces. Medical 

devices used for magnetic resonance imaging (MRI), diathermy, various kinds of RF 

ablation, surgery, and diagnoses may cause high levels of electromagnetic fields at the 

patient’s position or locally inside the patient’s body. The cellular mobile 

communication causes on average low levels of electromagnetic fields in areas 

accessible to the public by comparison to the medical devices. However, it might 

cause significantly higher peak levels of exposure during use of mobile terminals. 

     

 Absorption of radiation into the user  

During the last decade, the issue of electromagnetic interaction between human tissue 

and a mobile phone has been intensively studied to expand the understanding of 

radiation safety of mobile communication systems. In the case of a mobile phone, a 
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considerable part of the power radiated from the antenna is actually absorbed into the 

user’s head, hand and the rest of the body. 

The biological effects of electromagnetic radiation on living cells can be classified 

into two types: ionizing effect and non-ionizing effect, based on the radiation’s 

capability of ionizing atoms and breaking chemical bonds.  

According to present knowledge, the only influence that electromagnetic radiation has 

on human tissue is the rise in temperature (non-ionizing effect), Figure 2-6, when the 

source frequency is between 100 kHz to 300GHz [5]. If the temperature rise on the 

surface of the brain caused by radio waves is not more than 0.3 degrees, it is known 

that this does not have any physiological significance. As a comparison, the normal 

fluctuation is around ±1°C, and in exhausting physical exercise, even a temperature 

rise of two degrees is quite common [6]. 

Although the increase in tissue temperature is too small to cause any biological 

damage, it has been speculated that electric fields may, by some unknown non-thermal 

mechanism, disturb normal cell function. Hence, in addition to tissue heating, other 

possible health hazards of mobile phone radiation have been intensively studied in the 

last 20 years.  

Apparently, the most popular subject of research has been to study the potential 

connection between mobile phone radiation and brain cancer. On the basis of research 

results obtained from these studies, it hasn’t been possible to conclude that radiation 

from mobile phones would be detrimental to health [6].  

 

Biological hazards of 
electromagnetic fields

Thermal Effects

Exposure 
guidelines

Non- Thermal 
Effects

Figure 2-6 : Biological hazards of electromagnetic fields 
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Target Effect Threshold 

Whole 

body 

Various physiological effects 1.0 °C 

Eye 

lens 

Cataract 3 – 5 °C 

Skin Warmth sensation 0.02 – 1 °C 

Pain sensation/Burns 10 – 20 °C 

Brain Neuron damage 4.5 °C 

Table 2-3: Thresholds for the induction of thermal effects to the human body (world 

health organization WHO) 

The electromagnetic fields as regards absorption of energy by the human body can be 

divided into four ranges: [7] 

 Frequencies from 100 KHz to less than 20 MHz, at which absorption in the 

trunk decreases rapidly with decreasing frequency and significant absorption 

may occur in the neck and legs. 

 Frequencies in the range from 20 MHz to 300 MHz, at which relatively high 

absorption can occur in the whole body, and even to higher values if partial 

body (e.g., head) resonances are considered. 

 Frequencies in the range from 300 MHz to several GHz, at which significant 

local, non-uniform absorption occurs. 

 Frequencies above 10 GHz, at which energy absorption occurs primarily at the 

body surface. 

The main dosimetric parameter for evaluating the absorption of electromagnetic 

radiation to human is the Specific Absorption Rate SAR. SAR is a measure to 

quantify the electromagnetic energy absorbed by unit mass of tissue and is defined as:                                         

𝑆𝐴𝑅 = 𝜎eff
𝐸2

𝜌
                                                       (2.12) 

Where σeff is the effective conductivity of the tissue (Siemens per meter), E the root-

mean-square value of the induced electric field strength (V/m), and ρ is the tissue 

density. The unit of SAR is watts per kilogram (W/kg) or milliwatts per gram (mW/g) 

and it denotes the time rate of non-ionizing radiation energy absorption at a given 

location inside the tissue.  

In practice, SAR is always determined as an average value over a finite, most often 1g 

or 10g, tissue mass. 

 

 



  

 

Mobile communication systems 

 

14 

 

 

 SAR-Limits 

The RF energy in the frequency range of Global System for Mobile Communications 

(GSM): 824 MHz to 2170 MHz, and WLAN: 2.45 GHz and 5.2 GHz is called non-

ionizing because the photon energy is insufficient to knock electrons from atoms in 

living tissue.  

The most apparent biological effects of RF energy at cell phone frequencies are due to 

heating, which means increase in the temperature of the tissues. 

Table 2.4 presents the recommended limits for local maximum SAR values in an 

uncontrolled environment set by IEEE (Institute of Electrical and Electronics 

Engineers) and ICNIRP (International Commission on Non-Ionizing Radiation 

Protection). In Europe the ICNIRP recommendations are the most widely followed, 

while the slightly stricter standards set by IEEE are applied in the United States. 

The SAR limits are defined at different time duration over 6 minutes (ICNIRP 1998) 

and over 30 minutes (IEEE 2005). 

  
Workers 

Controlled 

General public 

Uncontrolled 

  

ICNIRP 
Whole-body SAR 4 W/kg 0.08 W/kg 

Local SAR(10 g averaging) 10 W/kg 2 W/kg 

IEEE 
Whole-body SAR 4 W/kg 0.08 W/kg 

Local SAR(1 g averaging) 8 W/kg 1.6 W/kg 

Table 2-4: Recommended maximum local SAR values set by ICNIRP and IEEE. 

The recommendations presented in Table 2.4 give information for antenna designers. 

That is, the radiation safety of mobile communication devices can be designed in and 

tested by using these levels as references.    

The fundamentals of the interaction mechanisms between electromagnetic fields and 

dielectric material, such as human tissue, are further discussed in the subsequent 

chapters of this thesis. 
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 Reduction of radiation efficiency  

Radiation efficiency is defined as the ratio of the total power radiated by an antenna to 

the net power accepted by the antenna from the connected transmitter. 

When the antenna is placed beside the head, the accepted antenna power  𝑃acc consists 

of the antenna dissipation 𝑃loss , the absorbed power in the head 𝑃h and (far-field) 

radiated power 𝑃r.This can be expressed as: 

𝑃acc − 𝑃loss =
1

2
 𝑅𝑒(𝑉𝐼∗) = 𝑃h + 𝑃r =

1

2
∫ 𝜎1 |𝐸̅|

2
𝑉𝑏

𝜕𝑉 +
1

2
𝑅𝑒 [∫ (𝐸̅ × 𝐻̅∗)𝜕𝑆

𝑠
]  

(2.13) 

𝑉b: Volume of body, S: Far-field sphere.   

Besides the health issues, it is essential from the antenna efficiency point of view to 

minimize the power absorbed in the user’s head and the rest of the body; the smaller 

the portion of power that human tissues absorbes, the larger is the share that radiates 

into the surrounding free space.  

In fact, the portion of power absorbed in the user largely determines the total radiation 

efficiency of the system including the phone and the user. Especially at GSM bands, 

the contribution of power that is absorbed in the user is commonly very large and with 

internal mobile phone antennas, even more than 90 % of the total accepted power can 

be lost due to the presence of the user. 

There is no doubt that the input power is also partly lost in the mobile phone antenna 

and the structure such as in the battery, display and all the plastic components. 

However, free space radiation efficiency of a commercial mobile phone can be still in 

the order of 80 % (corresponding to approximately 1 dB of loss in the structure) or 

more. 

 

 SAR Measurement Equipment (Near-Field Scanners) 

In order to evaluate the SAR and induced current density inside of the human body 

exposed to electromagnetic fields, various measurement methods have been developed 

(IEEE C95.3-2002). For the measurements, human body phantoms are frequently used 

while in other cases, volunteers or cadavers have been used [8]; [9]. In order to keep 
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the repeatability of the measurement high, human-body phantoms with homogeneous 

liquid dielectric properties are preferable. 

For local SAR measurement, there are two methods, one is E-field measurement and 

another is temperature measurement. E-field measurement is used for compliance tests 

of mobile phones because the sensitivity is relatively high and 3-D measurement is 

available if a liquid-type phantom is used.  

The procedures of the compliance tests of wireless terminals such as mobile phones 

based on E-field measurement have been standardized internationally between 300 

MHz and 3 GHz (IEC 62209-1-2005; IEEE Std. 1528-2003). It is also noted that E-

field probes must be calibrated at each frequency and in phantom materials with the 

electrical properties adjusted to those of the biological tissues at the frequency of 

interest. Thus, an E-field probe which is only calibrated in free space cannot be used 

to measure E-field strength in phantoms.  

 

 3-D Scanning System: 

Figure 2-7 shows a typical 3-D SAR measurement system used to perform SAR 

measurement in the head and body phantom. The system measures the E field’s 

amplitude inside the liquid. The probe is held by the robot arm and scans the entire 

exposed volume of the phantom in order to evaluate the three-dimensional field 

distribution.      

 

Figure 2-7: Mobile phone SAR measurement system which consists of an E-field 

probe positioned by a robot in a head phantom exposed to a mobile phone at the right 

ear. From [10] 
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Figure 2-8 :  Side view of the phantom head showing the ear and marking lines BM 

and NF. Intersection RE is the ear reference point (ERP). From [11] 

Figure 2-8 shows the side view of the phantom. The center-of-mouth reference point 

is labelled “M,” the left ear reference point (ERP) is marked by “LE,” and the right 

ERP is marked by “RE.” Each ERP is located on the B-M (back-mouth) line 15 mm 

behind the entrance-to-ear-canal (EEC) point. At the test frequency the robot measures 

the E field over the Scan Area (81x141x1 𝑚𝑚3), with measurement grid 𝑑x=10mm, 

𝑑y=10mm. 

There are two mobile phone positions for every head side, cheek touch and 15°tilt. In 

this study, the cheek touch (right head) position is used to compare the SAR values 

from different antenna measurements. The phantom is filled with tissue equivalent 

liquid for various frequencies based on a plane wave analysis [12]. 

In the near field of a wireless handset, the EM field distributions may have sharp 

spatial variations in both magnitude and polarization. Thus, the typical field probe for 

measuring SAR shall be much smaller than the wavelength λ in a tissue equivalent 

liquid, be isotropic, and shall be transparent to the measured field.  

The Figure 2-9 shows a typical E-field probe, which consist of three mutually 

orthogonal center-fed short dipole antennas. [13]  
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Every dipole antenna (sensor) has a detector diode at the feed point, which produces a 

rectified voltage proportional to the square of the E-field component, and high 

resistance connection lines. The total E-field vector magnitude is calculated as in the 

following equation: 

|𝐸| = √|𝐸1|2 + |𝐸2|2 + |𝐸3|2                                           (2.14) 

 𝐸1, 𝐸2, 𝐸3: The three orthogonal components measured by the sensors, and SAR 

calculated per 1g or 10g cubic by the equation (2.12). 

 

 

 

 2-D Flat Scanner (iSAR): 

The scanner is based on a sensor array implanted in a solid flat phantom. The phantom 

is filled with a broadband tissue simulating gel (useful 500 MHz to 3 GHz), with 256 

sensors located at 4mm below the surface, Figure 2-10. 

The density of the sensor array (grid of 15mm) is sufficient to reliably assess the 

exposure. The measured SAR values of all sensors are acquired and integrated in 

parallel; the total assessment time is less than 1second. [14] 

 

Connection lines 

Figure 2-9: Typical E-field probe construction: Dielectric structure supports the 

three miniature and mutually orthogonal sensor dipoles. After [13] 
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The 2-D scanner has been used to support quick evaluations of SAR values, and this 

scanner can measure the two electric field polarizations (X, Y) parallel to the phantom 

surface. The absence of the polarization in the depth direction may cause SAR 

underestimation if the source has strong electric fields perpendicular to the phantom 

surface and the source is located in close proximity to the iSAR surface.  Using low-

loss spacers between the device and the iSAR can reduce this effect. [15]. 

Generally, both 2-D and 3-D scanners are connected to the PC, and the local SAR 

values for 1g, 10g are calculated from the measured E-field and presented on the PC 

by using special software and solving the SAR equation (2.12).  

Figure 2-10: Mobile phone 2-D SAR measurement system which consists of an array 

of E-field probes located 4mm below the surface. After [14] 
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Chapter 3 

3. Interaction between Handset Antenna and User 

 

 Introduction 

A human is the user of the mobile communication system, and the effect of the user 

needs to be considered in order to design antennas with proper performance and 

acceptable SAR value. The user of a mobile phone can actually be considered as a part 

of the radiating system, as the nearby human tissue affects the electromagnetic fields 

generated by the device.  

When radio waves propagate in a dielectric material, such as human tissue, electric 

and magnetic fields are generated inside the material. The frictional forces between 

the particles that start to move due to the electric field cause losses, which results in 

absorption of energy. It is well known how these fields inside a dielectric material 

interact with the material, but the connection between the original external fields and 

the generated internal fields is still an object of research.  

Since the total efficiency of a system including the antenna and the user is strongly 

affected by the power absorbed by the user, SAR requirements, i.e., the topic of 

energy absorbing mechanisms in human body tissue is important not just because of 

the SAR limits but also from the antenna efficiency point of view. Therefore, for an 

antenna designer, it would be extremely useful to know and understand these 

mechanisms and thus to be able to predict the trends of bandwidth, efficiency and 

SAR.  

In this chapter, the interaction between the fields generated by the antenna and the 

nearby dielectric tissue of a user is investigated. At first, the radiation regions of the 

antenna and the boundary conditions in Electro-Magnetic (EM) theory need to be 

reviewed for the understanding of the interaction between the user and the mobile 

phone.  
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 Radiation regions of an antenna 

The ultimate goal, or the mission, of an antenna is to create an electromagnetic field 

into the surrounding space. The properties of this particular field are, by their very 

nature, dependent on the distance from the antenna. The field that is generated by the 

antenna can be roughly divided into three regions [16]: Reactive near field, radiating 

near field, and far field. Figure 3-1 shows the radiation regions of an antenna. 

 Closest to the antenna we find the so called reactive near field, where the energy 

storing reactive fields, represented by the reactive part of the antenna input 

impedance, dominate over the radiating fields: The energy is actually just bumping 

back and forth, instead of radiating away. 

The role of the radiating fields becomes more dominant when the observation point is 

moving away from the antenna. The distance, where the reactive and radiating 

energies become equally strong, determines the border of reactive and radiating near 

fields. For an antenna, whose maximum extent is D, the radiating near field region 

begins at distance 𝑟1 from the antenna, and 𝑟1  is approximated by: 

𝑟1 = 0.62√
𝐷3

𝜆
                                                   (3.1) 

where λ is the wavelength in free space. The radiating near field region is historically 

called the Fresnel region. In the Fresnel region, the field pattern is still dependent on 

the distance from the antenna. For comparison, as the limiting case of infinitely small 

extent, the near field distance for an infinitely small current element (Hertzian dipole) 

can be calculated as 
𝜆
2𝜋

 . 

 

Figure 3-1: Antenna regions: reactive near field, radiating near field, and far field. 
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The region where the field pattern is only angle-dependent and no more distance-

dependent is called the far field region, or more elegantly, the Fraunhofer region. The 

far field region can be considered to begin at distance 𝑟2, which is approximated by: 

𝑟2 =
2𝐷2

𝜆
                                                         (3.2) 

For an antenna and PCB (chassis) combination of a mobile handset, the exact 

distances to near and far field from the antenna structure can be difficult to define. 

Although the largest dimension of the antenna element itself is in the order of 40 mm 

at frequencies not substantially higher than 1 GHz, the PCB, whose length is about 

100 mm, acts as the main radiator [17], and thus dominates the dimension D in 

equations (3.1) and (3.2).   

 

 Boundary conditions at the material interfaces 

In absence of surface charges 𝜌s and surface current density 𝐽s  on the interface, the 

tangential components of the electric and magnetic field strength are continuous at the 

interface. Furthermore, the normal components of the electric and magnetic flux 

density are continuous. In the more general case, including charges and surface 

current densities, for human tissue-material properties we can summarize: 

Maxwell boundary conditions:                                                                     (3.3) 

                             𝐸1t − 𝐸2t = 0 

𝐷1n −𝐷2n = {
0    𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑐ℎ𝑎𝑟𝑔𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

   𝜌s   𝑊𝑖𝑡ℎ 𝑐ℎ𝑎𝑟𝑔𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 
 

                            𝐷1n = 𝜀1𝐸1n 

                            𝐷2n = 𝜀2𝐸2n 

𝐻1t − 𝐻2t = {
0   𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

   𝐽s  𝑊𝑖𝑡ℎ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒
 

                             𝐵1n − 𝐵2n = 0 

Figure 3-2 shows the tangential and normal E-field components at both sides of a 

boundary between dielectric material with 𝜀1on one side and 𝜀2 at the other side. 

As the permittivity of the material in region 2 increases, the directions of the electric 

fields in region 2 are forced to turn more parallel to the interface. This can be 
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explained by Maxwell’s boundary conditions for electric field components parallel 

and normal to the surface, which require that. 

 

Figure 3-2 : Boundary condition for electrical field 

The electric field component in region 2 normal to the interface is reduced at the 

boundary. The study on the interaction between the fields of an antenna near dielectric 

material is started by exploring the electric and magnetic fields when a large volume 

filled with material of different dielectric parameters (dielectric block) is placed 

beside the antenna. 

Figure 3-3 shows two monopole antennas one for 900 MHz, one for 1900 MHz 

mounted on an antenna carrier (ground plane) and located above the dielectric block 

in 19mm distance. 

 

Figure 3-3: Geometry of the simulation model, Antenna 1 for 900 MHz, and Antenna 

2 for 1900 MHz. 
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The simulation shows the distributions of electric and magnetic fields when the 

distance between the dielectric block and the ground plane of the antenna is fixed, and 

four different values of permittivity (𝜀r= 1,5,20 and 42) are used, Figure 3-4 and 

Figure 3-5 . 

Figure 3-4 shows: As the permittivity of the dielectric block increases, the directions 

of the electric fields inside the block are forced to turn more and more parallel to the 

surface of the dielectric block, and the electric field component perpendicular to the 

surface(𝐸Z) of the block is more and more attenuated at the boundary. The Z-

(b) 

(a) 

Figure 3-4: E-field distributions at (a) 900 MHz,(b) 1900 MHz in YZ-plane. 

Permittivity 𝜀r is 1,5,20 and 42 and effective conductivity 𝜎eff=0. 
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component of the electric field hardly penetrates through the material when the 

permittivity of the material is high, although it is very strong between the antenna and 

the dielectric. The H-field distributions inside the dielectric block and at the boundary 

are shown in Figure 3-5.There, we see how the antenna excites a standing wave 

pattern inside the dielectric body, more clearly the higher the permittivity is.   

Figure 3-5 : H-field distributions at (a) 900 MHz,(b) 1900 MHz in XZ-plane. 

Permittivity 𝜀r is 1,5,20 and 42. Effective conductivity 𝜎eff=0. 

 

Figures 3-4, 3-5 show that as the permittivity of the dielectric block increases, 

distributions of the magnitudes of electric and magnetic fields inside the block become 

more and more alike. 

(a) 

(b) 
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Furthermore, the magnitude of the magnetic field inside the dielectric block seems to 

increase significantly as the permittivity of the block increases. The analysis shows 

that electric and magnetic fields have strong values in the areas along the Y-axis close 

to locations where the currents on the surface of the ground plane of the antenna are 

high, as well. 

 

 Absorption mechanisms for mobile phones with 

integrated antennas: 

When the free space radio frequency electromagnetic field impinges on a biological 

body, it is reflected, transmitted, refracted or scattered by the biological body. The 

reflected and scattered fields may proceed in directions different from that of the 

incident RF field.  

The transmitted and refracted fields from the RF exposure induce electric and 

magnetic fields in the biological systems, which interact with cells and tissues in a 

variety of ways, depending on the frequency, waveform, and strength of the induced 

fields and the energy deposited or absorbed in the biological systems.  

At the lower mobile communications frequency of 900 MHz, the wavelength in air is 

33.3 cm, and for the reactive and radiation fields of a Hertzian dipole to have equal 

amplitudes the distance of 𝜆 2𝜋⁄  is about 5.3 cm. At 1900 MHz, the wavelength in air 

is 15.78 cm and the  𝜆 2𝜋⁄  distance is 2.5cm. Clearly, at the mobile phone frequency 

bands both near-zone reactive and radiative wave interactions are encountered in the 

vicinity of personal wireless telecommunication systems. 

If the induced E-field is known, quantities such as current density (J) and specific 

energy absorption rate (SAR) are related to it by simple conversion formulas. In this 

case, for an induced electric field E in  ( Vm−1), the induced current density is given 

by: 

𝐽(𝑥, 𝑦, 𝑧) =  𝜎(𝑥, 𝑦, 𝑧)𝐸(𝑥, 𝑦, 𝑧) ,                                          (3.4) 

where 𝜎 is the electrical conductivity (Sm−1) of the biological tissue and SAR is given 

as 

𝑆𝐴𝑅(𝑥, 𝑦, 𝑧) =
𝜎(𝑥,𝑦,𝑧)|𝐸(𝑥,𝑦,𝑧)|𝑟𝑚𝑠

2

𝜌(𝑥,𝑦,𝑧)
            [

𝑊

𝑘𝑔
]                     (3.5) 

Where ρ is the mass density of the tissue (kg m−3). 
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The section 2.5 gave an overview about absorption of radiation into the user, and in 

this section, the mechanisms of interaction and the dielectric properties of the human 

body tissues are presented. 

 

 Biophysical mechanisms of interaction 

The electromagnetic energy is known as being carried by photons or quanta, and the 

energy of the photon is given by: 

                                       𝐸 = ℎ𝑓                                                             (3.6) 

Where h is the Planck’s constant = 4.1356 × 10−15 eVs, f: frequency of the waves in 

Hz. The higher the frequency, the higher the energy per photon, and a definite amount 

of photon energy is required to produce ionization by ejection of orbital electrons 

from atoms of the material through which an electromagnetic wave propagates. The 

minimum photon energies capable of producing ionization in water and in atomic 

carbon, hydrogen, nitrogen, and oxygen are between 12.4 and 25 eV. Inasmuch as 

these atoms constitute the basic elements of living organisms, 12.4 eV may be 

considered as the lower limit for ionization in biological systems, giving a frequency 

limit of 3 PHz. Figure 3-6 shows the electromagnetic spectrum, the non-ionizing 

frequency (DC to 3×1015 Hz), and the Ionizing frequency above 3×1015 Hz . 

 

Figure 3-6: The electromagnetic spectrum and non-ionizing and ionizing bands; from 

[18]. 



  

 

Interaction between Handset Antenna and User 

28 

  

A single photon of radio frequency RF and microwave MW radiation 300 Hz to 300 

GHz has relatively low energy levels, less than 1.24 meV; therefore, it is not capable 

of ionization. Accordingly, electromagnetic radiation in the RF&MW spectrums is 

regarded as nonionizing radiation. That means, the tissue heating is the dominant 

interaction mechanism of microwave radiation with biological systems. 

 

 Dielectric properties of human body tissues 

When an electromagnetic wave propagates in a material whose electrical conductivity 

σ differs from zero, as is the case in all human tissues, dissipation losses are caused 

due to the current density generated according to Ohm’s law: 

𝐽 =  𝜎𝐸⃗⃗                                                               (3.7) 

Part of the power in the electromagnetic field thus turns into heat. The dielectric 

properties of human tissue, i.e., permittivity and conductivity, are considered to 

decrease with age due to the changes of water content and organic composition of 

tissues. 

The dielectric properties of a material characterized by its complex permittivity are 

defined in the following way: 

𝜀 = 𝜀o𝜀r = 𝜀o(𝜀r
, − 𝑗𝜀r

,,)                                                  (3.8) 

𝜀r = 𝜀r
, − 𝑗(𝜎eff 𝜔𝜀𝑜⁄ ) = 𝜀r

, (1 − 𝑗
𝜀r
,,

𝜀r
, ) = 𝜀r

, (1 − 𝑗𝑡𝑎𝑛𝛿)                      (3.9) 

where 𝜀o is the free space permittivity (8.854 ×10−12F/m), 𝜀 , the real part of complex 

permittivity, 𝜀 ,, the imaginary part of complex permittivity and 𝜔 = 2𝜋𝑓 the angular 

frequency, and tan δ is the loss tangent. The imaginary part of the relative permittivity 

𝜀r: 

𝐼𝑚{𝜀r} = 𝜎eff 𝜔𝜀𝑜⁄                                                  (3.10) 

Can be considered to represent all losses in the material. Here, all the losses, 

including(ionic) conductivity losses and dielectric losses are described by the effective 

conductivity 𝜎eff. Because all human tissues are non-magnetic materials, no losses due 

to permeability μ occur. 

To be able to model the behaviour of radio wave propagation inside dielectric 

material, accurate knowledge of the values of dielectric parameters of the material is 

required. In case of a human, tissues inside the body can be roughly divided into two 
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categories. Tissues that have high water content, like muscle or skin, have high values 

of real part of permittivity 𝜀r
,
 and losses described by the effective conductivity 𝜎eff 

are high, as well. On the other hand, in materials that have low water content 𝜀𝑟` is low 

and 𝜎eff is low. Examples of such materials are bone and fat. The frequency 

dependence of dielectric parameters of human tissues was studied in [19]. A model for 

determining the tissue parameters over the frequency range of 10 Hz - 100 GHz is 

presented in that paper.  

In Table 3-1, values of 𝜀𝑟
,
 and 𝜎eff for head tissue equivalent material relevant in the 

studies that consider interaction between mobile terminal antennas and users are 

presented for the frequency range 750 MHz – 2.3 GHz. Values given in the table are 

based on the parametric model described in [11], [19]and will be used in simulations 

and measurements later in the thesis. 

 

Table 3-1 :  Dielectric properties of head tissue-equivalent material in the 750 MHz to 

2300 MHz frequency range. 

 

   SAR Generation 

Even if radio wave propagation in a lossy material can be described precisely by 

application of Maxwell’s theory, the connection between the field inside a dielectric 

tissue and the original external electromagnetic field generated by a mobile terminal 

antenna is not fully explained. The related studies have mostly focused on determining 

the SAR characteristics related to concrete certain arrangements, while the general 

energy absorption mechanism has been left with less consideration. In addition, results 

of studies concerning the issue are quite diverging [20], [21] , [22]. 

Frequency  

(MHz)
Relative permittivity 

Conductivity (σ) 

(S/m)

750 41.9 0.89

835 41.5 0.90

900 41.5 0.97

1450 40.5 1.2

1500 40.4 1.23

1640 40.2 1.31

1750 40.1 1.37

1800/1900/2000 40.0 1.40

2100 39.8 1.49

2300 39.5 1.67

(  
, )

Effective 

conductivity 

(𝝈𝐞𝐟𝐟) (S/m) 
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The general energy absorption mechanism in the close near field of dipole antennas 

above 300 MHz was studied in [21]. The goal of that study was to find a relation 

between the free space field strengths of the antenna and the corresponding SAR 

values. The starting point was to examine the behaviour of magnetic fields, since 

electric field lines are distorted in the vicinity of dielectric material, while the current 

distribution and its related magnetic field around the antenna was considered to be less 

affected. 

 Research results in that paper suggested that the main absorption mechanism could be 

described by surface currents induced by the magnetic fields. SAR values were found 

to be mainly proportional to the square of the incident magnetic field strength, which 

mm 

(a) (b) 

(d) (c) 

Figure 3-7 : (a) Geometry of the simulation model Side view, (c) Top view. (b) ,(d) 

Normalized electric and magnetic field components in air (Z=0) and in the body model 

(Z=-5 mm) at X=0. 𝜎eff =1.4 S/m, 𝜀r
, = 40 . 

mm mm mm 

mm 

mm 

mm 
mm 

mm 
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led to the conclusion that the spatial peak SAR is related to the antenna spatial peak 

current. Consequently, it was concluded that coupling of electric fields would be of 

minor importance. 

In order to gain more insight, a similar simulation configuration was studied:  

As SAR measurement standards use the phantom filled with tissue equivalent liquid 

and without any fat layer, Figure 3-7 shows our simulation model with a half-wave 

length dipole antenna operating at 1.9 GHz beside a human body phantom. The 

maximum electric and magnetic fields inside the phantom are located on the plane 

Y=0. The total magnetic field is equal the tangential component 𝐻X and slightly 

decreases below the tissue surface due to current density since 𝜎eff ≠ 0. The normal 

E-field component 𝐸Z which is maximum at the two ends of the dipole is significantly 

attenuated at the boundary surface, and the tangential E-field component 𝐸Y which is 

maximum at the middle of the dipole penetrates the boundary surface without any 

attenuation. Figure 3-8, shows the SAR (10g) distribution at 4mm below the phantom 

surface (Z=-5mm). The peak SAR is located close to the peak current on the dipole 

and the maxima total E-&H-fields, which is the location of the feed point of the dipole 

antenna. Due to the maximum current amplitude the excited 𝐻X and 𝐸Y components 

have maximum amplitude in the air and they propagate into the body without 

attenuation at the tissue surface.  

From this and from results found in section 3.3, observations can be divided into two 

basic cases: For tissues whose 𝜀r is high as in Figure 3-7, such as muscle, inside the 

tissue the electric field component perpendicular to the tissue surface is significantly 

Figure 3-8: SAR distribution at X=0, Z=-5mm. 𝑃acc = 0.1Watt, frequency 1.9 GHz. 
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attenuated at the tissue surface, and thus the SAR maxima are found in locations 

where the total electric field in air is moderate, but the component parallel to the 

surface is significant. 

 For low-permittivity tissues, like fat, the SAR maxima were found in [21] close to 

locations where the perpendicular electric field was strong also in free space, because 

in this case the attenuation of the normal component is small as has be seen before in 

section 3.3 for 𝜀r
, = 5  . 

From these results, we can conclude that in mobile phones the highest SAR areas 

(known as hot spots) coincide with high surface current regions on the chassis, which 

are excited by the antenna and which generate high tangential electric and magnetic 

field at the head-to-air interface. This will be investigated further in chapter 5. 

 

 

 Antenna parameters in the vicinity of a user 

The deterioration of the performance of the mobile terminal antenna located close to 

the human body is due to the fact that the human tissue consists of a lossy dielectric 

material [23]. From the graphs presented in Figure 3-4, 3-5, it can be concluded that in 

mobile communications the user is commonly situated in the reactive near field of the 

antenna, meaning that the parameters of the antenna are very likely disturbed.  

In most cases these disturbances are case specific, and an exact prediction of the 

problem is difficult. Nevertheless, some theoretical background of how the dielectric 

loading would affect the antenna operation can be found.  

The effect of the user can be presented as an extension circuit to the standard 

equivalent circuit model of an antenna. In the extended model Figure 3-9, dissipation 

losses caused by the user are presented as the conductance  Guser, while the parallel 

capacitance  Cuser, symbolizes the reactive effects of the user;  Cuser can cause a shift 

in the resonant frequency of the antenna structure. A quick look at the definition of the 

resonant frequency of a resonator, known as fr = 1 2π√LC⁄  -leads to the trivial 

conclusion that the resonant frequency is lowered by the additional, user-originated, 

parallel capacitance  Cuser . 
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Figure 3-9: Equivalent circuit model of an antenna, including the effect of the user.
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Chapter 4 

4. EM Simulation Technology (Numerical Techniques) 

 

The current evolution of wireless personal communications has necessitated a 

comprehensive understanding of electromagnetic (EM) interactions between handset 

antennas and the human body. 

These human-antenna interactions influence the electromagnetic performance of the 

antenna by altering antenna input impedance, and modifying the antenna radiation 

patterns and polarization state, absorbing antenna-delivered power, and so on.  

Also questions concerning health hazards have necessitated a more thorough 

evaluation and characterization of the specific absorption rate (SAR) in the human 

tissue. Recently, significant progress in understanding human–antenna interactions has 

been achieved due to advanced computational techniques as well as accurate near field 

measurements. 

 

Common numerical techniques, Figure 4-1, currently used for electromagnetic 

interaction computations are finite difference time domain (FDTD) method, the 

method of moments (MoM), the finite element method (FEM), and in addition, 

software codes that use hybrid methods, software that applies more than one 

Maxwell’s

Equations

Numerical Methods

Integral

Equation

Based

FD

(Frequency Domain)

MoM

TD

(Time Domain)

Differential

Equation

Based 

FD

(Frequency Domain)

TD

(Time Domain)

FDTD

Figure 4-1: Common numerical techniques 
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numerical method. All these techniques are using numerical approximations of 

Maxwell’s equation to calculate the electromagnetic fields. 

In the Finite Difference Time Domain Method FDTD the discretization grid is 

rectangular in general and the Maxwell equations are discretized by simple finite 

difference equations [24]. The solution is created via a time step-by-step propagation 

on the discretized grid. In most implementations there are two separate grids, one for 

the unknown electric field E and one for the unknown magnetic field H components. 

The two grids are displaced by a half-cell, such that the nodes of the ones are in the 

centers of the other cells. The software “CST Microwave Studio” from CST AG, 

which is used in this thesis, uses this method to simulate the antenna inside the mobile 

phone. 

The Method of Moments MOM is a numerical computational method of solving linear 

partial differential equations which have been formulated as integral equations (IE) 

and Green’s functions and it is sometimes called the Boundary Elements Method 

(BEM). MOM is used in frequency domain and has the advantage of applying easily 

to long thin wires or thin patches, and layered configurations such as EBG; these 

situations can present serious challenges to the finite difference methods since they 

have to discretize the entire domain where the presence of thin structures requires a 

very fine mesh. The software “High Frequency Structure Simulator (HFSS)” from 

Ansys in this study uses an MOM solver and this was used for simulations of antenna 

backed by EBG in free space and beside the head. 

The Finite Element Method FEM is used to find approximate solution of partial 

differential equations (PDE) and integral equations. FEM is based on frequency 

domain and each solving of the matrix system gives the solution for one frequency 

[25]. Repeated runs and interpolation are used to obtain the systems response over a 

frequency band. This might give problems for resonant systems, especially those with 

high Q, where it is not easy to get the resonant frequency unless you sweep the 

frequency carefully. One solver using FEM is called Eigen Mode in CST software, 

which was used for EBG reflection phase tuning.  

In the SAR simulation, the average SAR (10g) calculation employs two methods, 

IEEE C95.3 and CST legacy. For each point a cube with a defined 10 g mass is found 

and the power loss density is integrated over this cube, Figure 4-2.   

In the standard IEEE C95.3 [26], if one face of the averaging cube is outside the tissue 

the cube is invalid and an inner point with maximum SAR value is copied. Therefore, 

a flat curve is seen at the phantom boundary and this method comes closer to the 

measurement setup. In the standard CST legacy (CST C95.3) the averaging cube at 

the boundary is increased until the biological mass reaches 10 g. In this standard, a 

slowly rising curve at the boundary is seen and takes for invalid averaging volumes 
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not the maximum but the closest valid SAR. The SAR distribution shape is different 

in Figure 4.2, but the maximum averaged SAR value stays equal in both procedures.      

 

 

 

 

 

EM simulation, fields and SAR calculations in this thesis have used these three 

methods. 

Search for the 10 g cube (iteratively) 

Point of the average SAR calculation 

At boundary, treatment depends on 

chosen averaging standard: IEEE 

C95.3, CST legacy. 

air air 

Figure 4-2: SAR Averaging procedure [CST Microwave Studio]. 
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Chapter 5 

5. Analysis of near-field distribution 

 

 

 Introduction 

 

A review of studies [20] [21] [22] concerning the general mechanisms of interaction 

between antenna and user may lead to better understanding. However, results from 

these studies do not provide us with fully reliable clarification about the issue. 

Especially conclusions made concerning the general energy absorption mechanism in 

human tissue have been quite deviating. The study [20] concluded that the peak SAR 

is not related to antenna currents, the locations of peak SAR were clarified by 

exploring the real part of tissue permittivity and its effect on the electric field 

components perpendicular and parallel to the surface of the tissue. 

  The study in [21]  is discussed in chapter 3 and it is suggested that the main 

absorption mechanism is current induction on the surface of human tissue by incident 

magnetic fields. SAR values proportional to the square of the incident magnetic field 

strength lead to the conclusion that the spatial peak SAR is related to spatial radiator 

currents. In [22], the EM energy deposition into the body with and without a fat layer 

at 915 MHz are presented and compared. A hot spot is observed on the muscle surface 

near the antenna feed point location for the pure muscle body and as shown also in 

chapter 3, two hot spots on the fat surface near the ends of the antenna are observed. 

Due to low permittivity of the fat 𝜀𝑟 = 5.5 the vertical E-field at the end of the dipole 

penetrates the boundary surface with slight dissipation loss.   

In addition to the incomplete understanding of the general energy absorption 

mechanism in human tissue, studies that are related to user interaction have most 

commonly been case-specific, focusing simply on determining certain parameters 

related to a specific problem.  

However, many things were still left in the previous studies without a suitable 

explanation. The main reason for the difficulties in explaining every phenomenon was 

considered to be the excessive complexity of the used simulation models, which 
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included two different antenna models, two different phantoms as the head or body 

model. Also, the wide frequency range in question made things more complicated. 

The studies that are reported in this chapter are motivated by the lack of full 

understanding of the mechanisms of how antennas actually interact with the user. The 

main goal is to improve the understanding of the near field interaction with the user. 

This chapter is structured in the following way. First, in Section 5.2, the used antenna 

model is introduced, and properties of this particular antenna in free space are 

discussed to provide us with a sufficient background and points of comparison with 

the user interaction studies reported in the later parts of the thesis. In Section 5.3, the 

effects of dielectric material on the field distributions of the antenna are studied by a 

very simple model; field distributions inside and nearby a dielectric half space situated 

beside the antenna are studied as a function of different parameters. All the presented 

results in this chapter are based on simulations that have been carried out with 

commercial FDTD-based software CST-Microwave Studio. 

 

 Antenna model for the simulations 

The versatility and on the other hand the simplicity of the structure provided 

motivation for selecting a monopole antenna structure on a mobile terminal in the user 

interaction studies of this thesis. 

In addition, the highest SAR values in modern handsets usually come from the 

monopole antenna. As Figure 5-1 shows, two monopole antennas are used for both the 

low and high frequency bands (900MHz,1900MHz), both placed on the top position 

of the PCB ground plane , whose dimensions are 60 mm wide,1 mm thick and having 

the popular length of 95 mm. Grilamid LV-5H (𝜀r=3, tanδ=0.02) standard plastic 

mobile antenna carrier supports the antennas. 

Figure 5-1: Geometry of the handset model with monopole antennas for 1900 MHz (high-

band antenna) and 900 MHz (low-band antenna). FR4 for the PCB with 𝜀r = 4.9, 

tanδ=0.025. 
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The following section includes discussion about the behaviour of the reflection 

coefficient, current distribution and distributions of electric and magnetic near fields, 

and also radiation efficiency, which is an important factor in user interaction studies. 

 

 Reflection coefficient  

For internal mobile antennas, a suitably low reflection coefficient is typically achieved 

by either designing the antenna part to resonate at the operating frequency or by using 

a separate matching circuit to match at the desired frequency. However, here the 

matching circuits are excluded from the antenna model, mainly because the antennas 

are shaped to resonate at the two GSM frequencies of practical interest, 900 and 1900 

MHz, see the Figure 5-2. 

 

 

Figure 5-2: Reflection coefficient of the used antennas model in free space. Low-band 

antenna :900 MHz , high-band antenna :1900 MHz. 

 

 Current distributions 

Let us spend a while looking at the current distributions of the antenna and the PCB 

before going through the details of the distributions of electric and magnetic fields. 

The current distribution of the chassis of a mobile phone  with internal antennas is 

known to be similar to that of a thick dipole:  
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Figure 5.3 illustrates current distributions on the surface of the PCB ground plane at 

900 MHz and 1900 MHz. At 900 MHz , the current on the monopole and chassis has 

one maximum value corresponding to a half-wave dipole type current distribution 

(close to the monopole feed point). At 1900 MHz, the effective length of the 

monopole with chassis is close to full-wave length, leading to two current maxima at 

the surface of the PCB. The surface current is concentrating at the PCB’s edge. 

The current distributions of the PCB can be interpreted as the two lowest order current 

modes of the chassis [27]. 

The first order current mode exists when the combination of chassis and monopole 

represents an electrically half-wavelength dipole. The second current mode is reached 

with an electrically longer chassis.  

 

 Near field distributions 

The issue of how dielectric materials and the electromagnetic fields interact with each 

other was discussed in Chapter 3.Dissipation losses inside the dielectric material were 

found to be caused by the electrical field inside the material. In the following sections 

the issue is re-studied to improve the understanding of the process. At the beginning 

of this section, the antenna field distributions are studied in free space. 

Figure 5-3: Current distributions on the surface of the PCB (in free 

space) at frequencies (a) 900 MHz,(b) 1900 MHz. 𝑃inc=1W. 

(b) (a) 
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Figure 5-4 shows the distributions of the electric and magnetic fields in free space on 

the YZ plane. The magnitudes of the fields are coded in colours, and all values are 

normalized to 1 W input power. The fields are noted at 900 MHz and 1900 MHz. It 

can be seen that at 900 MHz the resonator of antenna and chassis is excited close to 

the first resonance mode and at 1900 MHz is close to the second one. 

 At 900 MHz the electric field (a) is strong around both ends of the resonator (PCB + 

Antenna) and similar to a half wave dipole. Magnetic field (c) is concentrated 

significantly around the vertical (Y direction) feed point of the antenna. At 1900 MHz 

the length of the PCB is close to full wavelength, therefore the current has two 

maxima in z-direction along the PCB and a minimum close to the center of the PCB. 

Figure 5-4 : Field distributions on YZ-plane(X=0mm) in free space. 𝑃inc=1W, 

(a) E field at 900 MHz,(b) E field at 1900 MHz,(c) H field at 900 MHz,(d) H 

field at 1900 MHz . 

Y 
(a) (b) 

(c) (d) 

Z 
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Consequently, the electric field has a strong area around the center of the PCB in 

addition to the strong areas at the ends of the resonator, and magnetic field high values 

around areas in which the current on the resonator is high. The relation between 

surface currents and fields of the antenna can be detected by comparing Figures 5-3 

and 5-4. 

 The effect of chassis length on antenna 

performance and SAR 

The effect of the handset chassis (PCB) length on the antenna performance and 

interaction between the antenna and near dielectric material was studied before [2], 

[28], [29]. While most of the earlier studies were done with PIFA or capacitive 

coupling element, in this chapter the chassis with monopole antenna is simulated near 

a dielectric block of 120 x 180 x 110 mm3. Distance between the ground plane of the 

antenna (PCB) and the dielectric block is d=10mm.The dielectric block has properties 

of head tissue-equivalent material given before in Table 3.1. 

 

Figure 5-5: Radiation efficiency of the two antennas beside the dielectric block and 

peak SAR(10g) at 4 mm below the surface of the dielectric block; 𝑃acc= 0.2 W. 

The length of 95 mm of the chassis (as in Figure 5-1) is less than half-wavelength at 

900 MHz; from the Figure 5-5 it can be seen, that the radiation efficiency is low at this 

chassis length, and as the chassis length increases, efficiency increases rapidly, while 

the peak SAR value decreases. This can be explained by the increasing distribution of 

the current over the chassis length when the length approaches half-wavelength. With 

this, the peak current density on the chassis and the peak current density inside the 

dielectric block reduce accordingly. Since the power dissipation (SAR) is proportional 
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to the product of current density and E-field, see (3.5), the peak SAR reduces more 

than proportional and even the total dissipated power(used to calculate the radiation 

efficiency) reduces.  

Figure 5-6: SAR distribution in XY-plane at 4mm below the surface of the 

dielectric block, at frequency 900 MHz as function of chassis length; 𝑃acc= 0.2 W. 

λ/8 ≈ 40mm λ/4 ≈ 80mm 

λ/2 ≈ 160mm 3λ/8 ≈ 120mm 

Figure 5-7 : SAR distribution in XY-plane at 4mm below the surface of the 

dielectric block, at frequency1900 MHz as function of chassis length; 𝑃acc= 0.2 W. 

λ/2 ≈ 80mm 

λ ≈ 160mm 3λ/4 ≈ 120mm 

λ/4 ≈ 40mm 
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At 1900 MHz, the monopole antenna is the main radiator and the effect of the ground 

plane current mode on the radiation efficiency is small. However, we see a similar 

effect on the peak SAR when the surface current approaches the half-wavelength 

distribution near 80 mm length. Figure 5-6 and Figure 5-7 show the SAR distribution 

with IEEE C95.3 calculation standard at 900 MHz and 1900 MHz respectively. 

In all cases at 1900 MHz, the current distribution is more concentrated close to the 

monopole (even in λ/2 –case) than at 900 MHz. Never-the-less , the peak SAR values 

at 1900 MHz reduce in a similar pattern as at 900 MHz , producing a minimum at 

half-wavelength due to the effective current distribution over most of the chassis. 

It is interesting to see that the radiation efficiency is less at 900 MHz than at 1900 

MHz even at chassis sizes larger than 100 mm where peak SAR is lower at 900 MHz. 

This is an indication of the much smaller decay of the reactive near field at 900 MHz 

which extends into the lossy dielectric medium and creates the dissipation loss over a 

larger volume than at 1900 MHz. 

From the Figure5-6 & Figure 5-7, it is found for mobile phones with chassis length 90 

to 110 mm, that for 900 MHz the SAR distribution is dominated by the chassis 

currents, in accordance with the location of the peak SAR values at the center of the 

chassis. For the higher frequency (1900 MHz), the main contributor is the antenna, 

since the location of peak SAR follows the location of the antenna. 

When the chassis is longer than 95 mm, the peak SAR (10g) at 4 mm below the 

phantom surface at 1900 MHz is higher than at 900 MHz. Since the transmit power to 

cover the requirements of WCDMA  can be as high as 30 dBm, the 1900 MHz band is 

considered critical with respect to SAR limits. 

 

 

  



 

 

SAR Control Mechanisms  

 

45 

 

Chapter 6 

 

6. SAR control mechanisms and concepts for mobile 

phone antennas with reduced SAR 

 

 Introduction:  

As we already see from the analysis of absorption mechanisms for mobile phones and 

behaviour of mobile terminal antennas near dielectric material, the currents of the 

chassis at the low cellular frequencies (GSM 900) and of the antenna element at the 

high cellular frequencies (GSM 1900) cause high peak SAR values, which especially 

at the GSM 1900 band is quite often problematic. Most of earlier studies on SAR 

reduction methods are of limited use because the antenna efficiency in free space 

before and after reduction of SAR was neglected, or because there is not enough space 

in the phone to realize the proposed concept. This is why the actual solution in present 

commercial phone products is simply reducing the input power of the antenna. 

In this chapter, SAR control mechanisms and state of the art solutions for reducing 

SAR of internal antennas are introduced. In addition, some own solutions are 

proposed with simulation and experimental results.  

 

 State of the art of SAR control: 

From earlier studies, solutions to SAR control for mobile phones can be categorized 

into three methods: Controlling the direction of radiation to weaken radiation toward 

the human body by redirecting the currents on the chassis, optimizing the 

antenna/PCB configuration and shielding the EM fields against the human body.   

Parasitic elements, directive control antenna pairs fed in 180° phase difference, 

wavetraps and slots in the PCB ground plane are the methods used to control the 

current distribution and the direction of radiation in the near field, while ferrite, 

conductors and AMC (Artificial Magnetic Conductor) can be used to disperse or 

attenuate the EM fields radiated against the human body. 
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 Parasitic Elements 

The proposed method in [30] comprised a (900/1800 MHz) PIFA combined with a 

parasitic radiator placed on the backside of the ground plane and connected by two 

conductors. It was shown in [30] that peak SAR reached a minimum when the length 

of the parasitic radiator was L=45 mm (at 900 MHz). When the results were compared 

to the case when no parasitic radiator was attached to the ground plane, the SAR 

reduced by approximately 5 dB in the simulations (from 1.5 W/kg to 0.5 W/kg for 

0.25 W antenna accepted power). In measurements, the reported reduction in SAR 

was 6 dB, total efficiency in talk-position (beside phantom) was approximately 1 dB 

higher with the 45 mm long parasitic radiator compared to the reference case (no 

parasitic radiator). Even if this SAR control method seems to be working quite nicely 

at 900 MHz, the operating principle of the parasitic radiator was left somewhat 

unclear at 1900 MHz. It was only mentioned that the effect of the parasitic radiator 

would be to cancel a part of the near field that is coupled into the head. Furthermore, it 

was concluded that the cancellation of the near field would be caused by the currents 

of the parasitic radiator, which are opposite in direction to the currents on the chassis.  

 

Figure 6-1 : Geometry of the simulation structure, showing PIFA antenna with 

parasitic element, both above the dielectric block (body) 𝜎eff =1.4 S/m,  𝜀𝑟
, = 40. 

The concept was investigated by an own simulation using CST Microwave Studio. 

Figure 6-1 shows the simulation structure of an antenna model including a parasitic 

element as a SAR shield sitting beside a dielectric block. A PIFA antenna is mounted 

on a metal chassis (45×100 mm) with a metal parasitic radiator (L×45 mm) on the 

backside. A dielectric block is located at 10 mm below the structure and filled with 

head tissue equivalent material; dimensions of the dielectric block (Body) are 120 × 

180 × 110 mm3, L is 45 mm for 900 MHz and 22 mm for 1900 MHz .  

Y 

Z 
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From the Figures 6-2, 6-3, it is observed that at 900 MHz this method can reduce SAR 

(10g) from 1.2 W/Kg to 0.87 W/Kg with a corresponding 1.5 dB increase in the 

efficiency beside the dielectric block, due to reduced E-field in the block (body) where 

most of the losses are generated. While the free space radiation efficiency is very 

slightly reduced by 0.12 dB at 900 MHz, and at the high frequency 1900 MHz the 

peak SAR is not affected by the parasitic radiator. 

 

Figure 6-2: Radiation efficiency at low-band (900 MHz) without and with parasitic 

element, L=45 mm, (a) in free space, (b) beside the body.   

(a) (b) 
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Figure 6-4 shows the radiation pattern of the PIFA antenna with and without parasitic 

element at 900 MHz and 1900 MHz. At 1900 MHz the radiation pattern is not affected 

by the parasitic element with L=45 mm; therefore the parasitic element is a good 

solution to reduce SAR at 900 MHz without affecting the antenna parameters at 1900 

MHz. 

With a parasitic element’s length of L=22 mm ,matched for the high frequency 1900 

MHz, the max SAR value is even slightly increased, Figure 6-5; therefore the parasitic 

element could not be a solution for high SAR at the critical frequency 1900 MHz. 

 

(a): 900 MHz with parasitic element (b): 900 MHz without parasitic element 

(c): 1900 MHz with parasitic element (d): 1900 MHz without parasitic element 

Figure 6-3: Simulated SAR distribution inside the dielectric block (body) 4mm 

below the surface at 900 MHz and 1900 MHz. 𝑃acc=0.25 W , L=45 mm. 
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1900 MHz 900 MHz 

 

 

Figure 6-5: Simulated SAR distribution inside the dielectric block (body) 4mm below 

the surface at 1900 MHz . 𝑃acc=0.25 W, L= 22 mm. 

 

(a): 1900 MHz with parasitic element,  

Peak SAR(10g)=0.722 w/kg 

(b): 1900 MHz without parasitic element, 

Peak SAR(10g)=0.65 w/kg 

Figure 6-4: Far-field radiation pattern of PIFA antenna at 900 MHz and 1900 MHz, in free 

space or near block and with or without parasitic element. 
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 WaveTraps: 

As was shown, the chassis of the mobile terminal has a significant effect on the 

antenna operation because the chassis operates as a significant radiator below 2 GHz. 

In [31], wavetraps are used to control the current distribution on the chassis and by 

this the near field of a mobile terminal antenna at GSM 900 and GSM 1900 

frequencies. This concept was investigated by own simulations: 

Figure 6-6 shows the structure with wavetraps after [31], which work efficiently when 

they are in resonance, i.e. the structure represents a quarter wavelength transmission 

line, with the impedance equation: 

                                      𝑍in = j𝑍otan (𝛾𝐿WT)                                                  (6.1) 

𝑍o: The characteristic impedance of the transmission line formed by the wavetraps 

and the ground plane, 𝐿WT is the length of the wavetrap, γ=α+jβ is the propagation 

constant with real part α being the attenuation constant and imaginary part β being the 

phase constant.    

 

Figure 6-6 : Low-band 960 MHz terminal antenna with 8 mm height of the monopole 

antenna, and wavetraps height 𝐷WT =0.5 mm above the ground plane and thickness 

T=6mm, 𝐿WT=77mm, 𝐿GP
,

=40 mm (after [31]). 

Without wavetraps Figure 6-7 (b) the chassis shows a thick half-wavelength dipole-

type current distribution, and the currents induced by the antenna element are 

concentrated at the edges of the chassis. 

Short 
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Figure 6-7 (a) shows that the wavetraps create a high impedance location on the 

chassis and thus create a new chassis wave mode and especially avoid the null of 

electric currents at the open end of the chassis with high current density and high 

magnetic field in the middle. Due to this current distribution the near-field pattern 

maximum is moved away from the head, and the peak SAR value is reported to be 

decreased by 23%. [31] 

For our own investigation of SAR effects in real use cases, Figure 6-8 shows the 

simulation setup of a mobile phone structure beside the head with cheek position, and 

two antenna positions: 

1. Top-mounted antenna: antenna is located close to the Head. 

2. Bottom-mounted antenna: more distance between the head and the antenna. 

Figure 6-7 : Simulated surface current distributions at 960 MHz with 

wavetraps 𝐿WT = 77 𝑚𝑚 (a) and without wavetraps (b) 

(a) (b) 
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For the top-mounted antenna position, simulation results in Figure 6-9 show the E- 

field & H-field distribution close to the head with and without wavetraps at the 

resonance frequency of the wavetraps 960 MHz.  

 

Figure 6-9 : Simulated E & H field distributions for the top-mounted low-band 

monopole antenna beside the head, with and without wavetraps at the resonance 

frequency of the wavetraps 960 MHz.   

E-Field without wavetraps E-Field with wavetraps 

H-Field without wavetraps H-Field with wavetraps 

Figure 6-8 : Simulation of the mobile phone beside the phantom 

head in cheek position. 
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Figure 6-11: SAR distributions inside the phantom’s head at 960 MHz, with and 

without wavetraps, in top mounted antenna configuration, 𝑃acc=0.25 W. 

The effect of the wavetraps operated at its λ/4-resonance is seen at 960 MHz from the 

change in the E&H-field distributions, where the new maximum E-field and minimum 

H-field appear at the center of the PCB (open-circuit of wavetraps), producing 

reduction in the E&H-field distributions inside the phantom, while increasing the 

E&H-field outside the phantom. Therefore, the SAR peak value is reduced from 2.18 

Without wavetraps. With wavetraps. 

Figure 6-10: Simulated antenna radiation efficiency and peak SAR (10g) values 

with/without wavetraps for the top-mounted low-band monopole antenna beside 

the phantom’s head, 𝑃acc=0.25 W. 
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to 1.53 W/kg, as seen in Figure 6-10 as a function of frequency. By this, also the 

radiation efficiency increases by nearly 2dB.   

Figure 6-11 shows the SAR distribution for this case. We see that the peak SAR 

position still is the same with and without wavetraps, and remains close to the feed 

point of the top-mounted monopole antenna, yet the peak SAR level is lower with the 

wavetraps.  

Most of the handsets in the market have the bottom mounted antenna position, 

because of  the favoured antenna type has shifted from PIFA (metal ground between 

the antenna and the user) to monopole type (off ground antenna concept), which has 

higher SAR value compared to PIFA antenna ,and with the bottom-mounted 

monopole antenna has less interaction between the antenna and the user’s body . 

Figure 6-12 shows the E- field & H-field distributions close to the head with and 

without wavetraps at 960 MHz in bottom-mounted antenna configuration.  

    

H-Field with wavetraps 

E-Field with wavetraps E-Field without wavetraps 

H-Field without wavetraps 

Figure 6-12: Simulated E-& H-field distributions for the bottom mounted low-band 

monopole antenna beside the head, with and without wavetraps at the resonance 

frequency of the wavetraps 960 MHz, 𝑃acc=0.25 W.   
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Figure 6-13 : Simulated antenna radiation efficiency and peak SAR (10g) values 

with/without wavetraps beside the phantom’s head in bottom-mounted antenna 

configuration, 𝑃acc=0.25 W. 

Due to the location of the open end of the wavetraps, strong E-&H-fields move closer 

to the head, producing higher magnitudes inside the phantom’s head. As a 

consequence, Figure 6-13 shows that the peak SAR at the wavetraps resonance 

frequency is increased while the antenna efficiency drops due to the wavetraps. 

Figure 6-14: SAR distributions inside the phantom’s head, SAR (10g) values are 1.7 W/kg 

standard antenna without wavetraps, 2.27 w/kg with wavetraps at 960 MHz, 𝑃acc=0.25 W. 

Without wavetraps 

) 

With wavetraps 

) 
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Figure 6-14 plots the SAR distributions and the peak SAR location inside the phantom 

by 4 mm with and without wavetraps. Due to the shift of the surface current 

distribution to the upper end the hot spot (peak SAR location) move to the upper end 

of the PCB, compared to the case without the wavetraps.  

From the wavetraps investigation, it is found that they are not suitable as solution to 

reduce SAR in all antenna positions. In addition the wavetraps have some 

disadvantages, such as size, operation bandwidth, and require careful design to avoid 

high SAR and lower antenna efficiency under special user conditions, and due to the 

effect of the battery, metal cover, and other relevant parts of real handset on the 

wavetraps functionality. Due to these disadvantages, no further study is done at the 

GSM 1900 band.  

 

 Directive control antenna 

This solution is used to control the direction of radiation pattern so as to weaken 

radiation toward the human body [32], [33]. In the study [32], the dividing feed 

directive control antenna (DFDCA) is proposed for a clamshell type handy phone.  

 

Figure 6-15: Antenna structure with power divider and 90° phase shifter and switch, at 

2.14GHz; from [32] . 
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Figure 6-15 shows the DFDCA which is composed of three antenna elements 

(#1,#2,#3) and a dividing feed circuit. The directive control is implemented in the 

feeding phase difference between the elements. The radiation in the direction of the 

user's shoulder and head is reduced by the directive control.  

Measurement of the radiation characteristics of the proposed antennas in the talk and 

viewer positions by the fabricated models and simulation using the FDTD method at 

2.14GHz band are reported. As a result, the radiation efficiency of the DFDCA in the 

talk position is reported to be improved by 2.4 dB, which is quantitatively 

demonstrated by reduced absorbed power in the human body, relating to a whole-body 

SAR reduction of up to 90%. 

This concept has similar disadvantages as the parasitic element concept: three 

radiators require space, and need to be designed carefully to avoid high SAR under 

special user conditions due to the hand effect. Additionally, the concept requires a 

phase shift feed in each element and one extra switch. 

 

 Slotted ground plane: 

 

The popular way to design handset antennas is by modification of their geometry, and 

as shown in chapter 5, the PCB of the handset plays a very important role in the 

antenna system’s behaviour. 

First reports of handsets with slotted ground plane (PCB)  studied the improvement of 

the antenna’s bandwidth by increasing the PCB electrical length to get the optimum 

length ~0.4λ in GSM850 and GSM900 [34], [35]; for example, a length of 0.4λ at 

900MHz is approximately 133mm and the typical physical length of the PCB is 100-

110 mm. Later studies were done to use this reshaping idea to decrease SAR [36]. 

 

Figure 6-16 : Surface current distributions on a PCB of 100 mmm at frequency 

900MHz, with slot (right). From [35] 
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.For illustration, Figure 6-16 shows the simulated surface current distribution on a 

PCB with and without a slot. The reforming of the current distribution increases the 

electrical length of the PCB. Reference [35] studies the reduction of the interaction 

between the head and the handset PIFA antenna by using a slotted ground plane and 

evaluates two positions top and bottom. At 900 MHz, which was representative of 

the low-frequency region, the SAR values did not vary between the top (up) and 

bottom (down) mounted antenna positions. 

In the first position, the handset’s antenna is located near the phantom ear (up 

position), in the second position, the handset device was rotated 180°(down 

position),and SAR is decreased in high-band 1900 from 2.7 to 1.2 W/kg (70%) and 

radiation efficiency is improved 67% with the U-shaped slot in its ground plane and 

up position ,Figure 6-17.  

 

Figure 6-17: The measured SAR (1g) values for the PIFA with slot when the handset 

antenna was located above the phantom's ear (up position), and for a 180° rotation 

(down position).From [35]  

The high frequency selectivity of the slot was the first problem with using a slot in the 

PCB as high SAR solution in handsets. The second problem can arise in the practical 
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structure from the effect of the metal parts (battery, battery metal cover,..) on the slots 

functionality.     

 

 Advanced concepts for SAR control: 

In this part some concepts for SAR reduction are presented, and evaluated. iSAR is 

used as SAR measurement tool to evaluate the SAR distribution improvements. 

 Antenna Type Optimization (Dual-Loop,) 

 In practical handsets, most monopole type antennas suffer from excessive SAR 

values; therefore antenna designers seek antennas with multiband capabilities and low 

SAR values. As one suitable candidate, Figure 6-18 shows a single-loop antenna, 

which is a multiple-resonance antenna; this antenna can lead to small-excited surface 

current distributions on the system ground plane (PCB).  

Figure 6-18: Principle layout of a single-loop antenna mounted on the 

PCB with one feed pin and short pin. 
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As was found in section 5.2.4, it can be expected that the chassis current effects at the 

user’s head will become small, when the excited surface current distribution on the 

system ground plane is small. 

A bottom-mounted folded dipole antenna (single-loop), tuned to work at cellular 

frequencies can have three operational modes, as shown in [37]. Two of the resonance 

modes, first and third, are called ’Common Modes’ standing for the antenna 

operation where the antenna element couples strongly with the antenna ground, the 

PCB, in the same way as two monopoles which are excited in phase. In this mode the 

antenna excites currents along the long edge of the PCB, which in turn excite near 

fields around the phone. SAR behaves similar as with any other bottom-mounted 

monopole antenna. 

The second (middle) mode, is called ’Differential Mode’, or Balanced mode. It 

concentrates the ground currents in the vicinity of the antenna, along the short edge, 

therefore suppressing the currents along the long edge of the PCB. In this mode the 

antenna is working like a dipole along the narrow dimension of the PCB. Since the 

antenna is mounted at the bottom of the 

 

Figure 6-19: Resonance modes and current distributions of single-loop antenna, 

(a):0.5λ Common mode,(b) 1.0 λ Differential mode ,(c) 1.5 λ Common mode. 

phone, most of the currents are flowing in the area, where the distance to the head is 

maximized, with SAR values reduced. The Figure 6-19 shows the three operational 

modes of the single-loop antenna: 1st harmonic (a) 0.5λ effective length, equivalent to 

a pair of folded monopoles with common mode excitation used for GSM 850/900. 2nd 

harmonic (b) 1.0λ effective length, equivalent to a folded dipole with differential 

mode excitation used for GSM 1800, which is called low SAR mode. 3rd  harmonic 

(c) 1.5λ effective length , equivalent to a pair   folded monopoles with common mode 

excitation used for GSM1900. 

 

(a) (b) (c) 
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Figure 6-20: Geometry of the investigated structure with single-loop antenna’s 

dimensions (15×40×10mm3). The ground plane (PCB) is represented by a copper 

sheet of 0.1 mm thickness. 

Figure 6-20 shows a single-loop antenna at one end of a PCB of 1×80×40mm3; the 

feeding and shorting pins locations are at the center of the antenna in order to make 

the current distributions symmetrical on the ground plane. This structure is used in the 

following to investigate the loop antenna as low-SAR antenna design in simulation 

and measurement. This loop has three resonance frequencies at 0.92 GHz, and 1.75 

GHz, 1.87 GHz. 

 

 

Figure 6-21: The total amplitude of electric field distributions at resonance 

frequencies 0.92 GHz, and 1.75 GHz, 1.87 GHz. 
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At 1.0 effective loop length the differential mode or balanced mode is excited, the 

excited current at the PCB suppressed to zero since the feed bin current equal to the 

return current and in the opposite direction from the short pin. 

Figure 6-21 shows the absolute value of E-field on the Y-Z plane at the three antenna 

resonance frequencies 0.92 GHz, and 1.75 GHz, 1.87 GHz. The coupling between the 

PCB and the antenna is suppressed at the balance mode, as seen at 1.75 GHz. 

Therefore, this antenna type is used at the balanced mode improve the Hearing Aid 

Compatibility (HAC) [38] and can be considered a low-SAR antenna. 

For the problematic frequency band GSM 1900 (1.86 to 1.92 GHz), a major reduction 

of SAR values is sought. This could be realized by using the balanced/differential 

mode at GSM 1900 in place of GSM 1800 band with less change of the antenna’s 

bandwidth. For the normal folded loop the mode order is always common  

differential  common; therefore, the loop can be used to cover the GSM 850/900, 

GSM 1800, and GSM 1900 bands, where favourable SAR performance occurs at 

GSM1800 band.  

However, adding a second loop path to the folded loop, to form a dual-loop [39], 

makes it possible to change the mode order to common  common  differential. 

Therefore, the dual-loop can be used to cover 850/900  1800  1900 bands, 

establishing the favourable SAR performance at the 1900 band. Figure 6-22 shows the 

proposed dual-loop antenna. 

Feed Short 
Figure 6-22: Dual-loop etched over plastic carrier [39], with current 

distributions (a): common mode 0.5λ for short and long loops,(b): long 

loop 1.5λ common mode,(c):1.0λ short loop differential mode. 

(a) (b) (c) 
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In addition, it is possible to increase the bandwidth by using the dual-loop because the 

radiation resistance is stepped up and the reactance can be made to cancel in the 

balanced and unbalanced current modes. The mutual capacitance between the lines 

depends on the distance between them. Increasing the distance between two metal 

strips or decreasing the strip width in the meander line reduces the mutual coupling 

and the resonance frequency shifts down, as shown in Figure 6-23. The three 

resonance modes are: Single loop-short and Single loop-long and Dual-loop modes.  

In the dual-loop antenna mode, the 0.5λ resonance of the short and the long branches 

overlap; the second resonance appears at 1.85 GHz and the third resonance at 2.0 

GHz, producing a high-band bandwidth of about 235 MHz, which is suited for GSM 

and WCDMA bands. 

 

Figure 6-23: The reflection coefficient S11 of dual loop (red), S11 of single loop-long 

branch(green),S11 of single loop-short branch(blue). 

In practice, when the handset antenna has bottom position, the PCB of the handset is 

closer to the user’s head, which is an important factor in human head interaction and 

requires further investigation.  
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Common Mode

Differential Mode

 

Figure 6-24: Simulated surface current distribution on the dual-loop antenna for 

common and differential modes. 

Figure 6-24 shows the current flow on the antenna for the common mode excitation 

compared to the current on the chassis for the differential mode (balanced mode); the 

loop antenna is seen to be the main radiator in the mobile phone at the balanced mode, 

while in the common mode the PCB carries high current and considerably contributes 

to the fields, which is also seen from Figure 6-25. 

Figure 6-25: Simulated absolute E&H-field distributions in free space at 

Z=10mm level below the PCB. Common mode (1.85 GHz) (a): E-field (c): H-

field. Differential mode (2 GHz), (b): E-field, (d): H-field. 

PCB 

Antenna 
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Figure 6-25 shows the absolute E-and H-fields for the two modes in free space, where 

the absolute E-field is dominated by 𝐸z in (a), and (b).  

At 2 GHz, differential mode, the two current minima are causing two balanced E field 

maxima at the two sides of the loop (full wave mode), which shows similar 

functionality as a folded dipole. In addition, the current maximum produces an H field 

maximum at the middle of the loop’s electric length.  

For the measurement of a fabricated prototype antenna structure, the iSAR (2D SAR) 

was used to investigate the E-field and SAR values of common and different current 

modes. Figure 6-26 shows the fabricated structure, which is placed 10mm above the 

iSAR surface and is fed with 13dBm input power from a signal generator. 

Figure 6-27 shows the Ey field distribution 4 mm underneath the surface of the 

phantom flat body (iSAR’s Dielectric Block). Two symmetric electrical field 

concentrations are seen at the differential mode frequency of 2 GHz, similar to what 

can be expected from a folded dipole. 

 

Figure 6-26: Dual-Loop prototype, PCB 80×40 mm, antenna is etched 

over the plastic carrier. 
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(a) (b)  

Figure 6-27: Y-component of E-field’s distribution 4mm inside the phantom, 

𝑃inc=13dBm. (a) 1.85 GHz Common mode,(b) 2 GHz Differential mode. 

(a) (b)  

Figure 6-28: Measurement of the absolute value of total E-field 4mm inside the iSAR 

phantom, 𝑃inc=13dBm. (a) 1.85 GHz, Common mode (left), (b) 2 GHz, Differential 

mode (right). 

Y 
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Figure 6-28 shows the total E-field distribution inside the phantom. Due to boundary 

conditions at the phantom surface, the tangential (X, Y) E-field is continuous and the 

normal (Z) E-field is highly reduced inside the phantom. The peak magnitude of the 

differential mode is lower by 37% compared to the field peak magnitude of the 

common mode.  

The simulation of Figure 6-25 and the measurement of Figure 6-28 show the 

difference between the total E-field distribution in free space and inside the phantom. 

In free space the absolute value of E-field is dominated by𝐸z, while in measurement 

beside the phantom, the E-field inside the phantom is dominated by the tangential 

electric field 𝐸x, due to the high permittivity. 

Optimized antenna geometries that give the lowest SAR values for GSM 1900 were 

found by simulation and a prototype was manufactured. The SAR distributions of the 

prototype antenna at 1.85 GHz and 2 GHz are presented in Figure 6-29, with peak 

SAR (10g) of 0.47 mW/g and 0.19 mW/g respectively at 𝑃inc=13dBm . 

(a) (b)  

Figure 6-29: Measured SAR (10g) distributions of the prototype antenna 4mm inside 

the phantom, i.e., 14mm below the antenna, 𝑃inc=13dBm. (a) Common mode, (b) 

differential mode. 
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 RF Shields (Ferrite, Conductor, PMC) 

Within the many studies on SAR compliance in the last decade, some studies inserted 

a reflector between the radiator and the head [40], [41].Other studies applied a ferrite 

sheet [42], [43] or other shielding materials [44], [45]. 

 

Figure 6-30: Concept of shielding material 

Figure 6-30 shows the two main electromagnetic shielding concepts, the EM reflector 

and the EM absorber. The following section uses simulation and measurement to 

present an overview of SAR reduction by using reflection, absorption or dispersion of 

the radiation against the human body. 

In the analysis, it is important to discriminate the components of the power that is 

delivered by the antenna. 

The antenna output power can be separated into: 

𝑃out = 𝑃head + 𝑃sch + 𝑃rad 

Where:  

𝑃head: The power absorbed by the head 

𝑃sch: The power dissipated in the RF shield 

𝑃rad: The radiated power of the antenna. 
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A. Ferrite: 

RF shields made of ferromagnetic material are used to suppress surface current on 

antennas with medical implantation [46]. This was the strong motive behind most of 

the studies. 

Ferrite has been shown to offer potential for SAR reduction. Some low-SAR antenna 

designs have considered the use of a ferrite sheet behind the handset antenna to reduce 

the surface currents on the back of the PCB that cause electromagnetic fields directed 

to the user [42] [43]. SAR improvement by 40-57% was achieved, but the radiation 

efficiency of the antenna with ferrite was not considered . 

The disadvantage of this technique as shown in [46] [47], is the high cost of material 

itself and the special properties of permittivity and permeability that the ferrite has to 

comply with in order to obtain low SAR. On the other hand, [42] reports the SAR 

value reduced by 88% compared to conventional phones and an efficiency of 38% at 

1.8 GHz. Unfortunately, the radiation efficiency of the antenna installed on the mobile 

phone without phantom (in free space) was not considered. 

Our own experimental investigation of a handset antenna backed by ferrite material 

was done with one commercial phone employing a PIFA-antenna. The ferrite sheet 

thickness t=0.25mm and relative magnetic permeability 𝜇r =15 at 1.88 GHz [48] is 

placed on the backside of the PCB.   

Figure 6-31 shows the mobile phone with the PIFA antenna position and the ferrite 

sheet. The SAR (10g) distributions of the antenna at 1.88 GHz is displayed by iSAR 

with and without the ferrite sheet located between the antenna and the phantom. 
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From SAR and OTA investigations of this configuration, the ferrite can reduce SAR 

by about 30%, while the total radiated power (in free space) drops by about 41%, from 

25.4dBm to 23.1dBm, due to absorption by the ferrite. Due to that power loss, the 

ferrite is not considered a viable solution for SAR reduction in mobile phones, where 

high radiation efficiency is one of the key antenna-design requirements. 

 

 

B. Electric conductor as RF shield: 

In section 6.2.1, the metal a parasitic element was connected to the ground plane of 

the PCB with two conductors. In this section, a metal sheet or Perfect Electrical 

Conductor (PEC) is investigated as EM reflector. Electrical conductors are used as 

EM reflectors in many applications, and are used in some SAR investigations [49] 

[50]. These recent investigations are based on simulation just for 900 MHz and 

without consideration of the antenna’s radiation efficiency. 

In order to study the effects on SAR reduction effectiveness due to PEC shielding 

material at 1900 MHz, a simulation was set up as shown in Figure 6-32. 

Ferrite 

Figure 6-31 : Mobile phone and SAR distribution measurement 4 mm inside the iSAR 

phantom. 𝑃inc=30dBm. SAR(10g) distribution for (a) antenna without Ferrite ,max. 

0.33mW/g, (b) antenna with ferrite, max. 0.229mW/g. 

PIFA 
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A monopole antenna is mounted on the top of a PCB matching a frequency  of 1.9 

GHz. A Non-connected sheet of perfect electric conductor as RF shield is inserted 

below the antenna and PCB by 8 mm distance with dimensions of 46mm × X mm, X: 

is the variable length of the metal sheet. The metal model of the PCB of dimensions 

46 × 100 mm with the monopole antenna is located at 18 mm above the phantom. 

 

Figure 6-32: Simulation structure consisting of monopole antenna with the PCB 

(46×100 mm) and phantom with dielectric properties of head tissue-equivalent 

material, and PEC sheet (46 × X mm) as reflector. 
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 Figure 6-33 presents simulation results for the radiation efficiency and reflection 

coefficient of the monopole antenna as function of the length X of the PEC sheet. 

It is seen in Figure 6-33(a) that the length X is a very critical parameter for radiation 

efficiency, leading to slight improvement for short (20mm-40mm) and long (100 mm) 

sheets and reducing efficiency for sheet sizes in-between. In particular, at X=70 mm 

we even see a degradation of 2 dB with respect to the case w/o a reflector sheet. The 

(a) 

(b) 

Figure 6-33: The antenna performance with variable PEC’s length, (a) radiation 

efficiency, (b) reflection coefficient.  



 

 

SAR Control Mechanisms  

 

73 

 

two extreme cases are investigated in Figure 6-34 where the E-fields are plotted and 

the surface currents on the back (towards the phantom) of the PEC sheet are shown. It 

is obvious that the 70 mm sheet acts as a half-wavelength resonator with high field 

strength between the sheet and PCB as well as between the sheet and the phantom. 

The resonator wave length is seen to be much reduced with respect to free space due 

to high permittivity of the phantom dielectric. 

 With the closer coupling to the phantom than w/o the sheet more power is dissipated 

and the radiation efficiency drops. In contrast, the 40 mm sheet shows little surface 

current and moderate field intensities between the sheet and the phantom which can be 

attributed to the length X much less than the resonant length. 

As a side-effect, the PEC sheet also detunes the monopole antenna, as seen in Figure 

6-33(b), improving or degrading the match depending on length X. While this could 

affect total efficiency, matching of the antenna could be restored by modification of 

the matching network for any length X.  

The evaluation of the maximum SAR inside the phantom as a function of the sheet 

length is shown in Figure 6-35. Due to the high power loss into the phantom at the 

Figure 6-34: E-field and surface current distribution for metal sheet of (a),(c) 40 mm 

length (b),(d) 70 mm length.   

(c) (d) 

(b) (a) 
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resonant length of X= 70 mm, we observe a peak in the calculated peak SAR at 2.01 

W/kg while the simulation scenario w/o PEC sheet gives only 1.08 W/kg. For smaller 

or larger PEC sheet with X much less or much more than the resonant length of 70 

mm, the calculated peak SAR is found lower than w/o a PEC sheet. This indicates 

some potential of a metal reflector sheet as a SAR control concept. However, the 

metal sheet has the disadvantages of requiring extra space below the PCB and needing 

special design modifications to avoid lower total antenna efficiencies under special 

user conditions such as the location of the user fingers, and with respect to other 

relevant parts of the real handset, like the metal cover and the LCD. Never-the-less, 

the major reason why the metal reflector sheet has not been considered a viable 

approach for SAR control in mobile phones is the strict design rule in the industry to 

avoid non-grounded metal parts.   

   

 

Figure 6-35: Peak SAR (10g) inside the phantom for the monopole antenna backed by 

PEC sheet as function of PEC’s length, 𝑃inc=0.25 W, peak SAR (10g) =1.08 W/kg for 

the antenna without shielding. 
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C. PMC: 

Any metallic sheet as ground plane or reflector can partially shield objects located on 

the other side [16].When a monopole antenna is placed near to a metallic reflector, as 

shown in Figure 6-34, the antenna will radiate into free space and generate currents 

flowing on both sides of the metal sheet. The surface currents on the PEC generate an 

EM field between the PEC and the phantom, and because the metal sheet can be 

considered a dielectrically loaded transmission line (together with the phantom), SAR 

value is increased in the phantom and the antenna performance is degraded when the 

(metal sheet) transmission line becomes resonant at λ/2 length.   

Therefore a new investigation is focusing on a new special material that can suppress 

the wave excitation below the shield. This material is the Perfect Magnetic Conductor 

(PMC), which can be approximated by a Metamaterial [51]. The PMC can be 

characterized by a vanishing tangential magnetic field at the surface and the boundary 

condition at the surface of such materials then becomes: 𝑛⃗⃗ × 𝐻s = 0 . 

Figure 6-36 shows the simulation structure of a monopole antenna backed by an RF 

shield of PEC material or of PMC material, which is modelled by a very high 

magnetic conductivity 6𝑒301/Sm and zero losses.                                                     

Figure 6-36: Simulation structure for monopole antenna backed by 1mm× 46mm×X 

mm PEC or PMC shield. 
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Figure 6-37 shows the E-&H-field distributions of the monopole antenna backed by a 

PMC sheet. The antenna is mounted on the PCB and placed above the phantom’s 

body with 18mm distance and the sheet is placed 8mm below the antenna and PCB.  

On the backside of the sheet the amplitude of E-&H-fields are found very small, 

proving the PMC as perfect reflector .The tangential H-field component at the PMC 

surface  and the vertical E-field component are zero, combined with zero surface 

electric currents due to the boundary condition. However, still at the left corner (below 

the antenna) of the sheet we see strong field intensifies which generate a hotspot in the 

SAR distribution.  

The radiation efficiency at the frequency band (1.8 - 2 GHz) with different RF 

shielding material 1 mm×46 mm×X mm at 8 mm below the monopole antenna is 

shown in Figure 6-38. Results for 40 mm and 70 mm show that the sheet length has 

negligible effect on the antenna performance and even the short reflector sheet 

improves radiation efficiency considerably.  

Figure 6-37: Simulated field distributions of monopole antenna backed by 

PMC with 40 mm and 70 mm length.(a) E-field,(b) H-field. 

(a) 

(b) 
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With 70 mm PEC sheet’s length and at the frequency 1.9 GHz, the antenna radiation 

efficiency is decreased by 2 dB while with PMC it is increased by 1.5 dB. In addition, 

peak SAR is improved from 1.08 to 0.58W/Kg.  

This result indicates that the PMC is a promising candidate material for reduction of 

high peak SAR in mobile phones.  

Since bulk PMC material is not available in nature, we have to turn to its metamaterial 

version of Artificial Magnetic Conductor (AMC) material. Before investigating 

realistic models of AMC in the form of Electromagnetic Band Gap (EBG) structures, 

a simplified model using a combination of PEC and PMC bulk material is investigated 

which comes close to the realistic EBG-structures: Most AMC structures use a PCB 

with a PEC ground plane and planar single-or multi-layered periodic patch/strip 

structures, some also with metallized vias. Such a structure is modelled by a mixed 

PEC/PMC structure shown in Figure 6-39. This model is used to investigate the fields 

and SAR properties when used as a shield below the antenna.  

Figure 6-39: Mixed structure of PMC and PEC. 

Figure 6-38: Efficiency of monopole antenna beside the phantom’s body when it is 

backed by different RF shields at 8mm underneath of the antenna 
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Figure 6-40: Simulated E-&H-field distributions of monopole antenna backed by 

mixed structure of 70 mm length. E-field (above), H-field (below). 

 

The EM field distributions are shown in the Figure 6-40. Due to the PEC in the mixed 

structure, the normal component of the E-field and the tangential component of the H-

field are generated on the bottom side, together with electrical surface current, 

however to a lesser extent and magnitude when compared to a pure PEC sheet. 

With the mixed structure, the peak SAR (10g) value is less than with a pure PMC 

sheet as seen in Figure 6-41. Part of the radiated power causes a wave propagating 

between the PEC and the phantom, which increase the SAR value below the shield.  
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Figure 6-41: SAR (10g) distribution at 5 mm below the phantom’s surface, the 

antenna backed by (a) PMC peak SAR (10g) =0.4 W/kg, (b) PMC+PEC peak SAR 

(10g) =0.3 W/kg. 
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Chapter 7 

 

7. EBG structures and application for SAR reduction 

 

This chapter concentrates on EBG structures as a SAR reduction technique for GSM 

1900. Max SAR location and SAR amplitude inside the phantom’s head are 

investigated using a sample dipole antenna backed by an EBG ground plane as 

compared without EBG. In addition, the proposed EBG below real antennas in a 

mobile phone is investigated comparing the radiation efficiency and SAR when the 

antenna is backed by EBG ground plane to the case without EBG ground plane. 

 

   New potential concept: Electromagnetic Band Gap 

(EBG) structures 

The electromagnetic properties of metamaterial have led to various terminologies 

found in the literature, such as: double negative (DNG) materials, left-handed (LH) 

materials, negative refractive index (NRI) materials, magneto dielectric material, soft 

and hard surfaces, high impedance surface (HIS), and artificial magnetic conductor 

(AMC). In the literature, also various terms are used based on the domain of the 

applications. In general, EBG structures are artificial periodic objects that prevent the 

propagation of electromagnetic waves in a specified band of frequency [52]. 

The basic characteristics of EBG-structures, the surface wave suppression band gap 

and the frequency band where the structure reflects vertically incident waves in-phase 

can be extracted from the dispersion diagram and the reflection coefficient plot over 

frequency, respectively. 

In the recently published investigation [53] the EBG is proposed to protect the human 

body from the exposure of EM fields and to suppress the excited surface waves on the 

ground plane. In the examination done with a capacitive antenna element (PIFA) and 

with an EBG with vias and without vias as shown in Figure 7-1, the SAR (1g) 

measurement values are reduced by up to 75% when the PIFA antenna is backed by 

an EBG structure as compared with the PIFA backed by a metallic ground plane .  
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(a) EBG without vias (b) EBG with vias 

 

Figure 7-1: Two types of the EBG structures, Wa= 20mm, L=3mm, We=19mm, from 

[53]. 

 

Figure 7-2: Plane wave reflection phase of EBG structures (without vias) for 

orthogonal-polarization cases. 

In that study [53] , the EBG is fabricated using the Rogers Ro3010 laminate, which, 

however cannot fulfil the industry’s mobile phone mechanical design requirements 

because it can break during the drop test. In addition, own simulations with two 

polarizations, see Figure 7-2, show polarisation dependence of the EBG reflection 

phase: If the antenna polarization is in X direction the EBG works around 2 GHz and 

only at very high frequencies with Y direction polarization. Therefore, a new stacked 

EBG is proposed in this section, and evaluated as solution for reducing SAR at the 

frequency band GSM1900 with actual mobile phone antennas concepts. 

Figure 7-3 shows the geometry of the proposed stacked EBG cell for GSM 1900, 

where FR4 material is used as substrate. Optimized and smaller dimensions have been 

realized using the Eigen Mode solver simulation in CST and the Method of Moment 

solver in HFSS. 

X 

Y 
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Figure 7-4 : The reflection phase for vertical plane wave incidence. 

Hz 

-Measurement 

- Simulation 

(b) 

(a) 

Figure 7-3: A planar stacked EBG which is investigated to reduce SAR at the 

frequency band GSM1900. (a) Geometry of one unit cell, (b) Equivalent circuit 

model for one unit cell. 
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Figure 7-4 shows the EBG reflection phase from the measurement as shown in Figure 

7-5: The reference measurement is taken of a surface with known reflection 

properties, a sheet of metal.  

The metal surface is then removed and replaced by the surface under test (EBG) and 

the subsequent measurement is normalized to the reference. When performing phase 

measurements, the surface under test must be placed in exactly the same location as 

the reference metal surface, because variations in path length would create an 

additional phase shift.  

A 180° is added to the phase data to account for the reference phase of the metal sheet, 

which is known to have a reflection phase of 180°.Since the assumption is that a plane 

wave is normally impinging on the surface of EBG, the distance between the horn 

antenna and the EBG’s surface has to fulfill the far field condition. 

The reflection phase, Figure 7-4 shows that the proposed EBG operates between the 

frequencies 1.74 and 2 GHz which includes it the GSM 1900 frequency band (1.86-

1.92 GHz) . 

Figure 7-5: The EBG reflection phase measurement. Two vertical polarization horn 

antennas are used as receiver and transmitter. 

EBG  

Horn antennas   
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In the next sections, the effect of the proposed stacked EBG structure close to a 

mobile antenna is investigated and the specific absorption rate SAR is compared to a 

mobile antenna without EBG. 

 Dipole antenna over EBG and PEC ground plane: 

A monopole antenna over a PEC as RF shield was investigated in section 6.3.2 as 

SAR reducing solution, and the EM interaction was shown between the antenna and 

the nearby metal ground plane. In this section, we study a comparison of PEC and 

EBG ground planes with respect to the influence on the dipole antenna performance 

and SAR value, when the dipole antenna length is tuned to operate at frequency band 

1.7 to 2.2 GHz; later, the monopole antenna with EBG is studied in next sections. 

 

Figure 7-7 is showing that the reflection coefficient is improved when the dipole is 

backed by the EBG ground plane; in addition, the antenna efficiency is linked to the 

reflection coefficient and it is improved when the antenna is backed by EBG as 

compared with the antenna backed by PEC. As was seen before in Figure 6-33, the 

length of the RF shield is a very critical parameter, which is limited by the size and the 

design of the mobile phones. Therefore, the EBG ground plane is investigated next 

5mm 

Figure 7-6: Dipole antenna over (a) EBG ground plane and (b) PEC ground 

plane. Dipole length= 60 mm, height= 6 mm above the PEC, ground plane 

size (68×83mm2). 
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with smaller dimensions (number of unit cells) as RF shield inside the mobile phone 

to reduce the SAR in the user body. 

Figure 7-7: Measured reflection coefficient of the dipole antenna backed by EBG and 

PEC ground plane. 

As soon as the electrical dimensions of the EBG structure become smaller than the 

wavelength the diffraction effect of bending waves around the edges of the ground 

plane become considerable. In addition, the hotspot positions below the body’s 

surface move close to the maximum surface currents positions on the EBG’s edges, 

and this could be one of the problems to use EBG in the SAR application. Due to this, 

the SAR value from an antenna over the EBG is investigated and compared to the case 

without EBG. 

                    

Figure 7-8: SAR measurement setup of the unbalanced dipole antenna above the EBG 

ground plane as RF radiator, dipole length= 60 mm,  

Frequency (GHz) 
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To investigate the influence of the diffraction effect on the SAR value and peak SAR 

location, Figure 7-8 shows the SAR measurement setup using a dipole antenna 

touching the surface of the EBG which is at 5mm over the iSAR surface.  

The reflection coefficient of the dipole antenna with EBG is compared to the case 

without EBG is shown in Figure 7-9.  

The measurement shows a minor change in antenna matching. Therefor, with the EBG 

the antenna system still has efficient accepted power at the operating frequency range 

1.86 to 1.92 GHz. Since the reflection coefficient < -6 dB, no modification of the 

matching network of the proposed antenna is required after implementing the EBG 

structure. 

 

Figure 7-9 : Reflection coefficient of the dipole antenna on the surface of the EBG and 

for the dipole in free space. 

Figure 7-10 shows that the EM wave from the antenna toward the EBG is exciting 

fields at the edges of the proposed EBG, which create a SAR distribution inside the 

phantom which shows hot spots close to EBG edges. Moreover, the SAR (10g) is 

decreased to 0.3 mW/g with EBG as compared to 3.18 mW/g without EBG. 

Based on the last measurements, we may conclude that due to the wave diffraction on 

ground plane of the EBG, the SAR (10g) can be improved by using the EBG as RF 

shield between the antenna and the human head.    
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Figure 7-10: Hot spot locations and SAR values from dipole antenna over the EBG, 

𝑃inc= 23 dBm. 

Without EBG 

SAR(10g)=0.29 mW/g SAR(10g)=0.23 mW/g SAR(10g)=0.3 mW/g 

SAR(10g)=3.1 mW/g 

SAR(10g)=0.24 mW/g SAR(10g)=0.26 mW/g 
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 Mobile phone antennas over EBG and PEC ground 

planes: 

The antenna models in this section are designed to operate at the frequency bands of 

GSM850, GSM900 and, GSM1900 such as the PIFA antenna. In addition to the PIFA 

antenna, other antenna types are also investigated such as the monopole antenna and 

the folded dipole antenna (Loop). These antennas have been widely used in recent 

commercial mobile phones to cover the WCDMA band. 

 

 PIFA antenna over the EBG ground plane: 

 The PIFA antenna is limited for its commercial use for mobile phones by narrow 

bandwidth. Therefore, it cannot be adopted for the frequency bands 3G. However, one 

of the main advantages of the PIFA antenna is its reduced backward radiation toward 

the user’s head and hence, minimizing the electromagnetic wave power absorption 

(SAR) and enhancing the antenna performance. 

 

Figure 7-11 : Simulation structure of PIFA antenna on the PCB stacked by EBG 

structure (9×11 unit cells) as RF shield between the PCB and the phantom body. FR4 

for the PCB with 𝜀r = 4.9, tanδ=0.025. 

Phantom’s 

body 
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Figure 7-11 shows the PIFA antenna mounted on top of the PCB (46mm×100mm); 

the antenna shape is tuned to operate at the frequency band GSM 1900. From the 

simulation results in Figure 7-12 the antenna radiation efficiency beside the phantom 

is seen to be improved by 1dB by using the EBG. With the use of the EBG, the 

absorbed electromagnetic fields inside the phantom is decreased, as seen in Figure 7-

13, and the radiation efficiency is improved; therefore the total efficiency is increased 

by 42%. In free space: we find no change in the radiation efficiency while the total 

antenna efficiency is increased with EBG due to the matching network used in the 

simulation model. 
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Figure 7-12: PIFA Antenna efficiency with and without the EBG below the PCB. (a) 

free space (without body), (b) with body. 

(a) 

(b) 
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Figure 7-13 : Peak SAR (10g) value inside the phantom with 𝑃acc= 0.25 W. 

Results in Figure 7-13 show that if the EBG structure is inserted between the mobile 

and the phantom, then the Peak SAR (10g) is reduced by around 55%.  

A commercial mobile phone with PIFA antenna, as presented in chapter 6, Figure 6-

Figure 7-14: SAR measurement of commercial mobile at 1.88GHz and 𝑃inc= 30dBm, 

with EBG (right) and without the EBG (left) inserted between the mobile and the 

phantom. Peak 𝐒𝐀𝐑𝟏𝟎𝐠=0.13W/kg (with EBG), peak 𝐒𝐀𝐑𝟏𝟎𝐠=0.36W/kg (without 

EBG). 
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Mobile 
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31, was used to experimentally investigate SAR levels inside the phantom when the 

EBG is implemented under the mobile. 

Figure 7-14 shows that the EBG (9×11 unit cells) can reduce SAR by 65% from 0.36 

W/kg without EBG to 0.13 W/kg when EBG is used as RF shield between the mobile 

phone and the phantom. The device under test is operated at the frequency band of 

GSM1900 and fed with output power=𝑃inc= 30dBm from the IC transmitter; the SAR 

measurements are done at the middle uplink channel of the frequency band GSM 

1900, which is 1.88 GHz. 

The SAR distribution measurements can be compared to the simulations presented in 

section 6.3.2 under headline C.PMC for the mixed structure of PMC and PEC to 

understand the distribution of SAR. The normal component of the E-field and the 

tangential component of the H-field generated on the bottom side as shown in Figure 

6-40 excite surface waves on the backside of the EBG, which supports a wave 

propagating between the PEC and the phantom, as seen also in Figure 6.41, and which 

generates SAR below the shield.  

A check of the total radiated power in free space using the OTA measurement, Figure 

2-5, shows that with the EBG, the total radiated power is reduced by a maximum of 

13% at the EBG frequency band (GSM 1900 ) and 33% outside the EBG frequency 

15,0

17,0

19,0

21,0

23,0

25,0

27,0

29,0

Low CH Mid CH High CH Low CH Mid CH High CH

GSM1800 GSM1900

d
B

m
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Orginal phone without RF shielding Ferrite as RF shielding

EBG as RF shielding

Figure 7-15: Measured Total Radiated Power (TRP) of the mobile phone with 30dBm 

transmitter’s output power and with ferrite or EBG material as RF shield measured in 

free space (without head). 

 



 

 

EBG structures and application for SAR reduction 

93 

 

band (GSM 1800) ,which is less degradation than when ferrite material is used as RF 

shield in free space, see Figure 7-15. 

As a conclusion, it is found that the use of an EBG below a PIFA antenna leads to 

SAR reduction by 55% inside the phantom while the total radiated power in free space 

is reduced by 15%, possibility due to miss-match of the antenna and/or due to 

dissipation loss in the EBG structure. 

 

 Dual-Loop Antenna over the EBG ground plane: 

The commercial demand for multisystem handset equipment has recently increased 

rapidly. Therefore, the antenna in the smart phone must be capable of operating at four 

or more frequency bands. In this section the commercial mobile phone with dual-loop 

antenna and multiband characteristics, presented in section 6.3.1.is investigated with 

the EBG below its PCB.  

 

Figure 7-16 : Measurement of SAR distribution at 1.88GHz for a commercial phone 

with loop antenna at 𝑃inc= 30dBm. Without EBG (left) peak 𝐒𝐀𝐑𝟏𝟎𝐠=0.81 mW/g, 

with EBG (right) peak 𝐒𝐀𝐑𝟏𝟎𝐠=0.21 mW/g. 

This dual-loop antenna with EBG is investigated to study the effect of the 

electromagnetic band gap EBG on the loop antenna radiation efficiency and SAR 
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distribution inside the phantom body. Figure 7-16 shows that the maximum SAR 

value is decreased by about 74% at 1.88 GHz. 

Figure 7-17 shows the TRP measurement values of the mobile phone with and without 

using the EBG as RF shield in free space case , at the GSM 1800  and GSM 1900 

frequency bands with feeding power 𝑃inc=30 dBm . The radiated power without 

shielding is between 25.6 and 27.2 dBm and with EBG is between 22.5 and 25.5 dBm. 

 

Figure 7-17 : TRP for commercial mobile phone with loop antenna at 30dBm Tx 

power and using the EBG as RF shield in free space (without phantom). 

The TRP measurement is showing that the efficiency of the antenna is decreased in 

the out of phase frequency band (GSM1800) more than the in-phase EBG frequency 

band (GSM 1900). From the measurement, it is found that, by using EBG below the 

dual-loop antenna the maximum SAR value is decreased by about 74% with losses in 

the total radiation power in free space situation by 2.1 dB (around 37%) at 1.88 GHz. 

However, from the TRP measurement, it is not possible to decide whether the losses 

in the antenna radiated power are due to the antenna’s miss-match or the dissipation 

loss in the EBG.  

From the results for the two antenna types, it can be concluded that the EBG (9×11 

unit cells) can reduce SAR in the phantom considerably and it may be assumed that 

such improvement should be realizable with other antenna types also. 

In the next section, a reduced size of the EBG structure with 2×6 unit cells 

(5.1×15×45mm3) is investigated with real mobile phone size and placed directly 

below the antenna.  
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  Mobile Phone Antennas with integrated EBG 

structure: 

 In this section, a quarter-lambda monopole antenna is placed horizontally on the 

plastic carrier without metal ground underneath. Then, the stacked EBG (2×6 unit 

cells) of 5.1×15×45mm3 is inserted below the antenna. The antenna performance and 

SAR were simulated and measured. 

Figure 7-18 shows the proposed structure of a monopole antenna as high-band radiator 

mounted on a copper PCB 95×60 mm. The antenna length is tuned to work at the 

frequency band GSM1900.The distance between the radiator and the surface of the 

EBG is significantly reduced to 2 mm. 

The mobile phone in investigated for two conditions:  

 Free space (without the head) or in “stand by” position: the results are 

represented in section 7.4.1. 

 Beside the head “talking” position: the results are represented in section 7.4.2. 

 

 Antenna in free space: 

The antenna performance is studied without the phantom head to disclose the 

influence of the EBG on the antenna performance in free space. 

Figure 7-18 : Monopole antenna mounted on the top position of the PCB 

with plastic carrier, and EBG (2×6 unit cells). FR4 for the PCB with 𝜀r =

4.9, tanδ=0.025,antenna carrier (𝜀r=3, tanδ=0.02). 

EBG 
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The distribution of surface current density on the PCB is shown in Figure 7-19. For 

the standard scenario (a) without EBG the surface current distribution is forming a 

half-wavelength chassis mode as shown before in chapter 5. The currents are 

spreading at the edges of the PCB and the maximum amplitude is close to the antenna 

feed point. With the EBG structure located below the antenna (b), due to the 

characteristics of the EBG structure a high surface impedance point is formed on the 

PCB close to the EBG that reshapes the current distribution on the PCB. 

 

Figure 7-19: Surface current distribution on the back side of the PCB in free space at 

1.9 GHz. (a) without shield,(b) with 2×6 unit cells EBG below the antenna, 𝑃inc=1W.  

The EBG reduces the operating bands width of the antenna when compared with the 

antenna not backed by EBG; Figure 7-20 shows the simulation of the radiation 

efficiency and reflection coefficient for both cases. 
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 Figure 7-20 : Monopole antenna performance in free space. (a) Reflection coefficient, 

(b) radiation efficiency. 

The radiation efficiency by using the EBG in the free space is reduced by around 2 dB 

over the frequency band GSM 1900 (1.86-1.92 GHz) due to the losses inside the EBG. 

As shown in [54], the EBG can be used to design high directivity resonator antennas. 

Figure 7-21 shows the directivity of the monopole antenna with the EBG (b), and 

without the EBG (a), at 1.9 GHz, we recognize a clear improvement of directivity of 

the monopole antenna into the upper hemisphere and a weakening into the back 

hemisphere where the user’s head would be placed in actual operation. 

(a) 
(b) 
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The radiation efficiency comparison shows about 1.8 dB to 2 dB losses by using the 

EBG. The reflection phase of the EBG structure is in the range of ±90°, which 

produces constructive superposition of incident and reflected signals. At Phi from 0° 

to 180 ° is the direction of the human head and as is shown in Figure 7-21,the 

electromagnetic wave is damped  (the radiation pattern is reduced) at around Phi =90°, 

and increased around  Phi=270°,which is away from the head. 

For the measurement, the proposed monopole antenna is fabricated on a PCB with 

dielectric FR4 substrate. A 50-Ohm coaxial cable feeds the antenna, Figure 7-22.  

Ferrite core suppressor beads of 9.8 mm length are stacked on the cable to reduce the 

(b) 

(a) 

Figure 7-21 : Simulated directivity of the monopole antenna at 1.9 GHz in free space. (a) 

Without EBG, (b) with EBG as RF shield.  
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EM coupling between the PCB with the coaxial cable via current flow on the outer 

conductor. 

 

Figure 7-22: The proposed antenna structure in free space and passive antenna 

measurement tool with 15 Probes, (between two probes: 22.5°and rotation of the arch 

11.25°), arranged at internal diameter of 0.9m. 

Figure 7-23 shows the reflection coefficient of the proposed monopole antenna with 

EBG structure (2×6 unit cells), which is measured by the VNA. The frequency 

bandwidth at -6 dB of the monopole with the EBG covers the GSM1900 upload 

frequency band (1.86-1.92 GHz). Excellent matching of the reflection coefficient 

between the measurement and the FDTD simulation is seen. 
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Figure 7-23 : Reflection coefficient of the proposed monopole antenna with EBG in 

free space.  

The high impedance of the EBG surface reduces the diffraction effects since it is 

capable of suppressing the currents that are generated by the antenna and coupled to 

the backside of the ground plane of the PCB, as is shown in the radiation pattern 

measurement Figure 7-24 .Thus, the unwanted radiation of EM wave toward the head 

direction is reduced by 15 dB.  

 

Figure 7-24: Radiation pattern of the proposed monopole 

antenna in free space. 

Measurement Simulation 
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Complementary results of measurements in free space using the setup of Figure 7-22 

are shown in Figure 7-25. We see that, the radiation efficiency of the antenna has 

dropped after using the EBG by about 0.2dB at GSM 1900 and about 2dB in the rest 

of high-band 1.695-2.170 GHz, matching the simulation results of Figure 7-20. 

 

Figure 7-25 : Measurement results of monopole antenna with and without EBG. 
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 Antenna beside the head: 

The antenna performance with the phantom head is investigated to disclose the impact 

of the EBG on the antenna radiation efficiency and SAR value. In addition to the 

magnitude of SAR, it was seen interesting to study the location of the hotspots (Peak 

SAR) after applying the EBG structure. As seen in chapter 5, at the higher frequency 

around 1900 MHz, the main contributor should be expected to be the antenna.  

Figure 7-26 shows the front view of the proposed structure placed above the phantom 

by 5 mm, with the space filled by low density rigid foam spacer for highly repeatable 

positioning of devices on the iSAR Flat. The spacer is precision-milled with a low 

dielectric loss tan δ =0.0008 and low permittivity  𝜀r = 1.07 [55].  The measurements 

in Figure 7-26 show SAR distributions at 4 mm below the surface of the phantom with 

and without EBG structure.  

Figure 7-26 : Measurement of SAR distributions of monopole antenna with 

EBG peak 𝐒𝐀𝐑𝟏𝟎𝐠=0.52 mW/g (a) and w/o EBG peak 𝐒𝐀𝐑𝟏𝟎𝐠=2.44 mW/g 

(b), 𝑃inc=23dBm feed power at 1.88 GHz. 

(b) 

Antenna 

(a) 
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 It seems that the SAR distributions have no significant change in the shape with 

integrated EBG (15×45mm2) compared to the case without EBG.  

Most interestingly, it is found that peak SAR10g can be reduced by 78% in case the 

EBG is used in the measurement. To complete the tests, the antenna efficiency and 

radiation pattern need to be investigated.  

Figure 7-27 shows the measurement setup, consisting of the monopole antenna placed 

on the bottom side of the PCB and configured in the cheek position at the left side of 

the phantom’s head. The PCB touches the earpiece of the phantom head on the top, 

and the phantom head is filled with fluid providing tissue equivalent electrical 

properties of human body. The tilted angle between the center line of the PCB and the 

vertical line of the phantom is 63°. 

 

 

Figure 7-27: Measurement of the antenna pattern with head using the SATIMO tool.  
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Figure 7-28: Monopole antenna parameters measured with/ without EBG in cheek 

position beside the head. 

Figure 7-28 shows the antenna performance at the frequency band of interest (GSM 

1900): From 1886 MHz to 1920 MHz the radiation efficiency drops from -3.3 dB 

without EBG to -3.8 dB (10% ) when the antenna is backed by EBG; furthermore, the 

reflection coefficient is still under -6 dB such that there is no need to re-tune the 

antenna and the total efficiency is slightly degraded by the EBG. 
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Figure 7-29 : Radiation pattern of the monopole antenna beside a phantom head in the 

horizontal plane, with and without EBG at 1.88 GHz. 

The radiation pattern presented in Figure 7-29, is a conventional Omni-directional 

pattern of the normal monopole in the horizontal plane attenuated by dissipation loss 

in the head. Using the EBG, the induced fields inside the head are decreased because 

the radiation power is reduced in the direction of the human head, and therefore, the 

dissipation inside head is reduced. This reduction of dissipation loss is compensated 

by the dissipation inside the EBG: We see a slight drop in the antenna efficiency after 

implementing the EBG, as shown in Figure 7-28 and Figure 7-29. The EBG reduces 

the SAR inside the phantom head with very small effect at the radiation efficiency of 

the mobile’s antenna in this position beside the head. 

As is shown in chapter 2, the DASY 4 tool is used to measure the SAR10g in the 

phantom head. Figure 7-30 shows the calibrated measurement system which  consists 

of a 3D probe to measure the E-fields inside the phantom at 4mm from surface with 

mechanical surface detection. The scan area is 81×141mm2 inside the head phantom 

which is filled with liquid (𝜀r=38.8, σ=1.39 S/m) and has a shell (𝜀r=4.5, tanδ = 0.05). 

The measurements were taken over a grid of 𝑑X=10mm, and 𝑑Y=10mm. 

The mobile phone structure touches the phantom head, with bottom antenna position. 

Incident power 𝑃inc= 24dBm, which is the standard power level of the RF transmitter 

at the frequency band GSM 1900. 

 

Antenna  

Head 
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Figure 7-30: SAR antenna model measurement for head left section. Medium 

parameters at 1800 to 2170 MHz: σ=1.39 S/m; ε=38.8; ρ=1000 kg/𝒎𝟑. 𝑃inc= 24 dBm 

. 

 

Figure 7-31: SAR10g distribution map at 1.88 GHz; (a), (c) conventional monopole 

antenna and (b),(d) monopole antenna with EBG. Measurements (a),(b) and 

simulation (c),(d).  
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Figure 7-31 shows the SAR distributions inside the head from measurement (a),(b) 

and from simulation by HFSS (c),(d) . The peak SAR location and amplitude are 

exactly the same in simulation and measurement. The Table 7-1 shows the measured 

SAR values of the monopole antenna for 1g and 10 g: With the proposed EBG 

structure SAR is reduced by ~39 % at the center frequency of the GSM 1900.  

SAR(mW/g) 

1g/10g(Avg.) 
1852.4 MHz 1880 MHz 1907.6 MHz 

Monopole 0.748 / 0.47 0.753 / 0.465 0.867 / 0.532 

Monopole with 

EBG 
0.499 / 0.311 0.453 / 0.283 0.539 / 0.333 

𝐒𝐀𝐑 − 𝐒𝐀𝐑(𝐄𝐁𝐆)

𝐒𝐀𝐑
× 𝟏𝟎𝟎 

33.3 % / 33.8 % 39.8 % / 39.1 % 37.8 % / 37.4 % 

 Low  channel Middle channel High channel 

Table 7-1: Comparison of measured SAR values with/without EBG at GSM 1900. 

The results show that the SAR value inside the head is reduced by 39% at the cost of 

reduced radiation efficiency by 10% at the GSM1900 Band (Uplink frequency 1850-

1910 MHz).However practically it would be possible to increase the generated power 

to recover the 10% loss in the antenna efficiency and still reduce the SAR level. 

As conclusion, the EBG with high impedance surface properties in a specified 

frequency band is capable of suppressing surface currents on the PCB and thus 

reducing the radiation toward the head. Therefore it is found a good solution to reduce 

SAR in the user’s head. 
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  Impact of EBG on antenna performance at GSM 900: 

At the frequency band GSM1900, the proposed EBG successfully suppresses surface 

currents and reflects incident electromagnetic waves without phase reversal, but for 

out-of-band frequencies the EBG behaves similar to conductive sheet with phase 

reversal, and that causes a reduction in total antenna efficiency as seen in section 

6.3.2. Thus, if a low-band antenna or Bluetooth antenna is placed near a EBG it will 

also generate strong surface currents that propagate along the conductive EBG 

surface. Mobile phones incorporate multi antennas operating at different frequencies 

most importantly at GSM 900 frequencies. Therefore antenna efficiency is 

investigated for the case of a loop antenna for GSM 900 when it is backed by the 

proposed EBG.  

The effect of the stacked EBG which is designed to work at around 1900 MHz on 

antenna performance at 900 MHz is investigated in this section. 

 

Figure 7-32 shows the geometry of the proposed antenna model with the EBG 

structure below the antennas, a monopole antenna for high-band GSM1900 and a loop 

antenna for GSM 900.  

Figure 7-32 : Geometry of the two-antenna model. Monopole antenna for the 1900 

MHz band and loop antenna for 900 MHz on a PCB with FR4 𝜀r = 4.9, tanδ=0.025 

and with a stacked EBG integrated. Antenna carrier (𝜀r=3, tanδ=0.02). 
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The loop antenna with one feed pin and one short pin is located at 7mm above the 

PCB and tuned to have the first resonance at frequency 900 MHz by using one SMD 

(Surface Mounted Device) inductor in series, this inductor is used also to re-tune the 

loop antenna after inserting the EBG.  

Figure 7-33: The measured radiation efficiency of the loop antenna and the monopole 

antenna for the low-and high-bands respectively in free space without EBG. 

Figure 7-33 shows that the radiation efficiency for the loop antenna without EBG in 

free space is about -0.18 dB at the GSM 900 frequency band. 

From the measurements, Figure 7-34, the reflection coefficient is seen to be less than   

-6dB at the GSM 900 frequency band and the radiation efficiency of the loop antenna 

with EBG has dropped about 2 dB in free space by integrating the EBG, but still is 

above the antenna efficiency limit for the standard mobile phone antenna design, 

which is -3 dB for the GSM 900 transmit band. 
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Loop antenna beside the head: 

This simulation assumes that the mobile phone structure touches the phantom head, 

with bottom antenna position and with accepted power 𝑃acc= 24dBm at the frequency 

band GSM 900. Figure 7-35 shows the radiation efficiency of the loop antenna beside 

(a) 

Figure 7-34: The reflection coefficient and the radiation efficiency of the loop antenna 

and the monopole antenna for the low-and high-bands respectively and with 

integrated EBG measured in free space. 
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Figure 7-36: SAR10g distribution map at 900 MHz; (a) loop antenna without EBG 

and (b) loop antenna with integrated EBG. Peak 𝐒𝐀𝐑𝟏𝟎𝐠=1.23 mW/g with EBG, 

and w/o EBG peak 𝐒𝐀𝐑𝟏𝟎𝐠=1.18 mW/g. 𝑃acc= 24 dBm. 

the head dropped by 0.5 dB with the integrated EBG, obviously due to dissipated 

power inside and at the back of the EBG. 

 

Figure 7-35: The radiation efficiency of the loop antenna for GSM 900 beside the 

head with and without integrated EBG. 

Figure 7-36 shows the SAR distributions inside the head. The peak SAR is located 

close to the middle of the PCB and the SAR10g distribution inside the head is 

practically equal for the two cases (with and without integrated EBG). 

 

 
(a) (b) 
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 Conclusion 

The stacked EBG structure is found to be the best solution to reduce the specific 

absorption rate SAR value of the standard monopole antenna for GSM 1900. 

The monopole backed by the proposed EBG structure demonstrates a significant SAR 

reduction by 78 % and radiation efficiency losses by only 10% compared to the case 

of the monopole antenna without EBG beside the head. 

Deteriorating effects of the EBG on other antennas on the PCB can be assumed to be 

acceptably low. 

In particular, in the most critical case of the GSM 900 antenna, the loop antenna 

efficiency of -2 dB still satisfies commercial mobile antenna transmit requirements 

and no considerable degradation in SAR performance is seen. 
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Chapter 8 

8. Conclusions and Future Work 

 

As we already see from the analysis of absorption mechanisms for mobile phones and 

behaviour of mobile terminal antennas near dielectric material, the currents of the 

chassis at the low cellular frequencies (GSM 900) and of the antenna element at the 

high cellular frequencies (GSM 1900) cause high peak specific absorption rate (SAR) 

values, which especially at the GSM 1900 band is quite often problematic. 

Fundamental descriptions of the interaction between the user and the antenna are 

found to be the antenna efficiency and most importantly SAR; which are investigated 

using EM simulation and measurement technologies. It is found that the interaction 

between the human head and the antenna is located in near field region. Therefore the 

near field distributions which are excited from the assumed small antennas and which 

propagate inside the phantom and lead to absorption are investigated. It is found that 

at 1900 MHz the PCB resembles a full wavelength resonator such that the electric 

field has a strong area around the center of the PCB in addition to the open ends of the 

resonator, while the magnetic field peaks around areas in which the surface current on 

the resonator is high. 

The EM interaction between the antenna and the human head has been discussed in 

this thesis with different SAR reduction methods, such as parasitic elements, 

wavetraps, directive control antenna, slotted ground plane, antenna type optimization, 

and RF shields (Ferrite, PEC, and PMC). These methods either cause reduction in the 

antenna efficiency in free space after reduction of SAR or they are hard to produce 

and integrated below the antenna and inside the mobile phone. Due to that, a stacked 

EBG structure has been investigated in this thesis as EM shield placed underneath the 

RF antenna tuned to reflect the field with zero phase reversal. At the mobile operating 

frequency band of GSM 1900 upload band (1860-1920 MHz) the propagation of 

surface waves is suppressed, and the EM fields against the human body are dispersed. 

The stop band gap property of the proposed EBG is shown to be in excellent 

agreement between the simulation and the measured results. 

The stacked EBG structure is found to be the best solution to reduce SAR value of the 

standard monopole antenna for GSM 1900 with a slight drop of antenna radiation 

efficiency in free space and beside the head.  
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A commonly used antenna for the low frequency band GSM 900 , the loop antenna 

has been designed and fabricated, and the impact of the EBG on the loop antenna 

performance and SAR value at GSM 900 was investigated. It is found from 

measurements that the loop antenna efficiency with integrated EBG still satisfies 

commercial mobile antenna transmit requirements and no significant degradation in 

SAR performance is seen. 

For the future, the antenna performance and SAR value should be investigated for new 

antenna designs such as the dual-loop (multi-band antenna) with integrated EBG 

structure . 
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