SUPPORTING INFORMATION

Structural characterization of suppressor lipids by high-resolution mass spectrometry

Mary Joy Rovillos¹, Josch Konstantin Pauling¹, Hans Kristian Hannibal-Bach¹, Christine Vionnet², Andreas Conzelmann² and Christer S. Ejsing¹*

¹Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
²Division of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland

Figure S1. Structural characterization of synthetic PI 17:0/20:4. (A) TOF MS/MS spectrum of m/z 871.5 ([PI 17:0/20:4-H]⁻) acquired using CE at 64 eV. (B) FTMS² spectrum of m/z 871.5 ([PI 17:0/20:4-H]⁻) acquired using CID and CE at 34%.
Figure S2. Structural characterization of LPI 26:0. (A) FTMS spectrum of fraction #38. (B) TOF MS/MS spectrum of m/z 711.4 ([LPI 26:0-H]⁻). (C) Tentative structures and predominant fragmentation pathways of LPI 26:0. Specified m/z values are calculated based on the chemical composition of depicted structures.
Figure S3. Structural characterization of LPIM 26:0. (A) FTMS spectrum of fraction #36. (B) TOF MS/MS spectrum of m/z 873.4 ([LPIM 26:0-H]). (C) Tentative structures and predominant fragmentation pathways of LPIM 26:0. Specified m/z values are calculated based on the chemical composition of depicted structures.
Figure S4.

A FTMS fraction #41

B TOF MS/MS m/z 1115.5, [LPMIP 26:0-H]^{-}

C TOF MS/MS m/z 557.2, [LPMIP 26:0-2H]^{2-}

D Molecular structures of identified compounds.
Figure S4. Structural characterization of LPIMIP 26:0. (A) FTMS spectrum of fraction #41. (B) TOF MS/MS spectrum of m/z 1115.5 ([LPIMIP 26:0-H]$^-$). (C) TOF MS/MS spectrum of m/z 557.2 ([LPIMIP 26:0-2H]$^{2-}$). (D) Tentative structures and predominant fragmentation pathways of singly charged LPIMIP 26:0. (E) Tentative structures and predominant fragmentation pathways of doubly charged LPIMIP 26:0. Specified m/z values are calculated based on the chemical composition of depicted structures.