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in healthy subjects. We retrieved significant associations using an entropy based ap-

proach and a multiplex network formalism. We defined a significantly over-represented

network formed by biologically interpretable metabolite modules. The entropy of the

individual metabolic phenotype is also introduced and discussed.

Published in Journal of Proteome Research 2016 Sep 2;

15(9):3298-307. doi: 10.1021/acs.jproteome.6b00454. Epub 2016 Aug 1.
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Introduction

Humans exhibit great phenotypic diversity. There are multiple regulatory layers underlying

the functioning of a living system which organize the response to perturbations and/or mod-

ifications.1,2 These regulatory processes cause biological components, such as metabolites, to

change in a coordinated way with respect to these perturbations: the different patterns of

metabolite (co)variation and association give birth to the individual metabolic phenotype.

This metabolic phenotype, as defined by NMR spectroscopy of urinary profiles and mul-

tivariate modeling, is unique for healthy subjects allowing discrimination with ≈ 100% ac-

curacy.3 Moreover, it is stable over time4 and possesses both allostasis and resilience.5 By

quantifying a finite subset of M metabolites unambiguously identified for all subjects, the

complexity and the high-dimensionality of NMR profiles arising from the signals of hundreds

to thousands of low molecular weight molecules can be reduced of a n-fold factor. This re-

ducedM -dimensional representation still allows predictive discrimination with high accuracy

(see Figure 1A and B), indicating that a subject-specific biological information is thoroughly

represented by a limited number of metabolites which constitute the biological components

of the human metabolic phenotype. The metabolites excreted in urine represent the output
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of countless biochemical and biological processes, spanning from kidney functionality to the

intricate interplay between the gut microbiome and the human host. For this reason it is of

interest to investigate the associations and the interconnections among different metabolites

by means of network modeling.

Networks built upon metabolic profiling exhibit a large degree of diversity as shown in

Figure 1C and D and this variability reflects the intrinsic diversity observed among the

individual metabolic phenotypes. It has recently been shown that such diversity is mainly

due to intrinsic factors, such as genetics and epigenetics, being extrinsic factors, such as

dietary habits or lifestyle, less important.6

Because the biological machinery shaping the urinary metabolic profile of different healthy

subjects can be assumed to be the same, it is reasonable to assume the existence of what we

termed population core network (PCN), that is, a metabolite-metabolite association network

representing and underlying the metabolic phenotype observed in the overall population.

The ultimate goal of the present study is to estimate and infer characteristics of such

PCN whose direct observation is precluded by the biologically noisy landscape of the sam-

pled metabolic phenotype, which in turn gives origin to slightly different yet subject-specific

metabolic networks. Defining a consensus of biological dependencies between metabolites

across (healthy) individuals is fundamental since metabolites are read-outs from complex

interaction networks and their analysis in a network context can reveal the underlying struc-

ture and regulation.7 On this basis, the resulting metabolite-metabolite association networks

can be compared across different subjects or (patho) physiological conditions. For instance,

differences in the association patterns of blood metabolites have been observed in subjects

with low and high latent cardiovascular risk.8

Estimating the PCN requires not only the definition of the most common metabolite

associations observed in the population, but also assessing their significance in terms of

biological information encoded in the relationship. This problem goes far beyond the results

attainable with multivariate and pattern recognition methods and requires a more advanced
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and non-conventional representation of the individual metabolic phenotype.

We address this problem using the formalism of multiplex network9–11 where a set of

M = 35 metabolites (nodes) is connected through a multiplex network consisting of N =

31 subject-specific networks (or layers). Subsequently, we evaluate the probability of the

M(M − 1)/2 possible metabolite-metabolite associations by maximizing network entropy,

thus using a statistical mechanics approach that takes advantage of network ensembles.

We arrive to an estimation of the PCN by building a significantly over-represented net-

work (SON) that follows from a maximum entropy ensemble null model12 with uncorrelated

layers and fixed average degree sequence in each layer.11,13 The SON is a weighted network

that gathers all the metabolite-metabolite associations that are observed more than expected

under the chosen null model and for which biological relevance can be inferred. An overview

of the experimental and computational strategy is shown in Figure 2.

By making use of a community detection approach we show that the SON consists of

biologically interpretable metabolite modules accounting for the biological mechanisms that

shape of the individual metabolic phenotype. Contextually we introduce and discuss the

concepts of subject network entropy and single metabolite entropy.

Materials and Methods

Entropy calculations

The group of N subject-specific networks Gα can be considered as a multiplex network ~G, i.e.

a set of M metabolites-nodes connected by N networks or layers, each one fully described

by its adjacency matrix {aαij}.

A proper null model is necessary to quantify how relevant is the abundance of each link,

i.e. how far the real population abundance of a given link is from the expected value. Every

observed metabolite-metabolite network Gα can be seen as a particular instance of a larger

set of networks (an ensemble) that are assumed to be biologically equivalent and underlying
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the individual human metabolic phenotype. These networks share similar features such

as the degree sequence (i.e. the number of links for each node) that constitute the main

observables characterizing our system.13 It follows that each network has a given probability

to be observed, once the main features of the system have been outlined. Similarly, this

ensemble approach can be applied also to multiplex networks, once the relationships among

the layers have been specified.

As all subjects in the study are unrelated (apart two twins and a father-son pair), we

considered the subject-specific networks Gα to be independent and we assumed the mul-

tiplex ensemble to be uncorrelated; in this case the probability P (~G) of observing a given

multiplex can be factorized into the product of the probabilities Pα(Gα) of observing each

single network Gα:

P (~G) =
31∏
α=1

Pα(Gα). (1)

We considered the particular case of a maximum entropy ensemble null model12 defined by

uncorrelated layers and fixed average degree sequence in each layer.11,13 The degree sequences

{kαi } are given by the real metabolite-metabolite association networks and are considered as

properties to be satisfied on average over the multiplex ensemble. These properties are then

likely to be satisfied but they are not matched perfectly by each multiplex network belonging

to the ensemble. This multiplex ensemble is then canonical, i.e. shaped by soft constraints.

The entropy value S of the multiplex ensemble is additive in the number of layers and is a

function of pαij, the probability of having a link between metabolite i and j in sample α

S =
31∑
α=1

Sα = −
31∑
α=1

[
35∑
i<j

pαij log(pαij) +
35∑
i<j

(1− pαij) log(1− pαij)

]
(2)

where Sα is the entropy value of sample α. The entropy Sα estimates the logarithm of the

number of typical networks in the chosen ensemble, i.e. those networks satisfying on average

the real degree sequence in layer α.
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The link probability pαij is obtained by the constrained maximization of S, i.e.

∂

∂pαij

{
S +

31∑
α=1

35∑
i=1

λαi

(
kαi −

35∑
j=1

pαij

)}
= 0 (3)

where λαi are the Lagrange multipliers14 related to the constraints for the degree sequences

{kαi }. For each (i, j, α) the resulting marginal probability is

pαij =
e−(λ

α
i +λ

α
j )

1 + e−(λ
α
i +λ

α
j )

(4)

Using the algorithms developed in,13 we calculated the probabilities {pαij} and Sα for each

sample α.

Reconstruction of individual metabolic networks

Individual urine metabolite networks were reconstructed by taking a "wisdom of crowds"

approach:15 three algorithms for networks inference (ARACNE,16 CLR17 and PCLRC8)

were considered and used with default parameters setting. In addition, also a standard

correlation map was considered to define a fourth adjacency matrix as commonly used in

metabolomics. For each subject α four different weighted adjacency matrices {wαij}m were

built (m = 1, . . . , 4 indicating the m-th method)

Binary adjacency matrices {aαij}m were obtained by imposing a threshold τm on the

weighted adjacency matrices

{aαij}m →


1 if

∣∣{wαij}∣∣ > τm

0 otherwise.
(5)

The value of the threshold τm depends on the methods considered: values were 0 for

ARACNE and CLR methods,16,17 0.95 for PCLRC8 and 0.6 for the correlation map18 as

further detailed in.19
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For each subject, the four adjacency matrices were superimposed

{aαij} =
4∑

m=1

{aαij}m (6)

The final adjacency matrix representing the metabolite network for every subject was built

by retaining only those links inferred by 3 or more methods as suggested in:19

{aαij} →


1 if {aαij} ≥ 3.

0 otherwise.
(7)

The obtained adjacency matrices {aαij} are symmetric, unweighted and they constitute the

input for network ensemble modeling. However, the formalism of network ensembles is

well developed for both directed and undirected networks20,21 and directionality can be

taken into account as a possible feature of the model, depending on the different techniques

of network inference and on the purposes of the analysis. Moreover, the magnitude of

the association (e.g. correlation values or mutual information) could be retained to obtain

weighted networks, where the binary patterns of link presence/absence is replaced by weights

representing the strength of the associations. The formalism of network ensembles has also

been extended to weighted multiplex networks.11,20

Metabolites are produced from other metabolites and this results in interdependence

patterns between their concentrations that do not exist between transcripts or proteins and

are constrained by stoichiometry:18 when available, this information can be used to derive

structural biochemical properties of the networks22 and can be incorporated in the model.

However although knowledge of primary metabolism is steadily growing,23 very little is

known about secondary metabolism, and stoichiometry-based analysis of metabolomics data

is currently limited and would require extensive experimental work.
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Statistical analysis

Individual Recognition

Data reduction was carried out by means of projection into a PCA subspace explaining

99.99% of the variance in the data. A test set validation (TSV) approach, which requires

that models are constructed without any test set data, was applied to define the multivariate

predictive analysis. Data were initially split in test and training data sets. The training set

consisted of a random selection of the 90% of data available for all individuals. The test

set consisted of the remaining 10% of the data. The training data sets were subjected to

canonical analysis (MANOVA) to define a further reduced subspace with optimum group

separation in the CA space. The training was then projected into the PCA/CA subspace

defined by the training model. A k-NN classification (with k = 7) was applied to each test

set for each individual. The procedure was repeated 103 times to derive average recognition

accuracy for each subject. Detailed information on the overall procedure is given in the

original publications.3,4

Modeling of network similarity

To model and visualize the differences observed in the subject-specific metabolic networks

we used COVSCA (COVariance Simultaneous Component Analysis) which is a recently in-

troduced model to analyze communalities and differences across a set of Ck (k = 1, 2, ..., K)

covariance matrices simultaneously.24 Since an adjacency matrix can be considered a partic-

ular case of covariance matrix, this method can be used to model adjacency matrices too. In

COVSCA the matrices are approximated as a combination of a limited number (L << K)

of low dimensional prototypes:

Ck ≈
L∑
l=1

cklZlZ
T
l (8)

where ckl ≥ 0 (l = 1, 2, . . . , L) are weight coefficients and ZlZT
l are the prototypical covari-

ance matrices; these matrices define a set of loadings Z of size J×Rl that hold simultaneously
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for all Ck. We have chosen to fit our model with two rank-2 prototype matrices as the best

compromise between the goodness-of-fit (70%) of the COVSCA model (100% for perfect fit

and 0 for total lack of fit) and the model complexity (rank of the prototypes matrices). This

diagnostic measure is defined in Equation 31 of the original publication to which we refer

the reader for more details on the model derivation and implementation.

Metabolite set analysis

Biological interpretation of network modules was carried on by mean of literature min-

ing and with the support of the Human Metabolome Database (www.hmdb.ca).25 Results

were complemented with metabolite set analysis26 performed using the built in function of

MetaboAnalyst 3.0,27 that employs a library containing 88 metabolite sets based on normal

metabolic pathways and using an hypergeometric test. A false discovery rate (FDR) of 0.1

was used as discriminant threshold for statistical significance for multiple testing.

Experimental methods

Detailed experimental procedures can be retrieved from the original publications.3–5

Sample Collection

Urine samples were collected from 31 healthy volunteers (14 males and 17 females). Each

participant provided 37 samples collected on distinct days after an overnight fast, resulting

in a total collection of 1147 urine samples. Urine samples were collected into prelabeled

sterile collection cups and they were stored at -80◦C.

Sample preparation

Frozen urine samples were thawed at room temperature and shaken before use; 630 µL

aliquot of each urine sample was centrifuged at 14000 g for 5 minutes and 540 µL of the

supernatant were added to 60 µL of potassium phosphate buffer (1.5 M K2HPO4, 100%
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(v/v) 2H2O, 10 mM sodium trimethylsilyl [2,2,3,3-2H4]propionate (TMSP) pH 7.4). 450 µL

of each mixture were transferred into 4.25 mm NMR tubes (Bruker BioSpin srl) for analysis.

NMR experiments

1H NMR spectra were acquired using a Bruker 600 MHz spectrometer (Bruker BioSpin)

operating at 600.13 MHz proton Larmor frequency. Before measurement, samples were kept

for at least 3 minutes inside the NMR probehead for temperature equilibration (300 oK).

For each urine sample, a monodimensional 1H NMR spectrum was acquired with a NOESY-

presaturation pulse sequence (Bruker noesygppr1d.comp pulse sequence). 64 scans with 64

K data points were collected, using a spectral width of 12019 Hz, an acquisition time of 2.7s,

a relaxation delay of 4s and a mixing time of 100ms.

NMR spectra processing and Metabolite analysis

Free induction decays were multiplied by an exponential function equivalent to a 1.0 Hz

line-broadening factor before applying Fourier transform. Transformed spectra were auto-

matically corrected for phase and baseline distortions and calibrated (TMSP singlet at 0.00

ppm) using TopSpin 3.2 (Bruker Biospin srl). 35 metabolites, whose peaks in the spectra

were well defined and resolved, were assigned. Signal identification was performed using

a library of NMR spectra of pure organic compounds, public databases (such as HMBD

and SDBS, Spectra Database for Organic Compounds, http://sdbs.db.aist.go.jp) storing

reference NMR spectra of metabolites, spiking NMR experiments and literature data. The

relative concentrations of the various metabolites in the different spectra were calculated by

integrating the signal area.
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Results and Discussion

Following recent developments in network theory and systems biology we consider a mul-

tiplex network representation9–11 as the more effective framework to model the patterns of

metabolite-metabolite associations across the population.

Every subject α (with α = 1, 2, . . . , 31) is represented by a M ×M association network

Gα, fully described by its adjacency matrix {aαij}, in which, for each couple of metabolites

i and j, the element aαij can be either 1 or 0, whether the two metabolites are associated or

not.
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We define as φobsij the number of times that a particular association between metabolites

i and j is observed in the population as

φobsij =
31∑
α

aαij (9)

This measure is the first step for the estimation of layer overlap based on experimental ob-

servations on our samples. Given the nature of metabolite-metabolite association networks,

many inferred links can be due to either sampling effects or biological noise and this is partic-

ularly relevant in case of urinary metabolites, where associations can result from metabolites

being co-excreted rather than being linked by some biomolecular process. In this light it is

of fundamental importance to define an adequate null hypothesis to assess the relevance of

metabolite-metabolite associations.

For this task, we considered the analytical tools provided by statistical mechanics of network

ensembles, i.e. families of randomized network variants of a given real network, where a set

of structural constraints has been specified, while other topological features are completely

random.28 Hence, in this framework, {φobsij } is a particular realization on a single network in-

stance of the more general multiplex property {φij} whose statistics depends on the specific

enforced constraints. A comparison between the empirical values {φobsij } and the ensem-

ble statistics allows to quantify metabolite association relevance, providing a link-specific

criterion for selection.

Metabolite-metabolite association probability

The probability pαij of having an association between metabolite i and j in layer α is obtained

by the constrained maximization of the multiplex network entropy S. Specifically, we choose

a maximum entropy ensemble null model12 defined by uncorrelated layers and fixed average

degree sequence in each layer, based on the observation that the subjects in the study are

unrelated. This means that in our null model, for each metabolic network, the number

12



Acce
pte

d Man
usc

rip
t

of associations for each metabolite (node) is conserved rather than the observed biological

associations between any two metabolites (links).

Figure 3 shows the distributions of pαij, that is the probability of having an association

between metabolite i and j in the network of each subject α. The distributions are equivalent

(Kolmogorov-Smirnov test p-value > 0.05 for all possible comparisons) and bi-modal, with a

peak in proximity of zero, indicating that most part of connections are unlikely, and a peak

around 0.95, indicating highly probable metabolite-metabolite association backbone.

The probability pij of having an association between any two metabolites is directly

associated with the likelihood of connectivity of metabolite i and metabolite j given by the

constraints imposed on the ensemble.

However, as urine acts as a sink collecting metabolites from different origins not neces-

sarily belonging to the same metabolic pathways or biological processes, it is reasonable that

some metabolite associations are spurious. Distinguishing between real and spurious asso-

ciations is a well known problem in the network inference field and multivariate analysis:8

the use of a network entropy null model corrects for such spurious association by means of

a link-related significance threshold.

We also observed from the null model that pαij ≈ pα
′
ij : the associations between metabolites

i and j result similar even if independent. This because under normal physiological conditions

the biological processes described by pαij and pα
′
ij are likely to occur with similar probability.

Significantly over-represented network

Starting from the probability of metabolite-metabolite association in the network of each

subject, the significance of over-represented links is calculated by comparing φobsij with its

expected value over the multiplex ensemble

〈φij〉 =
31∑
α=1

pαij (10)

13



Acce
pte

d Man
usc

rip
t

by defining a z-score function for each association:28

zij[φij] =
φobsij − 〈φij〉
σ[φij]

(11)

where

σ2[φij] =
31∑
α=1

pαij(1− pαij) (12)

is the variance of φij.

Since the quantity zij indicates the deviation of φij from its expected value under the null

model, it is a direct measure of the significance of the over-representation of each observed

metabolite association: we thus define the SON ( see Figure 4A), the significantly over-

represented network as a weighted adjacency matrix

{Ωij} = max(zij, 0) (13)

The expected value of φij is derived under a maximum entropy ensemble null model,

defined by uncorrelated networks and fixed average degree sequence in each networks, i.e.

constraining the average number of associations of each metabolite but not the identity of

associating metabolites.

This means that φobsij values for metabolite-metabolite associations in {Ωij} are caused

by some non-random underlying biological process to a different magnitude based on the

effective value of the related z -score.

The z-score zij has a straightforward probabilistic interpretation if φij follows approxi-

mately a Gaussian distribution. We verified the normality of the ensemble distribution for

each metabolite-metabolite association by considering the association probabilities {pαij} and

generating 103 different multiplex networks. We then calculated the corresponding {φij} val-

ues for each realization. We found a fair agreement between the theoretical values of 〈φij〉

and σ[φij], obtained analytically from Equations (10) and (12) and the values calculated from

the realized distributions (R2
〈φij〉 = 1 and R2

σ[φij ]
= 0.99) as shown in Figure 5. Figure 7 shows
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the null distribution for 4 selected highly significant metabolite-metabolite associations in a

comparison with the corresponding φobsij .

Detection of functional modules in SON

We aimed at defining modules of associated metabolites in the SON with the underlying

assumption that metabolites in the same module pertain to the same biological functions.

The study of network communities or modules can unravel the essential structure of the

system in terms of a clearer functional description. We have chosen to perform a module

detection of the SON maximizing the stability of a partition, a measure introduced in29 that

quantifies the quality of a partition in terms of the clustered autocovariance of a dynamic

Markov process on the network. In this framework time acts as a resolution parameter,

establishing a hierarchy of increasingly coarser partitions but also showing the most stable

partitions in terms of time spans. The SON quickly reaches the stable module conformation

shown in Figure 4A, where four different metabolite modules appear.

Module I (red) was found to be enriched for the synthesis and degradation of ketone bodies

(fdr = 0.04), propanoate (FDR=0.08) and phenylalanine metabolism (fdr = 0.09) pathways.

Remarkably, this module is enriched for metabolites that are linked to the activity of the gut

microflora (5 out 6 metabolites with the exclusion of arginine; hypergeometric test p-value

= 0.0004). In normal physiological conditions acetone is typically derived from acetoacetate

through the action of microbial acetoacetate decarboxylases found in gut microflora. Indoxyl

sulfate originates from bacterial protein fermentation in the large intestine where colonic

microbiota degrade tryptophan to indole which is hydroxylated to 3-hydroxy-indole, the ma-

jority of which is sulfonated to indoxyl sulfate.30 Hippurate and Phenylacetylglycine are also

urinary gut microbial co-metabolites;31 hippurate is the product of the conjugation of ben-

zoate with glycine and this conjugation occurs via the formation of an intermediate, benzoyl

CoA. This process takes place in the mitochondria of the liver and the kidney but urinary

hippurate excretion is modulated by the intestinal microbiome;32 similarly also phenylacetyl-
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glycine levels are modulated by the activity of gut microflora33 and this metabolite is formed

by the conjugation of phenylacetyl coenzyme A (CoA) with glycine.34 The conjugation rela-

tionship between glycine and phenylacetylglycine is apparent in the strong intermodules link

connecting these two metabolites in Module II (cyan). Phenylacetylglycine is also strongly

connected with m-HPPA (m-hydroxyphenylpropionic acid) being both bacterial-mammal

urinary co-metabolites, indicating that links between different modules happen at both the

biochemical and functional level.

Module II is also enriched for metabolites linked to gut microflora (p-value = 0.06).

Moreover, Hippurate is also strongly interconnected with 2-hydroxyisobutirate of Module

III (green), another metabolite well known to be associated with microbial degradation of

dietary proteins that escape digestion in the upper intestinal tract.35

Module IV (purple) is significantly enriched for amino acids metabolism and catabolism,

namely valine, leucine and isoleucine biosynthesis (adjusted p-value = 0.015) and glycine, ser-

ine and threonine metabolism (adjusted p-value = 0.045). Interestingly the three branched-

chain amino acid are strictly interconnected; valine is linked with leucine of Module II: this

module is heterogenous in composition: it is enriched for metabolites involved in glycolate

metabolism, pyruvate metabolism, glycine serine and threonine metabolism and aminoacyl

t-RNA biosynthesis.

Percolation of the SON

We further investigated the property of the SON by applying preliminarily a majority rule

on the elements of the adjacency matrix {Σij} before thresholding on the z-score:

{Ωβ
ij} →


Ωij if φobsij ≥ βN

0 otherwise.
(14)
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We considered for β values 0.5 and 0.75, and applied the community detection algorithm on

the resulting networks. Results are shown in Figure 4B and C, respectively. For β = 0.5 some

of the nodes in the modules are lost but the overall structure of the SON is conserved for

modules II (cyan), III (green) and IV (purple). Module I is lost and most of its nodes become

disconnected. Also for β = 0.75 the three modules are retained. It is interesting to note that

metabolites that get disconnected when the majority rule is applied are those pertaining

to the activity of gut microflora. This indicates that although associations between these

metabolites are observed in the population more often than expected, they are not uniformly

conserved across the population. In contrast, associations pertaining fundamental biological

pathways, such as amino acids metabolism and catabolism, are found consistently across the

population.

In our opinion this reflects the individuality of relationships between host and gut mi-

croflora, since human gut microbiome is highly personalized at both taxonomic and functional

levels36 and thus the patterns of association among metabolites linked to the activity of gut

microflora tends to be subject-specific.

This observation is also substantiated by the analysis of the entropy profiles of the single

metabolites, as shown in the next Section.

Single metabolite entropy

The individuality of relationships between metabolites is also substantiated by the entropy

profiles of the single metabolites. The single node entropy for metabolite i in sample α is

defined as

Sαi = −
∑
j 6=i

pαij
kαi

log

(
pαij
kαi

)
∀i, α (15)

where

kαi =
∑
j 6=i

pαij. (16)
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Each metabolite is then characterized by a single-node entropy distribution over the different

N samples.

The distribution of the single node entropy is given in Figure 6A. We observed that

several metabolites tend to have entropy profiles markedly different from the others (see

Figure 6B). Remarkably, different entropy profiles are associated with lower entropy levels

as shown in the scatter plot in Figure 8. We found two major clusters that could be related to

differential biological processes, namely amino acids metabolism and gut microflora activity.

It is interesting to note that most metabolites associated with the activity of gut microflora

are characterized by lower entropy values while those associated with amino acids metabolism

have larger entropy. From an information theory point of view, lower entropy is associated

with higher information content: we speculate that, in the absence of pathophysiological

conditions, amino acids bio-synthesis follows the same pathways in all subjects and thus

the content of information pertaining the metabolic status of every subject is reduced. On

the contrary, metabolites associated with the activity of gut microflora are characterized by

higher information level, as already suggested in the discussion of the SON.

Entropy of the individual metabolic phenotype

The individual metabolic phenotype has been so far investigated by means of classical mul-

tivariate and pattern recognition methods. Here we have taken an entropy-based approach,

following some recent development in the field. The concept of network entropy has been re-

cently applied in a biological context, as a measure of the âĂĲparameter spaceâĂİ available

to the cell (in terms of gene expression profile or clonal diversity) and it allowed successfully

characterization of different cell states related to different cancer stages or to physiological

ageing.13

The examined data set is rather homogeneous, in terms of age and health status, and

in previous studies no natural clustering appeared other than between male and females.3,4

When comparing the single sample entropy estimates Sα for males and females we did not

18



Acce
pte

d Man
usc

rip
t

observe any statistically significant difference, indicating no difference in the metabolic phe-

notypic space accessible to both genders.

We recently showed that the human metabolic phenotype shows both resilience and al-

lostasis properties5 and an entropy-based representation of both the diffusiveness of metabolic

phenotypes and their collective divergence from homeostasis in unperturbed and perturbed

system states was suggested.37 This is consistent with the fact that the macroscopic resilience

of a system is correlated to the level of uncertainty or entropy (disorder).

In particular, since profiling of urine and plasma samples can generate biomarkers of

many types of organ dysfunctions,37 this entropy-based approach can find application in the

case of external perturbations like exposure to severe toxicity, condition in which metabolite

relationship patterns may exhibit substantial changes that could lead to altered entropic

profiles.

Conclusions

Since the cellular function is governed by a complex network of biological interactions it seems

natural to explore network properties which may help elucidate some of these features.

Here we addressed the problem of estimating the population core network, which we pos-

tulated to represent and underlay the individual metabolic phenotypes observed in healthy

subjects. We examined the metabolic profiles of a panel of healthy subjects, who were con-

sidered to be representative of a healthy young population, and built a set of subject-specific

metabolite-metabolite networks. The variety of network features observed in the cohort

reflects the diversity observed in metabolic profiles.

This diversity is commonly attributed to the variation of intrinsic factors (such as genetic

variation) and to extrinsic influences (such as diet habits, life-style and environmental condi-

tions). Recent studies have shown that extrinsic factors may play a minor role in shaping the

metabolic phenotype and this result has been confirmed in a comparative study involving
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both humans andMacaca Mulatta; the latter study has also shown that the metabolic pheno-

type accounts for both dynamic (part variable in time) and static (average level) component

in the ratio 3/4 and 1/4 respectively. Part of the phenotypical diversity observed, such as

sex differences, is encoded in the static part. What is of interest for the estimation of the

PCN is the dynamic part, on which the definition of the metabolite-metabolite associations

relies. The contribution of extrinsic factors to the shaping of the dynamic part was also

found to be negligible, indicating that the metabolic phenotype arises mostly from intrinsic

factors, including, to a certain extent, the activity of gut microflora.

The gut microbiome is involved in the regulation of multiple host metabolic pathways,

giving rise to interactive host-microbiota metabolic, signaling, and immune-inflammatory

axes that physiologically connect the gut, liver, muscle, and brain;38 its changes and mod-

ifications have been associated to several pathophysiological conditions such as obesity,39

diabetes,40 autoimmune diseases41 and neuropsychiatric disorders.42

The dynamic patterns of metabolite concentration can be used to define patterns of

association (including co-variation and mutual information relationships). The significant

occurrence of such associations in the population was estimated by considering a null model,

not dissimilarly to what is done in the hypothesis testing framework.

We showed that the model employed is able to describe the diversity of metabolite as-

sociation found in the metabolic networks related to the individual metabolic phenotype,

providing a possibly mechanistic new framework to explore individual metabolic phenotype

and its association with pathophysiological conditions.

This is currently investigated through a top-down system biology approach, where mul-

tivariate analysis is applied to metabolic phenotyping for detecting key players in the shap-

ing and maintenance of an healthy status. The definition and the characterization of a

metabolite-metabolite association network underlying an healthy status can enable a bottom-

up system biology approach for detailed modeling of the individual metabolic profile on the

basis of its molecular properties. In this a bottom-up approach, molecular networks can
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be quantitatively studied leading to predictive models43 that can be applied within system

medicine and/or personalized medicine approaches.

Associated content

Figure S1 - Single metabolite entropy diversity
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Figures

Figure 1

Multivariate representation of the indivdual metabolic phenotype. Projection of metabolite

data onto the three dimensional PCA-CA discriminant space. A) samples belonging to same

subjects cluster together. B) Natural separation between male and female samples in the

PCA-CA subspace. The accuracy for the discrimination in the PCA-CA space is 99% when

using the full bucketed NMR spectra and 77% when using M = 35 metabolites. Repre-

sentation in the COVSCA space of the the metabolite-metabolite association networks (see
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Methods Section for details): C) color coded by individual and D) color coded by sex. The

separation between males and females is lost in the network representation.

Figure 2

Overview of the experimental and computational approach to estimate the core population

network underlying the individual human metabolic phenotype through the definition of

a Significantly Over-represented Network. A) Construction of subject specific metabolite-

metabolite association networks. N = 31 healthy subjects of both sex are considered and

sampled for 37 consecutive days for their urine profiles. M = 35 urine metabolites are quan-

tified using NMR spectroscopy. Association networks are inferred considering 4 different

methods for network inference. B) Entropy based approach. The 31 individual networks

are considered. The group of N subject-specific networks can be considered as a multiplex

network ~G, i.e. a set of M metabolites-nodes differently connected in N networks or layers.

By maximizing the entropy of the multiplex the probability of each metabolite-metabolite

association can be calculated. C) By defining a null model with uncorrelated networks and

fixed average degree sequence in each layer, the significance of metabolite-metabolite asso-

ciation is assessed through a z-score zij, measuring the deviation of φobsij from its expected

theoretical value 〈φij〉. D) The Significantly Over-represented Network gathers all metabo-

lite associations satisfying the condition max(zij, 0). Contextually the single metabolite and

the entropy of the individual metabolic phenotype are introduced.

Figure 3

Distribution of the metabolite-metabolite association probability pαij for each subject α in

the study. The probabilities are calculated with Equation (4).

Figure 4

A) Graphical representation of the SON. The link weights are the z-scores defined in Equation

(). The different coloring represent the 4 metabolic modules. A force-based layout is used

for network visualization. B) Percolated version of the SON using a majority rule threshold
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β = 0.5. C) Percolated version of the SON with β = 0.75.

Figure 5

A) Observed and theoretical values for for < φij > and B) its standard deviation σ[φij]

Figure 6

A) Overall distribution of the single metabolite entropy across all subjects B) Distribution

of the single metabolite entropy

Figure 7

Link abundance ensemble distribution for four links, one for each metabolic module. We

simulated 103 different multiplex networks in order to generate a distribution for {φij}. The

color code is related to the functional module affiliation consistently with Figure 4. In each

panel the observed φrealij is significantly higher than the related ensemble average, meaning

that the metabolite-metabolite associations are extremely relevant. A) the results for the

association phenylacetylglycine-hippurate: φrealij = 29, 〈φij〉 = 8.46 and zij = 10.80. B)

results for the association choline-creatinine: φrealij = 17, 〈φij〉 = 6.88 and zij = 5.11. C)

results for the association trigonelline-glycine: φrealij = 14, 〈φij〉 = 3.75 and zij = 6.90. D)

results for the association 2-hydroxyisobutyrate-1-methylnicotinamide: φrealij = 23, 〈φij〉 =

13.30 and zij = 4.46.

Figure 8

Relationship between the median single metabolite (node) entropy and its diversity. For

metabolite i, diversity is calculated by comparing its entropy values on the 31 samples with

the remainingM−1 metabolites, using a Kruskal-Wallis test with Tukey’s honest significant

difference criterion. The percentage of significant tests (over M − 1) defines the diversity.

The entropy diversity for each metabolites is given in Supplementary Figure S1.
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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