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Abstract: The principal response curve (PRC) method is a constrained ordination method developed specifically for the analysis of
community data collected in mesocosm experiments, which provides easily understood summaries and graphical representations
of community response to stress. It is a redundancy analysis method and is usually performed on log-transformed abundance data.
The choice of a measure of dissimilarity between samples and the choice of the data transformation significantly affect the results of
multivariate analysis. Dissimilarity measures that are more ecologically meaningful than the Euclidean distance can be incorporated
into the PRC using distance-based redundancy analysis. The present study investigates the ordinations produced by a small selection
of dissimilarity measures: the Euclidean distance using log-transformed and Hellinger-transformed data and the Bray-Curtis
dissimilarity using raw and log-transformed data. It compares 2 data sets from experiments on the effect of the anti-inflammatory
drug diclofenac and the insecticide chlorpyrifos on macroinvertebrate communities. The choice of dissimilarity measure
can determine the outcome of a risk assessment. For the diclofenac data set, the PRCs were different depending on the
dissimilarity measure: the community no-effect concentration was lowest for the Bray-Curtis on log-transformed data and
Hellinger dissimilarity measures. For chlorpyrifos, however, the PRCs were similar for all dissimilarity measures. Environ
Toxicol Chem 2017;36:1667–1679. # 2016 SETAC

Keywords: Multivariate statistic Aquatic toxicology Ecological risk assessment Mesocosm Principal response curve
Dissimilarity measure

INTRODUCTION

Mesocosm community data are usually analyzed using
multivariate techniques, in particular ordination or gradient
techniques, which provide useful summaries or visualization of
the main information in the data [1–3]. This information can be
constrained to represent treatment, time, and/or spatial
variation.

The principal response curve (PRC) method [4] is a
constrained ordination method developed specifically for the
analysis of community data collected in microcosm and
mesocosm experiments. It is designed to study the effects of
chemicals (or other stressors) by showing the effect of different
treatments on the community structure over time against an
untreated control, resulting in an easily interpretable graphical
representation.

The PRC is a partial redundancy analysis (RDA) method.
The interaction between treatment and time is the constraining
variable (explanatory variable), whereas time is a conditioning
variable (covariable), so the principal effect of time is partialled
out (removed) before analyzing the overall effect of the
treatment� time interaction [4]. With PRC, the treatment is
considered to be a categorical variable; no dose–response model
is assumed.

The dissimilarity between samples can be calculated on the
basis of community-level abundance counts of species using

many different formulae. Because many dissimilarity measures
have built-in transformations, the choice of a transformation
depends closely on the dissimilarity measure. Whichever
ordination method is used, the measure of similarity or
dissimilarity between samples and the data transformation or
scaling have a strong effect on the results of the analysis [5–8].
The choice of a dissimilarity measure depends on the aims of the
research; the context of the descriptive study of which it is a part,
including the type of data; and the analysis method to be
used [9]. For a particular data set with a given objective, it is
generally advisable to test several dissimilarity measures and
data transformations to test a series of hypotheses that have been
designed a priori, as advocated byAnderson et al. [10] regarding
b diversity. Designing research hypotheses that are specific to
one’s data set may help to determine whether to include joint
absence (or double zeros) of a taxon from 2 samples, abundance
data, or simply presence–absence data [10], as well as the degree
to which the similarity between samples is based only on
the most abundant species or includes the less abundant
species [6,11].

The question of joint absences is a critical aspect [2,9,12].
When a species is absent from 2 sites, does this mean that there
is the same unfavorable condition at both sites? Or does this
imply nothing about the similarity between the 2 sites? When a
large number of low-abundance taxa are included in the samples
resulting in sparse data, this question is all the more important
because there is a higher frequency of double zeros [10]. As a
result, very rare species are often removed from data sets prior to
multivariate analysis [13,14] even though they might contribute
significantly to the conclusions of the study [15]. This problem
can be avoided by careful selection of the data transformation
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and the type of data analysis. Numerous dissimilarity measures
have been developed specifically for ecological abundance data
to exclude joint absences [12] and overcome limitations
intrinsic to the Euclidean distance used in RDA. These
measures may, therefore, be more appropriate if adverse effects
translate into a reduction in abundance rather than complete
elimination of sensitive taxa. The Bray-Curtis dissimilarity [16],
also known as the percentage difference, is commonly used to
evaluate abundance data [17]. This measure is a form of
standardized absolute deviation [6] and does not depend on
the largest differences in species abundance between 2
samples [12] to the same extent as the Euclidean distance.
The Hellinger transformation is worth considering because, as
well as excluding double zeros [18], it can downweight rare
species [19]. However, many ordination methods are not
particularly sensitive to rare species simply because of data
redundancy [20], rather than because of the Euclidean distance.

Several publications have compared dissimilarity measures
using real or simulated data. Faith et al. [21] and Legendre and
Gallagher [19] studied how well ecological patterns were
retrieved from simulated data. Legendre and Gallagher [19]
compared 6 dissimilarity measures, including the Hellinger
distance obtained by transforming the data and computing the
Euclidean distances between samples. Faith et al. [21] compared
10 different dissimilarity measures with 3 possible data scaling
methods, in particular for robustness to differences in models of
the community variation in the ecological space. Their analysis
showed that the Bray-Curtis dissimilarity measure was one of
the most effective measures, whereas the Euclidean distance
was one of the least able to retrieve ecological distances.
However, these studies provide general guidance based on
simulated data to provide conclusions that are as general as
possible, and the choice of measure for a new data set should be
based on the data itself [22].

The PRC method is based on the Euclidean distance, which
unfortunately is not recommended for the analysis of ecological
data, in particular raw abundance data [12,23]. Abundance data
are usually log-transformed prior to the PRC for 2 reasons. First,
the logarithm transforms the multiplicative model for the counts
into a linear model [4], which is in line with the hypothesis that,
for a given magnitude of effect, the change in abundance is
proportional to the total abundance and reduces the dominating
influence of abundant taxa [5]. Secondly, log transformation is
also intended to normalize data over replicates as, given the
small number of replicates in mesocosm experiments (often
between 2 and 4), checking normality using a statistical test
would not be appropriate. If the data for each species at each
sampling date were log-normally distributed and the standard
deviation was proportional to the mean (quadratic mean–
variance relationship) on individual sampling dates, log
transformation would reduce the data for each species on
each sampling date to equal variance and a normal distribution.
The resulting transformed data would be particularly suited to
the Euclidean distance [24].

In practice, the typical mean–variance relationship observed
in abundance data is close to a quadratic relationship; but the
proportionality between the standard deviation and the mean
does not quite hold [24], largely because of the large proportion
of null counts. Furthermore, when applied to count data with
many zeros, the transformation is not strictly logarithmic
because 1 is added to the data set prior to log transformation.
This tends to distort the data set and may, therefore, counteract
part of the beneficial effects of the log transformation by
highlighting species with larger abundances slightly more than

desired. It has been found that parametric methods on log-
transformed data do not perform as well as those obtained with
specific error distributions such as Poisson or binomial with the
raw data [25]. However, the PRC does not suffer from such
limitations as it is an exploratory method with associated
permutation-based (i.e., nonparametric) significance tests [26].
Despite these limitations, however, ter Braak and Smilauer [27]
found that log transformation stabilizes the variance.

The widespread use of similarity analyses prompted the
creators of the PRC to compare their method with a
dissimilarity-based technique [8] for which 2 dissimilarity
measures (including the Bray-Curtis dissimilarity on raw data)
were used to produce a summary statistic of the change in
community structure. The lack of interpretability down to the
taxon level and the reduction down to a single dimension were
major drawbacks of the dissimilarity-based method.

Although the PRCmethod is based on the Euclidean distance,
it can accommodate any data transformation; but, so far as we are
aware, it has mainly been used for log-transformed data. As
suggested by Szöcs et al. [2], the underlying RDA in the PRC can
also be based on metrics rather than the Euclidean distance by
using distance-based redundancy analysis (db-RDA) [28] or
canonical analysis of principal coordinates [29]. When non-
Euclidean metric distances or nonmetric dissimilarities are
computed between samples, the 2-dimensional graphs of the data
cannot represent the actual distances because the graphs are
based on a Euclidean space. Conventional multidimensional
scaling (MDS), also known as principal coordinate analysis, is
used in db-RDA to convert the dissimilarities into Euclidean
distances while limiting the loss of information.

The present study illustrates how the properties of ecolog-
ically meaningful dissimilarity measures and data transforma-
tions affect multivariate analysis results. It studies the extent to
which ecological risk assessments based onmultivariate analysis
results, in particular those obtained using the PRCmethod, can be
affected by the choice of dissimilarity measure. The novelty of
the present study lies in the use of ecologically meaningful
dissimilarity measures and data transformations in PRC. It
focuses on dissimilarity measures, which include information
about abundance rather than only presence–absence data. It
presents the results for a small selection of ecologically
meaningful dissimilarity measures: the Euclidean distance on
log-transformed data, which is normally used in PRC; the
Bray-Curtis dissimilarity on raw and log-transformeddata,which
is often used in the field of ecology; and the Hellinger distance.
Many ecological studies involve field data collection. An
important characteristic of mesocosm semifield experiments is
that the sites are under identical environmental conditions;
therefore, the relevance of these dissimilarity measures must be
reexamined to select themost appropriate dissimilaritymeasures.
The value of this approach is illustrated using 2 sets of
community-level macroinvertebrate data generated in a
mesocosm setting. Several other dissimilarity measures were
tested, including the quantitative version of the Jaccard
coefficient, the Kulczynski dissimilarity [21], the Euclidean
distance applied to raw data, raw data scaled to unit variance, and
log-transformeddata scaled to unit variance. Those results are not
discussed because of their similarity to the measures selected.

MATERIALS AND METHODS

Two macroinvertebrate community data sets were used. The
first tested the effects of a continuous exposure to diclofenac,
and the second was the well-known single-exposure chlorpyri-
fos data set, which has been used as an example in several
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statistical packages and was used in the article introducing the
PRC [4].

Diclofenac data set

Study design. The data were obtained using an outdoor
facility composed of 12 lotic mesocosms, each measuring 20m
by 1m and divided into a shallow upper section (1–9m from the
inlet, 0.25m deep) and a lower section (10–20m from the
inlet, 0.7m deep). The experimental setup was detailed in
de Kermoysan et al. [30] for a previous experiment. Every year,
the mesocosm substrate (sand and clay) is renewed and the
communities are reconstructed by introducing macrophytes,
zooplankton, macroinvertebrates, and fish. The macroinverte-
brates introduced were Gammarus pulex, Asellus aquaticus,
Potamopyrgus antipodarum, Planorbis, Radix balthica,
Notonecta sp., Glossiphonia complananta, and Erpobdella
octoculata.

Three concentrations of diclofenac (0.1mg/L, 1mg/L, and
10mg/L) and controls were tested, with 3 mesocosms for each
concentration. The exposure was continuous from 15April 2013
until the end of the summer (150 d). The concentrations of
diclofenac in each of the 9 mesocosms were monitored every
month at 0m, 5m, and 19m from the water inlet to check the
actual exposure concentrations.

The mean effective concentrations were calculated for each
treatment using themean values of the 3 replicates at 5mand 19m.
The mean concentrations in the mesocosms over the whole
experiment were lower than the nominal concentrations:
0.05� 0.01mg/L for the 0.1mg/L concentration, 0.45� 0.02
mg/L for the 1mg/L concentration, and 4.10�0.41mg/L for the 10
mg/L concentration.

Sampling methodology. Macroinvertebrates were sampled
approximately every 4 wk from the end of February until mid-
September (8 sampling dates in total) using different types of
artificial substrate (tubes and tiles). Each tube substrate
comprised 7 tubes strapped together (2 cm wide and 20 cm
long). The terra-cotta tiles were 11 cm long, 16 cm wide, and
1.5 cm thick. Ten tubes and 10 tiles were placed horizontally at
the bottom of each mesocosm. In the upper section, the
substrates were arranged, in series, starting with tubes (tubes
0.5m, 2m, 4m, 6m, 8m from thewater inlet; tiles 1m, 3m, 5m,
7m, and 9m from the water inlet). The same pattern was used in
the lower section (tubes: 10m, 12m, 14m, 16m, and 18m from
the water inlet; tiles: 11m, 13m, 15m, 17m, and 19m from the
water inlet).

On each sampling date, the artificial substrates were
retrieved from each mesocosm using a landing net to prevent
any loss of organisms. Each substrate was then washed and
scrubbed clean in a container to remove the invertebrates
trapped inside. The rinsing water was then passed through a
sieve with a mesh size of 50mm and placed in plastic dish half-
filled with water.

Each macroinvertebrate taxon was identified and enumer-
ated immediately before being returned to each mesocosm. The
tiles and tubes were also replaced in each mesocosm. Macro-
invertebrates were identified to the lowest practical taxonomic
level (genus, except for Chironomidae, which were identified
down to the family level) based on Tachet and Richoux [31].

In addition to the use of artificial substrates, macro-
invertebrates on the walls of each mesocosm were sampled
using a landing net in each mesocosm at 1m, 7m, 13m, and
19m from the water inlet. The organisms were scraped off the
walls and placed in a plastic dish half-filled with water. The
macroinvertebrates were identified and enumerated as described

in the previous paragraph. All data for each mesocosm were
pooled for further analysis.

Chlorpyrifos data set

The same methodology was applied to the chlorpyrifos
macroinvertebrate data set, which contains log-transformed,
log[10� (xþ 1)], abundances of 121 macroinvertebrate
taxa [32]. Twelve mesocosms were sampled on 11 occasions
from week –4 pretreatment to week 24 posttreatment. Four
mesocosms served as controls, and the remaining 8 were treated
once on 8 May 1990 with the insecticide chlorpyrifos, 2
mesocosms each receiving a nominal dose of 0.1mg/L,
0.9mg/L, 6mg/L, and 44mg/L. This data set is part of the
combined zooplankton and macroinvertebrate data set used by
Van den Brink and ter Braak [4] in their seminal paper on
principal response curves. One species (Chaoborus obscuripes)
was removed because of differences between the raw data and
the transformed data provided in the “vegan” R package [33].
The combined data set is also used as an example in CANOCO4
and in the vegan R package.

Dissimilarity measures and transformations tested

The present study focused on the Euclidean distance using
log-transformed data, the Euclidean distance using Hellinger-
transformed data (also known as the Hellinger distance), and the
Bray-Curtis dissimilarity using raw and log-transformed data.
Both the Bray-Curtis and the Hellinger dissimilarities exclude
double zeros: 2 sites are not more similar if both lack certain
species, a common hypothesis in ecology. The Euclidean
distance, on the other hand, takes account of double zeros; this
can be more meaningful in the context of species disappearance.
Mesocosms are an experimental setting where environmental
factors are identical between replicates and between treatments
at any given time point. The relevance of the disappearance of a
species and, hence, whether to include double zeros depend on
how well established the communities are as well as on the
abundance of this species. Also, different experimental setups
can vary in how they are affected by random variations as a
result of species colonizing the mesocosms from external
sources.

In the following equations, xi,j is the vector of abundances
(raw or transformed) for species i at site j, and dj,k represents the
dissimilarity between sites j and k.

The Euclidean distance is the “ordinary distance” between
2 points in a Euclidean space

dj;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

xi;j⁢� xi;k
� �2s

ð1Þ

The Hellinger distance [34] is equivalent to the Euclidean
distance using Hellinger-transformed data and is frequently
used in the analysis of ecological abundance data [19]. The
Hellinger distance can be calculated by substituting xi,j by x0i;j in
Equation 1

x0i;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi;jX
i

xi;j⁢

vuuut ð2Þ

The Hellinger distance is intended to be used for 2-way
contingency tables such as species� sites data matrices; it is not
intended to be calculated using log-transformed data. The
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scaling to equal sample sums used in the Hellinger distance
excludes double zeros [18]; this measure does not consider the
joint absence of a taxon from 2 samples as a criterion of
resemblance. Furthermore, if the total abundance increases with
time, the Hellinger transformation removes this trend. Informa-
tion about the increase in total abundances in a particular
treatment is also lost; the analysis considers only the abundance
profile—that is, the relative abundance of each species in each
sample.

The Bray-Curtis dissimilarity [16] sums the absolute
differences between raw abundances in 2 samples and relates
this sum to the sum of the abundances in both samples

dj;k ¼

X
i

xi;j⁢� xi;k
�� ��

X
i

xi;j⁢þ xi;k
� �

0
BBB@

1
CCCA ð3Þ

TheBray-Curtis dissimilarity is nonmetric. It does not satisfy
the triangle inequality, and therefore, the dissimilarity matrix
cannot be projected into a Euclidean space without being
transformed. By definition, the Bray-Curtis dissimilarity
measure excludes double zeros (Equation 3).

Some authors recommend using a log(xþ 1) or a square,
cubic, or other root transformation to count data prior to using
the Bray-Curtis dissimilarity [11]. This gives less weight to the
dominant species and thusmoreweight to the qualitative aspects
(i.e., presence–absence) of the data [35]. Other authors argue
that Bray-Curtis is well suited to raw abundance data [12]. This
measure does not emphasize the largest differences in species
abundance between 2 samples to the same extent as the
Euclidean distance. Furthermore, absolute differences in
abundance for less abundant species contribute as much as
absolute differences for the more abundant species [12]. The
Bray-Curtis dissimilarity was therefore tested using both raw
and log-transformed data.

Exploratory analysis: Unconstrained ordination

As a first step toward a distance-based PRC, the data sets
were analyzed using unconstrained ordination methods to
examine the data set properties, pairwise dissimilarities, and
impact of logarithmic and Hellinger transformations on the
overall pattern of dispersion of points [29].

As usually recommended for PRC [36,37], the data were
transformedwith a log(Axþ 1) transformation, such that Ax¼ 2
when x is the smallest non-null abundance. Therefore, A was set
to 2 in the diclofenac data set and 10 in the chlorpyrifos data set.

A first unconstrained ordination was obtained with metric
MDS on the Bray-Curtis dissimilarity matrix and with principle
component analysis on the log-transformed and Hellinger-
transformed data sets (this is equivalent to MDS on the
Euclidean distance matrices). The non-Euclidean dissimilarity
matrix input to the MDS was adjusted to Euclidean space by
adding a constant to the whole matrix [28] using the method
described in Gower and Legendre [9]. This procedure modifies
the total inertia and thus the test statistics but does not affect the
p values obtained by permutation in the case of 1-way analysis
of variance with either Euclidean distances or Bray-Curtis
dissimilarities [38].

A second unconstrained ordination was obtained by
parceling out the time variation, which is the first step of the
partial RDA underlying the PRC. When the Euclidean distance
was used, the mean transformed abundances for each sampling

date for each species were subtracted from the transformed data
for analysis. When the Bray-Curtis dissimilarity was used, the
mean MDS coordinates at each sampling date for each species
were subtracted from the MDS coordinates.

The resemblance between dissimilarity measures was
quantified using the RV coefficient [39], a multivariate version
of Pearson’s correlation coefficient, which can be used to
compare 2 dissimilarity matrices. The RV coefficient between
2 column-wise centered matrices X and Y is defined by the
following equation, where COVV(X,Y) is the scalar-valued
covariance between X and Y, VAV(X) is the scalar-valued
variance of X, and VAV(Y) is the scalar valued variance of Y

RVX;Y ¼ COVVðX;YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAVðXÞVAVðYÞp ð4Þ

Constrained ordination: Treatment and time effect

A PRC was performed using the Euclidean distance on log-
transformed and Hellinger-transformed data sets. In the analysis
with the Bray-Curtis dissimilarity index, a distance-based PRC
was obtained simply by replacing the underlying partial RDAby
distance-based partial RDA. This was implemented with the
function dbrda() in the vegan package, using direct decomposi-
tion. One key aspect of the PRC is that it allows interpretation
down to the species level [8]. Unfortunately, when the PRC is
based on a dissimilarity matrix rather than on species
abundance, the information about species contributions to the
axes is lost; the species scores cannot be represented on
the diagram, but the significance of the PRC axes and of the
underlying RDA can be assessed. The points representing
the replicates (individual mesocosms) were added to the PRC
diagram by centering the species-based sample scores; the
means of these scores are themean points usually represented on
the PRC diagram.

Significance testing

The significance of the RDA in general and of each PRC axis
was assessed by performing 9999 permutations of time series
residuals from the reduced model [40]. A large number of
permutations was preferred, as the aim was to compare the
p values rather than simply assess significance at a 5% threshold.

The final result expected from the analysis of mesocosm data
is often a no-observed-effect concentration (NOEC). Commu-
nity-level NOECs were calculated in 2 steps. First, the
significance of the effect of treatment on the partial RDA
axes for each sampling date was assessed with 9999
permutations of the residuals on all axes. Second, for significant
dates, the first principal component analysis orMDS component
was calculated, and a 2-sided Dunnett’s test was used to
compare the mean of each treatment with the control and
determine an NOEC for each date. An overall community
NOEC was then derived when the same NOEC was calculated
for 2 consecutive dates.

All calculations were carried out with R 3.2.3 [41], vegan
package 2.4-1 [33], FactoMineR package for ordination plots
and RV coefficients [42], and multcomp for Dunnett’s test [43].
The R code for the chlorpyrifos data set analysis is available in
the Supplemental Data.

RESULTS

The ordination graphs for the Bray-Curtis dissimilarity using
log-transformed data were very similar to those obtained with
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the Euclidean distance using log-transformed data. They are,
therefore, given only in the Supplemental Data.

Brief description of the data sets

For the diclofenac data set, 21 taxawere collected throughout
the experiment (Supplemental Data, Table S1) belonging to
Annelida, Gastropoda, Ephemeroptera, Crustacea, Turbellaria,
Diptera, and other insects. The abundances for each dose are
shown on a log scale in Supplemental Data, Figure S1, and with
the Hellinger transformation in Supplemental Data, Figure S2;
the most abundant taxa are mostly the same for each treatment.
The mean–variance relationship for raw data was near
quadratic, but with log-transformed data and Hellinger-
transformed data the variance did not vary as strongly with
the mean (Supplemental Data, Figure S3).

The abundances for each dose are shownwith the logarithmic
transformation in Supplemental Data, Figure S4, and with the
Hellinger transformation in Supplemental Data, Figure S5. As
with the diclofenac data set, the mean–variance relationship for
raw data was near quadratic, whereas with log-transformed data
and Hellinger-transformed data the variance did not vary as
strongly with the mean (Supplemental Data, Figure S6).

A comparison of the total abundances in each mesocosm
throughout the experiment provides additional insight into the
differences between the 2 data sets (Figure 1). In the diclofenac
data set, the mean abundance for each dose increased 10-fold in
the first months of the experiment. The mean abundances were
roughly equal for each dose on each sampling date except during
the last 3 sampling mo, when it was 10-fold higher for the
highest dose than for the other doses. For both data sets, an
analysis of variance of the effect of dose, time, and their
interaction on the logarithm of the total abundances in each
mesocosm was performed. This confirmed that, in the
chlorpyrifos data set, the mean abundances for each dose
were more even throughout the experiment and that the time-
dependent treatment effects were slightly smaller. The residual
variability between mesocosms for each dose was also slightly
lower in the chlorpyrifos data set.

Unconstrained ordination

With the diclofenac data set, the unconstrained ordination
based on all dissimilarity measures, and in particular on the
Bray-Curtis dissimilarity on raw data, clearly showed an artifact
called a “horseshoe effect” owing to the strong time-related
gradient (Supplemental Data, Figure S7); the samples from the
beginning of the experiment were drastically different from
those toward the end of experiment. This occurred even though
the lengths of gradients calculated with detrended correspon-
dence analysis were not very large (1.91 standard deviation
[SD] for the first axis with raw data, 1.66 SD with log-
transformed data, and 1.74 SD with Hellinger-transformed
data). The horseshoe was more pronounced with the Bray-
Curtis dissimilarity on raw data because of the increase in total
abundance throughout the experiment (Supplemental Data,
Figures S7 and S8). With the Bray-Curtis dissimilarity on raw
data, 62% of the total inertia was attributed to time
(Supplemental Data, Table S2). With the Hellinger-transformed
data, there was hardly any variation in the sample sums; but a
horseshoe can still be observed, showing that there was a
marked change in relative abundance of species throughout the
experiment, and 67% of the total inertia was attributed to time.

With the chlorpyrifos data set, the time gradient was not as
strong; although it was visible as a main axis of variability
with the log-transformed data (with the same magnitude as the

dose-related gradient), it was not sufficient to form a horseshoe
(Supplemental Data, Figure S9). In the log-transformed data,
21% of the total variance could be attributed to time. With the
Bray-Curtis dissimilarity on raw data, 25% of the total inertia
was attributed to time (Supplemental Data, Table S3).

When the time variation had been partialled out, the
unconstrained ordination revealed differences in taxa abundan-
ces between doses on the first axes of the diagrams, although the
differences were only slight with the Hellinger distance
(Figure 2B).

For the chlorpyrifos data set, the shift in communities with
increasing doses was itself sufficiently large to produce a very
slight horseshoe with the Bray-Curtis dissimilarity (Figure 3).
This suggests that the change in community structure is gradual
from one dose to another and that the control and highest-dose
communities are considerably different. All dissimilarity
measures appeared to discriminate between doses in these
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Figure 1. Mean total abundance in each treatment level in (A) the
diclofenac data set and (B) the chlorpyrifos data set.
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unconstrained analyses, in particular by opposing the 2 highest
doses to the others.

The RV coefficients between each pair of dissimilarity
matrices ranged between 0.47 and 0.69 for the diclofenac
data set and between 0.65 and 0.92 for the chlorpyrifos data set,
the 4 dissimilarity measures being only partially redundant
(Supplemental Data, Tables S4 and S5). In both data sets, the
most similar results were obtained by applying the Bray-Curtis
and Euclidean dissimilarity measures to log-transformed data,
in particular for the chlorpyrifos data set (RV¼ 0.92). On the
other hand, the most dissimilar results were not obtained by the
same set of dissimilarity measures for both data sets.

Distance-based principal response curves

The first PRC (the first axis in this constrained analysis) and
the RDA of the whole of the diclofenac data set showed a

significant (p< 0.05) effect of dose for all dissimilarity
measures (Table 1) and represented a large part of the
treatment-related variance in particular with the Bray-Curtis
dissimilarity on raw data (Supplemental Data, Table S6). The
subsequent PRCs did not show any significant effect (Supple-
mental Data, Table S7). The first PRC was similar when using
the Bray-Curtis dissimilarity and the Euclidean distance for log-
transformed data (Figure 4A and D). The diagram with the
Euclidean distance for log-transformed data mainly reflected
the dynamics of Spongilla lacustris, which was confirmed by
the response curves for this particular species (Supplemental
Data, Figure S10A). The second most abundant taxon was
R. balthica, whose response curves did not resemble the PRC at
a first glance except for the difference between the highest dose
and the other doses at the end of the experiment (Supplemental
Data, Figure S10B). The weight of the third most abundant
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Figure 2. Multidimensional scaling using the Euclidean distance on log-transformed (A) and Hellinger-transformed (B) data and using the Bray-Curtis
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taxon, Dugesia, was almost equal to that of R. balthica, and
other taxa were almost as abundant. The score for S. lacustris
was approximately twice the score for R. balthica and Dugesia.

Interestingly, the second PRC with the Hellinger distance
resembled the first PRC for Euclidean and Bray-Curtis

dissimilarities in that it showed mainly the abundance of
S. lacustris (Supplemental Data, Figure S11). This PRC was,
however, not significant.

The doses were significant at a larger number of dates for the
Hellinger-transformed data (4 consecutive dates at the end of the
experiment; see Supplemental Data, Table S8). The significance
at each sampling date was consistent regardless of whether only
the first axis or all axes of the RDA were used at each date.

With Dunnett’s test, neither the Euclidean distance nor the
Bray-Curtis dissimilarity based on the log-transformed data
provided 2 identical NOECs at consecutive dates, although the
dose–response pattern was similar. At 95 d and 119 d after
the start of the treatment, the overall effect of the dose was
nonmonotonic using these dissimilarity measures. The highest
dose appeared to have opposite effects from the 2 lowest doses.
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Figure 3. Multidimensional scaling using the Euclidean distance on the log-transformed (A) and Hellinger-transformed (B) data and using the Bray-Curtis
dissimilarity on raw (C) and log-transformed (D) chlorpyrifos data. The variation that could be attributed to time was partialled out. Labels indicate the sampling
week (0¼ beginning of treatment), followed by the mesocosm identifier (1–12). Colors indicate the dose. Dim¼ dimension.

Table 1. p values resulting from the overall significance test to assess the
effect of diclofenac on the macroinvertebrate community

Dissimilarity measure
First principal
response curve

All principal
response curves

Euclidean on log abundances 1.00E-04 1.00E-04
Bray-Curtis on raw data 1.00E-04 2.00E-04
Bray-Curtis on log abundances 1.00E-04 0.01
Hellinger on raw data 2.00E-04 1.00E-04
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Slight differences in magnitude of the effect implied that at 95 d
after treatment only the highest dose was significantly different
from the control (NOEC¼ 1mg/L), and at 119 d after treatment
the lowest dose was significantly different from the control
(NOEC¼ 0mg/L; Supplemental Data, Figure S12). The
Bray-Curtis and Hellinger dissimilarity measures both provided
community NOECs of 1mg/L. The differences between the
control and the lowest dose were not significant with these
measures, but the differences between the control and the
highest dose were significant on 3 and 4 consecutive dates,
respectively. Although these measures were possibly less
sensitive to some differences with the control, they provided
an overall community NOEC (Table 2).

The first PRC of the chlorpyrifos data set showed a
significant part of the dose variance (Supplemental Data,
Table S9), and the overall test showed a significant (p< 0.05)
effect of the dose for all dissimilarity measures (Table 3). The
number of significant PRCs varied from 1 dissimilarity measure

to another (Supplemental Data, Table S10). For the Euclidean
distance and Bray-Curtis dissimilarity using log-transformed
data, the first and third PRCs were significant and the second
PRC was only just over the selected threshold (p¼ 0.052
and p¼ 0.054). For the Bray-Curtis dissimilarity using raw data
and for the Hellinger distance, the 3 first PRCs showed
significant effects. The subsequent PRCs were not significant.

The first PRC for chlorpyrifos was similar for all
dissimilarity measures (Figure 5) and clearly showed a
dose–response pattern and a gradual recovery after treatment.
The diagram for the Euclidean and Hellinger distances reflects
the dynamics of several taxa (in particular Caenis horaria,
Cloeon dipterum, and Oligochaeta in the case of the Hellinger
distance). This was confirmed forC. horaria andC. dipterum by
the response curves for these species (Supplemental Data,
Figure S13). On the other hand, the resemblance between the
first PRC with the Hellinger distance and the dynamics for
Oligochaeta was not so clear, the difference between the
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Figure 4. First principal response curves with the Euclidean distance on log-transformed (A) and Hellinger-transformed (B) data and with the Bray-Curtis
dissimilarity on raw (C) and log-transformed (D) diclofenac data. Only the 10 species with the highest scores are represented (species: Asellus aquaticus,
Erpobdella octoculata, Gammarus pulex, Glossiphonia complananta, Pareas carinatus, Potamopyrgus antipodarum, Radix balthica, Spongilla lacustris).

Table 2. Community no-observed-effect concentrations determined by
Dunnett’s test (p< 0.05) at each sampling date: Diclofenac data set

Days after treatment

Dissimilarity measure –46 –17 10 40 67 95 119 150

Euclidean on log abundances > > 0 > > 1 0 >
Bray-Curtis on raw data > > > > > 1 1 1
Bray-Curtis on log abundances > > > > > 1 0 >
Hellinger on raw data > > > > 1 1 1 1

Table 3. p values resulting from the overall significance test to assess the
effect of chlorpyrifos on the macroinvertebrate community

Dissimilarity measure
First principal
response curve

All principal
response curves

Euclidean on log abundances 2.00E-04 0.0041
Bray-Curtis on raw data 2.00E-04 0.001
Bray-Curtis on log abundances 1.00E-04 2.00E-04
Hellinger on raw data 3.00E-04 0.001
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2 highest doses and the other doses being more pronounced in
the PRC than for Oligochaeta. However, this taxon was slightly
less abundant for the 0.9mg/L dose than for the other doses
14 wk after exposure. This difference was visible on the PRC
with the Hellinger distance but not on the PRC obtained with the
Euclidean distance using log-transformed data.

The interpretation of the second PRC was not as
straightforward and depended on the dissimilarity measure
(Supplemental Data, Figure S14). The second PRC based on
the Hellinger distance shows the differences between the
dynamics of the 2 main taxa (C. horaria and C. dipterum)
in terms of recovery at the highest dose. The Euclidean
distance and Bray-Curtis dissimilarity on log-transformed
data highlighted the differences between the 0.9mg/L and
44mg/L doses compared to the other doses, whereas the
second PRC obtained for the Bray-Curtis dissimilarity
measure using raw data did not show any consistent time-
dependent differences between doses.

The significance of the effect of the dose at each sampling
date varied from 1 dissimilarity measure to another (Supple-
mental Data, Table S11), although the effect was always
significant at 1 wk, 2 wk, and 4 wk after treatment. Immediately
after treatment (0.1 wk) and 8 wk, 12 wk, and 19 wk after
treatment also showed significant effects depending on the
dissimilarity measure. The dissimilarity measures based on
log-transformed data produced the largest number of consecu-
tive significant dates.

The community-level NOECs were 0.9mg/L of chlorpyrifos
for all dissimilarity measures, as this concentration was the
NOEC on at least 3 consecutive dates (Table 4).

Relationship between unconstrained analysis and constrained
analysis

The effects of the dosage were sufficiently large to be
observable on the first axes of the unconstrained analyses for
both data sets. The correlations between the sample scores on
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Figure 5. First principal response curves using the Euclidean distance on log-transformed (A) and Hellinger-transformed (B) data and using the Bray-Curtis
dissimilarity on raw (C) and log-transformed (D) chlorpyrifos data. Only the 10 species with the highest scores are represented.

Table 4. Community no-observed-effect concentrations determined by Dunnett’s test (p< 0.05) at each sampling date: Chlorpyrifos data set

Days after treatment

Dissimilarity measure
–4 –1 0.1 1 2 4 8 12 15 19 24

Euclidean on log abundances > > > 0.9 0.9 0.9 0.9 0.9 > > >
Bray-Curtis on raw data > > 6 0.9 0.9 0.9 > > > 6 >
Bray-Curtis on log abundances > > > 0.9 0.9 0.9 6 0.9 > > >
Hellinger on raw data > > > 0.9 0.9 0.9 6 > > 6 >
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the first axis produced by the partial RDA and by the MDS on
data with time partialled out were relatively high, and the plots
of the scores showed a relatively even distribution without
outliers for any of the dissimilarity measures. With the
diclofenac data set, the first axes of both analyses were strongly
correlated (Supplemental Data, Table S12). The second axes
were not as strongly correlated, in particular for the Bray-Curtis
dissimilarity using log-transformed data and for the Hellinger
distance. Both the first and the second axes of the unconstrained
and constrained analyses of the chlorpyrifos data set were
strongly correlated with each other except for the Bray-Curtis
dissimilarity using the raw data (Supplemental Data,
Table S13). This confirms that the effects of the dosage were
the major axes of variability in the data once the effect of time
had been partialled out.

DISCUSSION

This analysis of 2 data sets using several exploratory
techniques illustrates how the choice of a dissimilarity
measure and data transformation can reveal different features
of the data sets and how this can affect the final results of the
ecological risk assessment. Ideally, the data analysis should
not be restricted to 1 dissimilarity measure; a set of contrasting
measures each associated with different hypotheses about both
the experiment and data characteristics should be evalu-
ated [10]. Examining the data from the different angles
offered by the variety of dissimilarity measures can increase
the understanding of the final results produced by constrained
analysis and their associated p values. Expertise in community
ecology is then required to assess which changes in
community structure or abundance are ecologically signifi-
cant. In some cases, among a set of dissimilarity measures that
are relevant given the experiment, the aim of the study, and
the data characteristics, observation of the various ordination
plots could support the choice of a particular dissimilarity
measure for that data set.

The present analysis also illustrates how PRC results can be
complemented by less complex data representations and
analyses. The results may be complemented by univariate
analyses on individual taxa, paying special attention to the

species with the highest weights in the significant PRCs and by
comparing the actual response curves relative to the control for
the species with the highest contribution to the PRCs [8,44,45].

The choice of a measure of dissimilarity

As illustrated in the present study, the sample and species
scores in both the unconstrained and constrained ordinations can
sometimes provide arguments in favor of a particular measure of
dissimilarity. This can identify important features such as
sample outliers, which can have a large weight in the resulting
PRC, or horseshoe, arch, or bow [46] effects attributable either
to the factor under investigation or to other experimental
conditions. Horseshoes can be a result of the fact that the
samples at either ends of an ecological gradient way have
nothing in common. These artifacts may go unnoticed if
the sample scores are not plotted. The sample and species scores
can help us to understand which part of the variation each PRC
represents and, in particular, to identify individual samples or
mesocosms that may outweigh others, thus avoiding drawing
conclusions about treatment-level conclusions where only
mesocosm-level conclusions are appropriate. The horseshoe
obtained in ordinations with the Bray-Curtis dissimilarity on
raw data has been reported previously using data ranging from
low-abundance sites to high-abundance sites [47]. This
illustrates the need to test dissimilarity measures on each new
data set before selecting the measures to be used.

The choice of a dissimilarity measure will depend on the
characteristics of the study. With mesocosm data, an important
question is whether the disappearance or appearance of a species
is relevant and how likely it is given the experimental setting.
Attention also must be paid to the dispersion of the abundance
data and the scarcity of the data matrix—the proportion of
0 counts and rare species. Table 5 formulates working
hypotheses for the analysis of both of the mesocosm data sets
and identifies which of the dissimilarity measures we studied
can be recommended. This table was elaborated based on the
knowledge of the details of the experimental setups, on the
features observed in the summary description of the 2 data sets,
and on the way these features showed through the results of
the unconstrained ordinations. Given a new data set from these

Table 5. Examples of working hypotheses and recommendations for the choice of dissimilarity measures applied to the 2 data sets

Strategy

Hypothesis Clues Recommendation Diclofenac data set Chlorpyrifos data set

Community structure is stable at the beginning
of experiment; treatment is likely to be the
main factor influencing disappearance or
appearance of a species, once effect of time
has been removed.

Age of communities at the
beginning of experiment

Include double zeros
(Euclidean distance)

No Yes

Differences in proportion of species in
community as a result of treatment are
expected.

Mode of action of the
treatment (differences in
species sensitivity)

Hellinger’s distance
(raw data)

Yes Yes

Total abundance is relevant—there is evidence
that the abundance per species is equivalent
across replicates.

Check total abundances and
species abundance profiles

Bray-Curtis
dissimilarity or
Euclidean distance

Yes Yes

There are large differences in abundances
between species; the less abundant species
may be affected.

Check species abundance
profiles and histograms per
species

Log-transform with
log(Ax þ 1)

Yes Yes

Very few zeros in data Check for skewness with
histograms per species

Scale species data to
equal variance

No No

Summary: Recommended distances Bray-Curtis
dissimilarity on

log-transformed data

Euclidean distance on
log-transformed data
Hellinger distance

Hellinger distance
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facilities, the choice of a dissimilarity measure could be
narrowed down earlier.

When several measures have been tested for the data set, the
choice of a dissimilarity measure must not be based on the
outcome of the entire analysis (e.g., the NOEC in risk
assessment). The criteria for preferring 1 dissimilarity measure
over another may not be lower p values when testing for the
effect of treatment in individual PRCs or in the RDA as a whole,
a larger number of consecutive significant dates, or a large
proportion of explained variance. For example, in the case of the
Bray-Curtis dissimilarity and the Euclidean distance using raw
diclofenac data, the first PRC represents a large proportion of
explained inertia and several nonconsecutive sampling dates
displayed significant effects, yet the first PRC was largely
dominated by a single species, R. balthica. The response
observed for that particular species could be considered to be a
principal response for the community if it was liable to have an
effect on other taxa or communities in the ecosystem, the
strongest statistical signal not being necessarily the most
ecologically significant [14]. The main questions then are
whether the response is a community response and, if not,
whether it causes cascading community responses, hence the
need to explore subsequent PRCs and test their signifi-
cance [8,48]. Also, according to Moser et al. [44], the species
with the highest weight determined by PRC is not necessarily
the species with the largest response; the general response may
in fact hide a larger response from a very small number of
species.

Unconstrained multivariate analysis

Unconstrained ordinations with various dissimilarity mea-
sures on the raw abundance data provided insight into the main
features of the data sets and revealed a strong time gradient in
the diclofenac data set in particular for Bray-Curtis dissimilar-
ity using raw data. This could be attributed both to the increase
in total abundance in all mesocosms and to the overall variation
in relative abundances throughout the experiment. This
variation can be explained both by the experimental setup
and by seasonal variation. The mesocosm ecosystems were
established only a few months before the beginning of the
experiment; they were set up over autumn and winter, and a
relatively small number of individuals were introduced
according to a defined protocol. The samples were collected
between the end of February and the beginning of October
while the various species introduced colonized the mesocosms
to varying extents. Some taxa, such as Ephemeroptera, Diptera,
and Odonata, colonized the mesocosms naturally because of
outdoor conditions, and other Gastropoda and Oligochaeta
were introduced via eggs on the plants collected from previous
experiments. These results tend to indicate that Bray-Curtis
dissimilarity on raw data is not the best measure for newly
established communities as they are likely to show large
increases in abundance. In this case, it would be advisable to
transform the data to reduce the weight of large abundances.
Also, because of these important changes in community
structure throughout the experiment, the disappearance or
appearance of species is more likely to occur unrelated to the
treatment. Thus, it may be advisable to use a dissimilarity
measure that excludes double zeros.

In the chlorpyrifos data set, in contrast, the time gradient was
not as marked. This could possibly be explained by the fact that
the communities had been established a few years before the
experiment started, so only seasonal differences were present
and not ecosystem development [49]. In this data set, the slight

differences observed between the results with the various
dissimilarity measures in the unconstrained analysis did not
provide any arguments for or against the use of a particular
dissimilarity measure. The stability of well-established com-
munities set in identical environmental conditions could
actually call for a distance measure that includes double zeros
(such as the Euclidean distance), unlike studies based on data
collection, because the disappearance of a species in a treatment
level would be a concern.

Effect of total abundance on dissimilarities between samples

The dissimilarity measures selected varied considerably in
the extent to which the total abundance was taken into account.
Both data sets illustrated that both the Bray-Curtis dissimilarity
and the Euclidean distance using raw data highlighted differ-
ences in total abundances that were evident in the graphical
representation of the total abundances in each sample (Figure 1).
The Bray-Curtis dissimilarity measure is designed to take
absolute differences in abundance for a species, regardless of
the abundance of that species [12]. Assuming that the
differences in abundance follow a multiplicative model, the
most abundant species would still have a higher weighting
because the absolute differences in abundance would be larger
for these species.

The overall trend in the total abundance was strikingly
different between the 2 data sets. In the diclofenac data, the
mean abundances were roughly equal for each dose at each
sampling date except in the last 3 sampling mo, where it was
10-fold higher for the highest dose than for the other doses
(Figure 1). For this data set, the Bray-Curtis dissimilarity
appeared to focus on the most abundant species, as did the
Euclidean distance, as stated by Clarke and Green [11], who
recommend using logarithmic or power transformations, such
as the square-root transformation [50]. The Euclidean distance,
which highlights differences in total abundances, clearly
opposed the highest dose to the other treatments and focused
on the differences at the end of the experiment owing to
increasing abundances throughout the experiment. In the
diclofenac data set, R. balthica, the most abundant species,
was affected by the dosage but in a particular way. Using the
Euclidean distance on raw data, the effect of diclofenac
appeared to be considerable but only on the most abundant
species. On the other hand, in the chlorpyrifos data set, the mean
abundances for each dose were more even throughout the
experiment, and the time-dependent effects of the dosage were
slightly smaller (Figure 1). The choice of a dissimilarity
measure had less effect on the results, possibly also because
there were more species sampled and 1 species did not outweigh
all the others. The magnitude of the overall effect of
chlorpyrifos on the total abundance was comparable to that of
diclofenac, but the dose–response pattern was more complex.
Total abundances were lower in the mesocosms that were dosed
than in the control mesocosms throughout the experiment, in
particular for the highest doses immediately after exposure
(Figure 1). In both unconstrained and constrained analyses,
dissimilarity measures that highlighted differences in total
abundances (such as the Euclidean distance on raw data;
Supplemental Data, Figure S15) therefore tended to oppose the
control to the other mesocosms as the focus was on the total
abundances.

The present results illustrate that the log transformation
downweights high-abundance samples and abundant species [5].
In the diclofenac data set, when the log abundances were used,
R. balthicawas still among themost contributing species but did
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not outweigh them to the same extent. On the other hand, the
Hellinger transformation removes the information on total
abundances. As in correspondence analysis, ordinations based
on the Hellinger distance are therefore based only on relative
abundances. The disadvantage is that this is only appropriate
assuming that the community being studied is sufficiently
diverse for ecotoxicological effects to vary between subgroups
of the community because no effect is observed if all species are
reduced in abundance. For both data sets, the Hellinger distance
was able to detect differences in community structure. It is
worth noting that, in the chlorpyrifos data set, the pattern formed
by the sharp decrease in total abundances after treatment is also
reflected in terms of community structure as the dose–response
type pattern is also observed in the first PRC with the Hellinger
distance.

Effect of abundance mean and variance on dissimilarities between
samples

The results of the PRC are constrained to represent
treatment effects by extracting the most dominant response
pattern from the data set. Themean–variance relationship in the
data and the way it is taken into account by the dissimilarity
measure are important for understanding the results in terms of
the magnitude of the effect and residual variability. With the
typical near-quadratic relationship between mean and vari-
ance [24], a large variance is observed for abundant species.
The Bray-Curtis dissimilarity using raw data suffers less from
this than the Euclidean distance, which tends to show large
differences in variance when there are differences between
mean abundances [24]. The logarithm transforms the multipli-
cative model for the counts into a linear model and would make
the variance independent from the mean if the mean–variance
relationship was quadratic. In practice, with our data, with
the logarithmic transformation ln(Axþ 1), the variance tended
to decrease for large abundances. For both data sets the
Hellinger transformation appeared to be more effective at
removing the dependence between mean and variance
(Supplemental Data, Figures S3 and S6), thus providing a
better basis for the Euclidean distance.

Other dissimilarity measures or data transformations

Several other dissimilarity measures were tested, but the
results were not discussed because of their similarity to the
measures selected. The quantitative version of the Jaccard
coefficient and the Kulczynski dissimilarity [21] produced
ordinations similar to those obtained with the Bray-Curtis
distance. The Euclidean distance was also applied to raw data,
raw data scaled to unit variance, and log-transformed data
scaled to unit variance. With standardization to unit variance,
rare taxa presented outstandingly large abundances in a small
number of samples owing to the large number of zeros. As a
consequence, when several low-abundance taxa were found in
the same sample, the sample became an outlier with a strong
contribution to the ordination. This side effect was more
pronounced with log-transformed data than with raw data.

Graphical interpretation of the PRCs

Comparisons of the actual response curves to the PRCs
showed that a 2-fold difference in taxa scores in a PRC can be
sufficient for the most abundant taxon to completely outweigh
the other taxa in the interpretation of the PRC, as illustrated
in the diclofenac data set. This can be explained by the fact that
the second, third, and fourth largest contributions had
similar weights and therefore contributed equally in small

amounts, with the principal response reflecting the abundance of
the taxon which contributed the largest effect.

The usual PRC representation,withmeans for eachdose at each
sampling date, together with statistical significance tests provide
the user with a simple graphical representation of time-dependent
dose–response relationships. In some cases, large differences in
mean abundance over replicates could be nonsignificant. In such
cases,webelieve that providingvisual information by representing
individual points for replicates on the PRC diagram can help by
showing whether particular data points can explain the results or
whether there is simply large variability.

Impact on the community NOEC

The choice of dissimilarity measure only had an impact on
the overall community NOEC of the diclofenac data set
(Table 2), not of the chlorpyrifos data set (Table 4). In the
diclofenac data set the Euclidean and Bray-Curtis dissimilarity
measures using log-transformed data did not provide 2
consecutive sampling dates with the same community NOEC,
although they tended to highlight differences with the control at
lower concentrations, partly a result of the nonmonotonicity of
the dose–response relationship. Selecting the dissimilarity
measure that highlights the most critical changes in community
structure and abundance not only is important for understanding
and visualizing the data; it can determine the outcome of a risk
assessment.

Supplemental Data—The Supplemental Data are available on the Wiley
Online Library at DOI: 10.1002/etc.3701.
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