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Abstract—Magnetic Resonance Imaging (MRI) machines can
generate hazardous RF heating of patients with implanted
neurostimulation leads. Consequently, most patients with these
implants are contraindicated from having MRI scans. The level
of RF heating has a strong dependence on lead length and is
most severe when the length is close to a specific resonant length.
Recent studies have shown that simple modifications to the lead
construction and insulating material can alter the resonant length
and significantly ameliorate this heating hazard, achieving MRI
safety. We propose a technique using time domain reflectometry
(TDR) to find the resonant length of an arbitrary lead such
to minimise the amount of MRI machine time needed to find
the length of highest heating. The results are compared with
temperature measurements made in a 3-Tesla MRI machine and
with a CW dipole radiator in the lab.
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I. INTRODUCTION

Implant leads such as those found in pacemakers, Spinal
Cord Stimulators (SCS), and Deep Brain Stimulators (DBS),
can be hazardous to a patient undergoing a Magnetic Reso-
nance Imaging (MRI) scan. Fig. 1 shows a typical implant lead
for SCS. The RF field generated by a 3T MRI machine can
deliver peak pulses exceeding 30 kW in power at 128 MHz. [1]
This can induce significant heating of patient tissue at the distal
electrodes [2], [3], well beyond the 1-2°C safety limits rec-
ommended by the International Commission on Non-Ionizing
Radiation Protection (ICNIRP) in [4]. This has lead engineers
to develop implant leads that are insusceptible to RF heating
from MRI. [5]-[8]

An implant lead is most hazardous at a specific resonant
length, [,..s, a parameter which can be exceedingly difficult
to calculate and resource intensive to simulate. Typically it
is found through measurement in an MRI machine or in the
lab with dipole radiators, where heating tests are made on
several implant leads varying by length [9]. We present an
alternative approach that employs Time Domain Reflectometry
(TDR) to allow simple and rapid extraction of [,..s from a
single measurement.
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Fig. 1. Distal end of a 62 cm SCS “Octrode lead”. Eight platinum electrodes,
each 3mm long and 1.3 mm in diameter, are separated by 4 mm insulating
spacers. Electrode numbering starts from ‘1’ (left-most electrode) to ‘8’ (right-
most electrode).

II. DISTAL HEATING

An implanted lead can behave as a resonant dipole to
the incoming RF field from an MRI machine. [10] Stored
energy is transferred along the length of the dipole and can
permeate out into the surrounding tissue, especially around
the bare electrodes. This gives rise to joule heating and in
some circumstances, can reach hazardous levels. Works by [3]
and [11] have shown that peak heating occurs when the lead
length is about 0.41\p,, where Ap,, is the wavelength along
the lead, largely determined by the tissue composition and
lead design. Calculation of Ap, is possible but is limited
to simple coaxial-like lead structures. [10] Simulation can
provide predictions when the complexity is higher but demands
considerable resources and impractical computation run times.

Fig. 2 shows the simulated heating induced by an implanted
wire within an MRI birdcage. The birdcage was calibrated
to deliver a whole-body Specific Absorption Rate (SAR) of
1W/kg. The three-dimensional simulation took 5 hours in
COMSOL Multiphysics 4.4 running on a 3.5 GHz quad-core
Intel CPU and consumed more than 60 GB of memory. Ad-
ditional simulations were also needed in order to confirm the
worst-case length for highest heating. For further simulation
details refer to [11].

Experimental measurements are usually performed within a
torso-shaped phantom inside of an MRI machine. Fig. 3 shows
our phantom on the bed of a 3T MRI machine. The phantom is
comprised of saline gel with electrical and thermal properties
similar to that of human tissue. [12], [13] An implant lead
under test is positioned within the gel and a fiber-optic based
thermometer is aligned to the distal electrode where the heating
is expected to occur.

As A\p,, varies significantly with insulation thickness, per-
mittivity, and geometry, its value is often unknown and is
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Fig. 2. Simulated heating generated at the 6 mm bared end of an insulated
wire after 5 minutes of excitation from an MRI birdcage antenna. The 800 pm
diameter wire was 0.41Ap,, = 25 cm in length, coated with plastic insulation
350 um thick. Blood perfusion was included in the phantom model.

Fig. 3. Operators preparing a wire sample for testing within a gelled saline
phantom in a 3T MRI machine.

usually found by individually measuring the distal heating of
several wires differing only in length (> 10cm), and looking
for the length at which maximal heating occurs. A typical test
set as shown in Fig. 4 contains 10 or more samples for a given
lead type. The set-up and scan time to measure a single wire
sample can easily exceed 30 minutes.

III. TDR TECHNIQUE

In addition to antenna effects, an implanted lead behaves
as an unbalanced transmission line to RF currents. [10] The
conductive tissue along the surface of the lead jacket forms
the return path for currents, like a shield to a coaxial cable,
with the tissue surrounding the distal electrode forming the
dissipative load.

TDR is a well established technique for measuring the
propagation of signals along transmission lines [14]. Similarly,
TDR can be applied to implanted electrode leads. The phase
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Fig. 4. Briefcase containing a range of wire samples to be tested.

velocity v, for an implant lead of arbitrary length can be
determined by measuring the time taken ¢p for a voltage pulse
to propagate to the end electrode and reflect back again:
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where [; is the length of the insulated portion of the implant
lead conductor. As the phase velocity is independent of length,
the resonant length, I,..s, of an implant lead at the MRI RF
frequency fasgry is therefore:

Up

lyes = 0.41Ap,, = 0.41 )

MRI
The RF frequency of MRI is proportional to the strength of
the static magnetic field. In a 3T machine, the RF frequency
is 128 MHz. When immersed in a gelled saline phantom
from [12], a typical implant lead will have a Ap,, in the order
of tens of centimeters [9].

A phantom comprising 28 L. of gelled saline in the shape
of a torso-and-head was built from clear acrylic after [12]. The
ratio of NaCl and polyacrylic acid (PAA) to distilled water was
1.32 g/LL and 10 g/L, respectively, with an overall conductivity
of 0.47 S/m.

To facilitate TDR measurements of implant leads, the test
fixture in Fig. 5 was constructed. A thin aluminium disc rests
on the surface of the gelled phantom, providing an electrical
path from the shield of the coax cable to the gel. A screw
terminal secures the implant lead under test and provides
electrical connection to the inner conductor of the coax cable.
The implant lead is immersed within the gel, uncoiled, and
with the distal electrode unobstructed. Close up views of the
fixture are shown in Fig. 6.

Measurements of various wire samples representative of
implant leads, were captured with an Agilent 54754A TDR
with 40 ps system rise time. The reflection produced by a 29 cm
wire sample with 6 mm distal electrode is shown in Fig. 7.
The initial sharp change corresponds to the impedance mis-
match between the 50 {2 SMA connector and the characteristic
impedance of the wire sample. The reflection from the end of
the wire sample can be identified by the second discontinuity,
where the electrode comes into contact with the dissipative



Fig. 5. An aluminium disc with a 20cm diameter provides electrical
connection from the coax cable shield to the gelled saline. Immersed within
the gel, a wire sample is connected to the coax cable inner conductor via. a
small hole in the center of the disc and secured in place with a screw terminal.

Screw terminal

(a)

<—— Wire sample

(b)

Fig. 6. Close up view of the disc (a) topside (b) underside.
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Fig. 7. Reflected TDR signal from a wire sample 29cm in length, with
insulation 350 um thick. The time delay for a TDR pulse to propagate to and
from the distal electrode is 7.18 ns.

gel. Inserting a time delay of 7.18 ns into (2) yields a resonant
length of 25.9cm. Verification of this result is provided in
section V.

IV.  VERIFICATION TECHNIQUE

Recent work in [9] demonstrated a lab technique for
predicting the level of RF heating induced by an implant lead
from MRI, without requiring high energy RF pulses from an
MRI machine. A dipole antenna driven by a low-power CW
is used to provide excitation of the implant under test, with a
fiber optic probe to monitor the distal temperature.

The same experimental set-up from [9] was used and is
shown in Fig. 8. A dipole antenna was made from rigid 2.1 mm
diameter copper wire with 350 um of insulation covering the
entire 32 cm length. A close up view is shown in Fig. 9. A wire
sample under test is spaced 6 cm from the dipole antenna and is
centered about its midpoint. Temperature of the distal electrode
is monitored with a GaAs-based fiber-optic temperature probe
with 0.1 °C resolution.

Calibration of the experiment is achieved by scaling the
result 1.5 times, such that the reference wire sample generates
equivalent heating when exposed to the RF field from the 3T
MRI machine in Fig. 3. The reference measurement along with
simulated predictions is shown in Fig. 10.

V. MEASURED RESULTS

A range of wire samples varying in insulation thickness
from 21-700um were tested. Each sample consisted of an
800 um diameter copper core, with plastic insulation covering
all but 6 mm from one end. Epoxy resin insulated the opposing
end. The reflected TDR waveforms were captured for each
wire sample using the test fixture in Fig. 5. The time delay
tp as measured from each waveform are listed in Table I
along with the associated resonant length [,.. s, calculated using
equations 1 and 2.

Heating tests using the dipole radiator for excitation were
performed on each wire sample including several additional



Fig. 8. Set-up for testing the RF heating of implant leads in the lab. A dipole
antenna is immersed in the phantom alongside the wire sample with a function
generator and 30 W RF power amplifier supplying excitation. A fiber optic
thermometer monitors the temperature of the distal electrode.

Fig. 9. Close-up view of the temperature probe aligned to the bared end
of the wire sample (yellow) before immersion within the gelled saline. The
dipole antenna (red) is spaced 6 cm away from the wire sample.

lengths. The change in temperature AT was recorded for
each sample after 5-minutes of applied RF stimulus. The
results shown in Fig. 11 are consistent with [3] and [11]. The
lengths for peak heating as extracted from the same figure are
summarised in Table I. The TDR-measured values are within
3% of expected values.

TDR measurements were also performed on the electrodes
of the SCS lead shown in Fig. 1. The predicted resonant length
for electrodes 1 and 8 are twice that of the 700 um and 350 pm
wire samples, respectively. This is owing to the much smaller
100 pm diameter filars that comprise the lead. Heating tests on
the SCS lead were not performed.

VI. CONCLUSION

We explain a measurement technique that predicts the
length an implanted lead will experience peak heating during
MRI, without an MRI machine. We show this is possible
through a TDR measurement of a single lead of arbitrary
length.
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Fig. 10. Distal heating generated near the distal electrode of a reference wire
sample coated with 350 um of insulation, after 5 minutes of CW excitation
from a dipole antenna. Measurements of the same wire sample in a 3T MRI
machine are also shown along with simulated predictions.
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Fig. 11. Distal heating generated for wire samples varying by insulation
thickness. Extraction of 0.41\ p,, and ATy, for a given lead type is achieved
by measuring several lead lengths.
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