
University of Tartu

Faculty of Science and Technology

Institute of Mathematics and Statistics

Mohammad Jamsher Ali

Wang’s premium principle: overview and comparison with classical
principles

Financial Mathematics
Masters Thesis (15 ECTS )

Supervisor Meelis Käärik

Tartu 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/79115112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Wang’i preemiaarvutusprintsiip: ülevaade ja võrdlus klassikaliste printsiipidega

Lühikokkuvõte. Preemiaarvutusprintsiip on kindlustusandja poolt kasutatav regulatsioon
igale individuaalsele riskile kindlustuspreemia määramiseks. Käesolevas magistritöös võr-
reldakse erinevate stsenaariumite korral Wang’i printsiipi teiste klassikaliste printsiipi-
dega, seejuures võrdluse aluseks on see, kui "õiglaselt" kogupreemia ühe või teise printsi-
ibi järgi jaguneb kindlustusvõtjate vahel. Teoreetiliste omaduste poolest on Wang’i printsiip
üks paremaid välja pakutud preemiaarvutusprintsiipe, kuna ta rahuldab väga paljusid pre-
emiaprintsiipidele esitatavaid soovitavaid nõudeid.

Märksõnad: preemiaarvutusprintsiip, kindlustusandja, kindlustusvõtja, stohhastiline dom-
ineerimine, komonotoonsus, kahjukindlustus

CERCS kood: P160 Statistika, operatsioonanalüüs, programmeerimine, finants- ja kind-
lustusmatemaatika.

Wang’s premium principle: overview and comparison with classical principles

Abstract. A premium principle is an economic assessment regulation used by the insurer
in order to settle on the amount of net premium for each individual risk in his portfolio. In
this research, we will practically examine the performance, by comparing with other prin-
ciples, of Wang’s (1996) proposed premium principle based on transforming the premium
layer density. Theoretically, Wang’s principle is the best premium principle among all
existing premium calculation principles as it satisfies most of the properties of a premium
principle.

Keywords: premium principle, insurer, insured, stochastic dominance, comonotonicity,
non-life insurance
CERCS code: P160 Statistics, operation research, programming, actuarial mathematics.
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1 Introduction

Insurance is a practice of transforming the risk to the (re)insurer for a fixed premium.
Premium calculation for a possible risk, in actuarial science, is considered as the crucial
task. there are several premium principles which are widely used in insurance industries.
Finding of a generally accepted premium calculation principle is the main concern of
actuarial experts. But it is still far away from the best principle. In insurance industries, it
is well known that policyholders are more risk averse than insurers, i.e the policyholders
are willing to pay more premium for higher risk which is known as risk adjusted premium.

According to Meyers (1991), individual insurers are to price-makers, but not price-takers,
as the insurer have to compete with their counterparts. Hence, in a competitive market, the
insurance prices are to be measured by the combined efforts of all situations. According to
S. Wang, V.R. Young and H. Panjer (1997) for a given market, the price of an insurance risk
X depends only on its distribution. As insurance risks are becoming more incorporated,
unified premium principles are becoming more demandable. Many researchers are giving
efforts to put together different existing premium principles or trying to introduce new
premium principle to meet the demand.

A number of researchers proposed several premium principles. Most of those are depend-
ing on first and second moments included, on some principle third moment are used as
well. But there is a lot of inconsistency in moment based premium principles. Some
researchers proposed premium principle which is based on utility theory, especially expo-
nential utility (Freifelder 1979 and Gerber 1979) and Esscher principle (Buhlmann 1980)
which are generally theoretical. Wang (1995, 1996) proposed premium principles by trans-
forming survival function (de-cumulative distribution function) and proportional hazard
rate. Wang suggested to calculate premium by transforming the layer premium density
(1996).

There are mainly four sections, in section one we have discussed some basic properties
which should be satisfied by a premium principle to be an ideal premium calculation prin-
ciple. Also, in this section, we have discussed some existing premium principles.

Section two contains some preliminary ideas for tail based premium principle which in-
cludes comonotonicity, proportional hazard, layer net premium density, stochastic domi-
nance and the idea of transforming the survival function.

In section three we have exposed Wang’s premium principle by transferring the layer pre-
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mium density, which satisfies most of the necessary conditions of a sound premium prin-
ciple. Finally, in section four we give two examples where we compare the performance
of Wang’s premium calculation principle with other premium principles by calculating
the errors. We estimate the error of the calculated premiums with randomly generated
claims. In our first example we use Pareto distribution II, and in the second example, we
use exponential distribution.
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2 Different premium principles and properties of a pre-
mium principle

This chapter mainly gives some overview on some essential basics on insurance risk and
how the insurer charged the premium for a risk. Firstly we define " risk" and "premium
principle. Then we discuss some essential properties which should be satisfied by a pre-
mium calculation principle, to be an ideal principle. After that, we define some exist-
ing popular premium calculation principles. We also establish a simple relation among
charged premium, premium in view of insurer and premium in view of insured.

We refer to Leaven & Goovaerts (2011) for the definition of risk , definition premium
calculation principle, and properties of premium principles (see also textbook "Insurance
Risk and Ruin" by Dickson)

Definition 2.1 (Risk) Let us assume that (Ω,F) is a measurable space where Ω is the
outcome space and F is a σ -algebra defined on it. A risk is a random variable defined on
(Ω,F); that is X : ω →ℜ is a risk if X−1((−∞,x]) ∈ F for all x ∈ℜ.

A risk represents the final net loss of a position or contingency currently held. If X > 0 we
referred it as a loss, on the other hand if X ≤ 0 we say it is a gain. We assume the set of all
random variables on (Ω,F) by X .

Definition 2.2 ( Premium calculation principle) A premium calculation principle PX is
a function X to the real number space i.e. ℜ. In other words PX is a functional that assign
a real number to any random variable on (Ω,F).

2.1 Properties of premium principles

2.1.1 Law invariance

A premium calculation principle PX is said to be probability law invariant if premiums for
two risks are equal for probabilities of the risks, less than any real value, are equal. That
is, PX is a P - law invariant (where P represents probability measure on (Ω,F)) if PX = PY
when P(X ≤ x) = P(Y ≤ x) for all real x.
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2.1.2 Monotonicity

A premium principle is said to be monotonic if in any trajectory premium for less risky
risk is less than premium which corresponds to more risky risk. In other words, PX is
monotonic if PX ≤ PY when X(ω) ≤ Y (ω) for all ω ∈ Ω. And PX is P-monotonic if
PX ≤ PY for X ≤ Y P-almost surely.

2.1.3 Sub-additivity

If X1 and X2 are two risks, then the premium for the combined risk is less than the sum
of the individual risk’s premium. That is the premium principle should hold the following
inequality

PX1+X2 ≤ PX1 +PX2.

2.1.4 Additivity

If X1 and X2 are two independent risks, then the premium for the combined risk should be
equal to the sum of their individual premiums. That is

PX1+X2 = PX1 +PX2.

2.1.5 Scale invariance or positive homogeneity

If for all real a > 0, there exists a risk Y such that Y = aX then premium for risk Y is equal
to premium for risk X multiplied by the constant ’a’. That is according to scale invariance
property

PY = aPX .

2.1.6 Consistency or translation invariance

If for all real c > 0, there exists a risk Z such that Z = X + c, that is if the distribution
of Z is the distribution of X shifted by c units then the premium for risk Z is equal to the
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premium for risk X increased by c units i.e

PZ = PX + c.

2.1.7 No ripoff

If there is a finite maximum claim amount for the risk, xm, then according to this property
the premium should be less than the maximum claim amount, i.e PX ≤ xm. It is said that if
this property is not satisfied, then there is no incentive for an individual to effect insurance.

2.1.8 Convexity

The premium principle PX is said to be convex if it holds the following inequality

PX [αX +(1−α)Y ]≤ αPX +(1−α)PY .

2.1.9 Preserving stop-loss order (SL)

PX preserves stop-loss order if PX ≤PY when E[(X−d)+]≤E[(Y−d)+] for d ∈ℜ. Where
the + sign indicate that if the difference is positive then it will be counted otherwise it will
be considered as zero.

2.2 Different types of premium principles

We refer the textbook "Insurance Risk and Ruin" by Dickson for the following premium
principles, Pure premium principle , Expected value premium principle, Variance premium
principle, Standard deviation premium principle, the principle of zero utility, Esscher pre-
mium principle. We take quantile principle from the textbook "Risk modelling in General
Insurance" by Gray and Pitts. Also,we refer to Swiss premium principle and Dutch pre-
mium principle Laeven & Goovaert(2011) and for tail standard deviation premium princi-
ple Furman & Lands man(2006).
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2.2.1 Pure premium principle

The pure premium is equal to the insurer’s expected claims under the risk X, i.e

PX = E[X ].

The pure premium principle is not an attractive principle to the insurers. This principle
does not contain any loading for profit it just covers the insurer’s expected claim from
the risk. We can say that the insurer who exercise this principle will not survive in this
business in long run.

2.2.2 The expected value principle

For any θ > 0, where θ is known as the relative security loading on the pure premium. So,
the loading in the premium is θE[X ] and the expected value principle is pure premium
plus the premium loading . Hence,

PX = (1+θ)E[X ].

The expected value principle is the simplest one but its major negative side is that it assign
the same premium for all risk with the same mean. In practice, we know, risks with the
same mean but different variances should have different premiums.

2.2.3 The variance principle

The variance principle for premium calculation is as follows:

PX = E[X ]+θVar[X ], where θ > 0.

E[X] and Var[X] represents the pure premium and variance of the loss distribution of X
respectively. We may again refer θ as the relative security loading which is, in this case,
proportional to the variance.

2.2.4 The standard deviation principle

For θ > 0 (referred as the relative security loading), the standard deviation premium prin-
ciple is:

PX = E[X ]+θ
√
(Var[X ]).
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where E[X] and Var[X] represents the pure premium variance of the loss distribution of
X respectively. That is, the pure premium is increased by a percentage of the standard
deviation of the risk. Though this principle is same as variance principle, but they do not
satisfy same properties always.

2.2.5 Combined variational principle

The combined variational principle is the combination of two principles, the variance prin-
ciple and the standard deviation principle. This principle is also known as compromise
principle. According to this principle, for α,β > 0

PX = E[X ]+α
√
(Var[X ])+βVar[X ].

2.2.6 The quantile premium principle

The quantile principle which is known as percentile principle, can derive by solving the
following inequality

P{X ≥ PX} ≤ ε, ε > 0.

Where ε is the maximum tolerance of ruin probability. In other words, one can find the
premium which grantees that the probability that this premium is sufficient to cover the
claims at least 1− ε . That is, we have

PX = minPX [P{X ≤ PX}> 1− ε].

To use this principle we need to have a model for the distribution of X, or at least know
the values of certain higher percentiles of the distribution.

Let the insurer wants to have probability of at least 0.90 to cover the risk X i.e P(X ≤
PX) = 0.90, with X ∼ N(µ,σ) and the 90th percentile of the standard normal distribution
is 1.28, so we need PX to satisfy P(X ≤ PX) = 0.90 and we know 90th percentile of the
standard normal distribution is 1.28. We need PX to satisfy

PX −E[X ]√
Var(X)

= 1.28

which gives PX = E[X ]+1.28
√

Var[X ]. That is, in this case, the quantile premium princi-
ple is equivalent to standard deviation principle with relative safety loading α = 1.28 fixed
by the insurer.
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2.2.7 Swiss principle

For a given non-negative and non-decreasing real valued function v and a given parameter
0≤ q≤ 1, the Swiss principle is the solution of the following equation:

E[v(X−qPX)] = v((1−q)PX).

We see that this principle includes both zero utility principle and Expected value principle
as particular cases. As

v((1−q)PX) = E[v(X−qPX)]

which is the principle of zero utility and gives us (using Jensen’s inequality)

⇒ v((1−q)PX)≤ v(E[X ]−qPX

⇒ (1−q)PX = E[X ]−qPX

⇒ PX = E[X ].

2.2.8 Esscher principle

The Esscher premium principle named after the Swedish actuary F. Esscher, who proposed
this principle as well, and the principle is as follows:

PX(X) =
E[XeθX ]

E[eθX ]
, where θ > 0.

That is, if we consider the cumulative generating function (cgf) of a random risk X as
a function of relative loading factor as follows fX = ln(E[eθX ]) then Esscher premium
principle represents the first derivative of the cgf with respective to the parameter θ .

2.2.9 Dutch principle

This principle was introduced by Van Heerwaarden and Kaas in 1992, they defined the
principle in the following way

PX = E[X ]+θE[(X−αE[X ])+], α ≥ 1, 0 < θ ≤ 1.

That is, according to the Dutch principle premium is equal to the pure premium plus
relative safety loading factor times the expected value of positive difference of the risk
over the certain percentage of the expected loss, where the value of the relative safety
loading factor is any positive real number which is less than 1.
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2.2.10 Tail standard deviation principle

Among all the premium principles the standard deviation principle becomes the most pop-
ular premium calculation principle as it is the simplest premium calculation principle. But,
since this premium principle usages only first two moments (mean and variance) hence it
overlooks the shape of the risk distribution. This is a great disadvantage of the standard
deviation premium principle.

Furman and Landsman (2005) developed a tail standard deviation premium principle PXT SD

as alternative to the standard deviation principle. Their proposed tail base premium prin-
ciple is as follows:

PXT SD(xq) = E[X |X > xq]+θ

√
Var(X |X > xq) for θ ≥ 0.

where, E[X |X > xq] and Var(X |X > xq) represents the tail conditional expectation and the
tail conditional variance respectively.

It is clear that if we let q→ 0 then we see that the standard deviation principle is a particular
case of tail standard deviation premium principle.

2.2.11 The principle of zero utility or exponential principle

Let us assume a person or an asset, belongs to someone, as ’insured’ who is carrying a
certain risk, even though he decided not to buy the insurance policy which he is offered by
an insurance company or ’insurer’.

If the wealth of the insurer at the beginning of the period is W and the amount of loss
occurred due to the insured risk on the mentioned period is X. Hence, the wealth of the
insurer at the end of the period is W +PX −X .

The loss X is a non-negative random variable as it is uncertain which has the distribution
P[X ≤ x]. Consider that both insurer and insured have the inclination to obey the expected
utility hypothesis.

Let, u : ℜ → ℜ be the insurer’s utility function then the insurer’s expected utility is
E[u(W +PX −X)].
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The equivalent utility principle or zero utility principle says that the following property
hold for both insurer’s and insured’s point of view:

E[u(W +PX −X)] = u(W ).

Solution PX of this equation is treat as premium of the respective risk. The expression
shows that in general, premium depends on wealth W but if the utility function is an expo-
nential function i.e for β > 0, u(x) =−e−βx then according to exponential principle,
the premium is defined as follows:

PX =
1
β

ln(E[eβX ]).

Which indicates that premium does not depend on insurer’s( or insured’s) wealth.

2.3 The relation between premium and expected loss

From Jensen’s inequality, we know that if u is a concave function then E[u(x)] ≤ u(E[x])
and the reverse holds for convex function. Now, exponential function is a convex function
so, if we apply the Jensen’s inequality on PX = 1

β
ln(E[eβX ]) we get,

PX ≥
1
β

ln(eE[βX ])

⇒ PX ≥
1
β

βE[X ]

i.e PX ≥ E[X ].

So, the premium should be always more than the expected loss. This property is also
known as non-negative loading.

2.4 The optimal value of the premium

In the previous section, we see that premium is greater than the expected loss, the question
is, does the premium has any upper and lower bound? In this section, we will examine
that.
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In view of Insured: Let u1 and W1 be the exponential utility and wealth of the insured
respectively, an insurance treaty that for a given uncertain loss X leaves insured with final
wealth W1−PX , will be preferred to full self insurance, which leaves the insured with
final wealth W1−X , if and only if u1(w1−PX) ≥ E[u1(w1−X)]. The equivalent utility
premium, in view of insured (Pird

X ) is obtained by solving the following equation

u1(w1−PX) = E[u1(w1−X)].

The insured will buy the policy if PX ≤ Pird
X .

In view of Insurer: The equivalent utility expression for insurer will be as follows
expected utility if coverage is sold ≥ expected utility if no coverage punched that is

u2(w2 +PX) = E[u2(W2−X)].

Where u2,W2 indicates utility function and wealth of the insurer respectively. So, the final
wealth of the insurer after receiving the premium is W2 +PX , and the final wealth after the
incurred claim X is W2−X . So according to the insurance treaty, the insurer will prefer
the insurance if and only if, u2(w2 +PX)≥ E[u2(w2−X)].

If we denote the premium from the insurer’s view by Pir
X , the insurer will sell the policy if

Pir
X ≤ PX .

Hence, we conclude that the premium will satisfy

Pir
X ≤ PX ≤ Pird

X .

In the following section we will discuss some preliminary ideas which are important for
tail based premium principle.
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3 Some important preliminary ideas for tail based pre-
mium principle

In this chapter, we will discuss comonotonicity, hazard rate and proportional hazard trans-
form of a risk X , the net layer premium density, first stochastic dominance and second
stochastic dominance and the idea of transforming the survival function. We refer Wang
(1996) for these properties where details of all these properties are also available.

3.1 Comonotonicity

The idea of comonotonicity was first introduced by Yaari (1987). But, in actuary Wang
first applied the concept of comonotonicity in 1996.

Definition 3.1 Two risks X , Y ∈ F are said to be comonotonic iff there exists a risk Z ∈ F
and two non-decreasing mappings f and g such that X = f (Z) and Y = g(Z).

Wang & Dhaene (1997), Wang, Yong & Goovaerts (1997), examine the application of
comonotonicity in actuarial science.

The insurance is a risk sharing an idea, either between the insurer and insured or between
the first insurer and reinsurer guide to partial risk which are comonotonic. But both of the
risk sharing partners have to bear more portion if the underlying total claim amount rise.

Also, premiums for two comonotonic risks should be additive, i.e. if X , Y ∈ F are two
comonotonic risks then PX(X +Y ) = PX(X)+PX(Y ). According to S. Wang layer premi-
ums must satisfy additive condition, that is for any sequence of layers 0 < x0 < x1 · · · <
xn < · · ·

PX =
∞

∑
i=1

PX(I(Xi−1−Xi)).

In sub-section 2.3 we will discuss layer premium density.
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3.2 Proportional hazard transform and risk-adjusted premium prin-
ciple

The insurance risk X which is a non-negative random variable and is defined by its cumu-
lative distribution function and FX(x) and survival function SX(x).

Let we assume that the distribution of claim sizes FX(x) as a continuous function, then the
hazard rate of the risk X is

HX(x) =
F ′X(x)

(1−FX(x))
=− d

dx
lnSX(x).

An unfavourable claim reported means that the occurred loss is larger than expected loss.
To require a safety margin, we can reduce the hazard rate as follows:

HY (x) =
1
α

HX(x), α > 1, x≥ 0.

For this relation we get another random variable Y which survival function satisfies SY (x)=
SX(x)

1
α and the mapping Pα : X → Y is called proportional hazard transform.

Definition 3.2 If X is continuous with density function fX(x), x∈ I, then Y =Pα(X)is also
continuous with density function

fY (x) = [
1
α

SX(x)
1
α
−1] fX(x), x ∈ I.

The weight function 1
α

SX(x)
1
α
−1 increases with the loss size x, thus gives more weight to

the unfavourable events.

Definition 3.3 The risk adjusted premium for a risk X is given by

Pα
X = E[Pα

X (x)] =
∫

∞

0
SX(x)

1
α dx, α ≥ 1.

Where α-defined as risk averse.

18



Since we know that
E[X ] =

∫
∞

0
SX(x)dx.

So, for α = 1, P1
X = E[X ].

Wang (1995) showed that the risk-adjusted premium principle satisfies positive loading, no
ripoff, scale invariant, transitivity, subadditivity properties and it also preserves stochastic
dominance.

3.3 Layer net premium density

As we mentioned before that insurance risk X is a non-negative uncertain variable. We can
define its distribution by two ways, either in terms of its cumulative distribution function
FX(x), or its survival distribution functionSX(x), as follows:

(i)FX(x) = Pr(X ≤ x)

and
(ii)SX(x) = Pr(X > x)

The expected loss of a risk X can be determined by its survival function in the following
way

E(X) =
∫

∞

0
SX(x)dx.

Since most insurance contracts contain provisions, for example, deductible and maximum
breaking point or limit point it is helpful to utilise a general term of excess-of-loss layers.

Let us consider the following definition at first,

Definition 3.4 A layer (a,a+ h) of a risk X is defined as the loss from an excess-of-loss
cover

I(a,a+h](X) =


0 if 0≤ X < a

(X−a) if a≤ X < a+h
h if a+h≤ X
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Shaun Wang (1996) defined the expected loss or net premium for a layer (a,a+ h] using
the survival function as follows:

E(Ia,a+h) =
∫ a+h

a
SX(x)dx

where the survival function for a layer I(a,a+h] is

SI(a,a+h](x) =

{
SX(a+ x) if x < h

0 if x≥ h

It is clear that SX(x) plays a vital role as layer net premium density as SX(x)dx illustrates
the net premium for an infinitesimal layer (x,x+dx].

3.4 Stochastic dominance

Definition 3.5 First stochastic dominance (FSD) If X1 and X2 are two positions of a risk
X then X1 is said to be precedes of X2 iff the survival function of X1 is everywhere lower
than the survival function of X2 i.e X1 ≺ X2, iff

SX1(t)≤ SX2(t), for all t ≥ 0.

If we consider two layers of equal width (a,a+h] and (b,b+h] for a risk X , and if a < b
then premium at (b,b+h] should less than the premium at (a,a+h] .

Definition 3.6 Second Stochastic dominance(SSD) According to (Kaas t al. 1994) X1 ≺
X2 under second stochastic dominance if any one of the following two equivalent condi-
tions holds:

1. There exists Ui(i = 1,2, · · · ,n) such that

X1 ≺U1, U1 ≺U2, · · · ,Un ≺ X2

or
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2. ∫
∞

x
SX1(t)dt ≤

∫
∞

x
SX2(t)dt f or all x≥ 0.

According to Wang, if (a,a+h1] and (b,b+h2] are two layers of different width for
a particular risk X with the same net average loss i.e E[I(a,a+h1]] = E[I(b,b+h1]], then
layer at (b,b+h2] is a higher risky, i.e I(a,a+h1] ≺ I(b,b+h1].

And if we assume that PX(X) : X → [0,∞) preserve SSD, then

PX(I(a,a+h1])< PX(I(b,b+h2])

⇒
PX(I(a,a+h1])

E[I(a,a+h1]]
<

PX(I(b,b+h2])

E[I(b,b+h1]]
.

That is, if a premium principle preserves SSD then for any risk, the higher layer should
have the higher percentage of loading.

3.5 Transforming the survival function

Since, we see that the survival function SX(x) represents the layer net premium density and
using the concept of risk adjusted premium principle, Wang defined, risk-adjusted layer
premium density SY (x) as follows:

SY (x) = g[SX(x)].

where g is a non-decreasing mapping form unit interval to unit interval, i.e g : [0,1]→
[0,1], with g(0) = 0 and g(1) = 1.

Then SY (x) = g[SX(x)] represents a new survival function.

4 Wang’s premium calculation principle

In this chapter, we will describe the premium principle, based on transforming layer pre-
mium density which is proposed by Wang, also, we include a table which illustrates dif-
ferent existing premium principles satisfiability of different properties.

21



Based on the above observations (2.1-2.5), Wang (1996) proposed the following premium
principle:

PX(x) =
∫

∞

0
g[SX(x)]dx.

And this premium principle satisfies all the following conditions:

(i) E[X ]≤ PX ≤max(X)

(ii) PX(aX +b) = aPX(X)+b

(iii) Layer additivity

(iv) Comonotonically additive

(v) Preserve stochastic dominance

Now, we will include a table which describes theoretically the performance of different
premium principles depending on their satisfying different properties of a premium prin-
ciple.
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The following table illustrates the comparison among several existing premium calcula-
tion principles, in accordance to satisfying different properties of premium principle. (see
Virginia, Roger(2007))

Name of Premium Principle M TI A SA C CA NR SL
Expected value principle + + + + + + - (+ for θ = 0) +

Variance principle - + - - + - - -
Standard deviation principle - + - + + - - -

Exponential principle + + - - + - + +
Esscher principle - + - - - - + -
Swiss principle + - - - - - + +(if v is convex)
Dutch principle + - - + + - + +

Tail standard deviation - + - + + - - -
Wang principle + + + + - + - +

M=monotonocity, TI=translation invariant, A=additivity, SA=sub-additivity, C=convexity,
CA=comonotonic additivity, NR=no ripoff, SL=stop-loss order.

In the next section, we will examine the performance of different premium calculation
principles with two examples. At first, we will calculate premiums using our assigned
distribution then we will generate random claims and after that, we will calculate the error
of each premium principle. Here, we consider two portfolios, each of which contains
1000 policies and follow, in first example Pareto distribution II and in second example
exponential distribution. We will estimate error e by using the following formula

e =

√
∑

1000
i=1 (x1,i−PX1)

2 +∑
1000
i=1 (x2,i−PX2)

2

1000
.

In first example, we will repeat the process to see how will it affect, if we change the
parameters of our distributions.
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5 Comparison of different premium principles

5.1 Example 1: Using Pareto distribution

Let us consider two portfolios of risks, each of which has 1000 policyholders. Let for
both portfolios for all risks with probability 0.9 there is no claim, with probability 0.1
there is a claim. Let the risks from the both portfolios follow Pareto II (American Pareto)
distribution.

We choose American Pareto distribution, in our example, because it is most widely used
in non-life insurance as a model for claim severity.

We know that if a random variable X follow American Pareto distribution, i.e X ∼Pa(α,β ),
where α is scale parameter and β is shape parameter, then cumulative distribution func-
tion, probability density function, survival function, mean, variance, p-th quantile function
and moments of the distribution are as follows:

• Dstribution function FX(x) = 1− αβ

(x+α)β
, x≥ 0.

• Density function fX(x) =
βαβ

(x+α)β+1 , x≥ 0.

• Survival function SX(x) = αβ

(x+α)β
, x≥ 0.

• Expectation E[X ] = α

β−1 , β > 1.

• Variance Var[X ] = α2β

(β−1)2(β−2) , β > 2.

• Quantile function F−1(p) = α

(1−p)1/β
, 0 < p < 1.

• Moments EXn = αnn!
∏

n
i=1(β−i) , β > n. But EXn = ∞, β ≤ n.

Let us consider X1 ∼ Pa(800,3) and X2 ∼ Pa(1000,5), whereX1 and X2 stands for risks
from first portfolio and second portfolio respectively.

Since we know that mean of Pareto distribution is EX = α

β−1 . So, mean of first Pareto

distribution is EX1 =
800
3−1 = 400, therefore, mean loss of risks from first portfolio is 400 ·

0.1 = 40.
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Hence expected loss of the first portfolio is ES1 = 40 ·1000 = 40,000.

Similarly, mean of second Pareto distribution is EX2 = 1000
5−1 = 250. Therefore overall

expected loss for second portfolio is ES2 = (250 ·0.1 ·1000) = 25,000.

That is, the overall expected loss is approximately 65,000. Let us assume that the overall
risk premium (i.e. the risk premium + risk loading) is 75,000.

Also, we know that variance of Pareto distribution is VarX = α2β

(β−1)2(β−2) . So, variance of

the first Pareto distribution is VarX1 =
8002·3

22·1 = 480,000. Similarly variance of the second

distribution is VarX2 =
10002·5

42·3 = 104,166.7.

We know that aggregate variance is Var(S) = (EX)2 ·VarN +EN ·VarX . In our problem
N ∼ Bin(1000,0.1) so, EN = 1000 ·0.1 = 100 and VarN = 1000 ·0.1 · (1−0.9) = 90.

Hence variance of the first portfolio is VarS1 = 4002 · 90+ 100 · 480000 = 62,400,000.
And variance of the second portfolio is VarS2 = 2502 ·90+100 ·104166.7 = 16,041,670.

Now we will calculate premiums for each portfolio (and also for each policy) using differ-
ent premium calculation principles.

5.1.1 Premiums using expected value principle

We know the expected value premium calculation principle is

PX = (1+θ)EX .

That is
75000 = (1+θ) · (ES1 +ES2)

⇒ 75000 = (1+θ) ·65000

⇒ θ =
2

13
.

Therefore, total premium for first portfolio is

PS1 = 40000 · (1+θ) = 46,153.85.
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Hence premium for each policy of first portfolio is

PX1 =
46,153.85

1000
= 46.15.

Similarly total premium for the second portfolio is

PS2 = 25000(1+θ) = 28,846.15.

And hence premium for each policy of the second portfolio is

PX2 =
28,846.15

1000
= 28.85.

5.1.2 Premiums using variance principle

We know tat variance principle for premium calculation is

PX = EX +θ ·VarX .

So, in our problem

75000 = ES1 +ES2 +θ · (VarS1 +VarS2)

That is
75000 = 65000+θ(62400000+16041670)

⇒ θ =
10000

62400000+16041670
= 0.0001274833.

There for total premium of the first portfolio is

PS1 = 40000+θ ·62400000 = 47954.96.

And premium of each policy of the first portfolio is

PX1 =
47954.96

1000
= 47.95.

Similarly total premium of the second portfolio is

PS2 = 25000+θ16041670 = 27045.04.

And premium of per policy of second portfolio is

PX2 =
27045.04

1000
= 27.05.
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5.1.3 Premiums using standard deviation principle

The formula for premium using standard deviation principle is

PX = EX +θ ·
√
(VarX).

So, in our case
75000 = (ES1 +ES2)+θ · (

√
VarS1 +

√
VarS2)

That is
75000 = 65000+θ(

√
62400000+

√
16041670)

⇒ θ =
10000

(
√

62400000+
√

16041670)
= 0.8400134.

Therefore, total premium for first portfolio is

PS1 = 40000+θ
√

62400000 = 46635.57.

Hence premium for each policy of first portfolio is

PX1 =
46635.57

1000
= 46.64.

Similarly total premium and premium per policy of second portfolio is

PS2 = 25000+θ
√

16041670 = 28364.43.

And premium per policy of second portfolio is

PX2 = 28.36.

5.1.4 Premiums using quantile principle

We know p-th quantile for Pareto II distribution is

F−1(p) =
α

(1− p)1/β
.

So, p-th quantile of our first and second portfolios are

F−1
1 (p) =

800
(1− p)1/3 .
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and
F−1

2 (p) =
1000

(1− p)1/5 .

We know that quantile function does not depend on survival function. Hence

75000 = F−1
1 (p)+F−1

2 (p)

⇒ 75000 =
800

(1− p)1/3 +
1000

(1− p)1/5

and after simplifying we get p = 0.99999779551455660797510464. Now using this value
we find total premium for first portfolio is

PS1 =
800

(1− p)1/3 = 61468.73.

So premium per policy of the first portfolio is

PX1 =
61468.73

1000
= 61.47.

Similarly, premium of each policy of the second portfolio is

PX1 =
13531.27

1000
= 13.53.

5.1.5 Calculation of premiums using Wang’s principle

For our convenience, let us consider g(x) = xc 0 < c < 1. We know that survival function
of Pareto distribution is

SX =
αβ

(x+α)β
, x≥ 0.

So survival functions of the first and second portfolio considering with the probability are

SS1 = 0.1 ·1000 ·SX1 = 0.1 ·1000 · 8003c

(x+800)3c .

and

SS2 = 0.1 ·1000 ·SX2 = 0.1 ·1000 · 10005c

(x+1000)5c .
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Now we know that premium using Wang’s principle is

PX =
∫

∞

0
g(SX(x))dx.

Therefore in our case

75 = 0.1 · (
∫

∞

0
(

800
x+800

)
3c

dx+
∫

∞

0
(

1000
x+1000

)
5c

dx)

⇒ 750 = 8003c[
(x+800)1−3c

1−3c
]∞0 +10005c[

(x+1000)1−5c

1−5c
]∞0

So, 1−3c < 0 or c > 1
3 and 1−5c < 0 i.e c > 1

3 .

⇒ 750 = 8003c(0− 8001−3c

1−3c
)+10005c(0− 10001−5c

1−5c
)

⇒ 750 =
−800
1−3c

− 1000
1−5c

⇒ c =
26±

√
217

45
∴ c1 = 0.250424,c2 = 0.905132.

But c > 1
3 , hence c = 0.905132. Now using this value, if we integrate the transferred

survival functions of both portfolios we get,

PX1 = 0.1 · (
∫

∞

0
(

800
x+800

)
3c

dx

⇒ PX1 = 0.1 ·466.3646 = 46.64.

i.e premium for each policy of the first portfolio is

PX1 =
46636.46

1000
= 46.64.

In similar way we get premium for each policy of the second portfolio is

PX2 = 28.36.

We know that moment generating function of Pareto distribution does not exist. So, we
can not calculate premium using exponential principle.

The following table summarises the value of the relative risk loading factor, premium per
policy of the first portfolio, premium per policy of the second portfolio and the estimated
error for different premium principles.
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Name of principle Value of risk loading factor PX1 PX2 e
Expected value 2

13 46.15 28.85 225.3914
Variance 0.0001274833 47.95 27.05 225.3843

Standard deviation 0.8400134 46.64 28.36 225.3863
Quantile p-th 0.99999779551455661 61.47 13.53 226.2509

Wang c=0.905132 46.64 28.36 225.3863

We see that if our unfavourable risk follows Pareto distribution then variance principle
performs the best as it gives the least error. On the other hand performance of the quantile
principle is the worst because it gives the highest error.Though the rounded value of stan-
dard deviation principle and Wang’s principle are same, practically they are not exactly
same but their errors are exactly same.

Now, if we redefine our distributions as follows: X1∼Pa(1200,15) and X2∼Pa(850,8).

We know that mean of Pareto distribution is EX = α

β−1 . So, mean of first Pareto distribu-

tion is EX1 =
1200
15−1 = 600

7 , therefore, mean loss of risks from first portfolio is 600
7 · 0.1 =

60
7 = 8.571429 Therefore expected loss of the first portfolio is

ES1 =
60
7
·1000 = 8571.43.

Similarly, expected loss per policy of the second portfolio is 850
8−1 ·0.1 = 12.14.

ES2 =
850

8−1
·0.1 ·1000 = 12142.86.

That is, the overall total expected loss is 20714.29. Let us assume that the overall risk
premium (i.e. the risk premium + risk loading) is 25,000.

Also, the variance of the first distribution is

VarS1 = (85.714)2 ·90+100 · (12002 ·15
142 ·13

) = 1508944.

And similarly, variance of the second portfolio is

VarS1 = (
850
7

)2 ·90+100 · (8502 ·8
72 ·6

) = 3293027.
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For Wang’s principle we use g(x) = xc 0 < c < 1, and after simplification we get c =
0.846049.

The following table represents the corresponding relative risk loading factors, premiums
and e-values for different premium principles.

Name of principle Value of risk loading factor PX1 PX2 e
Expected value 0.2068963 10.34 14.66 55.33749

Variance 0.0008924898 9.92 15.08 55.35431
Standard deviation 1.408355 10.30 14.70 55.33896

Wang c=0.846049 10.27 14.73 55.33998

Here we see that by changing of parameters of Pareto distribution change the performance
level. In this case expected value principle performs the best and variance principle per-
forms the worst.

Now, we will calculate premiums and corresponding errors of different premium princi-
ples, considering that our random claims follow a light tail distribution, e.g exponential
distribution.

5.2 Example 2: Comparison of different premium principles using
exponential distribution

Let us again consider two portfolios of risks, each of which has 1000 policyholders. Let
for both portfolios for all risks with probability 0.9 there is no claim, with probability 0.1
there is a claim. Let the risks from the both portfolios follow the exponential distribution.

This time, we choose exponential distribution because it is a light tailed distribution, and
in our first example we used Pareto distribution II which is a heavy tail distribution.

We know that if a random variable X follow exponential distribution, i.e X ∼ Exp(λ ),
where λ > 0, then cumulative distribution function, probability density function, survival
function, moment generating function, quantile generating function, mean, variance and
moments and of the distribution are as follows:

• Distribution function FX(x) = 1− e−λx, x≥ 0.
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• Density function fX(x) = λe−λx, x≥ 0.

• Survival function SX(x) = e−λx, x≥ 0.

• Moment generating function MX(t) = E[etX ] = λ

λ−t , λ > t.

• Quantile function F−1(p) = − ln(1−p)
λ

, 0≤ p < 1.

• Expectation E[X ] = 1
λ
, λ > 0.

• Variance Var[X ] = 1
λ 2 , λ > 0.

• Moments EXn = n!
λ n , λ > 0.

Let us consider X1 ∼ Exp(0.002) and X2 ∼ Exp(0.005), whereX1 and X2 stands for risks
from first portfolio and second portfolio respectively.

Since we know that mean of exponential distribution is EX = 1
λ

. So, mean of first expo-
nential distribution is EX1 =

1
0.002 = 500, therefore, mean loss of risks from first portfolio

is 500 ·0.1 = 50

Hence expected loss of the first portfolio is ES1 = 50 ·1000 = 50,000.

Similarly, mean of second exponential distribution is EX2 =
1

0.005 = 200. Therefore overall
expected loss for second portfolio is ES2 = (200 ·0.1 ·1000) = 20,000.

That is, the overall expected loss is approximately 70,000. Let us assume that the overall
risk premium (i.e. the risk premium + risk loading) is 80,000.

Also, we know that variance of exponential distribution is VarX = 1
λ 2 . So, variance of

the first exponential distribution is VarX1 = 1
0.0022 = 250,000. Similarly variance of the

second distribution is VarX2 =
1

0.0052 = 40,000.

We know that aggregate variance is Var(S) = (EX)2 ·VarN +EN ·VarX . In our problem
N ∼ Bin(1000,0.1) so, EN = 1000 ·0.1 = 100 and VarN = 1000 ·0.1 · (1−0.9) = 90.

Hence variance of the first portfolio is VarS1 = 5002 · 90+ 100 · 250,000 = 47,500,000.
And variance of the second portfolio is VarS2 = 2002 ·90+100 ·40,000 = 7,600,000.

Now we will calculate premiums for each portfolio (and also for each policy) using differ-
ent premium calculation principles.
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5.2.1 Premiums using expected value principle

We know the expected value premium calculation principle is

PX = (1+θ)EX .

That is
80000 = (1+θ) · (ES1 +ES2)

⇒ 80000 = (1+θ) ·70000

⇒ θ =
1
7
.

Therefore, total premium for first portfolio is

PS1 = 50000 · (1+θ) = 57,142.86.

Hence premium for each policy of first portfolio is

PX1 =
57,142.86

1000
= 57.14.

Similarly total premium for the second portfolio is

PS2 = 20000(1+θ) = 22,857.14.

And hence premium for each policy of the second portfolio is

PX2 =
22857.14

1000
= 22.86.

5.2.2 Premiums using variance principle

We know tat variance principle for premium calculation is

PX = EX +θ ·VarX .

So, in our problem

80000 = ES1 +ES2 +θ · (VarS1 +VarS2)
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That is
80000 = 70000+θ(47500000+7600000)

⇒ θ =
20000

47500000+7600000
= 0.0001814882.

Therefore total premium of the first portfolio is

PS1 = 50000+θ ·47500000 = 58620.69.

And premium of each policy of the first portfolio is

PX1 =
58620.69

1000
= 58.62.

Similarly total premium of the second portfolio is

PS2 = 20000+θ ·7600000 = 21379.31.

And premium of per policy of second portfolio is

PX2 =
21379.31

1000
= 21.38.

5.2.3 Premiums using standard deviation principle

The formula for premium using standard deviation principle is

PX = EX +θ ·
√
(VarX).

So, in our case
80000 = (ES1 +ES2)+θ · (

√
VarS1 +

√
VarS2)

That is
80000 = 70000+θ(

√
47500000+

√
7600000)

⇒ θ =
10000

(
√

47500000+
√

7600000)
= 1.036395.

Therefore, total premium for first portfolio is

PS1 = 50000+θ
√

47500000 = 57142.86.
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Hence premium for each policy of first portfolio is

PX1 =
57142.86

1000
= 57.14.

Similarly total premium and premium per policy of second portfolio is

PS2 = 20000+θ
√

7600000 = 22857.14.

And premium per policy of second portfolio is

PX2 = 22.86.

5.2.4 Premium using exponential principle

We know that formula for premium using exponential principle is

PX =
1
β

ln(E[eβX ]).

And we know

E[eβX ] = MX(β ) =
λ

λ −β
.

Therefore
80 =

1
β
(

0.002
0.002−β

+
0.005

0.005−β
).

Solving of this equation for β gives

β =−0.082602293187943872821.

Now using this value we get premium of each policy of first portfolio is

PX1 = 45.34.

and premium of each policy of second portfolio is

PX2 = 34.66.
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5.2.5 Premium using quantile principle

We know that p-th quantile of exponential distribution is

F−1(p) =
− ln(1− p)

λ
, 0≤ p < 1.

So, p-th quantile of our first and second distributions are

F−1
1 (p) =

− ln(1− p)
0.002

,

and

F−1
1 (p) =

− ln(1− p)
0.005

,

So,

80 =
− ln(1− p)

0.002
+
− ln(1− p)

0.005
i.e

80 = 500 · (− ln(1− p))+200 · (− ln(1− p))

After simplifying we get
p = 0.107997.

Therefore, premium per policy of the first portfolio is

PX1 =
− ln(1− p)

0.002
= 57.14.

And premium for each policy of the second portfolio is

PX2 =
− ln(1− p)

0.005
= 22.86.

5.2.6 Calculation of premiums using Wang’s principle

For our convenience, again let us consider g(x) = xc 0 < c < 1. We know that survival
function of exponential distribution is

SX = e−λx, x≥ 0.
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So survival functions of the first and second portfolio considering with the probability are

SS1 = 0.1 ·1000 ·SX1 = 0.1 ·1000 · e−λ1x,

i.e
SS1 = 0.1 ·1000 · e−0.002x,

and
SS2 = 0.1 ·1000 ·SX2 = 0.1 ·1000 · e−λ2x,

i.e
SS2 = 0.1 ·1000 · e−0.005x.

Now we know that premium using Wang’s principle is

PX =
∫

∞

0
SX(x)dx.

Therefore in our case

80 = 0.1 · (
∫

∞

0
e−0.002· cxdx+

∫
∞

0
(e−0.005·cxdx)

⇒ 800 = [
e−0.002·cx

−0.002c
+

e−0.005cx

−0.005c
]∞0

⇒ 800 =
1

0.002c
+

1
0.005c

⇒ c =
7
8
.

Now using this value, if we integrate the transferred survival functions of both portfolios
we get,

PS1 = 0.1 ·1000 · (
∫

∞

0
e−0.002cxdx)

⇒ PS1 = 100 ·571.4236 = 57142.86,

i.e premium for each policy of the first portfolio is

PX1 =
57142.86

1000
= 57.14.

In similar way we get
PS2 = 22857.14,
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i.e premium for each policy of the second portfolio is

PX1 =
22857.14

1000
= 22.86.

The following table summarises the value of the relative risk loading factor, premium per
policy of the first portfolio, premium per policy of the second portfolio and the estimated
error for different premium principles.

Name of principle Value of risk loading factor PX1 PX2 e
Expected value 1

7 57.14 22.86 254.4231
Variance 0.0001814882 58.62 21.38 254.3714

Standard deviation 1.036395 57.14 22.86 254.4231
Exponential -0.08260229318794387 45.34 34.66 255.4484
Quantile p-th p=0.107997 57.14 22.86 254.4229

Wang c=7
8 57.14 22.86 254.4229

We see that expected value principle and standard deviation principle gives exactly same
answer,this is obvious because we know the expectation and standard deviation of expo-
nential distribution both are equal to 1

λ
. Also, see that premiums and errors of quantile

principle and Wang’s principle are exactly same this is because both of them are consid-
ering the tail distribution. Here we represent them as rounding to two decimal places.
Moreover, we see that if our random claims follow exponential distribution the variance
principle performs the best.

In our practical examples, we do not calculate premium using combined variational, tail
standard deviation and Dutch principles as they have two parameters and need further re-
search to use practically. We also do not use Swiss and Esscher principles to find premiums
as they seem to us more theoretical and required more research to use them practically.
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6 Conclusion

The crucial task to actuaries is to determine the risk loading for premiums, there is no
such premium calculation principle which is accepted by all (re)insurer to determine the
appropriate risk loading.

In our research, we calculate the risk loading and corresponding premiums using different
premium calculation principles. We also examine the performance level of each premium
principle.

Theoretically, we know that among all existing premium calculation principles, Wang’s
premium principle, by transforming the layer premium density, is the best as it satisfies
most of the properties of a premium principle but in practice we see that:

• In the case of heavy tail distribution (e.g Pareto II), variance principle performs
the best, whereas quantile principle performs the worst. On the other hand Wang
principle performs same as standard deviation principle though the premium values
are slightly different.

• In the case of light tail distribution (e.g Exponential), expected value principle and
standard deviation principle performs exactly same. Again variance principle per-
forms the best and the worst performance goes to exponential principle. Moreover,
the performance of quantile principle and wang principle are exactly same.

We also see that changing the value of parameters of the distribution does not affect the
performance level of the wang principle comparing with other principles. That is if we
change the value of the parameters the wang premium calculation principle perform almost
same as before.

Obviously, these small scenarios are not sufficient to say that Wang’s premium principle
does not perform well. But it gives a hint that the choice of premium principle might also
depend on the nature of a particular risk portfolio. Also, the comparison by justification
of premiums is just one possibility to measure the quality of a premium principle. The list
of nice properties still makes the Wang’s principle an appealing one and thus it certainly
requires further attention.
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