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INTRODUCTION 

Until recently, the protein-coding region of the human genome was considered 
to be the most relevant portion, as it encodes the functional building blocks of 
the organism. However, the protein-coding region represents only a small part 
of the human genome (1~2%, consisting of exons of ~20,000 protein-coding 
genes). Recent progress in high-throughput sequencing technology and the con-
current “noncoding revolution” have demonstrated that the number of non-
coding genes in humans is much higher than previously thought, even ex-
ceeding the number of protein-coding genes (GENCODE v23, 2015). Many 
noncoding transcripts are functional and crucial for normal functioning of the 
organism. 
 One of the best-studied subclasses of noncoding RNAs, microRNAs 
(miRNAs) are small single-stranded noncoding RNA molecules that regulate 
gene expression in a posttranscriptional manner. During the last 15 years, 
miRNAs have been in the limelight of human genetics due to their involvement 
in the development of several pathologies, particularly cancers. Because their 
expression profiles are altered in malignancies, miRNAs have been investigated 
as potential drug targets, and miRNAs with oncogenic or tumor-suppressor 
activities have been identified. The first fruits of this new knowledge are now 
becoming available for general public. At the time of writing, the first miRNA-
based cancer drug, MRX34, is being studied in Phase I trials and several other 
drugs are expected to follow. 
 Expression profiles of several miRNAs have been observed to correlate with 
cancer (sub)type, stage, and patient prognosis. Therefore, these miRNAs may 
potentially serve as biomarkers. As miRNAs are stable in different body fluids, 
they have the potential to act as valuable noninvasive biomarkers, which could 
greatly simplify the treatment decisions of physicians in a safe and patient-
friendly way. Such knowledge is already entering the clinic, as several diag-
nostic miRNA-based assays have become commercially available in recent 
years. 
 As with any complex trait, cancer predisposition involves the combinatorial 
effect of several risk factors. Over the last 10 years, intensive genome-wide 
association studies have identified many cancer-related genetic variants. How-
ever, mechanisms for how these variants translate into disease predisposition or 
phenotype remain poorly understood. Recent studies have integrated an additio-
nal layer of information in the analyses, investigating the influence of genetic 
variants on the global transcriptome. One potential mechanism for how genetic 
variants exert their effects on the transcriptome is through miRNA regulatory 
networks. 
 In this thesis, I give an overview of the biology of miRNAs, their relevance 
in cancer, and their interaction with genetic variation. In the experimental part, I 
describe the investigation of miRNA expression changes in a cohort of Estonian 
patients with non-small cell lung cancer, identifying miRNAs that may serve as 
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potential drug targets or biomarkers. Integrating the results of this experimental 
study with previous information, a systematic meta-analysis of differentially 
expressed miRNAs was performed, and a robust set of miRNAs that are up- or 
downregulated in non-small cell lung cancer was identified. Finally, it was 
investigated how genetic variation can influence miRNA activity, whether this 
interaction is reflected in the variation of the transcriptome, and whether 
miRNA-mediated mechanisms could contribute to the formation of phenotype 
or disease risk. 
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1. LITERATURE REVIEW 

1.1. MicroRNAs 

1.1.1. Overview 

The history of microRNA (miRNA) research dates back to the year 1993, when 
Victor Ambros, Gary Ruvkun, and their coworkers investigated the regulation of 
lin-14 translation by lin-4 in Caenorhabditis elegans. Strikingly, they discovered 
that lin-4 does not encode a protein, but rather encodes two small (~22- and ~61-
nucleotide [nt]-long) transcripts (Lee et al., 1993). In-depth analyses revealed that 
the short RNA encoded by lin-4 is partially complementary to the 3’ untranslated 
region (3’ UTR) of lin-14 and downregulates the transcript by antisense 
interaction (Lee et al., 1993; Wightman et al., 1993). At the time, this mechanism 
was believed to be an isolated case, rather than a widespread phenomenon. The 
second important milestone in the field was the discovery of RNA interference 
(RNAi) (Fire et al., 1998) and its functionality in plants via small noncoding 
interfering RNAs (siRNAs) (Hamilton and Baulcombe, 1999).  
 Support for the idea that miRNAs might represent a universal mechanism of 
gene regulation came with the discovery of another small noncoding RNA in C. 
elegans. Specifically, let-7 was shown to regulate the number of developmental 
genes in a time-dependent manner and, similarly to lin-4, to play an important 
role in developmental timing (Reinhart et al., 2000). As this RNA was found to 
be conserved in several eukaryotes (Pasquinelli et al., 2000), its functional rele-
vance was highly likely. Subsequent RNA cloning studies identified hundreds 
of miRNAs in worm, fly, and human (Lagos-Quintana, 2001; Lau, 2001; Lee, 
2001). With these discoveries, the miRNA field moved into the spotlight and 
during following years, the number of miRNA-related publications rose sharply 
(Fig. 1A).  

To date, miRNAs have been identified in animals (Lagos-Quintana, 2001; 
Lee et al., 1993), plants (Reinhart, 2002) and some protists (Lin et al., 2009). 
There are some differences in the miRNA biogenesis pathways and in how 
miRNAs regulate their targets in plants compared to animals. As this thesis 
focuses on mammalian (human) miRNAs, I do not provide an extensive 
discussion of miRNA counterparts in plants. Researchers have described a class 
of miRNA-like RNAs (milRNAs) in fungi, the biogenesis pathways of which 
are considerably different from those of miRNAs in other organisms (Lee et al., 
2010). Several viruses have been shown to encode miRNAs that are capable of 
regulating the expression of both viral and host genes (Bai et al., 2008). Positive 
correlation between miRNome size and organism complexity has led to the 
hypothesis that the acquisition of miRNA-mediated gene regulation allowed the 
emergence of highly complex organisms (Heimberg et al., 2008). In animals, 
miRNAs have been implicated in a wide range of biological processes, ranging 
from development (Reinhart et al., 2000) to defense against pathogens (Ma et 
al., 2011a) and even to the formation of memory (Gao et al., 2010a).  
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*Medline trend: automated yearly statistics of PubMed results for any query, 2004. 
Web resource at URL:http://dan.corlan.net/medline-trend.html. Accessed: 2016-04-09.  

(Archived by WebCite at http://www.webcitation.org/65RkD48SV) 

 
Figure 1. Increasing knowledge about miRNAs. A. Yearly number of miRNA-related 
publications in PubMed. B. Number of known mature miRNAs in the database miRBase. 
 
 
The reference database miRBase collects and curates identified miRNAs 
(Griffiths-Jones, 2004, 2006). Its latest version (v21) contains 28,645 mature 
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miRNA sequences from 233 species, including 2,588 human sequences. 
Although researchers are required to provide credible evidence about the 
validity of discovered miRNA(s), the database likely contains a number of 
incorrectly annotated sequences (Hansen et al., 2011). The number of newly 
discovered mature miRNAs continues to increase, albeit at a slower pace for 
human miRNAs, probably due to extensive prior research (Fig. 1B).  
 Nomenclature of miRNA transcripts follows specific rules. The name 
indicates the species (e.g., hsa- for human), RNA class (miRNA precursor: mir, 
mature miRNA: miR), and a number representing the order of discovery (Fig. 
2). If identical mature miRNA sequences are encoded from multiple genomic 
loci, then the corresponding precursor sequences and mature miRNAs are 
denoted with additional numbers. If a group of miRNAs has high sequence 
similarity on the mature-sequence level, then the miRNAs are grouped into 
families, members of which are distinguished by letters (e.g., hsa-mir-200a and 
hsa-mir-200b). A suffix is used to indicate which arm of the miRNA precursor 
sequence the mature miRNA originates from (e.g., hsa-miR-205-5p from the 5’ 
arm and hsa-miR-205-3p from 3’ arm of the precursor). Older nomenclature 
distinguished minor nonfunctional “passenger” strand miRNAs as “star” 
sequences (e.g., hsa-miR-205*); however, this nomenclature was replaced by 
the 3’-5’ system for clarity and because it is often difficult to determine the 
predominant arm.  
 

 
 
Figure 2. Nomenclature of miRNAs. 
 
 
Names of some of the earliest discovered miRNAs (e.g., hsa-let-7 family) 
deviate from this nomenclature for historical reasons. As miRBase has updated 
the names of previously existing miRNAs several times, all miRNA names in 
this thesis are standardized to match miRBase v21. Additionally, species 
indicators are omitted for the sake of brevity.  
 
 



16 

1.1.2. Genomic organization, biogenesis,  
and modification of miRNAs 

MicroRNAs are encoded by their own genes (intergenic miRNAs) or by 
transcriptional units residing in the introns or exons of protein-coding host 
genes (intragenic miRNAs) (Ambros et al., 2003; Rodriguez, 2004). Intron-
encoded miRNAs may be transcribed together with the host gene (Baskerville 
and Bartel, 2005) or independently by their own promoter. According to a 
recent annotation of known and novel miRNAs, most of the known miRNAs 
map to intergenic regions (~70%) and introns (~12%). Smaller proportions map 
to repeat regions (~8%), exons (~5%), and long noncoding transcripts (~5%) 
(Londin et al., 2015). In human, there are almost equal numbers of known inter-
genic and intragenic miRNA genes (Paczynska et al., 2015). Many miRNAs are 
conserved in metazoans (Pasquinelli et al., 2000), suggesting their involvement 
in fundamental biological processes.  
 In animals, canonical miRNAs are transcribed by RNA polymerase II (Lee 
et al., 2004) as polyadenylated and capped primary transcripts (pri-miRNAs). 
MicroRNAs may be transcribed alone or in clusters, in which one pri-miRNA 
contains precursor hairpins for several miRNAs. The pri-miRNA is cut by the 
microprocessor complex, which consists of two major components: the 
endonuclease III Drosha (Lee et al., 2003) cuts RNA, and Di George critical 
region 8 (DGCR8) binds the double-stranded RNA (dsRNA), guiding Drosha 
into the correct site (Han et al., 2004). The resulting ~70-nt-long precursor 
sequence (pre-miRNA) consists of one hairpin structure, a 5’-phosphate group, 
and a 2-nt overhang on the 3’ end. Pre-miRNA binds with a complex of 
exportin 5 (Exp 5) and Ran-GTP, which transports the complex to the cell 
cytoplasm (Lund and Gu, 2004; Yi et al., 2003).  

The next step of preprocessing is another cleavage by the endonuclease III 
class enzyme Dicer (Bernstein et al., 2001; Grishok et al., 2001; Hutvágner et 
al., 2001; Ketting et al., 2001). Dicer forms a complex with several cofactors, 
including TAR DNA-binding protein (TARDBP), transactivating response 
RNA-binding protein (TRBP) (Chendrimada et al., 2005), and/or protein 
activator of interferon-induced protein kinase (PACT) (Lee et al., 2006), which 
mediate the substrate specificity of Dicer. The resulting ~21-nt-long duplex is 
loaded into the RNA-induced silencing complex (RISC), which consists of 
Argonaute proteins (in human, AGO1–4) and GW182. In human, AGO2 is the 
only member of the Argonaute family capable of cleaving the target strand 
(Höck and Meister, 2008). Other members of the protein family function as 
structural components of RISC or participate in translational repression of the 
target gene. GW182 acts as a “bridge” allowing RISC to interact with additional 
protein complexes involved in the downregulation of gene activity (Behm-
Ansmant et al., 2006; Rehwinkel et al., 2005).  
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Figure 3. Canonical microRNA biogenesis pathway. 
 
 
In RISC, miRNA duplex unwinding occurs. The biologically active “leading” 
or “guide” strand remains with the functional complex, whereas the inactive 
“passenger” or “star” strand is cleaved. In animals, the strand preferably chosen 
as the guide strand has a thermodynamically more unstable 5’ end and uracil as 
the first nucleotide (Khvorova et al., 2003; Schwarz et al., 2003). In many cases, 
however, the passenger strand is also stable and functional (Okamura et al., 
2008). Alternative arm selection or “arm-switching” events result in differential 
expression profiles of the miRNA arms in different tissues and developmental 
stages (Chiang et al., 2010), which can influence the corresponding targetome 
(Marco et al., 2012).  
 Whereas the overwhelming majority of miRNAs are preprocessed by the 
canonical pathway, some functional miRNAs have a slightly different bio-
genesis. Well-known examples include the mirtrons – miRNAs that are pro-
cessed independently of the microprocessor complex (Berezikov et al., 2007; 
Okamura et al., 2007; Ruby et al., 2007). These miRNAs originate from introns 
of the host genes and are processed out of transcript by spliceosome. The 
resulting lariat is linearized by RNA lariat debranching enzyme (DBR1) and, if 
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needed, trimmed from the 3’ or 5’ end (3’- or 5’-tailed mirtrons) (Ruby et al., 
2007). The rest of the biogenesis pathway is identical to the canonical type.  
 For at least one known miRNA, miR-451a, processing by Dicer is skipped. 
Instead, AGO2 performs cutting of the pre-miR-451a (Cheloufi et al., 2010; 
Cifuentes et al., 2010; Yang and Lai, 2010). Subsequently, the 3’-5’ poly(A)-
specific exonuclease PARN trims the remaining part of the pre-miRNA (Yoda 
et al., 2013), leaving a short 18-nt functional miRNA.  
 Another less-characterized noncanonical class of miRNAs are the intronic 
simtrons – small RNAs that are preprocessed independently of DGCR8, Dicer 
and spliceosome (Havens et al., 2012). Fraction of similarly sized small RNAs 
originate from noncoding RNAs, such as snoRNAs (Ender et al., 2008), tRNAs 
(Maute et al., 2013), endogenous small interfering RNAs (endo-siRNAs) 
(Babiarz et al., 2008; Tam et al., 2008; Watanabe et al., 2008), and small hairpin 
RNAs (shRNAs) (Babiarz et al., 2008), all of which are processed inde-
pendently from Drosha/DGCR8. Although the origin and biogenesis of these 
small RNAs differ substantially from those of canonical miRNAs, they are able 
to form complexes with RISC and, in principle, regulate gene expression. For 
these reasons, some of them are classified together with miRNAs.  
 In addition to 5’ and 3’ miRNAs, a specific class of miRNA-offset RNAs 
(moRs) are frequently processed from the proximal regions of miRNA pre-
cursors (Langenberger et al., 2009; Shi et al., 2009; Zhou et al., 2012). How-
ever, the relative abundance of moRs is low compared to canonical mature 
forms (Zhou et al., 2012). As a result, their functions, action mechanisms, and 
relevance are not well understood. These exceptions illustrate that the rules in 
biological systems are often flexible, such that several independent ways can be 
used to address a common task.  
 Second-generation sequencing experiments have demonstrated that there is 
often some variability in the sequences of mature miRNA derived from the 
same pre-miRNA. Variants that differ from the miRBase reference sequence are 
termed isomiRs (Morin et al., 2008), and they are generated through several 
mechanisms. Processing steps by Drosha and Dicer are not completely precise 
and produce some portion of miRNAs with variable 3’ or 5’ ends (templated 
additions or trimmed ends in mature sequence) (Morin et al., 2008). 
MicroRNAs can be imprecisely trimmed by exonucleases like Nibbler, resulting 
in a population of variable miRNAs (Han et al., 2011). Nontemplate additions 
can be explained by the action of terminal nucleotidyl transferases (TNTases), 
which add specific nucleotides to the end of mature miRNA (Burroughs et al., 
2010). RNA A-I editing by ADAR enzymes changes the internal sequence of 
some miRNAs (Kawahara et al., 2007). Finally, single-nucleotide poly-
morphisms (SNPs) can cause mature miRNA to differ from the reference 
sequence (Gong et al., 2012). Whereas changes in the 3’ end of miRNA are 
expected to have a minor effect, differences in the 5’ end can substantially 
influence the targetome of the miRNA.  
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1.1.3. Mode of action 

According to current knowledge, miRNAs most commonly regulate gene 
expression in animals by binding to the 3’ UTR of target mRNA (reviewed in; 
(Bartel, 2009)). This binding results in cleavage, translational arrest, or de-
stabilization and subsequent decay of the mRNA. Cleavage of mRNA, which is 
mediated by the RNAse III class enzyme AGO2, only occurs when there is 
perfect complementarity between the mRNA and miRNA. Cleavage is a 
prevalent mechanism in plants but rarely reported in animals (Yekta, 2004).  
 Translational arrest was long thought to be the main mechanism of miRNA-
mediated regulation in animals. Several models of action have been proposed 
and supported by experimental data, but the debate about the relevance of each 
of those is still ongoing. For example, miR-RISC has been shown to recruit the 
eIF6 antiassociation factor, which, in turn, inhibits association of the 60S 
subunit and subsequent formation of functional ribosome (Chendrimada et al., 
2007). Similarly, several studies have demonstrated that miR-RISC inhibits 
recognition of the m7-G cap-structure by eIF4E (Humphreys et al., 2005; Pillai 
et al., 2005). Additionally, miRNAs have been proposed to have a postinitiation 
inhibitory effect on translational elongation, causing ribosomal drop-off and 
cotranslational protein degradation (Petersen et al., 2006).  
 Substantial evidence supports the idea that regulation by miR-RISC has a 
destabilizing effect on mRNA (Bagga et al., 2005), through the combined effect 
of poly(A) tail removal (Giraldez et al., 2006), mRNA decapping (Behm-
Ansmant et al., 2006; Rehwinkel et al., 2005), and subsequent 5’-3’ de-
gradation. The miR-RISC complexes with bound targets are sometimes se-
questered to specific foci, P-bodies, which are enriched by enzymes functioning 
in mRNA degradation (Liu et al., 2005a, 2005b). mRNA destabilization and 
subsequent degradation is the main contributor to the miRNA-mediated 
reduction of protein level (Eichhorn et al., 2014; Guo et al., 2010) and is usually 
coupled with the more modest effect of translational arrest.  
 Although miRNAs predominantly function through binding to the 3’ UTR, 
in silico predictions and experimental data show that miRNAs can also bind to 
the 5’ UTR (Lytle et al., 2007; Miranda et al., 2006) and coding DNA sequence 
(CDSs) (Tay et al., 2008). However, targeting in those regions does not confer 
as large of an effect on target expression as does targeting the 3’ UTR, but 
rather complements the latter (Fang and Rajewsky, 2011; Grimson et al., 2007).  
 In some cases, miRNAs may regulate gene expression in ways which are 
quite different from overall logic. For example, in rare cases they can upregulate 
(rather than downregulate) the expression of target genes (Vasudevan et al., 
2007). There are also reports that some miRNAs exert their regulatory effect on 
the DNA level, by activating (Place et al., 2008) or silencing transcription (Kim 
et al., 2008).  
 In contrast to plants, miRNA-mediated regulation in animals usually 
involves imperfect complementarity between miRNA and mRNA. The main 
contributor of animal miRNA action is the amount of complementarity between 
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the 5’ end of the miRNA and miRNA target site (Lewis et al., 2003). This 
critical miRNA recognition element (MRE) is designated as the “seed” region 
and comprises nucleotides 2 to 7 from the 5’ end of miRNA (Brennecke et al., 
2005; Lewis et al., 2003, 2005). Approximately 80% of all experimentally 
supported miRNA target sites have some degree of complementarity with the 
MRE (Grosswendt et al., 2014). Canonical miRNA target sites are classified 
based on the length of perfect pairing (Fig. 4). Whereas minimal MREs have 
perfect pairing only with the miRNA seed region (6mer), more efficient 
canonical MREs have adenine adjacent to the first position of miRNA (7mer-
A1), additional pairing in position 8 of the miRNA (7mer-m8), or both features 
(8mer) (Lewis et al., 2005).  
 

 
 
 
 
 
 
 
 
 
 

Figure 4. Schematic representations of canonical miRNA target sites in order of in-
creasing effectiveness.  
 
 
 
Several studies have described functional target sites that do not adhere to the 
requirement of perfect pairing with the seed region. Examples of these 
noncanonical MREs involve “centered” target sites with complementarity in the 
central part of the miRNA. Centered MREs typically affect target on the protein 
level (Martin et al., 2014). High-throughput experiments have shown that some 
MREs with wobble, mismatch, or bulge in the seed region overlap with RISC 
binding sites (Chi et al., 2012; Hafner et al., 2010; Helwak et al., 2013). For 
example, G-bulge sites, which have a bulging G nucleotide in the seed region, 
could comprise more than 15% of putative MREs identified from the HITS-
CLIP dataset of mouse brain (Chi et al., 2012). Mismatches in the seed region 
can be compensated (to some extent) by pairing in nucleotides 13–16. However, 
these so-called 3’-compensatory sites (Friedman et al., 2009) represent a small 
proportion of all predicted binding sites (Bartel, 2009). Although noncanonical 
target sites seem to be widespread (Helwak et al., 2013), their effects on the 
mRNA and protein levels are weaker than those of canonical MREs (Khorshid 
et al., 2013; Wang, 2014).  
 According to estimates from in silico target prediction algorithms, more than 
60% of all human protein-coding genes have been under positive selection to 
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maintain pairing with miRNAs (Friedman et al., 2009) and are, therefore, likely 
targets. One animal miRNA may regulate hundreds of targets, and one target 
may be regulated by several miRNAs. Hence, the miRNA regulatory networks 
are very complex. Furthermore, miRNA action depends on the spatiotemporal 
expression profile and cellular context (e.g., targetome, regulating transcription 
factors, and competing effects of other miRNAs and RNA-binding proteins 
[RBPs]). As a result, it can be difficult to untangle the functions of one 
particular miRNA. A single MRE typically has a modest effect on protein level 
(Baek et al., 2008), but the cooperation of several binding sites can have an 
enhanced impact (Doench and Sharp, 2004; Grimson et al., 2007).  
 In addition to known cellular pathways and processes under the regulation of 
specific sets of miRNAs (e.g., hypoxia pathway under regulation of miR-210-
3p, as reviewed in; (Chan et al., 2012; Huang et al., 2010)), many miRNAs have 
more general function of ensuring the robustness of transcriptional programs. 
MicroRNAs frequently participate in incoherent feedforward and negative 
feedback loops, which can buffer the noise arising from stochastic events, such 
as leaky transcription (reviewed in; (Ebert and Sharp, 2012)). The transcriptome 
of many tissues tends to be depleted of the MREs of miRNAs expressed in the 
same tissue. This “target avoidance” phenomenon is necessary for maintaining 
tissue specificity and developmental timing (Farh et al., 2005; Stark et al., 
2005).  
 Taken together, these previous studies suggest that miRNAs participate in 
tight spatiotemporal control over the expression of mRNAs and proteins. This 
control, in turn, is a prerequisite for correct functioning of cellular systems in 
complex organisms.  
 

 
1.2. MicroRNA profiling and analysis strategies 

Several strategies for identifying the biological functions of miRNAs have been 
developed. This section discusses the main methodological approaches used in 
miRNA research.  
 
 

1.2.1. MicroRNA expression profiling 

During the past 15 years, three main methods have been routinely used for 
profiling the expressions of miRNA and mRNA. These methods have been 
modified to accommodate the technical problems arising from the small size of 
mature miRNAs.  
 
 

1.2.1.1. Expression arrays 

Expression array technologies are based on hybridization between fluorescently 
labelled target sequences and complementary detection probes attached to a 
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glass slide or bead. After removal of the unhybridized material, the quantity of 
hybridized sequences is determined by the strength of the light signal in each set 
of identical detection probes. Signals are detected and quantified by a spe-
cialized scanner, resulting in numerical values. Subsequent preprocessing (e.g., 
quality control, filtering, transformation, normalization) and statistical analysis 
methods vary depending on the specific array platform, dataset, study design, 
bioinformatics software package, and biological question.  
 The short length of miRNAs limits options for optimizing the melting 
temperature (Tm) over hundreds of detection probes. However, this conside-
ration is crucial for avoiding biases in binding efficiencies. Several strategies 
have been used to address this issue. For example, locked nucleic acids (LNAs) 
can be incorporated into detection probes to achieve more stable Tm values over 
the array (Castoldi et al., 2006). Another strategy is to optimize the length of 
each detection probe (Baskerville and Bartel, 2005).  
 The main advantage of expression arrays is their relatively low cost for 
global miRNome profiling compared to other methods. Disadvantages include 
their limited dynamic range and ability to detect only the specific set of 
miRNAs used in array design (usually based on current miRBase version). 
Thus, novel miRNAs and isomiRs remain undetected. Due to the recent 
decrease in cost and substantial benefits of massively parallel sequencing, 
microarray-based methods are expected to become outdated in coming years.  
 
 

1.2.1.2. Small RNA sequencing 

The first step of small RNA sequencing methods is preparation of a cDNA 
library from a small RNA sample, followed by parallel sequencing of fragments 
in the library. Standard bioinformatics preprocessing steps include removal of 
sequencing adapters, quality control, and read filtering. Preprocessed reads are 
aligned to the reference genome, and to the mature and precursor miRNA 
sequences. Expression of each miRNA is determined by counting the number of 
reads that map to the region of mature miRNA. This count is used in subsequent 
preprocessing and analysis steps. As these technologies determine the discrete 
counts of reads, rather than the intensities of light signals, most of the widely 
used normalization and/or statistical analysis methods differ substantially from 
methods used in expression array analyses (compared in; (Rapaport et al., 2013; 
Soneson and Delorenzi, 2013)).  
 The main advantage of small RNA sequencing is that, in addition to miRNA 
expression quantification, acquired data can be used to detect isomiRs and 
identify novel miRNAs (Morin et al., 2008). Important disadvantages are the 
requirement for a larger amount of RNA input, a complicated library pre-
paration procedure, and a considerably higher cost compared to array-based 
technologies.  
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1.2.1.3. Quantitative reverse transcription –  
polymerase chain reaction (qRT-PCR) 

The qRT-PCR method is based on reverse transcription (RT) of miRNAs to 
synthesize cDNA, followed by quantitative polymerase chain reaction (qPCR) 
to quantify the accumulated product by measuring the light emitted in each 
round of amplification. To accommodate qRT-PCR to the short length of target 
sequences, specific stem-loop primers can be used in the RT phase (Chen et al., 
2005). An alternative strategy involves polyadenylation of the miRNA before 
the RT step and subsequent use of universal primers. The qRT-PCR approach 
has been used primarily for quantifying specific preselected miRNAs and 
validating results of expression arrays or small RNA sequencing experiments. 
However, panels of many miRNA primers are available in microfluidic plate 
format for global profiling of many miRNAs. The Tm optimization strategies for 
qRT-PCR panels are similar to those used for miRNA expression arrays.  
 The major advantage of qRT-PCR is that it offers the highest detection 
sensitivity among available methods, making it the method of choice when the 
quantity of input material is low. Disadvantages include the possibility of 
obtaining quantifications only for a set of preselected miRNAs and a higher 
price compared to expression arrays.  
 
 

1.2.2. Target prediction algorithms 

Substantial effort has been made towards developing bioinformatic methods to 
predict targets of miRNAs of interest. Numerous target prediction methods have 
been developed for animals and plants. However, because target regulation 
follows different rules in plants versus animals (i.e., in plants, target-miRNA 
complementarity must be complete or near-complete, and there are no prefe-
rential target site locations in 3’ UTRs), I focus only on animal-specific 
approaches in this thesis. Target prediction for animal miRNA targets is also 
computationally more complex, because only partial complementarity between 
the target and miRNA is necessary for regulation.  
 Perfect or near-perfect complementarity between the miRNA seed region 
and target is a major contributor to miRNA functionality (Lewis et al., 2003, 
2005). Consequently, the easiest and most naïve way to predict putative miRNA 
targets would be to search for perfectly complementary sites between the 
minimal 6mer seed region of miRNA and the target transcript. However, as this 
approach yields many false positives, additional information is necessary to 
enhance the usefulness of in silico target prediction.  
 Some frequently used additional criteria for target prediction are as follows:  
1. Non-seed complementarity: Larger complementarity outside the seed region, in 

the 3’ end of miRNA, enhances miRNA effectiveness  (Grimson et al., 2007).  
2. Conservation: Similarly to other genomic elements, MREs that are con-

served in several species are more likely to be functional. However, using 
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this threshold as a strict filter misses the large number of nonconserved but 
functional target sites (Farh et al., 2005).  

3. Free energy: Higher stability of the miRNA-mRNA duplex is associated 
with a stronger effect of MRE.  

4. Target site accessibility: For miRNA-mediated gene regulation to be 
functional, the secondary structure of the target must permit binding of the 
miRNA and accompanying protein complex.  

5. Local AU percentage: Greater AU nucleotide content near the functional 
binding site has been correlated with greater strength of the MRE (Grimson 
et al., 2007), probably due to the more favorable secondary structure of 
mRNA and, therefore, better accessibility of the binding site.  

6. Number of target sites: Presence of multiple binding sites in one 3’ UTR 
enhances the functionality of a given miRNA (Grimson et al., 2007).  

7. Target site location and distribution: Empirical evidence indicates that MREs 
positioned near the 5’ or 3’ end of the 3’ UTR are functionally stronger than 
those positioned in the middle (Grimson et al., 2007). Additionally, pairs of 
closely positioned target sites have a synergistic effect on gene regulation 
(Grimson et al., 2007).  

8. Pairing stability in miRNA seed region: MicroRNAs having globally weaker 
seed pairing stability with their targetome have a smaller proficiency of gene 
regulation (Garcia et al., 2011).  

9. Target abundance: MicroRNAs targeting a larger number of genes have 
smaller effectiveness of gene regulation (Garcia et al., 2011).  

 
Earlier prediction algorithms used a rule-based approach to identify putative 
miRNA binding sites. These algorithms were based on features defined from 
information gathered through low-throughput experiments. Some newer 
implementations use more complex approaches and experimentally validated 
data to train the algorithms. The training of the algorithm can involve several 
machine-learning strategies, such as support vector machines (Wang and El 
Naqa, 2008) or artificial neural networks (Chandra et al., 2010). However, some 
of the datasets used for defining rules or training algorithms may not be 
representative, due to the small number of confidently validated functional and 
nonfunctional miRNA-target interactions (Fan and Kurgan, 2015). Most 
algorithms have been implemented for predicting target sites from the 3’ UTRs 
of genes. Nevertheless, some of these algorithms can also be used for target 
prediction from the coding regions of genes (by using the full transcript as 
input), whereas others implement this feature exclusively (e.g., DIANA microT-
CDS). In the following subsection, I will discuss the principles of some of the 
most widely used target prediction algorithms.  
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1.2.2.1. Overview of the algorithms 

1.2.2.1.1. Method of Stark et al. 
The first study to utilize the in silico method for miRNA target prediction 
sought to identify targets of the Drosophilia melanogaster miRNome (Stark et 
al., 2003). Authors screened 3’ UTRs for complementarity between the mRNA 
and first eight nucleotides from the 5’ end of miRNA. Differences between the 
observed free folding energy (ΔG) and binding energies of random sequences 
were measured by Z-scores, with a strict criterion of ܼ ≥ 3 being used as a 
threshold for conservative target prediction.  

1.2.2.1.2. TargetScan, context+ score, and probability of preferentially 
conserved targeting (PCT) 
One of the first target prediction algorithms to be developed (Lewis et al., 2003, 
2005), TargetScan remains one of the most popular strategies for miRNA target 
prediction. This simple algorithm performed relatively well in independent test 
sets (Fan and Kurgan, 2015). The method searches for matches between the 
miRNA seed region (8mer, 7mer-A1, 7mer-m8) and the 3’ UTR of the target 
gene. Conservation of the target site across species is used as an additional filter 
for target site identification (although prediction without the conservation filter 
is possible). The original algorithm (Lewis et al., 2003) considered free binding 
energy constraints, pairing efficiency outside the seed region, and multiple 
binding sites. However, these criteria were dropped in the current implemen-
tation, denoted as TargetScanS (Lewis et al., 2005). The resulting precomputed 
target database has been renewed several times (v7.0 is the latest version, at the 
time of writing). The algorithm also has been used to predict targets from CDSs 
(Lewis et al., 2005).  
 In conjunction with the TargetScan algorithm, the context+ score has been 
widely used for the prioritization of target sites (Garcia et al., 2011; Grimson et 
al., 2007). This score combines contributions from six contextual miRNA 
binding site features that correlate with targeting efficiency and were identified 
in gene downregulation data from miRNA transfection experiments (Grimson et 
al., 2007). These features are the site type (7mer-A1, 7mer-m8, 8mer), pairing 
in the 3’ region of miRNA, local AU quantity, binding site location, global 
miRNA binding site abundance, and miRNA seed pairing stability. Smaller 
context+ score values indicate more favorable binding and a higher possibility 
that the miRNA-target pair is functional and biologically relevant. The recent 
update of the score (context++ score) improves the predictor even further, using 
14 contextual features (Agarwal et al., 2015). Finally, the PCT method (Fried-
man et al., 2009) can be used to identify MREs that are selectively maintained 
in the evolution due to miRNA targeting and, therefore, potentially more 
relevant.  
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1.2.2.1.3. DIANA-microT algorithms 
The first iteration of the DIANA-microT algorithm was developed at the same 
time as TargetScan. To develop this algorithm, the authors carried out experi-
ments with putative miRNA-mRNA targets to define features that influence 
miRNA repression strength (Kiriakidou, 2004). The initial algorithm used 
dynamic programming to identify the mRNA-miRNA duplex with a minimal 
binding energy threshold. Additional requirements included perfect or near-
perfect complementarity in the 5’ end of the miRNA-mRNA duplex (up to two 
wobble pairs allowed), at least 5-nt-long canonical or wobble pairing in the 3’ 
end of the duplex, and the presence of a central bulge or loop. 

A major modification of the method, DIANA-microT v3.0 (Maragkakis et al., 
2009a, 2009b) uses dynamic programming to identify the best-scoring alignment 
of 6- to 9-nt binding in the 5’ end of the miRNA and 3’ UTR of the target. For 
perfectly complementary regions that are smaller than 7 nt (including 7–9 nt 
regions with wobble pairs), additional constraints for free binding energy are 
used. This additional filter is achieved by using shuffled “mock” miRNAs for 
defining the background and identifying target sites that have significantly lower 
free binding energy than the background. Species conservation information is 
used to score each MRE (compared to MREs of the mock miRNAs). Individual 
scores per gene are used to calculate the miRNA target gene score (miTG).  
 DIANA-microT v4 (Maragkakis et al., 2011) enhanced the previous 
algorithm by using available pulsed stable isotope labeling with amino acids in 
cell culture (pSILAC) data  (Selbach et al., 2008), instead of shuffled mock 
miRNAs, for defining the nonfunctional background. The latest version, 
DIANA-microT-CDS (Paraskevopoulou et al., 2013; Reczko et al., 2012), is 
one of the few algorithms to address specifically miRNA target site identi-
fication from the CDS, in addition to 3’ UTR. This algorithm uses dynamic 
programming for putative MRE identification. Target site conservation, target 
site accessibility, local AU content, distance from the 3’ UTR end, target site 
distance from other target sites, free binding energy, and miRNA binding 
pattern are used as additional features for MRE scoring. Feature selection, target 
site scoring, and binding site prioritization were carried out by using available 
PAR-CLiP data (Hafner et al., 2010).  

1.2.2.1.4. miRanda and miRSVR 
The miRanda algorithm (Enright et al., 2003; John et al., 2004) aligns the 
miRNA sequence against the 3’ UTR and uses alignment quality scores to 
evaluate binding strength. Subsequently, free binding energy is calculated and 
used to filter the results. The algorithm can be used with or without the require-
ment of strict complementarity in the 7-nt seed region. Additional conservation 
filters are added for the precomputed results (http://www.microrna.org/).  
 Together with miRanda algorithm, the miRSVR score can be used as an 
additional measure of binding site efficiency (Betel et al., 2010). This measure 
was constructed by using the machine-learning approach of support vector 
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regression, in which the model was trained on gene expression data from 
miRNA transfection experiments (Grimson et al., 2007). Several binding site 
and sequence context features were used for training, as follows:  
 
MRE features 
1. Complementarity with the seed region 
2. Complementarity in the 3’ part of the miRNA 
 
Local context features 
3. AU nucleotide quantity in the MRE-flanking region 
4. Secondary structure accessibility 
 
Global context features 
5. Length of the 3’ UTR 
6. MRE distance from the UTR ends 
7. Conservation level of the MRE region 
 
A lower (negative) miRSVR score indicates a higher probability that the 
binding site is functional. Unlike the context+ score, miRSVR is also useful for 
prioritizing noncanonical binding sites.  

1.2.2.1.5. PicTar 
PicTar (Krek et al., 2005) uses the 7-nt seed requirement, conservation, and free 
energy filters for identifying a set of highly probable binding sites, called 
anchors. If the 3’ UTR has enough anchors, then a hidden Markov model is 
used to calculate the maximum likelihood that the corresponding 3’ UTR will 
be targeted by some combination of input miRNAs. Therefore, PicTar 
specifically addresses the combinatorial effect of miRNAs.  

1.2.2.1.6. Probability of interaction by target accessibility (PITA) 
The PITA (Kertesz et al., 2007) algorithm assesses miRNA-mRNA comple-
mentarity and the accessibility of putative miRNA target sites for RISC. The 
method searches for 6- to 8-nt complementary seed regions from the target 3’ 
UTR. Dynamic programming is used to calculate the minimum free energy of 
the putative miRNA-mRNA duplex (ΔGduplex) and the energy required to make 
the binding site accessible (ΔGopen). The difference between these two energies 
(ΔΔG) is used to prioritize individual target sites. Additionally, the effect of 
multiple binding sites of one miRNA is calculated by the formula:  
 ܶ = ෍݁௦೔௡݃݋݈

௜ୀଵ  

 
where ݏ௜ is the ΔΔG of an individual binding site; and ݊ is the number of 
binding sites for the corresponding miRNA.  
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1.2.2.2. Performance of target prediction algorithms 

In silico target prediction algorithms are useful for finding putative miRNA-
target interactions and are usually the first step when interpreting the functions 
of miRNA(s) of interest. However, these methods also have limitations, such as 
a limited ability to identify truly functional miRNA-target pairs and some 
proportion of false positives. Attempts have been made to assess the perfor-
mances of target prediction algorithms (Maragkakis et al., 2009c; Rajewsky, 
2006; Sethupathy et al., 2006). For accurate analysis of performance, indepen-
dent (i.e., not used for algorithm training), reasonably large, and confidently 
identified sets of true and false miRNA-target associations are needed. 
Experimentally validated miRNA-target pairs or MREs supported by AGO-
CLIP have been routinely used as true associations.  
 Algorithm performance can be assessed by several measures. Sensitivity 
indicates the proportion of correctly predicted miRNA-target interactions 
among all true associations, whereas specificity indicates the proportion of false 
miRNA-target interactions that are correctly identified as false. Precision 
indicates the proportion of identified miRNA targets that are true targets. A 
good prediction algorithm should combine high sensitivity, specificity, and 
precision. The ability of prediction algorithms to pinpoint true target associa-
tions is often evaluated by the receiver operator characteristic (ROC) curve, 
wherein the x-axis denotes 1-specificity and the y-axis denotes sensitivity. In 
the case of a continuous predictor indicating the probability of a real interaction 
(e.g., context+ or miRSVR score), the sensitivity and specificity are calculated 
for each predictor value and plotted as a curve. A high value for the area under 
the ROC curve (AUC) indicates good algorithm performance; an AUC of 0.5 
indicates poor performance and random classification.  
 Fan and Kurgan carried out the most comprehensive comparative analysis of 
prediction algorithms to date (Fan and Kurgan, 2015). After reviewing 38 
algorithms designed for miRNA target prediction in animals, the authors 
comprehensively evaluated the performances of seven algorithms: TargetScan, 
DIANA-microT-CDS, miRanda, PicTar, miRmap, miRtarget2, and EIMMo. 
Confidently validated miR-target interactions (by qRT-PCR, luciferase assay, or 
Western blot) from miRTarbase (Hsu et al., 2014) were used to construct 
corresponding sets of functional and nonfunctional pairs. Unlike similar studies, 
the authors exclusively used interactions that were validated after the newest 
tested prediction algorithm was released, to rule out potential overlap between 
the test set used for evaluation and training sets used for prediction algorithm 
optimization.  
 The authors reported significantly better performances for algorithms that 
made predictions at the target gene level (AUC 0.59–0.75), compared to those 
making predictions at the binding site level (AUC 0.52–0.67). Among the tested 
algorithms, TargetScan and DIANA-microT-CDS had good overall performan-
ces in most aspects. PicTar (AUC 0.59 and 0.54 for gene and binding site level) 
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had relatively low sensitivity (0.34 and 0.27) but high specificity (0.83 and 
0.80), meaning that the predicted target sites were more likely to be true MREs.  
 One widely used strategy to identify more credible set of miRNA targets is 
to intersect the results of several target prediction algorithms. This approach 
will reduce the sensitivity of the prediction, while making the results more 
conservative by increasing the specificity. Additionally, overlapping the in 
silico predicted MREs with experimentally determined RISC binding sites and 
prioritizing targets based on miRNA binding efficiency measures (e.g context+ 
and miRSVR scores) can increase the specificity of target prediction algorithms.  
 In conclusion, algorithms utilizing different and often quite sophisticated 
methods for target prediction can serve as tools for narrowing down the 
potential targetome and obtaining an overall view of the functions of the 
miRNA(s) of interest. The most interesting interactions having potential impact 
on cellular networks, traits, or pathogenic changes should be validated experi-
mentally before they are declared to be drug targets or biomarkers.  
 
 

1.2.3. Experimental techniques for miRNA target identification 

Various experimental techniques are available for identifying miRNA targets 
and complementing the results of silico target predictions. Experimentally 
supported mRNA-miRNA interactions have been collected in databases, such as 
TarBase (Vlachos et al., 2015), miRTarbase (Chou et al., 2016), and miRecords 
(Xiao et al., 2009). Methods can be classified based on scope (low- vs. high-
throughput) or level of biological information (effect on mRNA vs. protein 
level).  
 

1.2.3.1. Reporter gene assays 

Often considered to be the gold standard for miRNA target validation, reporter 
gene assays are used to determine whether an interaction exists between the 
miRNA and target sequence (Lewis et al., 2003). The target region is cloned 
into a reporter vector, downstream of the open reading frame (ORF) of the gene 
encoding a fluorescent protein (e.g., luciferase). Cotransfection with an miRNA 
mimic targeting the region will result in reduced emission of light by the 
fluorescent reporter protein, indicating a functional interaction between the 
miRNA and tested target. Similarly, it is possible to downregulate an endoge-
nously expressed miRNA by using chemically modified anti-miR oligonucleo-
tides (AMOs), and then test the effect on target sequence regulation. However, 
this is still model system with its limitations  many factors may influence 
miRNA binding under physiological conditions.  
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1.2.3.2. Gene expression profiling after modulation of the miRNA level 

A commonly used strategy to determine the effect of an miRNA on the tran-
scriptome level is to use gene expression profiling methods after transfection 
with an miRNA mimic or after downregulation of the miRNA by AMOs. This 
strategy can be implemented in a high-throughput (e.g., utilizing microarrays or 
massively parallel sequencing techniques) or low-throughput manner (e.g., 
utilizing qRT-PCR or Northern blotting to determine expression changes of a 
specific target gene). However, this strategy cannot distinguish the direct effect 
of miRNA binding from secondary effects, such as those that emerge from the 
interplay between genes in regulatory networks and loops.  
 
 

1.2.3.3. Determining protein abundance after modulation  
of the miRNA level 

To determine the effects of miRNA targeting on the protein level, protein 
abundance can be measured after transfection with an miRNA mimic or AMO. 
Low-throughput strategies involve Western blotting, enzyme-linked immuno-
sorbent assay (ELISA), fluorescent-activated cell sorting  (FACS), and other 
standard proteomics methods for detecting the presence and abundance of the 
target protein. In high-throughput settings, pulsed stable isotope labeling in cell 
cultures (pSILAC) have been used (Selbach et al., 2008). This method uses the 
marking of newly synthesized proteins with isotope-labelled amino acids prior 
to mass-spectrometry, enabling to investigate the effect of miRNA on proteome.  
 
 

1.2.3.4. Pull-down of biotin-marked miRNA 

To identify the interaction partners of specific miRNAs, one strategy is to label 
the 3’ end of synthetic miRNA with biotin and, after transfection, to use 
streptavidin-coated magnetic beads to purify the miRNA together with targeted 
transcripts (Martin et al., 2014; Orom et al., 2008). Resulting targets are ana-
lyzed by expression arrays or massively parallel sequencing.  
 
 

1.2.3.5. Immunoprecipitation of RISC components 

RISC proteins, such as AGO2, can be immunoprecipitated together with bound 
miRNAs and fragments of target mRNAs. Subsequent massively parallel 
sequencing methods can identify the locations of RISC binding and the array of 
miRNAs that are bound to RISC. Some methods, such as high-throughput 
sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLiP) 
(Chi et al., 2009) and photoactivatable-ribonucleoside-enhanced crosslinking 
and immunoprecipitation (PAR-CLiP) (Hafner et al., 2010), use ultraviolet 
(UV) treatment to crosslink RISC proteins with RNA. The limitation of these 
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methods is that they do not provide explicit information about the miRNA-
mRNA interaction in the region of RISC binding and this is usually inferred 
from in silico target prediction. The crosslinking, ligation, and sequencing of 
hybrids (CLASH) method (Helwak et al., 2013) ligates miRNA and mRNA 
before sequencing, enabling miRNA targets to be mapped regardless of in silico 
target prediction algorithms.  
 
 

1.3. MicroRNAs in cancer 
During the last 15 years, miRNA-mediated regulation has been shown to be 
relevant for many biological processes, with impairments being associated with 
several pathologies, such as heart (van Rooij et al., 2006; Wahlquist et al., 
2014), neurodegenerative (Miñones-Moyano et al., 2011), and autoimmune 
diseases (Junker et al., 2009). However, the main focus of miRNA research has 
been on their involvement in tumorigenic processes.  
 Soon after the realization that gene regulation via miRNA targeting is a 
widespread and evolutionally conserved mechanism, it was reported that the 
region encoding two miRNAs (cluster of miR-15 and miR-16 in 13q14.3) is 
frequently deleted in the chronic lymphocytic leukemia (CLL) (Calin et al., 
2002). After this observation, more comprehensive bioinformatic screening was 
conducted for all miRNAs known by that time (Calin et al., 2004). Out of the 
186 miRNA genes known by then, 35 mapped into fragile sites frequently 
mutated in cancers, indicating significant overrepresentation (P<0.0001). 
Additionally, about half of the miRNA genes were mapped to the same 
chromosome band as the established fragile site. A similar association was 
found for mouse cancer susceptibility loci (Sevignani et al., 2007). However, 
these studies analyzed only the subset of miRNAs known to date and later 
research suggested that preferential location near fragile sites is not specific to 
miRNAs, but also applies to protein-coding genes (Laganà et al., 2010).  
 Subsequently, large-scale miRNA profiling studies confirmed that the 
expression of many miRNAs is changed in several cancer types (Iorio et al., 
2005; Lu et al., 2005; Volinia et al., 2006; Yanaihara et al., 2006). Their 
expression profiles were found to distinguish cancerous from noncancerous 
tissues and to classify poorly differentiated samples more accurately than 
mRNA profiles (Lu et al., 2005). Similarly to protein-coding genes, the expres-
sion of miRNA genes in cancer can be dysregulated by genomic deletions or 
duplications, changes in the methylation patterns of promoters, and regulation 
by cancer-associated transcription factors. Cancer-associated mutations in 
individual components of miRNA processing machinery are also frequently 
reported. Such mutations can cause global changes in miRNA levels and 
subsequent dysregulation of the whole transcriptome (Melo et al., 2010). 
Incidentally, global downregulation of the miRNome has been reported in 
cancerous tissues (Lu et al., 2005). Given that miRNAs “fine-tune” the gene 
expression, this downregulation may have a destabilizing effect on the operation 
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of the whole cellular machinery. Additionally, variants in miRNAs (Rawlings-
Goss et al., 2014) or their binding sites (Chin et al., 2008; Nicoloso et al., 2010) 
can contribute to the formation of tumorigenic traits, by mechanisms that are 
discussed in detail in the next chapter.  
 
 

1.3.1. MicroRNAs as oncogenes or tumor suppressors 

MicroRNAs may act as oncogenes (oncomiRs) or tumor suppressors by 
regulating corresponding cancer-associated genes or cellular pathways. The first 
functional evidence for the oncogenic function of miRNAs was for the six 
members of the miR-17-92 cluster (mir-17, -18a, -19a, -19b-1, -20a, and -92a-
1), named oncomiR-1 (He et al., 2005b). Members of this cluster were up-
regulated in B-cell lymphoma (BCL) samples and contributed to tumor 
development in a BCL mouse model. Numerous established tumor-suppressor 
genes, including PTEN (Xiao et al., 2008) and E2F1 (O’Donnell et al., 2005), 
are experimentally supported targets of this cluster.  
 One of the most well-known examples of tumor-suppressor miRNAs is the 
let-7 family, members of which are downregulated in several cancer types (Ali 
et al., 2012; Dahiya et al., 2008; Takamizawa, 2004) and correlated with lung 
cancer survival (Takamizawa, 2004; Yanaihara et al., 2006). Among the 
validated targets of these miRNAs are established oncogenes from the RAS 
family (Johnson et al., 2005), MYC (Sampson et al., 2007) and HMGA2 (Lee 
and Dutta, 2007; Mayr et al., 2007; Shell et al., 2007).  
 In therapeutic applications, oncomiRs can be downregulated by synthetic 
antagomiRs, chemically modified oligonucleotides that bind targeted miRNA 
and deactivate its biological function (Krützfeldt et al., 2005). Similarly, 
miRNA “sponges”, synthetic RNA constructs with several MREs, can be used 
to decrease expression of targeted miRNAs (Ebert et al., 2007). Circular RNAs 
(circRNAs) are currently in the limelight of research, due to their function as 
natural “sponges” and their emerging biological relevance (Guo et al., 2014; 
Memczak et al., 2013; Salzman et al., 2012). These RNAs are more stable than 
linear sponges and can act as models for more effective therapy.  
 Mimics of tumor-suppressor miRNAs can be delivered to the location of 
action by viral vectors (Kota et al., 2009) or nonviral carriers, like atelocollagen 
(Tazawa et al., 2007) or liposome-polycation-hylaruronic acid nanoparticles 
(Chen et al., 2010). At the time of writing, first miRNA-based cancer drug 
MRMX4, developed by Mirna Therapeutics (Austin, Texas), is under Phase I 
clinical trials for use in several cancer types. MRMX4 is a mimic of a well-
established tumor suppressor, miR-34a-5p, which is encapsulated into lipo-
somal nanoparticle formulation (http://www.mirnarx.com/pipeline/mirna-
MRX34.html).  
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1.3.2. MicroRNAs as cancer biomarkers 

The ability to differentiate tissue samples based on cancer status (Volinia et al., 
2006), type (Lu et al., 2005), subtype (Landi et al., 2010; Zhang et al., 2012b), or 
stage (Mascaux et al., 2009; Olson et al., 2009) underscores the potential utility of 
miRNA profiles as diagnostic biomarkers. Physicians are better equipped to make 
treatment decisions when they have a precise diagnosis. For example, whereas 
bevacumizab (Avastin) is effective for the treatment of lung adenocarcinoma, its 
introduction was associated with life-threatening hemorrhage in the case of 
squamous cell lung cancer (Johnson et al., 2004). Moreover, it is demonstrated 
that the miRNA profiles of metastases reflect the profiles of primary tumors 
(Rosenfeld et al., 2008) making it possible to “track down” the location and type 
of unknown primary tumor. As the miRNA profile may reflect the properties of a 
specific cancer, it may also correlate with the efficiency of a specific anticancer 
treatment. For instance, miR-520g-3p has been reported to mediate resistance to 
5-fluorouracil and oxaliplatin therapy in colorectal cancer (Zhang et al., 2015a). 
Such information may help physicians to target treatments better, such as by 
choosing a more suitable drug or targeting the corresponding miRNA(s) with 
antagomiRs, in addition to standard treatment.  
 Expression profiles of miRNAs have been shown to correlate with disease 
progression or postoperative survival in several cancer types, suggesting their 
potential as prognostic biomarkers. The first such association was demonstrated 
in CLL, where the expression profiles of nine miRNAs correlated with the time 
to development of symptoms (Calin et al., 2005). Another landmark study in 
non-small cell lung cancer (NSCLC) found an association between reduced 
postoperative survival and high miR-155-5p expression (Yanaihara et al., 
2006). More recent study demonstrated that the expression of individual 
miRNAs was not robust prognostic biomarker in breast cancer. However, the 
combined signature of 17 known and 24 novel miRNAs was more precise, 
dividing breast cancer samples into the different prognostic groups (Dvinge et 
al., 2013).  
 The most exciting property of miRNAs is that they are stable in several body 
fluids, including blood (Mitchell et al., 2008), sputum (Xie et al., 2010), and 
urine (Hanke et al., 2010; Weber et al., 2010). In blood, miRNAs are protected 
from RNAse digestion by being bound with AGO proteins (Arroyo et al., 2011), 
encapsulated in exosomes or microvesicles (Valadi et al., 2007), bound by high-
density lipoprotein particles (Vickers et al., 2011), or incorporated in apoptotic 
bodies (Zernecke et al., 2009). Cell-free miRNAs can be the byproducts of cell 
death, or they may be secreted actively and selectively (Guduric-Fuchs et al., 
2012; Pigati et al., 2010), representing an intriguing form of cell-cell com-
munication. Either way, they can serve as valuable noninvasive biomarkers, as 
the expression profiles of miRNAs in plasma and serum are altered in several 
cancer types.  
 The first study demonstrating the potential utility of blood miRNAs as 
cancer biomarkers showed that the plasma expression of miR-21-5p was 
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associated with relapse-free survival in BCL (Lawrie et al., 2008). Since then, 
blood profiles of different miRNAs have been associated with cancer diagnosis 
and prognosis in various studies in lung (Boeri et al., 2011; Chen et al., 2008), 
breast (Roth et al., 2010), and prostate cancers (Mitchell et al., 2008). Effective 
noninvasive biomarkers would enable physicians to diagnose cancer (sub)types, 
and to predict disease and treatment outcomes in an efficient and patient-
friendly way. Several commercial miRNA-based diagnostic assays are already 
available. For example, Rosetta GenomicsTM offers miRNA-based tests for 
better diagnosis of lung, thyroid, and kidney cancers, as well as for identifying 
the primary origin of tumors (Meiri et al., 2012).  
 
 

1.3.3. MicroRNAs in lung cancer 

In 2012, lung cancer was the most commonly diagnosed cancer and the leading 
cause of cancer-related deaths worldwide (Ferlay et al., 2015). Most lung 
cancers are classified into two histologically different groups: small cell lung 
cancer (SCLC) and non-small cell lung cancer (NSCLC). The latter group is 
classified into three subtypes: squamous cell carcinoma (SCC), adenocarcinoma 
(AD), and large cell carcinoma (LCC). SCLC constitutes about 10–15% of all 
lung cancer cases (Houston et al., 2014), has a very poor prognosis, and is 
generally inoperable. SCC comprises about 30% of lung cancer cases (Houston 
et al., 2014), originates from squamous cells of the inner lining of the lungs, and 
is strongly associated with smoking. AD constitutes about 40% of lung cancer 
cases (Houston et al., 2014) and originates from the glandular epithelium of the 
lung. AD has a slightly better prognosis and constitutes a higher percentage of 
never-smoker cases. Lung cancer types investigated in this thesis belong mainly 
to the SCC and AD subtypes of NSCLC.  
 By far, the greatest contributor to lung cancer risk is smoking history (~90% 
of all lung cancer patients have a history of smoking). Additional established 
risk factors involve exposure to second-hand smoke, asbestos, and radon 
(reviewed in; (Molina et al., 2008)). There is also a genetic component to lung 
cancer risk. Specifically, region 15q25.1 has been associated with lung cancer 
risk in genome-wide association studies (GWASs) (Thorgeirsson et al., 2008), 
possibly through modulation of smoking behavior.  
 Although the overall 5-year survival rate of NSCLC is poor (~20%; SEER 
Cancer Statistics Review 1975-2012, period of 2005–2011), patients with early 
IA stage show a survival rate up to ~80% in some populations (Goya et al., 
2005). This fact indicates the need for better diagnostic and prognostic bio-
markers to discover and diagnose early stages of disease, as well as more 
efficient drugs for the postoperative cure of patients with later-stage tumors.  
 The first association between miRNA and lung cancer was found in 2004 
(Takamizawa, 2004). Five primary sequences of let-7 family miRNAs were 
shown to have reduced expression levels in NSCLC. This reduced expression 
was associated with worse postoperative survival. The first study to investigate 
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the large-scale expression of miRNAs in lung cancer identified the upregulation 
of 35 miRNAs (e.g., miR-21-5p, miR-17-5p, miR-191-5p) and downregulation 
of three miRNAs (miR-126-5p, miR-30d-5p, and miR-30a-5p), several of 
which were also dysregulated in several additional solid cancer types (Volinia et 
al., 2006). Another landmark study identified 43 miRNAs that are dysregulated 
in NSCLC tissues and found an association between postoperative survival and 
high miR-155-5p expression (Yanaihara et al., 2006). This study also reported 
differences between the miRNA profiles of SCC and AD.  
 Subsequent array- and massively parallel sequencing-based miRNA pro-
filing studies have identified many more miRNAs that are dysregulated in 
NSCLC. However, the reported sets of potentially relevant miRNAs are diffe-
rent and sometimes conflicting. This issue is addressed in Chapter 4.2 of the 
experimental part of this thesis.  
 Exposure to tobacco smoke changes the profile of miRNAs in the lungs of 
mice and rats (Izzotti et al., 2009a, 2009b), suggesting that miRNA dysregu-
lation is an early event in the pathogenesis of NSCLC and may mediate the 
subsequent tumorigenic processes. Several miRNAs that are frequently dys-
regulated in NSCLC have been demonstrated to act as oncomiRs or tumor 
suppressors, regulating cell cycle, angiogenesis, or epithelial-to-mesenchymal 
transition. For example, one of the most upregulated miRNAs in NSCLC, miR-
21-5p, targets the tumor suppressor PTEN (Zhang et al., 2010). The tumor 
suppressor miR-126-5p, which is frequently downregulated in NSCLC, targets 
angiogenesis-associated genes VEGF-A (Liu et al., 2009) and EGFL7 (Sun et 
al., 2010). Although there are numerous examples of validated cancer-as-
sociated targets of miRNAs that are dysregulated in NSCLC, their overall effect 
on tumorigenic processes is still poorly understood because of large number of 
potential targets, small number of validated targets, and multifunctional nature 
of individual miRNAs.  
 The miRNA profile in plasma, serum, or whole blood can be used to diffe-
rentiate NSCLC patients from healthy controls, identify the metastatic state, and 
predict disease prognosis or treatment outcome (for comprehensive review; (Del 
Vescovo et al., 2014)). As an recent example, a serum profile of four miRNAs 
(miR-193b-5p, miR-301-5p, miR-141-5p, and miR-200b-5p) was found to 
differentiate NSCLC patients from cancer-free controls with high accuracy 
(AUC = 0.99) (Nadal et al., 2015). Another recent study identified the serum 
profile of five miRNAs (miR-483-5p, miR-193a-3p, miR-25-3p, miR-214-3p, 
and miR-7-5p), which had an AUC of 0.82 in the validation cohort (Wang et al., 
2015). However, diagnostic and prognostic biomarker profiles differ sub-
stantially between studies, probably due to the variability in technical and 
analytical methods. MicroRNAs are also detectable and dysregulated in the 
sputum of NSCLC patients (Xie et al., 2010), adding an additional strategy for 
how miRNAs can be used as noninvasive biomarkers.  
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1.4. Genomic variants influencing the function of miRNAs 
During the last decade, a large number of trait- and disease-associated genetic 
polymorphisms have been identified by GWASs. However, only a small 
proportion of those variants are located in CDSs, suggesting that these variants 
mainly affect gene regulation rather than the structure of encoded proteins 
(Hindorff et al., 2009). Indeed, many SNPs influence the expression of nearby 
(cis) and distant (trans) genes (Westra et al., 2013). These expression quanti-
tative trait loci (eQTLs) are regulatory loci that can potentially converge their 
effects to the formation of a trait or disease.  
 Beside the effects on transcriptional control via regulatory regions in DNA 
(e.g., transcription factor binding sites and enhancers), methylation patterns, and 
chromatin packing, noncoding genomic variants could affect the formation of 
complex traits or diseases through miRNA-mediated regulatory networks. There 
are differences between human populations in the frequencies of genomic 
variants in pre-miRNA sequences (Rawlings-Goss et al., 2014) and the expres-
sion levels of several mature miRNAs (Huang et al., 2011), raising the 
possibility that miRNA regulation may play role in the differential susceptibility 
of diseases (Rawlings-Goss et al., 2014) or other complex traits in populations. 
Bulik-Sullivan with coworkers prioritized several miRNA-related SNPs that 
were previously associated with complex traits (Bulik-Sullivan et al., 2013).  
 SNPs can influence miRNA-meditated regulation via several mechanisms. 
First, SNPs in promoter or regulatory regions of an miRNA-encoding gene can 
change the expression of the corresponding miRNA and, thereby, influence its 
regulatory potential. For example, a SNP in the promoter of miR-146a-5p 
influences its expression level and is associated with systemic lupus erythe-
matosus (Luo et al., 2011). This mechanism is supported by observations that 
several SNPs influence the expression of nearby miRNAs (cis-miR-eQTLs) 
(Borel et al., 2011; Huan et al., 2015; Lappalainen et al., 2013).  
 Second, SNPs or mutations may influence the structure or expression of 
members of the miRNA processing machinery. Effects of those SNPs may 
influence the whole miRNome. For example, rs11077 in XPO5 (encoding 
exportin 5) has been associated with the severity of several cancers (Campayo 
et al., 2011; Liu et al., 2014; Ye et al., 2008). Interestingly, a mutation in this 
gene has been shown to entrap miRNAs in the nucleus of cancer cells (Melo et 
al., 2010).  
 Third, SNPs that change the sequence of pri- or pre-miRNAs may have 
downstream effects on the expression of the mature miRNA. For example, a 
SNP in the tumor suppressor pri-let-7e led to a reduction of the mature miRNA 
level in an in vitro system (Wu et al., 2008).  
 Fourth, SNPs located in the mature miRNA (especially in the seed region) 
may cause changes in the targetome of the corresponding miRNA by disrupting 
or creating complementarity with targets. Comprehensive overlap between 
known genomic variants and miRNA seed regions identified 227 SNPs that 
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would cause differences in binding with in silico-predicted targets (Gong et al., 
2015).  
 Finally, SNPs in target genes may cause changes in miRNA-mRNA inter-
actions. These SNPs are likely to be found in the 3’ UTR of the target gene, as it 
is the most relevant region for miRNA binding in animals. SNPs in this region 
may affect the regulation of target genes by miRNAs in multiple ways (Fig. 5). 
A minor allele of a 3’-UTR SNP may directly affect the binding site by 
disrupting the functional MRE, creating a new one, changing the strength of the 
existing MRE, or replacing the MRE of one miRNA with another (SNPs termed 
as MRE-SNPs). SNPs may also change the secondary structure of the 3’ UTR 
and, therefore, affect its accessibility for RISC. SNPs in splice sites or poly-
adenylation signals may cause alternative splicing or polyadenylation, changing 
the length of the 3’ UTR and causing loss of multiple MREs. In addition to 
miRNA-associated mechanisms, SNPs in 3’ UTRs may affect regulation by 
several RNA-binding proteins. Although there is currently no comprehensive 
study investigating all of these mechanisms, bioinformatics analyses have 
suggested that most 3’-UTR SNPs influence MREs (64%), whereas a minority 
affect 3’-UTR folding (24%) or splicing (12%) (Arnold et al., 2012).  

Several genomic variants in MREs have been associated with phenotypic 
traits and pathological conditions. The first study to associate genomic poly-
morphisms with miRNA action was conducted in papillary thyroid carcinoma 
(He et al., 2005a). Two SNPs, predicted to change the binding of three miRNAs 
upregulated in this cancer type, were found in the cancer-associated gene KIT. 
Another early study identified a point mutation in the 3’ UTR of SLITRK1, 
which was predicted to enhance the binding of miR-24-1-5p (previously known 
as miR-189). This mutation was found in two nonrelated Tourette syndrome 
patients and the results from a luciferase reporter assay supported the functional 
impact on miRNA binding. The authors concluded that this mutation may have 
a role in the pathogenesis of this disease (Abelson et al., 2005). Probably the 
most striking example is a point mutation in the 3’ UTR of the gene encoding 
myostatin (GDF8). This mutation was shown to create a potential binding site 
for muscle-expressed miR-206 and miR-1-3p in the Texel breed of sheep (Clop 
et al., 2006). Resulting downregulation of GDF8 causes a specific muscular 
phenotype for this breed.  

After early studies associating genetic variation in MREs with diseases and 
phenotypes demonstrated the biological relevance of this phenomenon, efforts 
were made to screen SNPs in MREs at the genome-wide scale, using in silico 
target prediction algorithms. These studies resulted in several publicly available 
catalogues of predicted MRE-SNPs, such as polymiRTS (Bao et al., 2007; 
Bhattacharya et al., 2014), Patrocles (Hiard et al., 2010), miRSNP (Liu et al., 
2012), miRNASNP (Gong et al., 2012, 2015), and miRSNPScore (Thomas et 
al., 2011). Each of these databases uses a different prediction algorithm. Addi-
tionally, web tools for the real-time prediction of the effects of MRE-associated 
variants have been developed (Barenboim et al., 2010; Deveci et al., 2014).  
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Figure 5. Mechanisms of miRNA-mediated 3’-UTR SNP effects on gene expression. 
 
 
Because the accuracy of in silico prediction algorithms is not perfect, several 
additional data layers have been used to prioritize putative MRE-SNPs. For 
example, Arnold et al. used available CLIP-seq data to enhance the precision of 
target prediction and identified 37 unique MRE-SNPs (Arnold et al., 2012). 
Some studies have used experimental support to MRE as an additional filter 
(Duan et al., 2009; Saunders et al., 2007) or used the requirement of miRNA-
target coexpression in the tissue of interest (Saunders et al., 2007; Vaishnavi et 
al., 2014; Zhang et al., 2012a).  
 Because miRNA targeting impacts the expression level of the target mRNA, 
information about cis-eQTLs can be used to support the functional effects of the 
MRE-SNP. For example, Richardson and colleagues used small eQTL datasets 
(78–83 samples) from the MuTHER study to support the in silico identification 
of 4 out of 11 putative disease-associated MRE-SNPs (Richardson et al., 2011). 
Another study used data from HapMap 3 LCL samples and identified 130 
MRE-SNPs that had a cis-eQTL effect on target gene expression (false 
discovery rate [FDR] < 0.001). The same study hypothesized that, in addition of 
“fine-tuning” the targetome, miRNA targeting may enhance variations in the 
expression of some target genes (Lu and Clark, 2012).  
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2. AIMS OF THE STUDY 

The aims of the present doctoral thesis were as follows:  
 
1 To identify differentially expressed miRNAs in NSCLC, determine their 

effects on cellular signaling pathways, and find miRNAs with potential 
diagnostic and prognostic value.  

2 To determine a consensus set of differentially expressed miRNAs in lung 
cancer by meta-analyzing the results of previously published miRNA 
profiling studies.  

3 To identify genetic variants that alter the expression levels of host genes by 
miRNA-mediated mechanisms.  
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3. RESULTS AND DISCUSSION 

3.1. MicroRNA expression changes  
in Estonian NSCLC cohort (Ref I) 

Lung cancer is the second most common cancer type in Estonia and the main 
cause of cancer-related deaths (Estonian Cancer Registry, 2008-2012). 
Although the survival rate of patients with NSCLC is generally poor, a much 
better prognosis is possible when the disease is discovered in the early stages. 
Different treatment decisions can be made depending on the precise molecular 
subtype of the disease, highlighting the need for more accurate diagnostic and 
prognostic biomarkers.  
 This part of the thesis describes the identification of miRNA expression 
aberrations occurring in the early stages of NSCLC development by miRNA 
expression profiling analysis in a cohort of Estonian patients with early-stage 
NSCLC. Identified miRNAs are expected to have a higher likelihood of having 
a functional effect in cancer pathogenesis compared to later-stage “passenger” 
aberrations. Additional analyses were performed to evaluate miRNA-associated 
effects on cellular signaling pathways and to identify miRNAs associated with 
patient survival.  
 

3.1.1. Cohort used in this study 

Samples in this study were collected from NSCLC patients who underwent 
curative resection at Tartu University Lung Hospital between 2002 and 2008. 
The study was approved by the Ethics Committee on Human Research of Tartu 
University and all enrolled patients signed a written informed consent form 
before participation. Biological material was collected by Dr. Tõnu Vooder in a 
standardized way (Ref I for details). Histological examination for tissue samples 
was made by Dr. Retlav Roosipuu. Clinical and pathological data were also 
collected.  
 The present study incorporated a subset of 38 early-stage NSCLC and 27 
adjacent cancer-free lung samples (including 24 paired samples). Samples were 
selected from patients who had received neither preoperative irradiation nor 
chemotherapy because such treatment may have an independent effect on 
miRNA expression (Simone et al., 2009). Six patients received adjuvant chemo-
therapy after resection and this fact was taken into account in subsequent 
survival analyses. The 28 NSCLC samples included 18 SCC and 20 AD 
samples. Thus, the results from this study reflect expression changes in NSCLC 
in general, rather than in one specific subtype. The overall cohort characteristics 
are summarized in Table 1.  
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Table 1. Clinical and pathological characteristics of the samples.  
 

Characteristic    SCCa      ADb NCc 
Number of samples 18 20 27 
Sex    
   Male  18 14 23 
   Female 0 6 4 
Stage    
   Ia 2 12 7 
   Ib 14 7 17 
   IIa 0 0 0 
   IIb 2 1 3 
Smoking    
   Yes 17 15 24 
   No 0 4 3 
   unknown 1 1  
Age    
   ≤ 63 y  7 9 11 
   > 63 y 11 11 16 
   Range 44-79 41-79 41-77 
   Median 67 64 67 
Survival status    
   Alive 9 16 20 
   Deceased  9 4 7 

aSCC, squamous cell carcinoma, bAD, adenocarcinoma, cNC, cancer-free tissue adjacent 
to tumor from NSCLC patients. Disease stage of corresponding individuals is shown.  
 
 

3.1.2. MicroRNAs dysregulated in Estonian lung cancer cohort 

Illumina miRNA BeadArray expression arrays were used to profile the expres-
sion of 858 miRNAs (miRBase v14). At the time of the study, this platform 
provided the most comprehensive coverage of the human miRNome. Standard 
data preprocessing and statistical analyses were performed with the LIMMA 
package (Linear Models for Microarray Analysis; (Ritchie et al., 2015; Smyth, 
2004)). This study identified 39 up- and 33 downregulated miRNAs in NSCLC 
compared to the cancer-free samples (FDR < 0.01). When a stricter threshold 
for expression change (FDR < 0.01, fold change [FC] > 2; Fig. 6) was applied, 
31 up- and 29 downregulated miRNAs remained. The most significantly dys-
regulated miRNAs are presented in Table 2 and the full list can be found in the 
Supplementary Material of Ref I.  
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Figure 6. Volcano plot depicting results of differential miRNA expression analysis. X-
axis represents expression-level difference (fold change, FC) on the log2 scale. Y-axis 
represents level of statistical significance [-log10(FDR-corrected P-value)]. Vertical 
dashed lines show the two-fold expression change as a cutoff. Horizontal dashed line 
indicates the threshold of statistical significance (FDR = 0.01). Red points depict up- 
and blue points downregulated miRNAs.  
 
 
Many of the identified miRNAs are known to be associated with lung cancer. 
The most upregulated miRNA in the dataset, miR-9-5p (FDR = 4.3×10-8, FC = 
15.5), has been associated with lung cancer (Crawford et al., 2009; Volinia et 
al., 2006; Xu et al., 2014; Yanaihara et al., 2006) and several other cancers (Cai 
and Cai, 2014; Lehmann et al., 2008; Wu et al., 2014). Although this miRNA 
showed strong and unidirectional cancer-associated upregulation in the dataset 
(Fig. 4), other studies have reported both up- (Crawford et al., 2009; Volinia et 
al., 2006; Xu et al., 2014) and downregulation (Yanaihara et al., 2006) in lung 
cancer.  
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Table 2. Thirty most significant differentially expressed miRNAs in NSCLC.  
 

  miRNA P-value* FCa Host gene(s)b Location 
Upregulated C1orf61 [+] 1q22 

miR-9-5p 4.3010-8 15.5 LOC64532 [+] 5q14.3 
intergenic 15q26.1 

miR-182-5p 4.0610-6 2.3 intergenic 7q32.2 
miR-200a-5p 8.6710-6 5.4 intergenic 1p36.33 
miR-151:9.1# 1.1510-5 2.4 PTK2 [+] 8q24.3 
miR-205-5p 1.2910-5 12.3 LOC642587 [+] 1q32.2 
miR-183-5p 2.8210-5 4.1 intergenic 7q32.2 
miR-130b-5p 2.8710-5 3.0 intergenic 22q11.21 
miR-149-5p 2.9010-5 4.6 GPC1 [+] 2q37.3 
miR-193b-3p 2.9810-5 6.8 intergenic 16p13.12 
miR-339-5p 5.8610-5 3.1 C7orf50 [+] 7p22.3 
miR-196b-5p 6.1910-5 3.4 intergenic 7p15.2 
miR-224-5p 6.1910-5 3.4 GABRE [+] Xq28 
miR-31-5p 8.2010-5 4.8 LOC554202 [+] 9p21.3 
miR-196a-5p 1.0810-4 8.6 intergenic 17q21.32 

intergenic 12q13.13 
miR-423-3p 1.1010-4 2.0 CCDC55 [+] 17q11.2 
miR-708-5p 1.4410-4 5.5 ODZ4 [+] 11q14.1 
miR-106b-3p 1.4410-4 4.2 MCM7 [+] 7q22.1 
miR-210-3p 2.9210-4 5.1 intergenic 11p15.5 

Downregulated miR-1273a 4.0610-6 14.3 RGS22 [+] 8q22.2 
miR-206 4.0610-6 11.1 intergenic 6p12.2 
miR-140-3p 4.0610-6 2.4 WWP2 [+] 16q22.1 
miR-338-3p 8.5110-6 5.0 AATK [+] 17q25.3 
miR-101-3p 8.6710-6 4.1 intergenic 1p31.3 

RCL1 [+] 9p24.1 
miR-144:9.1# 1.2910-5 6.0 intergenic 17q11.2 
miR-1285-3p 2.0810-5 6.7 KRIT1 17q11.2 
miR-130a-3p 6.1910-5 2.2 intergenic 11q12.1 
miR-486-5p 8.9710-5 2.6 ANK1 [+] 8p11.21 
miR-24-2-5p 9.9410-5 2.0 intergenic 19p13.12 
miR-144-5p 1.1010-4 7.2 intergenic 7q21.2 

  miR-30a-5p 2.5110-4 2.7 C6orf155 6q13 
*P-values are corrected by Benjamini–Hochberg method. aFC, fold change; b[+] miRNA 
and host gene are transcribed in the same direction; #9.1, given probe is specific to 
miRBase v9.1 version of the miRNA.  
 
 
A previous study showed that miR-205-5p (FDR = 1.2910-5, FC = 12.3) is 
highly expressed in SCC and capable of distinguishing SCC from AD (Leba-
nony et al., 2009). Although the present dataset consisted of SCC and AD 
samples, upregulation was present in most patients (Fig. 7). One of the experi-
mentally supported targets of this miRNA is the well-known tumor suppressor 
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PTEN (Sun et al., 2013). The most strongly downregulated miRNA, miR-
1273a, has not been investigated before. However, several of the downregulated 
miRNAs have been implicated in lung and other cancer types. For example, 
miR-206 was recently confirmed to be downregulated in NSCLC, and tran-
scription factor SOX9 was experimentally identified as its target (Zhang et al., 
2015b). Similar studies have identified additional potentially relevant targets, 
like cancer-associated MET and BCL2 (Chen et al., 2015; Sun et al., 2015).  
 

 
3.1.3. Pairwise expression patterns 

In order to serve as diagnostic biomarkers or drug targets, miRNAs should show 
consistent changes in expression in tumors. Therefore, this study used the subset 
of array expression data containing paired samples of cancerous and non-
cancerous lung tissue (n = 24) to visualize expression changes of the most diffe-
rentially expressed miRNAs between samples from the same individual (Fig. 7).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7. Pairwise expression pattern of the five most strongly up- and downregulated 
miRNAs. Each point represents an individual tissue sample. Lines connect samples 
from the same individual. N: cancer-free lung sample; T: tumor sample. Up- and down-
regulated miRNAs are in the top and bottom rows, respectively. Cancer subtypes are 
represented with different colors.  



 

 

45 

 

Although expression changes were generally consistent between sample pairs, 
there were some miRNAs with incoherent patterns. Some highly significant 
miRNAs with large overall changes in expression had inconsistent sample pairs 
(e.g., miR-1273a), whereas other miRNAs with more modest expression 
changes showed remarkable consistency (e.g., miR-140-3p). This finding may 
indicate that an miRNA does not necessarily need a large change in expression 
to serve as a potential diagnostic biomarker. As one miRNA may target 
hundreds of genes and regulate several pathways, modest but consistent changes 
in expression may point to possible oncomiR or tumor-suppressor miRNAs.  
 
 

3.1.4. Validation of miRNA array data 

Next, qRT-PCR was used to validate the miRNA array results. First, the subset 
of eight pairs of samples was used to validate changes in expression of four 
miRNAs that were upregulated in NSCLC (miR-9-5p, miR-196a-5p, miR-149-
5p, and miR-205-5p; Fig. 8). Secondly, eight sample pairs from the NSCLC 
cohort that had not been profiled with Illumina arrays were used to validate the 
changes in expression for 10 aberrantly expressed miRNAs in the independent 
sample set. Among the investigated miRNAs, all but one (miR-1273a) were 
detectable in that sample set. In most cases, the direction of expression change 
was in concordance with array data (Fig. 8). However, the magnitude of change 
varied between array data and qRT-PCR normalization methods.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Validation of miRNA expression. A. Validation of microarray data by qRT-
PCR. Bars represent average log2(FC) calculated for eight sample pairs on the micro-
array. Error bars indicate standard error of the mean (SEM). Geometric mean of the 
expression levels of miR-16-5p and miR-26b-5p was used as an endogenous reference 
for qRT-PCR. B. Validation of miRNA expression in eight additional sample pairs not 
profiled by the microarray. Bars represent log2(FC) and error bars indicate SEM. 
Results using two normalization methods (geometric mean of miR-16-5p and miR-26b-
5p or expression of RNU48) are shown.  
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Two different endogenous references were used to normalize the qRT-PCR 
data: small nucleolar RNA 48 (RNU48) and the geometric mean of two highly 
expressed miRNAs (miR-16-5p and miR-26b-5p). Those genes were chosen 
because they have been prioritized as suitable references for similar analyses in 
a breast cancer dataset (Davoren et al., 2008).  
 
 

3.1.5. Association between miRNA expression and  
patient survival 

The next step was to identify whether miRNA expression was associated with 
patient survival. For this analysis, the data subset consisting only of tumor 
samples was used. Two samples were omitted due to the short survival time 
(<15 days) after resection because of the possibility that death was not directly 
related to the cancer. Therefore, the final analysis included 36 NSCLC samples. 
A Cox regression model was fitted on expression data of each miRNA. A 
permutation test was performed by assigning the survival time and status 
randomly 10,000 times. Using the permuted P-value threshold of 0.01, eight 
miRNAs had significant associations with survival time.  
 Patient survival may be influenced by several factors aside from possible 
cancer-related miRNAs. Therefore, the identified miRNAs were thoroughly 
analyzed to determine whether the observed association was an independent 
effect. Multivariate Cox regression was used to correct for the effects of 
possible covariates: smoking status (in pack-years), histological type (SCC or 
AD), tumor stage, postoperative chemotherapy, age, and sex. One miRNA, 
miR-374a-5p, had an independent association with patient survival (hazard ratio 
[HR] = 0.353, P = 0.008). High- and low-expression groups were defined on the 
basis of the median miR-374a-5p expression level, and survival of those groups 
was compared by Kaplan–Meier survival curves and log-rank tests. The high-
expression group showed significantly longer survival times compared to the 
low-expression group (P = 0.018, log-rank test; Fig. 9).  

The miRNA miR-374a-5p is upregulated in several cancer types (He et al., 
2015; Xu et al., 2015) and mediates the upregulation of Wnt/-catenin signaling 
in breast cancer cells (Cai et al., 2013). Wang et al. found that this miRNA is 
involved in greater gefitinib resistance in lung cancer and that this miRNA is 
targeting WNT5A (Wang et al., 2014). However, the same study demonstrated 
the opposite effect of miR-374a-5p expression with lung cancer patient disease-
free survival compared to the pattern observed here (Wang et al., 2014). 
Reasons for this discrepancy are unclear, but may reflect differences arising 
from distinct ethnic backgrounds, variability in cohort characteristics (e.g., most 
NSCLC patients in the mentioned study had stage III or IV cancer, compared to 
early-stage patients used in the current study), or small sample sizes.  
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Figure 9. miR-374a-5p association with patient postoperative survival. Kaplan–Meier 
plot showing postoperative survival of NSCLC patients depending on the miR-374a-5p 
expression level. Log-rank test P-value is shown. 
 
 

 
3.1.6. Regulatory pathways influenced  

by differentially expressed miRNAs 

3.1.6.1. Target prediction  

Putative targets for most dysregulated miRNAs were predicted by using the 
miRNA target prediction algorithms Pictar 4-way, PITA, TargetScan 5.1, 
miRanda, and DIANA-microT 3.0. To obtain a reliable set of target genes, a 
conservative strategy was used. The gene was considered to be the target of the 
corresponding miRNA if at least three of the five target prediction algorithms 
supported the prediction.  
 
 

 3.1.6.2. Enrichment analyses 

To gain insight into the biological functions of the most significantly dys-
regulated miRNAs in NSCLC, gene set enrichment analysis was conducted by 
using annotations from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG). Enriched pathways for the 10 most up- and downregulated miRNAs 
were largely overlapping (Fig. 10), being linked to cell mobility, differentiation, 
and proliferation (“Axon guidance”, “Actin cytoskeleton”, “Focal adhesion”, 
etc.). Several cancer-associated pathways were also enriched (“Pathways in 
cancer”, “Prostate cancer”, etc.). Separate pathway enrichment analysis for 
targets of miR-374a suggested that this miRNA is involved in tumorigenesis-
related processes (“Pathways in cancer”, FDR = 0.024).  
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For comparison, the enrichment analyses were made with the results of a 
previous mRNA profiling study that used individuals from the same Estonian 
NSCLC cohort (Välk et al., 2010). Pathways enriched among upregulated genes 
were involved in cell proliferation (“p53 signaling”, “cell cycle”, “DNA repli-
cation”). Downregulated genes were enriched by immune-related pathways.  
 
 

3.1.7. Concordance between miRNA and mRNA expressions 

Next, the research addressed whether dysregulation on the miRNA level was 
responsible for the differential expression of some proportion of mRNAs. En-
richment among the dysregulated mRNAs (Välk et al., 2010) was tested by 
using the in silico-predicted targets of the 10 most up- and downregulated 
miRNAs, followed by assessment of whether the enrichment was consistent 
with the logic of miRNA regulation. Genes showing downregulation in the gene 
expression study were enriched by the targets of the 10 most upregulated 
miRNAs (Fisher exact test, P = 0.021, odds ratio [OR] = 1.37, 95% confidence 
interval [CI] = 1.04–1.78). This finding was in agreement with the logic of 
miRNA regulation and may suggest possible coordinated regulation among 
some of the cancer-associated miRNA-target pairs in NSCLC. Interestingly, 
targets of the 10 most downregulated miRNAs were underrepresented among 
the upregulated mRNAs (Fisher exact test, P = 0.0004, OR = 0.49, 95% CI = 
0.30–0.75). On the other hand, there was no significant association between the 
two downregulated lists (predicted targets of downregulated miRNAs and 
downregulated mRNAs) and the two upregulated lists.  
 
 

3.2. Meta-analysis of differentially expressed miRNAs  
in lung cancer (Ref II) 

Although the results were consistent with previous knowledge for many 
differentially expressed miRNAs (e.g., miR-205-5p, miR-182-5p, miR-30a-5p, 
etc.), differences with published miRNA expression studies were also observed. 
For example, miR-9-5p, the most upregulated miRNA in the Estonian NSCLC 
cohort, was reported to be upregulated in only two research papers and 
downregulated in a landmark study (Yanaihara et al., 2006). The most strongly 
downregulated miRNA (miR-1273a), as well as several other significantly 
dysregulated miRNAs, were not previously associated with lung cancer. 
Discrepancies between the results of previously published individual studies 
were also frequently observed, frustrating attempts to conclude which miRNAs 
are actually cancer-associated and which represent technical or analytical arti-
facts. These observations indicated the need for a comprehensive and systematic 
meta-analysis, which would yield a more credible and robust set of diffe-
rentially expressed miRNAs, which, in turn, could serve as candidates in 
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subsequent research for the identification of drug targets or diagnostic bio-
markers.  
 The preferred method of meta-analysis of gene expression studies involves 
complete reanalysis of raw expression data. However, this kind of rigorous 
strategy is often not possible due to the unavailability of raw expression data 
and technical obstacles (e.g., differences between studies in miRNA expression 
platforms, preprocessing steps, and numbers of detectable miRNAs available at 
the time of the study), which make the integration of raw miRNA expression 
datasets very complicated. Therefore, a rank-based approach was used to sum-
marize and meta-analyze the results of previously published lung cancer 
miRNA profiling studies. Additional bioinformatics approaches were used to 
evaluate the effects of identified miRNAs on cellular signaling pathways.  
 
 

3.2.1. Selection and preprocessing  
of NSCLC miRNA expression profiling datasets 

Comprehensive searches in the Scopus database were conducted by using the 
following search term: TITLE-ABS-KEY((mirna* OR microrna* OR mir-*) 
AND profil* AND lung AND (cancer* OR tumor* OR tumour*)) in September 
2012. Additional searches were conducted in the Gene Expression Omnibus 
(GEO) and ArrayExpress databases, which consist of publicly available expres-
sion datasets. The search was limited to original English-language studies of 
miRNA expression changes between cancerous and noncancerous lung tissues. 
Studies analyzing preselected candidate miRNAs or comparing different groups 
of cancerous tissues were removed to minimize the sources of bias in the 
subsequent meta-analysis.  
 Using those criteria, 21 lists of differentially expressed miRNAs from 20 
studies were identified and enrolled (Table 3). Studies utilized several expres-
sion profiling platforms detecting different numbers of miRNAs (mean: 560; 
range: 258–858 miRNAs) from different miRBase versions. Some miRNA lists 
contained viral miRNAs or probes detecting pre-miRNA sequences. Thus, the 
assembly of individual miRNA lists involved removal of nonhuman miRNAs 
and standardization of miRNA names to a common miRBase version (v19) 
before meta-analysis.  
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Sizes of the analyzed sample groups varied greatly between studies (range: 3–
123 sample pairs), indicating differences in the power to detect aberrations. 
Two SCLC samples were included in the final meta-analysis, due to the specific 
asbestos exposure-related question of the corresponding study (Nymark et al., 
2011). However, most studies used a merged set of SCC and AD samples. 
Therefore, results of this meta-analysis reflect aberrations general to NSCLC. 
Altogether, 598 tumor and 528 noncancerous lung samples were used in this 
meta-analysis.  
 
 

3.2.2. Cluster analysis of lung cancer miRNA  
expression profiling datasets 

To analyze and visualize similarities between miRNA lists, hierarchical cluster 
analysis was performed on the ranked lists of miRNAs. Rank matrices were 
calculated and normalized by using the RobustRankAggreg package (Kolde et 
al., 2012) and information about miRNAs detectable by each study. Rank 
matrices from up- and downregulated miRNA lists were merged, and cluster 
analysis was applied to find differences in the ranked lists (Fig. 11).  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11. Clustering of lists of differentially expressed miRNAs in lung cancer. Clus-
tering was determined from normalized rank matrices derived from ranked lists of diffe-
rentially expressed miRNAs. Clustering is based on the Spearman correlation distance 
measure with average linkage. Full figure with miRNA heatmap is available in the 
Supplementary Figure 1 of Ref II.  
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The miRNA profiling platform was the main factor to influence clustering. Two 
sufficiently powered studies utilizing Illumina miRNA arrays (Jang et al., 2012; 
Võsa et al., 2011), as well as studies using Exiqon miRCury arrays (Gao et al., 
2010b, 2011; Yang et al., 2010) tended to cluster together. The most similar 
differentially expressed miRNA lists were acquired from two studies from one 
work group (Gao et al., 2010b, 2011). The clustering may be caused by the use 
of an identical array or similar laboratory conditions and preprocessing 
methods. No information was available on whether those two studies shared 
some of the same samples (8 and 4 sample pairs, respectively) and, according to 
the study enrollment protocol, treated those as independent studies in the meta-
analysis. However, if this were to be the case, then the overlap of used samples 
may explain the tight clustering.  
 Several studies had small sample sizes with less than 10 sample pairs of 
mostly Asian origin (Gao et al., 2010b, 2011; Lee et al., 2011b; Ma et al., 
2011b; Son et al., 2009). Three of those studies showed the largest difference 
from the remaining studies, possibly indicating the requirement of reasonable 
sample sizes to achieve robust results in miRNA profiling studies.  
 

 
3.2.3. Metasignature of miRNA expression in lung cancer  

To rank the lists of differentially expressed miRNAs acquired from different 
studies, the up- and downregulated miRNAs were treated separately. P-values 
describing the significance of differential expression or FCs were used when  
P-values were not reported or not informative. For meta-analysis, the 
RobustRankAggreg algorithm (Kolde et al., 2012) was applied separately for 
up- and downregulated miRNA lists. Based on the ranking of each element in 
the aggregated list compared to the null model assuming random ordering, this 
method assigns a P-value for each element. P-values were corrected for 
multiple testing by the Bonferroni method, based on the largest number of 
miRNA probes available in any of the used platforms (N = 858; Võsa et al. 
2011). Using this method, the metasignature of seven up- and eight down-
regulated miRNAs was identified (Table 4).  

To check whether the significant effect of the miRNA may be driven by one 
outlier list, one list was randomly removed from the analysis 10,000 times, and 
the average P-value was calculated. Resulting P-values indicated that signi-
ficant results were not artifacts driven by one specific miRNA list.  
 Although the resulting signature contains several miRNAs that are es-
tablished oncomiRs or tumor suppressors, it lacks some of the “classical” es-
tablished oncomiRs (e.g., miR-17-92 family members) and tumor suppressors 
(e.g., let-7 family  members or miR-34a-5p). One possibility is that the expres-
sion change of those miRNAs in lung cancer is not very strong and, therefore, 
the miRNAs did not reach statistical significance in the overall meta-analysis. 
Dysregulation of those miRNAs may also be specific to certain clinicopatho-
logical features (e.g., cancer subtype, stage, etc.), which could cause the signal 
to be diluted in the meta-analysis.  
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In three datasets, miRNA profiling was performed in never-smoker lung cancer 
patients (Cho et al., 2011; Jang et al., 2012; Seike et al., 2009). Because 
smoking is a major contributor to lung cancer risk, it is possible that the mole-
cular mechanisms leading to disease differ between those NSCLC groups. To 
ascertain if we could identify a never-smokers–specific miRNA signature, the 
three never-smoking miRNA lists were used in a separate meta-analysis. Un-
fortunately, no statistically significantly dysregulated miRNAs were identified, 
possibly due to the small number of original studies. However, several meta-
signature miRNAs were present in individual never-smoker lists, including 
miR-210-5p, miR-183-5p, and miR-126-5p.  
 Meta-analysis of five SCC- and AD-specific lists resulted in the identification 
of a small number of miRNAs dysregulated in specific NSCLC subtypes. For 
SCC, the only significantly upregulated miRNA was miR-205-5p (Bonferroni-
corrected P = 0.005), whereas miR-30a-5p and miR-126-5p showed signifi-
cance in downregulated lists (Bonferroni-corrected P = 0.0002 and 0.0009, 
respectively). For AD-specific lists, only upregulated miR-182-5p, miR-21-5p, 
and miR-210-5p were identified (Bonferroni-corrected P = 0.0004, 0.0011, and 
0.0062, respectively). The upregulation of miR-205-5p in only SCC is in con-
cordance with previous knowledge that upregulation of this miRNA is stronger 
in SCC (Fig. 7), and that this miRNA can be used for distinguishing between 
SCC and AD samples with high sensitivity and specificity (Lebanony et al., 
2009; Patnaik et al., 2015).  
 

 
3.2.4. Regulatory pathways associated with  

lung cancer miRNA metasignature 

3.2.4.1. Target prediction 

Three up-to-date target prediction algorithms (TargetScan v6.1, PicTar, and 
DIANA-microT-CD) were used to identify targets for each metasignature 
miRNA (settings for each algorithm are in the Methods of Ref II). Two data-
bases of experimental evidence for mRNA-miRNA binding were used: 
starBase, which uses several CLIP-seq datasets to support in silico predictions; 
and TarBase v6.0, which was the most comprehensive database of experi-
mentally supported miRNA-mRNA interactions available at the time. To obtain 
a reliable set of putative targets, only genes that were predicted to be the targets 
by at least two of the three algorithms and/or that had some experimental 
support were used as the “high-confidence” set of miRNA targets.  
 Some of the metasignature miRNAs (e.g., miR-30a-5p, miR-30d-5p, and 
miR-182-5p) had a large number of targets, indicating their involvement in a 
broad spectrum of physiological processes, but also their potentially weaker 
effect on an individual target. Other miRNAs (e.g., miR-126-3p, miR-451a, and 
miR-210-3p) had a small number of targets, suggesting their involvement in a 
narrower spectrum of processes.  
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 3.2.4.2. Enrichment analyses 

To elucidate the biological functions and pathways connected with the meta-
signature, enrichment analyses were conducted for the high-confidence lists of 
predicted targets of both individual miRNAs and the combined set of all targets. 
The most significantly enriched pathways were associated with cell signaling 
(i.e., “EGF receptor signaling pathway,” “MAPK signaling pathway,” “Wnt 
signaling pathway”), cell mobility (“Regulation of actin cytoskeleton”), and 
cancer (“Pathways in cancer”). There was no clear difference in functions 
between up- and downregulated members of the miRNA metasignature (Fig. 
12, Supplemental Fig. 4 of Ref II).  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 12. Pathway enrichment of miRNA targets. Consensus targets and results from 
GeneCodis web tool were used to construct a heatmap showing the results of pathway 
enrichment analysis. Color intensity represents the FDR-corrected P-value. Clustering 
was performed by using the Pearson correlation distance metric and average linkage 
method. Only pathways significant for most metasignature miRNAs are shown. Full 
data are available in Supplementary Fig. 4 of Ref II.  
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3.3. Effect of genetic variants on miRNA binding (Ref III) 
During the last decade, numerous genomic variants have been associated with 
human traits and diseases, including cancer. However, the molecular mecha-
nisms behind their effects are largely unknown. As most GWAS loci are not 
located in protein-coding regions, these loci most likely act through regulation 
of gene expression. A recent large-scale blood eQTL meta-analysis (Westra et 
al., 2013) identified thousands of cis-eQTLs and about 200 trans-eQTLs over-
lapping with established GWAS SNPs. The authors observed the overrepre-
sentation of trans-eQTL SNPs in silico-predicted miRNA binding sites, 
suggesting that genetic variations in miRNA regulatory pathways may influence 
the formation of traits or risk of diseases. Despite the existence of bioinfor-
matics studies analyzing the global effect of genetic variation on miRNA 
binding sites, only a handful of these studies integrated eQTL data (Gamazon et 
al., 2012; Lu and Clark, 2012; Richardson et al., 2011; Wei et al., 2012). More-
over, the concordance between eQTL direction and logic of miRNA regulation 
had not been systematically investigated.  
 To fill in the existing gaps, the next part of the thesis was aimed at identifying 
and prioritizing SNPs that could influence the expression of the host gene by 
creating or disrupting the functional miRNA binding site. To this end, a 
systematic study was performed in which in silico miRNA target site predictions, 
available cis-eQTLs, small RNA sequencing results, Argonaute crosslinking 
immunoprecipitation (AGO-CLIP) results, and GWAS datasets were integrated.  
 
 

3.3.1. Identification of 3’-UTR SNPs in cis-eQTL loci 

To identify SNPs that could influence miRNA binding, it was assumed that the 
disruption or creation of an miRNA binding site would be reflected at the 
expression level of the gene harboring the MRE (i.e., cis-eQTL effect). This 
assumption is supported by recent studies postulating that the miRNA targeting 
effect is reflected in the expression level of the target (Guo et al., 2010).  
 The first stage of the analysis utilized the largest and most robust set of cis-
eQTLs  available at the time (Westra et al., 2013). In that study, ~5,500 whole 
blood samples from seven independent cohorts were analyzed by cis- and trans-
eQTL mapping and subsequently integrated in the large-scale meta-analysis. 
The current study used all 664,097 significant (FDR < 0.05) cis-eQTLs (Fig. 
13A). In this dataset, a cis-eQTL was defined as an association between an 
eSNP (expression affecting SNP) and nearby (<250 kB) Illumina expression 
probe. As many genes are detected by several probes from expression arrays, 
the true biological regulation mechanism is often reflected by several probe-
level eQTLs. Perfect proxies (R2 = 1; 1000G pilot 1 data for European popu-
lation) were calculated for all cis-eQTL eSNPs, resulting in the expanded set of 
1,198,115 SNP-probe combinations. In animals, most of the highly efficient 
miRNA binding sites are located in 3’ UTRs. Therefore, this study sought to 
identify cis-eQTL SNPs that may influence the expression of the affected gene 
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in a 3’ UTR-mediated manner. Accordingly, cis-eQTL SNPs and their proxies 
were mapped to the 3’ UTRs of corresponding cis-regulated genes, resulting in 
9,334 SNP-probe combinations (0.8% from all cis-eQTL effects, Fig. 13B).  
 About 13% of cis-affected transcripts were detected by more than one probe. 
Among those, ~15% showed a different effect direction from probes detecting 
the same transcripts. This result may indicate possible alternative splicing or 
polyadenylation (Zhernakova et al., 2013).  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13. Analysis strategy for identification of miRNA-mediated cis-eQTL effects. 
(A) cis-eQTL SNPs and their perfect proxies (R2 = 1, 1000G CEU population) were (B) 
mapped to the 3' UTRs of cis-affected ENSEMBL transcripts. (C) SNPs located within 
the in silico miRNA binding sites were identified from public databases (PolymiRTS, 
miRSNP, and webtool mrSNP), each utilizing a different target prediction algorithm. 
(D) Direction of allelic trends was assessed for concordance with the logic of miRNA-
mediated regulation.  
 

 
3.3.2. Identification of putative MRE-SNPs 

To identify SNPs that may influence the binding of miRNAs, all UTR-eQTL 
SNPs were intersected with three corresponding databases, each utilizing a 
different target prediction algorithm to predict the effects of the SNP on the 
MRE (Fig. 13C). To find the strongest effects, only SNPs that were predicted to 
disrupt, create, or replace the binding site of the corresponding miRNA were 
included. SNPs predicted to change the strength of miRNA binding were 
omitted. All target predictions were performed without conservation filters, as 
several nonconserved MREs have been shown to be functional (Farh et al., 
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2005) and using a hard-defined conservation filter may lead to the exclusion of 
functional target sites (Betel et al., 2010). It is also arbitrary to define in which 
organisms the MRE has to be conserved to be high confidence.  
 In the first stage of analysis, the union of all MREs predicted by three different 
in silico methods was used. About 4% of all cis-eQTLs identified from whole 
blood had an expression associated SNP (eSNP) or its perfect proxy in the in 
silico-predicted MRE. Those MREs were predicted in genes detected by ~35% of 
all cis-affected probes. Almost all miRNAs present in miRBase v20 had at least 
one predicted MRE in the set of cis-regulated genes (2,753/2,758 miRNAs).  
 Overall, 27,126 potential miR-SNP-probe associations were identified. 
However, due to the limitations of prediction algorithms and other factors, those 
associations likely involve many false positives. Therefore, additional filters 
were applied, to identify a more confident “filtered set” of putative miRNA-
associated cis-eQTLs. To add stringency to the in silico target predictions, only 
MREs predicted by all three prediction algorithms were included. As one of the 
databases utilizes TargetScan, only those predictions with perfect or near-per-
fect complementarity in the canonical seed region were included.  
 To find miRNA-target associations potentially relevant in blood, comprehen-
sive searches were made in GEO for small RNA-seq datasets for whole blood, 
peripheral blood mononuclear cells, and leukocytes. These searches resulted in 
11 datasets, which were reanalyzed by the dedicated tool sRNAbench v0.9. 
There was substantial heterogeneity among miRNA profiles of the datasets. 
However, a “consensus” blood-expressed profile of 123 miRNAs could be ob-
tained by using an arbitrary cutoff of at least 10 miRNA reads in at least half of 
the datasets. Finally, some proportion of miRNAs in the miRBase are falsely 
annotated (Hansen et al., 2011). Therefore, only the high-confidence set of 
miRBase v20 miRNAs was used. This set was based on stricter criteria of at 
least 10 reads aligned to both the 3’ and 5’ arms of the precursor sequence, as 
reported by the sequencing studies.  
 After those criteria were applied, 323 “filtered” miR-SNP-probe combina-
tions were identified. MRE-SNPs were further classified as exclusively MRE-
disrupting (minor allele disrupted MRE for all predicted miRNAs), MRE-
creating (minor allele created MRE for all predicted miRNAs), or ambiguous 
(minor allele replaced one set of MREs with another). There was no higher 
proportion of exclusively MRE-disrupting or MRE-creating MRE-SNPs in the 
unfiltered and filtered sets of associations (Chi-square test, P > 0.05).  
 
 
3.3.3. Concordance with the logic of miRNA-mediated regulation 

Based on the assumption that functional MRE results in the downregulation of the 
target mRNA, it was hypothesized that disruption of the miRNA binding site by 
the MRE-SNP would result in upregulation of the target mRNA. Each miR-SNP-
probe association was classified as concordant (C-type) or unconcordant (U-type), 
based on the concordance of the eQTL allelic direction with the logic of miRNA-
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meditated regulation (Fig. 13D). Cis-eQTLs that were exclusively C-type (allelic 
direction consistent with the logic of miRNA-mediated regulation for all targeting 
miRNAs) or exclusively U-type were identified.  
 The proportion of C-type associations was close to 50% in both unfiltered 
(49.4%) and filtered miR-SNP-probes (50.6%), indicating no overrepresentation 
of associations in line with miRNA-mediated regulation. A larger effect size (Z-
score) was not observed for C-type associations (P > 0.05; Wilcoxon-Mann-
Whitney U-test in unfiltered and filtered sets). C-type associations were not 
overrepresented in the exclusively MRE-creating or exclusively MRE-breaking 
MRE-SNPs (Chi-squared test P > 0.05 for unfiltered and filtered sets). There-
fore, there is no indication that MRE-disrupting or MRE-creating SNPs had 
more pronounced functional consequence on target expression. Similarly, C-
type associations were not enriched among conserved compared to unconserved 
MREs (Chi-square test, P > 0.05).  
 The study next investigated whether C-type relationships are associated with 
functionally more effective MREs. Several measures of MRE effectiveness 
were used: free energy (stability of the mRNA-miRNA duplex), miRanda align-
ment score (alignment between mRNA and miRNA), miRSVR, and context+ 
scores (two scores constructed from miRNA transfection data by machine 
learning algorithms). To assess the overall effect of miRNA binding for each 
miRNA-associated cis-eQTL, the average was calculated for each measure, and 
a comparison was made between exclusively C-type and exclusively U-type cis-
eQTLs. Higher average effectiveness was not found for C-type addociations in 
the unfiltered set (Wilcoxon–Mann–Whitney U-test, P > 0.05). In the filtered 
set  the mean miRanda score for C-type associations was only marginally lower 
(Wilcoxon–Mann–Whitney U-test, P = 0.049). However, this association 
contradicts the logic of miRNA-associated regulation. On average, more effec-
tive miRNA binding would be expected in the case of C-type associations.  
 These ambiguous results may indicate that other 3’ UTR-related mechanisms 
exist that are relevant in the formation of cis-eQTL effects. For example, this 
study did not analyze SNP effects on the binding of other RBPs, on mRNA 
folding (which may influence accessibility of the MRE for RISC), or on alterna-
tive polyadenylation. The two latter mechanisms may influence many regu-
latory sites and, therefore, exert a large effect. The effect of SNPs on the 
binding of RBPs is difficult to predict by in silico methods because the binding 
rules (and, therefore, possible effect of SNPs) of many RBPs are not as well 
established as the effects of canonical MREs of miRNAs. There is also a 
complex interplay between the binding of non-AGO RBPs, such as HuR and 
PUF, and the binding of miRNAs, adding an additional layer of complexity to 
the gene regulation via the 3’ UTR (Bhattacharyya et al., 2006; Kedde et al., 
2010; Kundu et al., 2012). However, a recent study investigated the effects of 
3’-UTR SNPs on MREs, mRNA folding, and alternative polyadenylation, using 
several bioinformatics methods. The results suggested that majority of 3’ UTR 
SNPs influence the binding of miRNAs, rather than mRNA folding or poly-
adenylation (Arnold et al., 2012).  
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3.3.4. Prioritization of putative miRNA-associated cis-eQTLs 

To prioritize putative miRNA-associated cis-eQTLs, the filtered associations 
were sorted on the basis of the TargetScan context+ score. Several C-type 
associations were observed among the top prioritized associations (Table 1 of 
Ref III), including rs10187 in ISCU (MRE of miR-210-3p), rs7676 in C21orf33 
(MRE of miR-423-5p), and rs4476230 in MMD (MRE of miR-210-3p). How-
ever, there were also U-type associations with strong MRE. For example, the 
second miR-SNP-probe association in the prioritized list was rs11932 in 
KPNA1 (MRE of miR-210-3p).  
 To integrate more supporting evidence in the prioritization of MRE-SNPs, 
the overlap with the public AGO-CLIP data and experimentally validated 
MREs were used as supporting evidence. Although ~25% of MRE-SNPs from 
the unfiltered set of associations were covered by AGO-CLIP reads, there was 
no overrepresentation of AGO-CLIP-supported cis-eQTL effects among the C-
type miR-SNP-probe associations (Chi-square test, P > 0.05).  
 Next, three databases of experimentally supported miRNA targets (TarBase, 
miRTarbase, and miRecords) were used. Whereas 0.85% of miR-SNPs from the 
unfiltered set of associations affected validated target sites, the number of miR-
SNPs in the validated target genes was more than seven times higher among the 
filtered set of associations (6.5%). For the filtered set of associations over-
lapping the experimentally supported MREs, the strongest conserved MRE 
(context+ score -0.554) was associated with rs10187, disrupting the binding site 
of miR-210-3p in ISCU (Fig.14A-C). This binding was supported by AGO-
CLIP data and experimental results (Chan et al., 2009; Fasanaro et al., 2009; 
Helwak et al., 2013; Lee et al., 2011a). ISCU functions in mitochondrial iron 
sulfur cluster assembly, being associated with myalgia in exercise intolerance 
(Mochel et al., 2008) and decreased cancer survival (Favaro et al., 2010). The 
miRNA miR-210-3p is a “master hypoxamir” that is regulated by hypoxia-
induced factor (reviewed in; (Chan et al., 2012)) and is frequently upregulated 
in different cancer types, including NSCLC (Ref I, II).  
 Another prioritized C-type association involved rs4245739, which creates a 
strong MRE (context+ score -0.32) for miR-191-5p in MDM4 (Fig. 14D-F). 
Although this MRE is not directly covered by AGO-CLIP reads, the reads were 
mapped to the immediate vicinity. MDM4 encodes an inhibitor of the tumor 
suppressor p53 and is upregulated in several tumors (Bartel et al., 2005; Han et 
al., 2007). The minor allele of rs4245739, carried by ~20% of the European 
population, is associated with a protective effect for several cancers (Eeles et 
al., 2013; Garcia-Closas et al., 2013; Purrington et al., 2014; Wynendaele et al., 
2010). Interestingly, the MRE-creating effect of the SNP to the binding of miR-
191-5p and subsequent upregulation of MDM4 on the transcript and protein 
levels have been experimentally supported in ovarian cancer cell lines (Wynen-
daele et al., 2010). This finding represents an example where this analysis 
strategy independently identified experimentally supported MRE-SNP, inte-
grating information from multiple modalities.  
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Figure 14. MRE-SNPs in ISCU and MDM4 genes. (a), (d) Schematic depiction of each 
gene locus. Tracks denote genomic region, SNP positions, AGO binding sites from 
starBase, most prevalent RefSeq transcript isoform, miRNA target sites from 
TargetScan v6.2, and Illumina detection probes. Region with the cis-eQTL MRE-SNP 
and affected probe (red) is expanded. (b), (e) Allelic expression pattern in EGCUT 
sample set. Log-transformed and quantile-normalized expression values are visualized 
as boxplots. Individual expression values are depicted as points. On the boxplots, the 
line indicates median, box defines 25–75% quartiles, and whiskers extend the data to 
1.5× the interquartile range. (c), (f) MRE-SNP effects on miRNA binding. Vertical lines 
indicate canonical pairing; colons depict G:U wobble; and "x" denotes a mismatch. 
Seed region is shown in blue. Minor allele of the MRE-SNP and its effect on miRNA 
binding are shown in red.  
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Another SNP, rs2239680, disrupts the MRE of miR-335-5p in the BIRC5 onco-
gene. This effect is experimentally supported by results in cell lines (Zu et al., 
2013). However, the eQTL direction in blood does not agree with the logic of 
miRNA-mediated regulation, suggesting that this eQTL may be miRNA-driven 
only in specific tissue types. The observation that only one of the two experi-
mentally supported MRE-SNP associations was C-type could be caused by the 
properties of the associated miRNAs. For example, miR-191-5p, which has a C-
type association with MDM4, is highly expressed in blood (detectable in nine of 
the 11 publicly available blood samples and representing ~1% of the detected 
miRNome). The miRNA miR-335-5p was detectable in 6 of the 11 blood 
samples and represented ~0.1% of the miRNome. At the same time, the in 
silico-predicted targetome of miR-335-5p was much larger than the one of miR-
191-5p (3,046 target genes vs. 568 target genes, respectively; TargetScan v6.2), 
suggesting that the effect of miR-335-5p may be diluted in this specific tissue 
type.  
 
 

3.3.5. Presence of miRNA-associated blood cis-eQTLs  
in other tissues 

Publicly available data from the GTEx v4 data portal were used to determine 
whether the top miRNA-associated cis-eQTLs are also detectable in other tissue 
types, and whether the direction is in agreement with blood eQTLs. Although 
the sample sizes for other tissues are currently much smaller and the power for 
proper replication is limited, several associations showed the same allelic 
direction and nominally significant cis-eQTL effects in multiple tissues (Fig. 
15). C-type associations showing nominal significance in the largest number of 
other tissues involved rs1136808 in CTSS (MRE of miR-423-5p) and rs2287067 
in VWDE (MRE of miR-590-5p). Although rs10187 in ISCU was not available 
in the GTEx database, the C-type association involving rs4245739 in MDM4 
was concordant and detectable in several tissues, including the GTEx dataset for 
blood. This result suggests that those potentially miRNA-related cis-eQTLs 
may have widespread effects in multiple tissue types.  
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Figure 15. Overlap between top filtered miR-SNP-probe associations and cis-eQTLs 
from the GTEx Consortium. Color of the cell depicts effect size and direction (beta-
value). Annotation bars on the left depict association concordance with the logic of 
miRNA-mediated regulation (C- or U-type) and the effect direction in the study by 
Westra et al. Only effect sizes for nominally significant tissue eQTLs are shown 
(uncorrected P < 0.05). Associations in bold contain SNPs in experimentally supported 
miRNA binding sites. Shown are the top 30 filtered miR-SNP-probe associations and 
associations with validated miRNA binding sites.  
 
 

3.3.6. Complex trait-associated SNPs in MREs 

Sets of unfiltered and filtered MRE-SNPs were intersected with the NHGRI 
Catalog of Published Genome-Wide Association Studies, to determine whether 
the identified sets of MRE-associated cis-eQTLs can be associated with known 
genetic risk factors. Among the 5,994 potential MRE-SNPs, 208 (3.5%) 
overlapped with the 154 GWAS SNPs or their perfect proxies (R2 = 1, 1000G 
pilot 1, CEU). For the filtered set of miR-SNP-probe associations, 10 MRE-
SNPs (including four C-type MRE-SNPs) overlapped with GWAS loci, 
associated with 12 traits.  
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Figure 16. Regional linkage disequilibrium (LD) plots of four C-type MRE-SNPs 
overlapping with the GWAS Catalogue. 
 
 
One of the identified MRE-SNPs, rs4245739 in the 3’ UTR of MDM4 (Fig. 16A), 
is a GWAS SNP associated with decreased risk for several cancers (Eeles et al., 
2013; Garcia-Closas et al., 2013; Purrington et al., 2014; Wynendaele et al., 
2010). As discussed in Chapter 3.3.4, the MRE-SNP effect of this SNP on 
miRNA binding has been experimentally verified in cell lines (Wynendaele et al., 
2010). A second GWAS SNP, rs6500395, is located in the first intron of N4BP1 
(Fig. 16C) and is associated with the response of rheumatoid arthritis patients to 
tocilizumab (Wang et al., 2013). However, this MRE-SNP has a perfect proxy 
(rs1224) in the AGO-CLIP-supported C-type MRE for miR-330-3p.  
 Two SNPs had GWAS SNPs and perfectly correlating MRE-SNPs in two 
different genes. The first SNP, rs3771570, is associated with aggressive prostate 
cancer (Eeles et al., 2013) and is located in the intronic region of FARP2. How-
ever, its perfect proxy, rs1056801, is positioned in the 3’ UTR of the neigh-
boring gene, SEPT2 (Fig. 16B). The proxy disrupts the binding sites of two 
members of the oncogenic miR-17-92 family (miR-20a-5p and miR-17-5p), and 
its host gene is dysregulated in several cancer types (Liu et al., 2010). As 
SEPT2 was the only gene with a significant cis-eQTL effect from the 
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corresponding LD-block (R2 = 1, 1000G pilot 1, CEU), the binding of miR-17-
92 family members may be linked to dysregulation of SEPT2 expression and 
play a potential role in prostate cancer risk. The second SNP, rs2239815, is 
associated with esophageal SCC (Wu et al., 2012). Although the SNP itself is 
positioned in XBP1, another perfectly correlating MRE-SNP is in the 3’ UTR of 
CCDC117 (Fig. 16D). Based on the functional annotations, this locus harbors 
two potentially cancer-associated genes, XBP1 and CHEK2. Although all three 
genes are influenced by the eQTLs of this LD-block, the largest effect is for 
XBP1 (FDR < 0.01, Z = 23) (Westra et al., 2013), making it unlikely that 
miRNA-mediated regulation of CCDC117 plays a role in esophageal SCC.  
  



67 

CONCLUSIONS 

The aim of the work presented in this thesis was to untangle the role of miRNAs 
in the pathogenesis of lung cancer, and to connect genetic variations with miRNA 
regulatory networks. Using data from a cohort of Estonian NSCLC patients, 
numerous dysregulated miRNAs were identified, including several known 
tumorigenic miRNAs and others that have not previously been connected with the 
pathogenesis of NSCLC. Bioinformatics analyses suggested that the differentially 
expressed miRNAs are involved in several pathways associated with cell proli-
feration, differentiation, and motility. The miRNA miR-374a-5p was shown to 
correlate with the postoperative survival of Estonian NSCLC patients.  
 These results were systematically combined with information from previous 
studies by performing a meta-analysis of aberrantly expressed miRNAs in lung 
cancer. Although a substantial heterogeneity was observed between the results 
of different studies, a robust set of seven up- and eight downregulated miRNAs 
was identified, which may serve as potential drug targets or biomarkers in 
future studies.  
 To investigate the impact of genetic variants on miRNA regulation, the most 
comprehensive set of blood cis-eQTLs available to date was integrated with 
several publicly available data sources. For the first time, the concordance 
between eQTL allelic directions and the logic of miRNA-mediated regulation 
was analyzed. There was no evident overrepresentation of eQTLs in line with 
the logic of miRNA-mediated regulation, suggesting that additional mecha-
nisms may play major roles in the formation of eQTL effects in blood. 
However, after prioritizing the putative miRNA-associated cis-eQTLs, several 
potentially miRNA-driven eQTLs were identified, and one SNP with experi-
mentally supported effects on miRNA binding was independently confirmed.  
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SUMMARY IN ESTONIAN 

MikroRNAde roll haiguste kujunemisel: aberratsioonid 
kopsuvähis ning seosed genoomse varieeruvusega 

Viimase paari kümnendi geneetilised uuringud on leidnud, et suur osa inimese 
genoomilt transkribeeritavast RNAst valke ei kodeeri. Selline mittekodeeriv 
RNA omab eelkõige regulatoorset rolli, mõjutades kuidas valke kodeerivad 
geenid oma funktsioone täidavad. Üks enim uuritud klass mittekodeerivaid 
RNAsid on mikroRNAd, väikesed ~20 nukleotiidi pikkused RNA molekulid, 
mis reguleerivad geenide ekspressiooni, seondudes komplementaarsusepõhiselt 
sihtmärgiks olevate transkriptidega. Iga mikroRNA võib reguleerida sadu siht-
märkgeene, mistõttu on nende molekulide roll bioloogilistes protsessides väga 
tähtis.  
 Kuna mikroRNAd mängivad olulist rolli ka mitmete patoloogiliste prot-
sesside tekkes ja arengus, on neil ka suur potentsiaal võimalike ravimisiht-
märkidena. Eriti palju funktsionaalseid seoseid on leitud miRNAde ja erinevate 
kasvajate vahel. Esimene mikroRNA-põhine vähiravim, MRX34, on 2016 aasta 
seisuga kliiniliste uuringute faasis.  
 MikroRNAde ekspressioonimuster on vähikudedes muutunud, peegeldades 
kasvaja molekulaarseid ja histoloogilisi omadusi. Samuti on mikroRNAd detek-
teeritavad erinevatest kehavedelikest. Nende omaduste tõttu on need molekulid 
väga huvipakkuvad diagnostiliste ja prognostiliste biomarkeritena mis võimal-
daks kasvajate varasemat avastamist ning optimaalsete raviotsuste tegemist.  
 Käesoleva doktoritöö eesmärk oli uurida mikroRNAde rolli mitteväikeraku-
lise kopsuvähi patoloogias, identifitseerida uusi potentsiaalseid prognostilisi ja 
diagnostilisi biomarkereid ning leida seoseid mikroRNAde toimemehhanismide 
ning inimese genoomi normaalse geneetilise varieeruvuse vahel. Uuritud vähi-
tüüp on Eestis sageduselt teine ning peamine vähisurmade põhjustaja. Antud 
doktoritöös kasutati koostöös Tartu Ülikooli Kopsukliinikuga kogutud alg-
staadiumi kopsuvähi proove ning viidi läbi mikroRNAde profileerimine. Ana-
lüüside tulemusena leiti 72 mikroRNAd mis olid oluliselt üles- või alla regu-
leeritud võrrelduna vähivaba kopsukoega ja võivad seetõttu huvi pakkuda 
diagnostiliste biomarkerite või ravimisihtmärkidena. Leitud mikroRNAde 
ennustuslikud sihtmärgid olid seotud mitmete vähiga seotud bioloogiliste prot-
sessidega, toetades nende potentsiaalset rolli vähi arengus. Lisaks identifitseeriti 
üks mikroRNA mis näitas uuritud kopsuvähi kohordis assotsiatsiooni operat-
sioonijärgse elulemusega.  
 Vaatamata sellele et teise generatsiooni sekveneerimismeetodeid kasutatakse 
viimastel aastatel üha laialdasemalt, on suur enamus mikroRNAde profilee-
rimise uuringuid endiselt läbi viidud odavamate ekspressioonikiibi tehno-
loogiate abil. Samas on avaldatud mikroRNAde ekspressioonianalüüside tule-
mused suhteliselt varieeruvad ja vahel isegi vastukäivad, muutes bioloogiliste 
järelduste tegemise ning kõige huvipakkuvamate mikroRNAde leidmise 
keerukaks ülesandeks. Võrdlemaks käesolevas uuringus leitud mikroRNAde 
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vähispetsiifilist profiili teiste sarnaste töödega, viidi läbi süstemaatiline info-
otsing ning meta-analüüs. Kuna erinevad mikroRNAde ekspressiooni tuvasta-
mise meetodid pole omavahel otseselt võrreldavad, kasutati meta-analüüsiks 
spetsiaalset järjestatud geenilistide analüüsimise meetodit. Kahekümne uurin-
gusse kaasatud andmestiku meta-analüüsi tulemusena leiti seitse mikroRNAd 
mis olid kopsuvähis üles- ja kaheksa mis olid alla reguleeritud. See profiil on 
märksa usaldusväärsem kui iga üksiku uuringu poolt leitu ning sobib lähte-
punktiks järgnevatele funktsionaalsetele uuringutele.  
 Ülegenoomsed assotsiatsiooniuuringud on identifitseerinud tuhandeid inim-
populatsioonis leiduvaid ühenukleotiidseid polümorfisme (single nucleotide 
polymorphism- SNP) mis on assotsieerunud erinevate haiguste ja fenotüübiliste 
tunnustega. Paraku on bioloogiline mehhanism, kuidas need variandid oma 
mõju fenotüübile avaldavad, enamikul juhtudel siiani teadmata. Valdav osa seda 
tüüpi variante asuvad genoomi mittekodeerivates alades, mõjutades tõenäoliselt 
pigem geenide ekspressioonitasemeid kui geeni produktiks oleva valgu struk-
tuuri. Kuna mikroRNAde seondumisalades asuvad SNPd võivad mõjutada 
vastava mikroRNA seondumist ja regulatoorset efektiivsust, siis on see ka üks 
võimalik mehhanism geeni ekspressiooni ja fenotüübil mõjutamiseks.  
 Käesolevas uuringus seoti mikroRNAde regulatoorne potentsiaal inimese 
normaalse geneetilise varieeruvusega, kaardistades selleks teadaolevad geeni-
ekspressiooni mõjutavad SNPd mikroRNAde ennustuslikesse seondumisalades-
se. Esmakordselt testiti süsteemselt, kas geeniekspressiooni muutuse põhjuseks 
võib olla mikroRNAde toime. Selleks eeldati, et funktsionaalne mikroRNA 
seondumine surub sihtmärkgeeni ekspressiooni alla ning iga assotsiatsiooni 
ekspressiooni muutust võrreldi mainitud toimemehhanismi loogikaga. Lisaks 
integreeriti mitmeid avalikult kättesaadavaid mikroRNAde ekspressiooni-
tasemete ja mikroRNAdega kompleksis olevate valkude immunopretsipitat-
siooni andmestikke, suurendamaks identifitseeritud assotsiatsioonide usaldus-
väärsust.  
 Uuringu tulemusel ei leitud mikroRNAde toimemehhanismi loogikaga koos-
kõlas olevate assotsiatsioonide üle-esindatust, mistõttu on põhjust arvata, et 
paljudel juhtudel mõjutavad potentsiaalsetes mikroRNAde seondumisalades 
asuvad genoomsed variandid geeniekspressiooni teiste mehhanismide kaudu. 
Sellisteks mehhanismideks võivad olla näiteks alternatiivne polüadenülatsioon, 
alternatiivne mRNA voltumine või erinevate RNAga seonduvate valkude 
seondumine. Samas leiti antud uuringus mitmeid genoomseid variante, mille 
osalust geeniekspressiooni regulatsioonis just nimelt mikroRNAde kaudu toeta-
sid mitmed andmed. Identifitseeriti ka neli juhtu kus mikroRNAde regulatsiooni 
loogikaga kooskõlas olev genoomne variant asus haigusriskiga seotud lookuses.  
 Kokkuvõtteks võib öelda et antud doktoritöö identifitseeris mitmeid 
mikroRNAsid mis näitasid seost kopsuvähi patogeneesiga, aitas süstema-
tiseerida varasemate uuringute tulemusi ning sidus mikroRNAde regulatoorse 
potentsiaali normaalse geneetilise varieeruvusega. 
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