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Credit Scoring By Logistic Regression 

 

 

Abstract 

 

Today banking business’ most successful products are loans and credits given to 

the clients. In order to make a decision whether to accept or reject a loan 

application banks gather information from applicants. In the past, decision was 

made by individual bank’s expert. It was not efficient way for banks, because 

competition was growing, thus they introduced better method – credit scoring. 

Credit scoring is one of the most effective and successful methods in finance and 

banking. With help of credit scoring methodology it is easier to make correct and 

fast decisions. 

An overview of the credit scoring is given in the following thesis. A real data set 

is used to demonstrate how to calculate applicants’ scores. For this purpose one 

of the most frequently used statistical method- logistic regression – is used.  

 

Keywords:  credit scoring, logistic regression. 

 

 

Laenutaotluste hindamine logistilise regressiooni abil 

 

 

Lühikokkuvõte 

 

Pankade kõige tulusam toode on laenud. Selleks, et otsustada, kas laenu anda või 

mitte, kogub pank laenutaotlejalt informatsiooni. Vanasti tegi laenu andmise 

otsuse panga ekspert. Kuna konkurents laenuturul kasvas, siis see meetod muutus 

ebaefektiivseks ja pangad võtsid kasutusele laenutaotluste hindamise 

kvantitatiivse metoodika (ingl.k. credit scoring). 
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Käesolevas magistritöös  antakse esmalt ülevaade laenutaotluste hindamise 

erinevatest meetoditest. Lähemalt vaadeldakse üht kõige levinumat sellekohast 

statistilist meetodit – logistilist regressiooni. Seejärel rakendatakse logistilist 

regressiooni reaalsel laenutaotlejate andmestikul. 

 

Märksõnad: laenutaotluste hindamine, logistiline regressioon 

 

 

 

  



Credit Scoring by Logistic Regression 

 

 

   6                                                                                                                    UT 

1. Introduction  

 

Problem Statement: Credit score has very important role in financial institutions’ 

working. Using credit scoring method, credit officers easily can predict 

probability of default to avoid high losses. Some banks are still using judgmental 

decision means credit officers have interview with applicant and analyze gathered 

information separately. But most of banks try to use easier and useful method, 

such as credit scoring. Using method depends on type of the credit or loan. For 

small credits, like credit card or consumer credit, lenders prefer to use credit 

scoring. The system makes decision based on the information that is known from 

the previous customer’s database. 

Professional lenders try to use more effective methods for credit scoring to make 

more accurate decisions. The methods are not always correct, some good applicant 

can get bad score. Relatively long practice of credit scoring shows that one of the 

most useful and efficient methods in credit scoring is classical logistic regression 

that depends on customers’ historical data. 

Purpose: The primary purpose of this Master’s thesis is show importance of credit 

scoring for lenders, to find variables that are more frequently used in credit scoring 

system. The secondary purpose is to how logistic regression works and compare 

the logistic regression results with actual results, in order to see how correct the 

decision rule is. 

Research Method: This is a quantitative research mostly.  We collect historical 

data from customers to define their characteristics. Research method is to be 

observed by the statistical methods and logistic regression. We follow the general 

research principles: “All aspects of the research are carefully designed before data 

collection procedure. And the analysis is targeted for the precise measurements” 

(Islam, Zhou, Li 2009). 

Findings: First we have shown that logistic regression can be successfully applied 

to solve credit scoring problem. Secondly, we have identified predictor variables 

- the features of loan applicants- which play important role in dividing applicants 

between two classes – “good” and “bad”.   
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The Structure of the thesis is as follows. In Chapter 2 we give a historical 

overview of credit scoring and describe some well-known credit scoring systems 

(FICO, in particular). This description is done in rather general terms since for the 

confidentiality reasons the details of main credit scoring systems are not available. 

In Chapter 3 we describe our study design, data collection procedures, and basic 

data characteristics. In Chapter 4 a brief introduction into logistic regression is 

given, followed by its application on real customer’s data. All statistical 

calculations are performed by means of IBM SPSS software. 
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2. Theoretical Basis 

 

 

2.1 .What Is Credit Scoring? 

 

Credit is very important product in banking and financial institutions. There is 

always a customer who needs loan to buy different stuffs. Loans are always 

accompanied by risks. The risk for financial institutions depends on how well they 

can separate good applicants from bad applicants. For solving this problem, 

lenders started using “credit scoring”. 

Credit scoring is a method for defining the risk of loan applicants. By calculating 

credit score lenders can make decision who gets credit, how good creditor he/she 

could be, what will the percent and how much credit or loan they can get. 

“A lender commonly makes two types of decisions: first, whether to grant credit 

to a new application or not, and second, how to deal with existing application, 

including whether to increase their credit limits or not.” (Thomas, Edelman and 

Crook 2002, p1) 

Lenders use “historical” data gathered from observed of applicant to build 

applicants scorecard. They gather data about applicants, such as applicant’s 

income, financial asset, type of work, working current place, residual status, time 

with bank, credit history, if he/she had default or problem with payment. 

Scoring model is better way for decision making than traditional judgmental 

method, but the model is not perfect-sometimes a bad applicants will receive high 

score and will be accepted, and vice versa, a good applicant can get low score and 

be rejected. 

However credit scoring is frequently used to predict the risk of a customer’s 

defaulting of loan. 
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2.2 .Scoring Methods 

 

There are different historical statistical methods that have been used for 

calculating and developing credit scoring. Those are: linear probability models, 

logistic regression models, and probit model and discriminant analyses models. 

The first three use historical data for finding the probability of default. The 

discriminant analysis divides borrowers into high and low default risk classes. In 

this thesis we will be using a widely used method of credit scoring - logistic 

regression. 

 “Two newer methods beginning to be used in estimating default probabilities 

include options-pricing theory models and neural networks. These methods have 

the potential to be more useful in developing models for commercial loans, which 

tend to be more heterogeneous than consumer or mortgage loans, making the 

traditional statistical methods harder to apply.” (Mester 1997) 

The best methodology for credit scoring model has not been produced yet, since 

it depends on the dataset characteristics. 

 

 

2.3 .Credit Scoring History And Using Area 

 

Credit scoring become widely used after 1980s. 

”In the 1980s, the success of credit scoring in credit cards meant that banks started 

using scoring for other products, like personal loans, while in the last few years, 

scoring has been used for home loans and small business loan.” (Thomas, 

Edelman and Crook 2002, p4) 

But its history started much earlier, “when Sears used credit scoring to decide to 

whom to send its catalogues “(Lewis 1992).  It was in the 1950s in America where 

credit lenders decided to make more accurate system to calculate scorecard.  

In the past only banks used credit scoring, but then it was widely used for issuing 

credit cards, in other type of loan. Nowadays it is used in credit card, club card, 

mobile phone companies, insurance companies and government departments. 
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“The first Banks to use scoring for small-business loans were larger banks that 

had enough historical loan data to build a reliable model.” (Mester 1997) 

Credit scoring is likely to change the nature of small-business lending. It is not 

useful for large commercial loans. 

 

 

2.4 .For Lender And Customer 

 

Credit scoring is useful from both lenders and customers’ point of view. 

Lenders. Credit scoring helps lender in the process of making decision to evaluate 

potential customers, to define their creditworthiness and avoid credit risk. By 

credit scoring lenders define who is worth to get credit or loan, at what interest 

rate and how much can be credit limit. Lenders can determine which customer 

would bring more gain. Also it takes less time and money in process. 

Customers.  Credit scores are one of the most important components of a 

consumer’s personal finances. By controlling credit score customers can develop 

it and change the lenders result. It can save thousands of dollars depending how 

good the score is. 

The more negative information is in the credit report, the lower credit score will 

be. 

The credit scoring can help to avoid unnecessary credit risk. 

 

 

2.5 .Benefits  Of Credit Scoring 

 

There are three obvious benefits of credit scoring (Mester 1977) 

“Quicker- when use with an automated software system, each customer is 

evaluated in second.  For small-business it takes about 12-1/2 hours. Credit 

scoring can reduce this time.  

Cheaper- this time savings means cost saving to the bank and benefits the 

customers as well. Customers need to provide only the information used in the 
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scoring system, so applications can be shorter, and scoring systems themselves 

are not prohibitively expensive. 

More objective- objectivity helps lenders ensure they are applying the same 

underwriting criteria to all borrowers regardless of race, gender, or other factors 

in making credit decisions.” (Mester 1997) 

 

 

2.6 .Different Type Of Credit Scoring 

 

There is number of several credit score formulas in use, each with different 

characteristics: 

“The FICO score- This is the most widely adopted credit score and scoring model in 

the industry. The Fair Isaac Corporation is the father of the FICO score and is the 

originator of the credit report concept. The FICO score scale runs from 300 to 850 

points.” (About FICO Scores-see detail  

(http://www.myfico.com/crediteducation/creditscores.aspx)) 

In fact, the FICO scores are not directly traded to customers. Instead, there are three 

main vendors - Experian, Trans Union, and Equifax, all using FICO score as a raw 

score, making some modification and selling the scores to loan applicants. All three 

maintain records of customers’ credit history known as credit files. The customer’s 

Credit Score is based on the information in your credit file at the time it is requested.  

“The PLUS Score, with scores ranging from 330 to 830, is a user-friendly credit score 

model developed by Experian to help you see and understand how lenders view your 

credit worthiness. Higher scores represent a greater likelihood that you’ll pay back 

your debts so you are viewed as being a lower credit risk to lenders. During the time 

your information can change, your credit score may be different from time to time.  

(https://member.freecreditreport.com/scores/articles/different-types-of-scores) 

“The Vantage Score- Vantage Score is a new credit scoring model created by 

America’s three major credit reporting agencies to support a consistent and accurate 

http://www.myfico.com/crediteducation/creditscores.aspx
https://member.freecreditreport.com/scores/articles/different-types-of-scores
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approach to credit scoring. This score provides lenders with nearly identical risk 

assessment across all three credit reporting companies. The Vantage Score scale ranges 

from 501 to 990.” (Guina 2011) 

No matter which scoring models lenders use, it pays to have great credit score. 

Customer’s credit score affects whether he/she gets credit or not, and how high his 

interest rate will be. A better score can lower customer’s interest rate. 

 

FICO Scoring Method 

 

Today in America the most widely used scoring method is still FICO. As it was 

mentioned already, its scale range is between 300 and 850. The highest score is 

obtained by a very small number of customers only. The vast majority of people will have 

scores between 600 and 800, as it is seen from the distribution given below. A score of 720 

or higher will get you the most favorable interest rates on a mortgage, according to 

data from Fair Isaac Corporation.  

By Fair Isaac Corp. reports, the American public's credit scores break out along these 

lines:  

FICO credit score - Percentage  

499 and below -2 percent  

500-549 - 5 percent  

550-599 - 8 percent  

600-649 -12 percent  

650-699 -15 percent  

700-749 -18 percent  

750-799 -27 percent  

800 and above -13 percent 

 

In determining the FICO score, mathematical models are used to analyze the data 

on an applicant's credit report. The FICO credit scoring formula is a closely 

guarded secret. However, it is known that it takes into consideration five main 

factors: previous credit performance, current level of indebtedness, time credit has 
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been in use, types of credit available and pursuit of new credit. More precisely, 

the FICO-scoring model looks at more than 20 specific factors in five categories.  

 

1.  Payment history (35%) -how you pay your bills. 

The most important factor is how you have paid your bills in the past, placing the 

most emphasis on recent activity. Paying all your bills on time is good. Paying 

them late on a consistent basis is bad. Having accounts that were sent to 

collections is worse. Declaring bankruptcy is the worst. 

2.  Amount owned (30%) -amount of money you owe and the amount of available 

credit. 

The second most important area is your outstanding debt -- how much money you 

owe on credit cards, car loans, mortgages, home equity lines, etc. Also considered 

is the total amount of credit you have available. If you have 10 credit cards that 

each have $10,000 credit limits, that's $100,000 of available credit. Statistically, 

people who have a lot of credit available tend to use it, which makes them a less 

attractive credit risk. 

3.  Length of credit history (15%) 

The longer you’ve had credit, the more points you get. 

4.  Type of credit – mix of credit (10%) 

The best scores will have a mix of both revolving credit, such as credit cards, and 

installment credit, such as mortgages and car loans. "Statistically, consumers with 

a richer variety of experiences are better credit risks," Watts says. "They know 

how to handle money." Many open accounts can have a negative impact, whether 

you are using the accounts or not. 

5.  New credit applications (10%) 

How many credit applications you’re filling out. Opening new accounts in a short 

period on time may negatively impact your score. (Myfico-the details can be obtained 

e.g. from  

(http://www.myfico.com/crediteducation/whatsinyourscore.aspx)) 

 

 

http://www.myfico.com/crediteducation/whatsinyourscore.aspx
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3. Study Design And Data Collection 

 

 

3.1.  Target Population  

 

Target population of this thesis are the individual who decided to apply for a credit 

first time, and individuals who already have credit history. All important 

information will be gathered from target applicants. 

The identified pattern is used to predict the behavior of the future applicants based 

on the input or independent variables like income, job, debt etc. The same concept 

will be applied in this study, also for the default risk prediction of applicants. 

Factors causing credit risk are very different, because of the variety of the 

borrowing populations. During gathering the information it is very important to 

consider all factors that are used for calculating credit scores, factors such as age, 

residual status, job type, income, etc. 

 

 

3.2. Risk Factors  

 

Scoring systems start using the best factors of variable to identify default risk. 

By “(Jentzsch 2007), the general structure of credit scoring models is  

𝑆 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 , 

Where 

S   is dependent variable (measuring the customer’s creditworthiness), 

x1,…, xn  are independent variables (customers attributes).  

Note that the same is true for current thesis, because we will also use linear 

combinations of risk factors in our model. 

Some attributes give information about the stability of the applicant (for example, 

time at present address, time at present employment), some characteristics present 
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information about the financial capacity of the applicant (for example income, 

credit cards, time with current bank, credit history), some variables provide 

information about the applicant’s resources (for example, residential status, type 

of job, age). 

Generally speaking, there are 5 C’s of credit factors, each measured by specific 

variables, which are used more frequently in credit scoring. (The “Five Cs” of credit: 

(http://www.handsonbanking.org/financial-education/adults/the-five-cs-of-credit/).) 

 

Character: Character is very important factor but not so easy to be measured. 

Expert must identify if applicant really repay loan or not. For this there are some 

factors that will give more clearly information about applicant: applicant’s job, 

income stability, his/her credit history and personal characters. 

Capacity: it is also very important factor. It includes information about 

applicant’s financial capability, if he/she can repay loan. Income statement, 

dividends, also applicant expenses are considered in measurement.  

Capital: It gathers information about applicants’ assets, for example homes, 

boats, airplanes and etc. It will be considered if applicant wants to takes huge loan. 

Experts want to know if there are any additional backup capacities in case of 

unfavorable situation. 

Collateral: If the situation occurs in which applicant is not able to repay by 

primary source, the mentioned factor will work as a secondary source of 

repayment. Collateral is the applicant asset what was put in financial institute 

instead of taken loan. Financial institutes can takes this collateral and sell it in the 

market. 

Condition :This factor is depends on applicants job type and nature of the firms, 

where he/she works, it consider information about this firm’s economic condition, 

that may have influence on applicants repayment of the loan.  

 

 

 

 

http://www.handsonbanking.org/financial-education/adults/the-five-cs-of-credit/)
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3.3.  Data Collection  

 

Data were collected randomly from different banks and credit companies in 

Georgia. The sample consisted of 500 applicants. Data set is not very big and the 

reason of this is following: still a low number of people are looking for credit, 

because people think that getting credit is too risky.  

Data such as applicant age, residual status, place of current residence, information 

about working, income, time at the same job, time with bank, all information about 

credit or loan, if applicant has defaulted on previous loan, if applicant missed any 

payment, how many times did applicant apply for credit or loan, what type of loan 

he/she has - all these details are important factors and must be collected by credit 

expert for the future credit decision. 

 

The data consists of two groups: good customers (Y=1) who paid their loan back, 

and bad customers (Y=0) who defaulted on their loans. Each customer is described 

by 17 variables, shown in Annex 1. The variables describe consumer’s profile and 

financial data.         

 

 Summary of Dataset 

 

Number of 

applicants 
500 

Number of attributes 17 

 

Among the 17 variables there are 16 independent (input) variables and 1 

dependent (output) variable. Three (3) independent variables are “Scale” 

(numerical) variables and 13 variables are “Nominal” variables (but still with 

ordered categories).  Each of nominal attributes has a scale ranging from 1 to K, 

with K depending on the attribute. Maximum sum of scores is 56. The output 
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variable Y is binary, taking values 0 and 1. All the information about variables is 

given in Annex 1 and Annex 2. 

 

 

3.4.  Data Preparation  

 

After the data collection, data preparation is a very important part of the study. It 

is needed to identify incorrect information, to handle missing data in the dataset, 

etc. Only if the data is prepared properly and accurately, the model can give good 

result and credit expert will be able to make correct decisions.  
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4. Logistic Regression Analysis 

 

 

4.1. General Form Of Logistic Regression Model 

 

As we have already noted, logistic regression is one of the most frequently used 

statistical model used in credit scoring. It is the best to show probability of default 

and risk of decision. 

Logistic regression models the relationship between a set of independent variables 

and the probability that a case is a member of one of the categories of the 

dependent variable. In our case, the two categories of the dependent variable Y 

are 1 (good customer) or 0 (bad customer). The frequencies of two categories in 

our data were 285 (good customers) and 214 (bad customers). 

So, we decided to use logistic regression for the development of credit scoring. 

As we already said, logistic regression is a standard statistical technique for 

estimating the probability of default on loan performance and characteristics of 

the borrower based on historical data. Depending on the values of attributes 

(independent variables), we will find the probability that the dependent variable 

takes value 0 (default probability). For all necessary calculations, we use logistic 

regression procedure of the IBM SPSS statistical software. 

By the logistic regression model the probabilities that 𝑌 = 0 (individual is bad) 

and  𝑌 = 1 (individual is good) are expressed as in equations (1) and (2): 

𝑃(𝑌 = 0|𝑋) = 𝑃 =
e𝛽′𝑋

1+e𝛽′𝑋
    ,                                                                          (1) 

𝑃(𝑌 = 1|𝑋) = 1 − 𝑃 =
1

1+e𝛽′𝑋
      .                                                                 (2) 

The symbol β’ stands for the vector of coefficients, 𝛽′ = (𝛽0, 𝛽1 , … , 𝛽16), and x 

is the column vector of independent variables, 𝑥′ = (𝑥0,𝑥1, … , 𝑥16). 

The equations (1) and (2) are equivalent to (3): 

    ln (
𝑃

1−𝑃
) = 𝛽′𝑋 =: 𝑙                                                                                     (3) 
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Where l denotes the logit function of the probability p. Equation (3) is an indicator 

of linear relation between independent variables and logit function of the 

dependent variable. The coefficients β are estimated by the maximum likelihood 

method. We can write 

   𝑃(𝑌 = 𝑦𝑖) = 𝑃𝑖
1−𝑦𝑖(1 − 𝑃𝑖)𝑦𝑖                                                                    (4) 

Where the variable 𝑃𝑖 is default probability in the  𝑖𝑡ℎ observation and 𝑦𝑖 is the 

value of random variable Y that can be 0 or 1. Assuming that our n observations 

are independent, the likelihood of the data will thus be equal to 

𝐿 = П𝑖=1
𝑛 𝑃𝑖

1−𝑦𝑖(1 − 𝑃𝑖)
𝑦𝑖 .                                                                           (5) 

 According to maximum likelihood method, the function L is to be maximized 

over all possible values of the beta-coefficients. It can be completed by means of 

different software, including Excel (although it needs more work with Excel than 

with more specialized software). We have used IBM SPSS statistical package to 

estimate the parameters of logistic regression and to obtain other output 

information which helps to understand the quality of the model.  

As we have noted already, there are 16 independent variables in the model. The 

logit variable l is the linear combination of the 16 independent variables weighted 

by the logistic coefficients: 

𝑙 = 𝛽0 + 𝛽1 ∗ 𝑋1 + 𝛽2 ∗ 𝑋2 … … + 𝛽16 ∗ 𝑋16. 

 

Some modeling guidelines for logistic regression 

 

There are some useful hints to be taken into account when applying logistic 

regression 

 (http://appricon.com/index.php/logistic-regression-analysis.html ). 

1)  Data set should contain at least 30 rows of data. (This requirement is well 

satisfied in our case.) 

2)  The logistic regression model should be comprised of no more than 1 variable 

per 30-50 data rows. (This requirement is just fulfilled in our application, as 

500/17 is close to 30). 

http://appricon.com/index.php/logistic-regression-analysis.html
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3)  A logistic regression model should have preselected variables used as the 

model core and defined by a professional in the field of application being 

modeled. The preselected variables are ones that considered as affecting the 

decision being modeled prior to the modeling process. The general approach is 

that a logistic regression model has to be based on the field of application and 

cannot be defined solely on statistical tests. 

4)  Logistic regression models should have a minimal set of variables. This rule 

cannot be quantified yet variables that add little to model performance should not 

be included. (We try to follow this rule by using special variable selection 

procedures like FORWARD). 

5)  The desired parameter values in the process of analysis are not absolute and 

relate to the field being modeled (example: models involving human behavior 

might have larger p-values and less accuracy compare to models involving 

physical phenomena).  

 

 

4.2 .Logistic Regression With All Covariates 

 

In this work the IBM SPSS software was used to execute logistic regression.  

We gathered information from 500 applicants, good and bad, and calculated credit 

scoring model by logistic regression procedure of IBM SPSS.  

After processing the data in SPSS, the statistical outputs were offered. In the table 

“Case Processing Summary” it is seen that there are 499 cases (observed 

applicants) used, out of 500, in logistic regression. One case was not used for the 

reason that it contained missing data (erroneous non-numeric data). 
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Case Processing Summary 

Unweighted Cases N Percent 

Selected 

Cases 

Included in Analysis 499 99.8 

Missing Cases 1 .2 

Total 500 100.0 

Unselected Cases 0 .0 

Total 500 100.0 

 

Let us see what’s happened when we used all 16 independent variables as a 

predictors in modeling. After using SPSS logistic regression we obtained the table 

where each variable has its beta coefficient together with significance statistics.  

 

Variables in the Equation 

 Vara B b S.E. c Wald d Df e Sig. f Exp(B)g  95% C.I.for 

EXP(B) 

  Lower Upper 

V1 .049 .021 5.390 1 .020 1.050 1.008 1.095 

V2 .048 .014 11.268 1 .001 1.050 1.020 1.080 

V3 -.677 .259 6.806 1 .009 .508 .306 .845 

V4 .317 .158 4.009 1 .045 1.373 1.007 1.872 

V5 .627 .282 4.940 1 .026 1.871 1.077 3.252 

V6 .116 .206 .319 1 .572 1.123 .750 1.682 

V7 .673 .300 5.050 1 .025 1.961 1.090 3.527 

V8 -.132 .240 .303 1 .582 .876 .548 1.402 

V9 .298 .250 1.414 1 .234 1.347 .825 2.199 

V10 -.226 .178 1.606 1 .205 .798 .562 1.132 

V11 .768 .158 23.493 1 .000 2.156 1.580 2.941 

V12 .469 .157 8.923 1 .003 1.599 1.175 2.175 

V13 .000 .000 3.586 1 .058 1.000 1.000 1.000 

V14 1.016 .203 25.076 1 .000 2.762 1.856 4.111 
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V15 .695 .201 11.947 1 .001 2.004 1.351 2.973 

V16 .359 .176 4.155 1 .042 1.431 1.014 2.021 

Constant -15.850 1.929 67.501 1 .000 .000     

 

 

Explanations of column labels: 

 

a. Variables included in the model: V1, V2… V16. 

b. B (beta coefficients) gives information about linear relationship between 

independent and dependent variables, where the dependent variable is on the logit 

scale: 

              l = log (odds) = -15.850+0.49*V1+…..+0.359*V16 

For the independent variables which are not significant, the coefficients are not 

significantly different from 0, which should be taken into account when 

interpreting the coefficients.  

c. S.E. - These are the standard errors associated with the coefficients.  The 

standard error is used for testing whether the parameter is significantly different 

from 0. The standard errors can also be used to form a confidence interval for the 

parameter. 

d. Wald -This is the Wald chi-square test that tests the null hypothesis that the 

constant equals 0.  This hypothesis is rejected because the p-value (listed in the 

column called "Sig.") is smaller than the critical p-value of .05 (or .01).  Hence, 

we conclude that the constant is not 0.  Usually, this finding is not of interest to 

researchers. 

e. Df - This is the degrees of freedom for the Wald chi-square test .There is given 

1 degree of freedom for each variable (predictor) in the model.  

f.Sig.  Is p-value of significance test of beta. Usually the p-value should be less 

than 0, 05 in order to include the variable into the model. 

g. Exp(B) - These are the odds ratios for the predictors.  They are the 

exponentiation of the beta-coefficients.  
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Looking at the p-values (located in the column labeled "Sig."), we find that there 

are 5 variables with significance higher than 0.05 (5%).  (Therefore, we later 

repeat the whole analysis using stepwise variable selection procedure to exclude 

insignificant regressors). 

Next we present some output tables of logistic regression where different aspects 

of the quality of the model are tested. We give some explanations how to interpret 

these output tables of logistic regression (the details can be obtained e.g. from 

(http://appricon.com/index.php/logistic-regression-analysis.html).) 

 

 

Model Summary 

Step 

-2 Log 

likelihood 

Cox & 

Snell R 

Square 

Nagelkerke 

R Square 

1 417.466a .411 .552 

 

In this summary we can see that -2 log likelihood statistic is 417.466. If statistic 

was smaller, the model would be better.  

 Cox and Snell R^2 test as well as other logistic regression R^2 tests tries to 

measure the strength of association of the model. The values of this test are 

between 0 and 1.  The Nagelkerke R^2 (a modification of the Cox and Snell R^2) 

is more common and considered a better indication to strength of association. Our 

R2=0.552 is not very high, so this relationship is not very strong. 

Hosmer-Lemeshow table is a model classification table which describes both 

expected model classifications and actual model classifications. The Hosmer-

Lemeshow table divides the data into 10 groups (declines, one per row) each 

representing the expected and observed frequency of both 1 and 0 values. The 

expected frequency of data assigned to each declines should match the actual 

frequency outcome and each declines should contain data.  

 

 

http://appricon.com/index.php/logistic-regression-analysis.html)
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        Partition for the Hosmer and Lemeshow Test 

 

Group Total 

Y = 1  Y = 0  

Observed Expected Observed Expected 

1 50 6 1.88 44 48.12 

2 50 0 7.03 50 42.97 

3 50 13 14.18 37 35.82 

4 50 17 20.11 33 29.89 

5 50 29 26.65 21 23.35 

6 50 35 33.96 15 16.04 

7 50 39 40.54 11 9.46 

8 55 55 49.11 0 5.89 

9 50 47 47.67 3 2.33 

10 44 44 43.89 0 0.11 

 

We can see that the differences between observed and expected frequencies are 

not big with our model (sometimes they are very close). 

 

Hosmer and Lemeshow Test 

Step 

Chi-

square df Sig. 

1 26.302 8 .001 

 

 

 

Hosmer-Lemeshow Probability Test is based on a chi-square test which is done 

over the Hosmer – Lemeshow table (above). This important parameter tests the 

assumption that the model distinguishes the explained variable better. The actual 

Null hypothesis is that the model is insignificant and the test tries to break this 

hypothesis. Values for this test should be higher than 0.5 – 0.6. It is .001 in our 

case which means that the differences between observed and predicted 
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frequencies cannot be explained by chance only - it is also the problem of model 

inadequacy. 

Classification tables. In binomial logistic regression, the classification table is a 

table that contains the observed and predicted model results. Each data record is 

classified using the computed probability given by the model (a value between 0 

and 1) and the cut value which is the minimal value of probability that should be 

classified as 1. The default "cut value" value is 0.5, determines that a data record 

that has a value larger than 0.5 should be classified as 1. In our analysis, we have 

used several other cut probabilities as well: 0.3, 0.4, 0.5, 0.55, 0.6, and 0.7. 

 

 

Classification Table 

Prob 

Level 

Correct Incorrect Percentages 

Event 

Non- 

Event Event 

Non- 

Event Correct 

Sensi- 

tivity 

Speci- 

ficity 

False 

POS  

False 

NEG  

0.300 267 122 92 18 78.0 93.7 57.0 25.6 12.9 

0.400 253 136 78 32 78.0 88.8 63.6 23.6 19.0 

0.500 236 165 49 49 80.4 82.8 77.1 17.2 22.9 

0.550 228 172 42 57 80.2 80.0 80.4 15.6 24.9 

0.600 220 178 36 65 79.8 77.2 83.2 14.1 26.7 

0.700 195 190 24 90 77.2 68.4 88.8 11.0 32.1 

 

Each row of the classification table corresponds to a specific cut probability and 

has 4 data cells: 

1. Observed 0 Predicted 0 – The number of cases that were both predicted and 

observed as 0. The model classification was correct for these records. 

2. Observed 0 Predicted 1 – The number of cases that were predicted as 1 yet 

observed as 0. The records in this cell are referred to as false negatives. The model 

classification was incorrect for these records. 

3. Observed 1 Predicted 1 – The number of cases that were both predicted and 

observed as 1. The model classification was correct for these records. 
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4. Observed 1 Predicted 0 – The number of cases that were predicted as 0 yet 

observed as 1. The records in this cell are referred to as false positives the model 

classification was incorrect for these records. 

Different fields of applications require different rates of false positives and false 

negatives since in some applications false positives cannot be tolerated while in 

other applications, false negatives cannot be tolerated. 

We next present the row corresponding to cut value 0.5 in a form of 2x2   

classification table. 

 

Classification Table (cut value 0.5)a 

Observed 

Predicted 

Y 

Percentage Correct 0 1 

 Y 0 165 49 77.1 

1 49 236 82.8 

Overall 

Percentage 

    80.4 

 

Classification Table shows accuracy of the model. This rule allow us to classify 

236/285=82.8%, that this percentage of occurrences is correctly predicted, it is a 

sensitivity of prediction, P (correct/ event did occur). As we see 165/214=77.1% 

of the subject where the predicted event was not observed, P (correct/ event did 

not occur). As we see prediction 401 out of 500 times were correct, for an overall 

success rate of 80.4%. 

To finish, let us add a warning remark on how to use classification tables [17]. 

“Classification tables (the tables that show how model classified, the rate of 

hits/misses) should be assessed with caution. In order to achieve good and long 

lasting results, statistical testing should be the main tool of analysis and 

classification tables should be treated as an independent test conducted after 

model quality assessments are completed. Classification tables play an important 



Credit Scoring by Logistic Regression 

 

 

   27                                                                                                                    UT 

role once a model is deployed and used since only reality shows the true quality 

of the model (after deployment). At this stage classification tables computed over 

the model results are the main tool for logistic regression model performance 

analysis.” 

 

Roc curve 

 

We calculated sensitivity (true positive) and specificity (true negative) pairs for 

all possible cutoff points from 0 to 1, and plot sensitivity on the Y axis and (1-

specificity) on the X axis. This curve is called the receiver operating characteristic 

(ROC) curve. The area under the ROC curve ranges from 0.5 and 1.0 with larger 

values indicative of better fit.  
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 Area under ROC Curve (AOC) is a good indication to model performance 

(values are between 0.5 and 1). This variable should be as high as possible with 

some restrictions. Typical values indicate the following: 

◦  0.5 – No distinguish ability (the model has no meaning). 

◦  0.51 – 0.7 – Low distinguish ability (not a very good model yet the model can 

be used). 

◦  0.71 – 0.9 – Very good distinguish ability. 

 ◦  0.91 – 1 – Excellent distinguish ability.  

In some fields, logistic regression models can have an excellent distinguish ability, 

however this might indicate that the model is “too good to be true”. One should double 

and triple check the model making sure that no variables from the future are present and 

that the model has no other odd parameter values. 

In our case, the area under the curve is .903 with 95% confidence interval (.876, 929) (see 

the next table). Also, the area under the curve is significantly different from 0.5 since p-

value is .000 meaning that the logistic regression classifies the group significantly better 

than by chance.  

 

Area Under the Curve 

Test Result Variable(s): Predicted probability 

Area Std. Errora Asymptotic 

Sig.b 

Asymptotic 95% Confidence 

Interval 

Lower Bound Upper Bound 

.903 .013 .000 .876 .929 

 

 

To conclude, the logistic regression analysis with all varieties (full model) produced a 

model with relatively high prediction ability. However, since it contains several variables 

with insignificant betas, we cannot be sure about the stability of the model. Therefore, we 

will proceed with logistic regression that uses a variable selection method to avoid 

insignificant and possibly useless variables in the model. 
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4.3 . Logistic Regression With Selected Covariates 

 

Here we apply logistic regression procedure FORWARD which automatically 

includes into the model only the varieties that are significant. A slightly simplified 

description of the procedure is the following.   

1.  Choose the variable with the smallest significance (p-value) of beta. If that significance 

is less than the probability for a variable to enter (0,05 in our case), then go to step 2.  

2. Inclusion step: Update the current model by adding a new variable. 

3. Exclusion step: If the largest significance in the current model is larger than the 

probability for variable removal (0,20 in our case), then remove respective variable from 

the model.  

4. Based on the MLEs of the current model, calculate the score statistic for every variable 

eligible for inclusion and find its significance. If the smallest significance is less than the 

probability for a variable to enter, then go to step 2. 

We applied the logistic regression FORWARD procedure to the same data as before. 

Application of the FORWARD  procedure resulted in a model with 8 covariates, as seen 

in the next table.  

 

Variables in the Equation 

 B b S.E c Wald d Df e Sig. d Exp(B) f 95% C.I.for 

EXP(B) 

Lower Upper 

 V1 .056 .013 19.132 1 .000 1.058 1.031 1.084 

V2 .056 .011 27.838 1 .000 1.058 1.036 1.080 

V4 .369 .144 6.533 1 .011 1.447 1.090 1.920 

V5 .904 .184 24.024 1 .000 2.470 1.721 3.546 
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V11 .761 .124 37.493 1 .000 2.140 1.678 2.731 

V13 .000 .000 2.517 1 .113 1.000 1.000 1.000 

V14 .759 .166 20.833 1 .000 2.137 1.542 2.961 

V16 .605 .157 14.809 1 .000 1.832 1.346 2.494 

Constant -13.094 1.589 67.910 1 .000 .000   

 

The regressor variables included into the model are: 

V1 Applicant age, 

V2  Duration of credit in months, 

V4  Living current place 

V5  Type of job 

V11  Last miss of payment  

V13  Amount of credit 

V14  Further debtors/guarantors  

V16  How many times have you applied for credit in the past year 

 All the beta-coefficients are positive by sign. The beta for V13 is very small but it comes 

from diferent measurement scale  (credit amount is measured in currency units, other 

variables mostly on 5-points scale). 

There is one variable (V13) with large p-value 0.113 but this is permitted by the 

procedure, since this p-value is still less than the exclusion probability level 0.2. 

The model summary is as follows. 

 

Model Summary 

Step -2 Log 

likelihood 

Cox & Snell R 

Square 

Nagelkerke R 

Square 

1 441.337 a .382 .513 

 

In this summary we can see that -2log likelihood statistic is 441.337 which is 

higher than with full model where it was 417. Also the value of R2=0.513 shows 



Credit Scoring by Logistic Regression 

 

 

   31                                                                                                                    UT 

weaker predictive capacity of the model than before. The same says the Hosmer 

–Lemeshow test with its p-value 0.000 (before it was 0.001).  

 

Hosmer and Lemeshow Test 

Step Chi-

square 

df Sig. 

1 39.362 8 .000 
 

 

We calculated predicted creditworthiness for each data point, and the residuals. 

By their actual value of Y, we have 285 good applicants and 214 bad applicants. 

The classification table below shows accuracy of the model. This rule allow us to 

classify correctly 243/285=85.3% of good applicants (sensitivity of the prediction 

rule= P (correct/event did occur). At the same time 172/214=80.4% of bad 

subjects were correctly classified (P(correct/ event did not occur)). As we see,  in 

total 415 cases out of 499 were classified correctly, which makes the overall 

success rate be equal to 415/499=83.2%. 

 

Classification Tablea 

 

 Observed Predicted 

 Y Percentage 

Correct  0 1 

Step 

1 

Y 0 172 42 80.4 

1 42 243 85.3 

Overall Percentage   83.2 

a. The cut value is .500 

 

In classification table overall percentage gives information that in my model 

83.2% of cases were correctly predicted. As I saw this percentage has increased 

from 80, 4% in case of the full model to 83.2% for selected variables model. Still, 

this does not say too much because both rules use same cutting value 0.5 but these 
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cutting values are not necessarily optimal for these two analyses. We can only say 

that in the case of the new model the cutting value 0.5 works well. 

 

In annex 3 predicted default probabilities for bad applicants (Y=0) are given. We 

see that these probabilities are mostly large, as expected.  

Similarly, in annex 4, predicted default probabilities for good applicants (Y=1) 

are given. We see that these probabilities are mostly small, as expected. 

 

ROC curve 

 

This time the ROC curve looks like follows: 
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The area under the curve is now .884 with 95% confidence interval (.854, .914) which is 

slightly less than in case of the full model.  

 

Area Under the Curve 

Test Result Variable(s): Predicted probability 

Area Std. 

Errora 

Asymptotic 

Sig.b 

Asymptotic 95% 

Confidence Interval 

Lower 

Bound 

Upper 

Bound 

.884 .015 .000 .854 .914 

 

 

      In general, one can see that the new model with only 8 covariates has almost 

the same quality as the full model with 16 variables. However, it is cheaper (less 

variables to measure) and more stable.  

Logistic regression helps to make more accurate decision about credit accept and 

reject. By this statistical method lenders can easily avoid some risk that bring them 

loss and on the other side, to get new customers who bring more revenue. 
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Final Comment 

 

Let us finish with a comment made by credit professionals about the role of 

statistical models ion credit scoring. 

“Although credit risk assessment is one of the most successful applications of 

applied statistics, the best statistical models don’t promise credit scoring success, 

it depends on the experienced risk management practices, the way models are 

developed and applied, and proper use of the management information systems” 

(Mays 1998). “And at the same time, selections of the independent variables are 

very important in the model development phase because they determine the 

attributes that decide the value of the credit score, and the values of the 

independent variables are normally collected from the application form. It is very 

significant to identify which variables will be selected and included in the final 

scoring model. “ 

  



Credit Scoring by Logistic Regression 

 

 

   35                                                                                                                    UT 

 

 Conclusions 

 

In this Master’s thesis we used real data collected from credit customers, both 

“good” (with no problems in paying back the loan) and “bad” (defaulted). We had 

16 scaled independent variables (covariates) that had influence of applicants’ 

credit scoring in observed situation. We created a statistical model – logistic 

regression model - which calculates predicted probability of the default.  

In creating the model, we used logistic regression FORWARD procedure in IBM 

SPSS.  The model obtained consists only of 8 variables which are used in 

calculation of predicted default probabilities. With this model we found out that 

only 42 good and 42 bad applicants (less than 20 percent in both cases) were 

incorrectly classified.  We also calculated the ROC curve of the model and found 

out that it is possible to find a cutting value such that both sensitivity and 

specificity are as high as 80%. 

To conclude, logistic regression helps to make more accurate decision about credit 

accept and reject. By this statistical method lenders can easily avoid some risk that 

bring them loss and on the other side, to get new customers who bring more 

revenue. 

 

.   
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Annex 1: Dataset variables description 

 

 

# Variable Description Measure 

1 Creditworthiness Status of credit applicant Nominal 

2 V1 Applicant age Scale 

3 V2 Duration of credit in months Scale 

4 V3 Home status Nominal 

5 V4 Living current place Nominal 

6 V5 Type of job Nominal 

7 V6 Working current place Nominal 

8 V7 Monthly income Nominal 

9 V8 Time with bank Nominal 

10 V9 Available assets Nominal 

11 V10 
Number of credit at the bank( including 

running one) 
Nominal 

12 V11 Last miss of payment Nominal 

13 V12 
How long ago most negative event 

occurred 
Nominal 

14 V13 Amount of credit (sum of credit) Scale 

15 V14 Further debtors/guarantors Nominal 

16 V15 Low long ago was first credit Nominal 

17 V16 
How many times have you applied for 

credit in the past year 
Nominal 
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Annex 2:  Variables, categories, scores 

 

# Variable Categories/component Score 

Y Creditworthiness 
Good 1 

Bad 0 

V1 Applicant age   

V2 
Duration of credit in 

months 
  

V3 Home status 

owner 3 

rent 2 

other 1 

V4 Living current place 

<1 year 1 

1<=…<4 years 2 

4<=…<7 years 3 

>=7 years 4 

V5 Type of job 

unemployed 1 

unskilled with permanent 

residence 
2 

skilled worker/skilled 

employee 
3 

self-employed 4 

V6 Working current place 

unemployed 1 

<=1 year 2 

1<=..<4 years 3 

4<=…<7 years 4 

>= 7 years 5 

V7 Monthly income 

None 1 

<=500 lari 2 

500<=…<1500 lari 3 

1500<=…<5000 lari 4 
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>=5000 lari 5 

V8 Time with bank 

<=2 year 1 

2<=…<5 years 2 

5<=…<8 years 3 

>=8 years 4 

V9 Available assets 

Ownership of house or 

land 
3 

Car/other 2 

no assets 1 

V10 

Number of credit at the 

bank( including running 

one) 

None 1 

1 time 2 

2 or 3 times 3 

4 or 5 times 4 

>=6 times 5 

V11 Last miss of payment 

never 5 

6 month ago 1 

6<=…<12 month ago 2 

1<=…<2years ago 3 

>=2 years ago 4 

V12 
How long ago most 

negative event occurred 

never 5 

<1 year ago 1 

1<=…<5 years ago 2 

5<=… <8 years ago 3 

>=8 years ago 4 

V13 Amount of credit   

V14 
Further 

debtors/guarantors 

none 1 

Co-applicant 2 

Guarantor 3 

V15 not yet 1 
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How long ago was first 

credit 

<1year 2 

1<=..<3 years ago 3 

3<=…< 5 years ago 4 

>=5 years ago 5 

V16 

How many times have 

you applied for credit in 

the past year 

None 3 

1 time 5 

2 or 3 times 4 

4 or 5 times 2 

>=5 times 1 
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Annex 3: Actual credit, predicted probability 

Y 

Predicted 

deafault 

probability 

0 98% 

0 94% 

0 92% 

0 91% 

0 87% 

0 87% 

0 87% 

0 86% 

0 86% 

0 85% 

0 80% 

0 79% 

0 75% 

0 74% 

0 72% 

0 70% 

0 69% 

0 69% 

0 68% 

0 66% 

0 65% 

0 64% 

0 62% 

0 61% 
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Annex 4:  Actual, predicted        

 

Y 

Predicted  

default 

probability 

1 2% 

1 2% 

1 2% 

1 3% 

1 6% 

1 7% 

1 7% 

1 9% 

1 9% 

1 15% 

1 15% 

1 17% 

1 26% 

1 26% 

1 28% 

1 29% 

1 31% 

1 32% 

1 34% 

1 34% 

1 35% 

1 35% 

1 37% 

1 37% 

1 38% 
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